[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2021089140A - Deterioration degree measuring device for secondary batteries - Google Patents

Deterioration degree measuring device for secondary batteries Download PDF

Info

Publication number
JP2021089140A
JP2021089140A JP2018051456A JP2018051456A JP2021089140A JP 2021089140 A JP2021089140 A JP 2021089140A JP 2018051456 A JP2018051456 A JP 2018051456A JP 2018051456 A JP2018051456 A JP 2018051456A JP 2021089140 A JP2021089140 A JP 2021089140A
Authority
JP
Japan
Prior art keywords
voltage
cell
deterioration
secondary battery
specific cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018051456A
Other languages
Japanese (ja)
Inventor
明洋 田力
Akihiro Tariki
明洋 田力
英司 遠藤
Eiji Endo
英司 遠藤
雅大 井上
Masahiro Inoue
雅大 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2018051456A priority Critical patent/JP2021089140A/en
Priority to PCT/JP2018/048294 priority patent/WO2019181138A1/en
Publication of JP2021089140A publication Critical patent/JP2021089140A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

To provide a secondary battery deterioration degree measuring device that easily and accurately estimates the deterioration index of a secondary battery unit composed of a plurality of single batteries.SOLUTION: A secondary battery system 1 that measures the degree of deterioration of an assembled battery 4 configured by connecting a plurality of cells 4n in series, includes: a voltage sensor 7 that measures the voltage of each of multiple cells 4n; a discharge completion detection unit 19 that detects the existence of a cell battery that has dropped below a predetermined specified voltage Va among multiple cells 4n; a cell identification unit 14 that identifies a specific cell that first drops below the specified voltage Va among multiple cells 4n, when the discharge completion detection unit 19 detects that one of multiple cells 4n has dropped to the specified voltage Va or less; and an SOH estimation unit 16 that, after charging the assembled battery 4, estimates an SOH of the specific cell specified by the cell identification unit 14, and calculates the SOH of the specified cell as the SOH of the assembled battery 4 as a whole.SELECTED DRAWING: Figure 4

Description

本発明は二次電池の劣化度合測定装置に係り、特に複数の単電池で構成される二次電池ユニットの劣化指標を推定する技術に関する。 The present invention relates to a deterioration degree measuring device for a secondary battery, and more particularly to a technique for estimating a deterioration index of a secondary battery unit composed of a plurality of single batteries.

二次電池の劣化度合いを表す劣化指標として、新品時の満充電容量に対する現状の満充電容量の比率であるSOH(State Of Health)が広く知られている。
この劣化指標SOHは、例えば二次電池を電池残容量0の状態から満充電まで充電して、実際の満充電容量を測定して新品時の満充電容量で割ることで得ることができる。しかしながら、劣化指標を推定するために電池残容量0の状態から満充電まで充電しなければならず、推定に要する時間が大幅に長くなるといった問題点がある。
SOH (State Of Health), which is the ratio of the current full charge capacity to the full charge capacity of a new battery, is widely known as a deterioration index indicating the degree of deterioration of the secondary battery.
This deterioration index SOH can be obtained, for example, by charging the secondary battery from a state where the remaining battery capacity is 0 to full charge, measuring the actual full charge capacity, and dividing by the full charge capacity at the time of new product. However, in order to estimate the deterioration index, it is necessary to charge the battery from the state where the remaining battery capacity is 0 to the full charge, and there is a problem that the time required for the estimation becomes significantly long.

そこで、推定に要する時間を抑えて二次電池の劣化指標を推定する方法が各種提案されている。例えば所定の電池電圧Vの範囲内で微分曲線V-dQ/dVに現れる特徴点の電圧値、詳しくはピーク形状の頂点部分である極大点の電圧値から、二次電池の劣化指標である容量低下率を求めている(特許文献1)。 Therefore, various methods have been proposed for estimating the deterioration index of the secondary battery while suppressing the time required for estimation. For example, from the voltage value of the feature point appearing on the differential curve V-dQ / dV within the range of the predetermined battery voltage V, specifically, the voltage value of the maximum point which is the apex part of the peak shape, the capacity which is the deterioration index of the secondary battery. The rate of decrease is sought (Patent Document 1).

特開2013−19709号公報Japanese Unexamined Patent Publication No. 2013-19709

しかしながら、上記特許文献1に開示される技術では、二次電池(以下、単電池という)を複数備えて構成される二次電池ユニットの電圧を測定しているため、単電池ごとの電池容量のばらつきが考慮されていない。即ち、複数の単電池を有する二次電池ユニット全体の劣化後の満充電容量は、複数の単電池のうちいずれか1つが電池残容量0の状態から充電を開始し、複数の単電池のうちいずれか1つが満充電となるまで充電させたときの充電量となるので、二次電池ユニット全体のSOHを容易に精度よく推定することが困難であった。 However, in the technique disclosed in Patent Document 1, since the voltage of a secondary battery unit including a plurality of secondary batteries (hereinafter referred to as a cell) is measured, the battery capacity of each cell is increased. Variations are not taken into account. That is, the fully charged capacity of the entire secondary battery unit having a plurality of single batteries after deterioration is such that one of the plurality of single batteries starts charging from the state where the remaining battery capacity is 0, and among the plurality of single batteries. Since it is the amount of charge when any one of them is charged until it is fully charged, it is difficult to easily and accurately estimate the SOH of the entire secondary battery unit.

本発明はこのような課題に鑑みてなされたものであり、その目的とするところは、複数の単電池で構成される二次電池ユニットの劣化指標を容易に精度よく推定することができる二次電池の劣化度合測定装置を提供することにある。 The present invention has been made in view of such a problem, and an object of the present invention is to easily and accurately estimate the deterioration index of a secondary battery unit composed of a plurality of single batteries. The purpose of the present invention is to provide a battery deterioration degree measuring device.

上記の目的を達成するため、本発明の二次電池の劣化度合測定装置は、複数の単電池を接続して構成された二次電池ユニットの劣化度合を測定する二次電池の劣化度合測定装置であって、前記複数の単電池それぞれの電圧を測定する電圧センサと、前記二次電池ユニットが放電した際に、前記電圧センサによって測定された複数の単電池のうち、所定の指定電圧以下に低下した単電池が存在することを検出する放電完了検出部と、前記放電完了検出部により前記複数の単電池のうちいずれかが前記指定電圧に達したことを検出した際に、前記複数の単電池のうち最初に前記指定電圧以下に低下した特定単電池を特定する単電池特定部と、前記単電池特定部により特定した前記特定単電池の劣化指標を推定し、当該特定単電池の劣化指標を前記二次電池ユニットの劣化指標として算出する劣化指標推定部と、を備えたことを特徴とする。 In order to achieve the above object, the secondary battery deterioration degree measuring device of the present invention is a secondary battery deterioration degree measuring device for measuring the deterioration degree of a secondary battery unit configured by connecting a plurality of single batteries. Of the voltage sensor that measures the voltage of each of the plurality of cells and the plurality of cells measured by the voltage sensor when the secondary battery unit is discharged, the voltage falls below a predetermined specified voltage. When the discharge completion detection unit that detects the presence of a lowered cell and the discharge completion detection unit detects that one of the plurality of cells has reached the specified voltage, the plurality of units are said to be present. The deterioration index of the specific cell is estimated by first estimating the cell specific part that identifies the specific cell that has dropped below the specified voltage and the deterioration index of the specific cell specified by the cell specific part. Is provided with a deterioration index estimation unit that calculates the deterioration index of the secondary battery unit.

これにより、複数の単電池のうち、二次電池ユニットを放電した際に、最初に指定電圧以下に低下した特定単電池を特定し、劣化指標推定部によって特定単電池の劣化指標を推定し、当該特定単電池の劣化指標を二次電池ユニットの劣化指標として算出するので、全ての単電池のSOHを推定する必要がなく、二次電池ユニット全体のSOHを推定することができる。 As a result, among the plurality of cells, the specific cell that first drops below the specified voltage when the secondary battery unit is discharged is identified, and the deterioration index estimation unit estimates the deterioration index of the specific cell. Since the deterioration index of the specific cell is calculated as the deterioration index of the secondary battery unit, it is not necessary to estimate the SOH of all the cells, and the SOH of the entire secondary battery unit can be estimated.

また、好ましくは、前記指定電圧は、前記単電池の放電完了電圧であるとよい。
これにより、劣化指標推定部において特定単電池の劣化指標を推定する際に、放電完了電圧まで放電することで、特定単電池を特定することが可能となる。
また、好ましくは、前記指定電圧は、前記特定単電池が前記指定電圧に達した状態よりも更に前記二次電池ユニットが放電した際に、前記複数の単電池のうち前記特定単電池が放電完了電圧に最も早く低下する範囲で前記放電完了電圧より高い値に設定されるとよい。
Moreover, it is preferable that the designated voltage is the discharge completion voltage of the cell.
As a result, when the deterioration index estimation unit estimates the deterioration index of the specific cell, the specific cell can be specified by discharging to the discharge completion voltage.
Further, preferably, the specified voltage is such that when the secondary battery unit is further discharged than when the specific cell has reached the specified voltage, the specific cell among the plurality of cell cells is completely discharged. It is preferable to set the value higher than the discharge completion voltage in the range where the voltage drops earliest.

これにより、劣化指標推定部において特定単電池の劣化指標を推定する際に、放電完了電圧より高い指定電圧まで放電することで、特定単電池を特定することが可能となる。これにより、特定単電池の劣化指標を推定することで、短時間で二次電池ユニットの劣化指標を推定することが可能となる。
また、好ましくは、前記複数の単電池それぞれの入出力電流を測定する電流センサを有し、前記劣化指標推定部は、前記電圧センサ及び前記電流センサによって検出される前記二次電池ユニットを充電した際の前記特定単電池の電圧及び入出力電流の変化に基づいて当該特定単電池の劣化指標を推定するとよい。
As a result, when the deterioration index estimation unit estimates the deterioration index of the specific cell, the specific cell can be specified by discharging to a designated voltage higher than the discharge completion voltage. This makes it possible to estimate the deterioration index of the secondary battery unit in a short time by estimating the deterioration index of the specific cell.
Further, preferably, the present sensor for measuring the input / output current of each of the plurality of single batteries is provided, and the deterioration index estimation unit charges the voltage sensor and the secondary battery unit detected by the current sensor. It is advisable to estimate the deterioration index of the specific cell based on the changes in the voltage and the input / output current of the specific cell.

これにより、特定単電池を完全放電状態から完全充電状態まで充電する必要がなく、特定単電池の劣化指標を短時間で容易に推定することが可能となる。
また、好ましくは、前記劣化指標推定部は、前記特定単電池の電圧Vと、前記特定単電池の電池容量Qの変化量dQに対する前記特定単電池の電圧Vの変化量dVの割合であるdV/dQとの関係を示す微分曲線V-dV/dQにおける特徴点の電圧Vに基づいて、前記特定単電池の劣化指標を推定するとよい。
As a result, it is not necessary to charge the specific cell from the fully discharged state to the fully charged state, and the deterioration index of the specific cell can be easily estimated in a short time.
Further, preferably, the deterioration index estimation unit is a ratio of the voltage V of the specific cell and the change dV of the voltage V of the specific cell to the change dQ of the battery capacity Q of the specific cell. The deterioration index of the specific cell may be estimated based on the voltage V of the feature point on the differential curve V-dV / dQ showing the relationship with / dQ.

これにより、特定単電池の劣化指標を、電圧及び入出力電流の変化に基づいて早期に推定することが可能となる。
また、好ましくは、前記劣化指標推定部は、前記特定単電池の電圧Vと、前記特定単電池の電圧Vの変化量dVに対する前記特定単電池の電池容量Qの変化量dQの割合であるdQ/dVとの関係を示す微分曲線V-dQ/dVにおける特徴点の電圧Vに基づいて、前記特定単電池の劣化指標を推定するとよい。
This makes it possible to estimate the deterioration index of the specific cell at an early stage based on the changes in the voltage and the input / output current.
Further, preferably, the deterioration index estimation unit is a ratio of the voltage V of the specific cell and the change dQ of the battery capacity Q of the specific cell to the change dV of the voltage V of the specific cell. The deterioration index of the specific cell may be estimated based on the voltage V of the feature point on the differential curve V-dQ / dV showing the relationship with / dV.

これにより、特定単電池の劣化指標を、電圧及び入出力電流の変化に基づいて早期に推定することが可能となる。 This makes it possible to estimate the deterioration index of the specific cell at an early stage based on the changes in the voltage and the input / output current.

本発明の二次電池の劣化度合測定装置によれば、二次電池ユニットが放電した際に、最初に指定電圧以下に低下した特定単電池を特定し、劣化指標推定部によって特定単電池の劣化指標が推定され、当該特定単電池の劣化指標を前記二次電池ユニットの劣化指標として算出するので、全ての単電池の劣化指標を測定する必要がなく、また複数の単電池において劣化指標のバラツキがあっても精度よく、二次電池ユニット全体の劣化指標、即ち二次電池ユニット全体の劣化度合を容易に精度よく推定することができる。 According to the deterioration degree measuring device of the secondary battery of the present invention, when the secondary battery unit is discharged, the specific cell that first drops below the specified voltage is identified, and the deterioration index estimation unit deteriorates the specific cell. Since the index is estimated and the deterioration index of the specific cell is calculated as the deterioration index of the secondary battery unit, it is not necessary to measure the deterioration index of all the batteries, and the deterioration index varies among a plurality of batteries. Even if there is, the deterioration index of the entire secondary battery unit, that is, the degree of deterioration of the entire secondary battery unit can be easily and accurately estimated.

本実施形態の二次電池システムを示す概略構成図である。It is a schematic block diagram which shows the secondary battery system of this embodiment. 各単電池の放電完了時における充電容量の一例を示すグラフである。It is a graph which shows an example of the charge capacity at the time of completion of discharge of each cell. 各単電池の充電完了時における充電容量の一例を示すグラフである。It is a graph which shows an example of the charge capacity at the time of completion of charging of each cell. 微分曲線V−dV/dQの一例を示す特性図である。It is a characteristic figure which shows an example of the differential curve V−dV / dQ. 本実施形態に係る劣化指標推定制御手順が示されたフローチャートである。It is a flowchart which showed the deterioration index estimation control procedure which concerns on this embodiment. 単電池のSOHの測定結果と、組電池のSOHとの関係の一例を示すグラフである。It is a graph which shows an example of the relationship between the measurement result of SOH of a cell and the SOH of an assembled battery.

以下、本発明を具体化した二次電池システムの一実施形態を説明する。
図1は本実施形態の二次電池システムを示す概略構成図である。
本実施形態の二次電池システム1は電気自動車に搭載されており、走行用動力源である走行モータに電力を供給している。全体として二次電池システム1は、その全体を統合制御するメインコントローラ2、及び電池パック20(二次電池ユニット)から構成されている。電池パック20は、メインコントローラ2に並列に接続された複数の二次電池モジュール3から構成されている。
Hereinafter, an embodiment of a secondary battery system that embodies the present invention will be described.
FIG. 1 is a schematic configuration diagram showing a secondary battery system of the present embodiment.
The secondary battery system 1 of the present embodiment is mounted on an electric vehicle and supplies electric power to a traveling motor which is a traveling power source. As a whole, the secondary battery system 1 is composed of a main controller 2 for integrated control of the entire secondary battery system 1 and a battery pack 20 (secondary battery unit). The battery pack 20 is composed of a plurality of secondary battery modules 3 connected in parallel to the main controller 2.

二次電池モジュール3は、組電池4、サブコントローラ5及び充放電制御部6から構成されている。
組電池4は、所期の電池容量及び出力電圧を達成するために複数の単電池4nを並列及び直列に組み合わせて構成されている。本実施形態の組電池4は、その正極電極板にLiMn2O4及びLiMO2(Mは、Co,Ni,Al,Mn,Feの内、少なくとも1つを含む遷移金属元素)が含まれている。
The secondary battery module 3 is composed of an assembled battery 4, a sub controller 5, and a charge / discharge control unit 6.
The assembled battery 4 is configured by combining a plurality of cell cells 4n in parallel and in series in order to achieve the desired battery capacity and output voltage. The assembled battery 4 of the present embodiment contains LiMn2O4 and LiMO2 (M is a transition metal element containing at least one of Co, Ni, Al, Mn, and Fe) in its positive electrode plate.

組電池4には電圧センサ7、電流センサ8及び温度センサ9が接続されている。電圧センサ7により組電池4を構成する単電池4nそれぞれの電池電圧Vが検出され、電流センサ8により単電池4nそれぞれの入出力電流Iが検出され、温度センサ9により単電池4nそれぞれの温度Tが検出され、それらの検出情報はサブコントローラ5に入力される。
サブコントローラ5は、図示しない入出力装置、制御プログラムや制御マップ等の記憶に供される記憶装置(ROM,RAM等)、中央処理装置(CPU)、タイマカウンタ等から構成されている。サブコントローラ5は充放電制御部6を駆動して組電池4の充放電を制御する機能を奏し、充放電制御の際には、組電池4の劣化指標(劣化度合)に応じて最大許容電流や最大許容電圧を調整する。なお、本実施形態においては、組電池4の劣化指標として、新品時の満充電容量に対する現状の満充電容量の比率であるSOH(State Of Health)を使用する。
A voltage sensor 7, a current sensor 8, and a temperature sensor 9 are connected to the assembled battery 4. The voltage sensor 7 detects the battery voltage V of each of the cell 4n constituting the assembled battery 4, the current sensor 8 detects the input / output current I of each of the cell 4n, and the temperature sensor 9 detects the temperature T of each cell 4n. Are detected, and the detection information thereof is input to the sub-controller 5.
The sub-controller 5 is composed of an input / output device (not shown), a storage device (ROM, RAM, etc.) used for storing control programs, control maps, etc., a central processing unit (CPU), a timer counter, and the like. The sub-controller 5 has a function of driving the charge / discharge control unit 6 to control the charge / discharge of the assembled battery 4, and in the charge / discharge control, the maximum allowable current according to the deterioration index (degree of deterioration) of the assembled battery 4. And adjust the maximum permissible voltage. In this embodiment, SOH (State Of Health), which is the ratio of the current full charge capacity to the full charge capacity at the time of a new product, is used as the deterioration index of the assembled battery 4.

充放電指令部11は、後述するSOH推定部16により推定されたSOH等に基づき、各二次電池モジュール3のサブコントローラ5に入出力部12を介して充放電制御の指令を出力する。例えば所定値未満のSOHが推定された二次電池モジュール3に対しては、充放電時の最大許容電流や最大許容電圧を制限する指令を出力する。この指令に基づくサブコントローラ5による充放電制御により、劣化の進行した組電池4の保護が図られる。 The charge / discharge command unit 11 outputs a charge / discharge control command to the sub-controller 5 of each secondary battery module 3 via the input / output unit 12 based on the SOH estimated by the SOH estimation unit 16 described later. For example, for the secondary battery module 3 in which the SOH estimated to be less than a predetermined value is estimated, a command for limiting the maximum allowable current and the maximum allowable voltage during charging / discharging is output. Charge / discharge control by the sub-controller 5 based on this command protects the assembled battery 4 that has deteriorated.

また充放電指令部11は、組電池4内の単電池4nのうちいずれかの単電池4nで寿命限界を下回るSOHが推定された場合等には、運転席に設けられた表示部18に車両点検を促すメッセージを表示する。これにより販社等で車両点検が実施されて、必要に応じて組電池4が交換される。
一方、メインコントローラ2はサブコントローラ5と同様に、図示しない入出力装置、制御プログラムや制御マップ等の記憶に供される記憶装置(ROM,RAM等)、中央処理装置(CPU)、タイマカウンタ等から構成されている。
Further, the charge / discharge command unit 11 displays the vehicle on the display unit 18 provided in the driver's seat when it is estimated that the SOH of any of the unit batteries 4n in the assembled battery 4 is less than the life limit. Display a message prompting for inspection. As a result, the vehicle is inspected at the sales company or the like, and the assembled battery 4 is replaced if necessary.
On the other hand, like the sub controller 5, the main controller 2 has an input / output device (not shown), a storage device (ROM, RAM, etc.) used for storing control programs, control maps, etc., a central processing unit (CPU), a timer counter, and the like. It is composed of.

メインコントローラ2は、入出力部12、データ保存部13及びSOH推定部16(劣化指標推定部)から構成されている。
データ保存部13は、入出力部12を介して各二次電池モジュール3のサブコントローラ5から入力された実測データを記憶する。またデータ保存部13には、予め微分曲線V−dV/dQ上の特定の特徴点と組電池4のSOHとの相関関係を示すデータ(以下、基準データと称する)が温度域毎に記憶されている。
The main controller 2 includes an input / output unit 12, a data storage unit 13, and a SOH estimation unit 16 (deterioration index estimation unit).
The data storage unit 13 stores the actually measured data input from the sub-controller 5 of each secondary battery module 3 via the input / output unit 12. Further, in the data storage unit 13, data showing the correlation between the specific feature points on the differential curve V−dV / dQ and the SOH of the assembled battery 4 (hereinafter referred to as reference data) is stored in advance for each temperature range. ing.

基準データの作成処理は、以下の通りである。
まず、本実施形態の単電池4nと同一規格の単電池の劣化試験を実施し、未使用の単電池の充放電を繰り返して寿命限界まで段階的に劣化させる。劣化過程の各SOHにおいて、異なる複数の温度域の下で単電池を充放電させる。
そして、単電池の充電時または放電時に所定時間毎に単電池の電池容量Qを逐次算出すると共に、これに同期して電池電圧Vを取得する。このように、充放電により得られた電池電圧V及び電池容量Qに基づき微分値dV/dQを算出し、電池電圧Vと微分値dV/dQとの関係を示す微分曲線V−dV/dQを算出した上で、微分曲線V−dV/dQ上に出現した特定の特徴点の位置(V,dV/dQ)を求める。特徴点は、例えば電池電圧Vの所定の範囲で微分曲線V−dV/dQに現れた2つのピークの中点にすればよい。結果として特定の特徴点と組電池4のSOHとの相関関係が温度域毎に定められ、各二次電池モジュール3の共通の基準データとして予めデータ保存部13に記憶される。
The process of creating the reference data is as follows.
First, a deterioration test of a cell battery of the same standard as the cell battery 4n of the present embodiment is carried out, and charging and discharging of an unused cell cell are repeated to gradually deteriorate the battery until the life limit is reached. At each SOH in the deterioration process, the cell is charged and discharged under a plurality of different temperature ranges.
Then, when the cell is charged or discharged, the battery capacity Q of the cell is sequentially calculated at predetermined time intervals, and the battery voltage V is acquired in synchronization with this. In this way, the differential value dV / dQ is calculated based on the battery voltage V and the battery capacity Q obtained by charging / discharging, and the differential curve V−dV / dQ showing the relationship between the battery voltage V and the differential value dV / dQ is obtained. After calculation, the positions (V, dV / dQ) of specific feature points appearing on the differential curve V−dV / dQ are obtained. The feature point may be, for example, the midpoint of two peaks appearing on the differential curve V−dV / dQ within a predetermined range of the battery voltage V. As a result, the correlation between the specific feature points and the SOH of the assembled battery 4 is determined for each temperature range, and is stored in advance in the data storage unit 13 as common reference data for each secondary battery module 3.

SOH推定部16は、微分曲線算出部10、単電池特定部14、及び放電完了検出部19から構成されている。
単電池特定部14は、すべての単電池4nの中からSOHを推定する特定単電池4mを特定する。
図2及び図3は、特定単電池の特定方法の説明図である。例えば組電池4が単電池4a、4b、4cの3個を直列に接続して構成されている場合において、図2は各単電池4a、4b、4cの放電完了時における充電容量(電池容量Q)を示すグラフであり、図3は充電完了時における単電池4a、4b、4cの充電容量を示すグラフである。図2、3において斜線部が各単電池4a、4b、4cの充電容量を示し、棒グラフ全体の高さが各単電池4a、4b、4cの満充電容量を示す。また、右上がり斜線部がいずれか1つの単電池4nの電圧が放電完了電圧V1以下となった時点での充電容量であり、その時点からいずれか1つの単電池4nの電圧が満充電電圧に到達した時点までに増加した充電容量が右下がり斜線部によって示されている。なお、図2、3に示す充電容量Q1は、単電池4nの電圧が放電完了電圧V1になった時点での充電容量に相当する。
The SOH estimation unit 16 includes a differential curve calculation unit 10, a cell identification unit 14, and a discharge completion detection unit 19.
The unit cell specifying unit 14 specifies a specific cell battery 4m that estimates SOH from all the cell cells 4n.
2 and 3 are explanatory views of a method for specifying a specific cell. For example, when the assembled battery 4 is configured by connecting three cells 4a, 4b, and 4c in series, FIG. 2 shows the charge capacity (battery capacity Q) at the completion of discharging each of the cells 4a, 4b, and 4c. ), And FIG. 3 is a graph showing the charging capacities of the cells 4a, 4b, and 4c when charging is completed. In FIGS. 2 and 3, the shaded areas indicate the charging capacities of the cells 4a, 4b, and 4c, and the height of the entire bar graph indicates the full charging capacity of the cells 4a, 4b, and 4c. Further, the upward-sloping shaded portion is the charge capacity when the voltage of any one cell 4n becomes the discharge completion voltage V1 or less, and the voltage of any one cell 4n becomes the full charge voltage from that point. The charge capacity increased by the time it is reached is indicated by the downward-sloping shaded area. The charging capacity Q1 shown in FIGS. 2 and 3 corresponds to the charging capacity when the voltage of the cell 4n reaches the discharge completion voltage V1.

単電池4nは、互いに劣化度合であるSOHが異なる可能性があり、したがって各単電池4nの満充電容量が互いに異なる可能性がある。図2、3には、満充電容量の異なる単電池4a、4b、4cが記載されている。
図2に示すように、各単電池4nのうち、いずれか1つの電圧が放電完了電圧V1以下となった場合に、組電池4の放電が完了する。図2では、単電池4aが放電完了電圧V1になっている。このとき、他の単電池、例えば単電池4b、4cの電圧は、放電完了電圧V1より高い値となる。そして、このような放電完了状態から組電池4の充電、即ち全ての単電池4a〜4cの充電を開始すると、直列に接続された各単電池4a、4b、4cは均等に、即ちいずれも充電容量が同量ずつ増加していく。そして、いずれか1つの単電池が満充電電圧に到達した時点で充電完了とする。図3では、単電池4aが満充電容量となっており、即ち単電池4aが満充電電圧に達している。
The cells 4n may have different degrees of deterioration SOH, and therefore the full charge capacities of the cells 4n may differ from each other. FIGS. 2 and 3 show cell batteries 4a, 4b, and 4c having different full charge capacities.
As shown in FIG. 2, when the voltage of any one of the cells 4n becomes the discharge completion voltage V1 or less, the discharge of the assembled battery 4 is completed. In FIG. 2, the cell 4a has a discharge completion voltage V1. At this time, the voltage of another cell, for example, the cell 4b or 4c, becomes a value higher than the discharge completion voltage V1. Then, when charging of the assembled batteries 4, that is, charging of all the cells 4a to 4c is started from such a discharge completed state, each of the cells 4a, 4b, and 4c connected in series are charged evenly, that is, all of them. The capacity increases by the same amount. Then, when any one of the cells reaches the full charge voltage, charging is completed. In FIG. 3, the cell 4a has a full charge capacity, that is, the cell 4a has reached the full charge voltage.

このように、複数の単電池4nのうち、いずれか1つが放電完了電圧V1以下となった場合に全ての単電池4nの充電を完了するのは、全ての単電池4nのうち放電完了電圧V1未満、即ち過放電になる単電池が発生しないようにするためである。また、複数の単電池4nのうち、いずれか1つが満充電電圧以上となった場合に全ての単電池4nの充電を完了するのは、全ての単電池4nのうち満充電電圧を超える電圧、即ち過充電になる単電池が発生しないようにするためである。 In this way, when any one of the plurality of cells 4n becomes the discharge completion voltage V1 or less, the charging of all the cells 4n is completed by the discharge completion voltage V1 of all the cells 4n. This is to prevent the generation of a cell that is less than, that is, over-discharged. Further, when any one of the plurality of cells 4n exceeds the full charge voltage, the charging of all the cells 4n is completed at the voltage exceeding the full charge voltage of all the cells 4n. That is, it is for preventing the generation of a single battery that becomes overcharged.

本実施形態では、放電時において、複数の単電池4nのうち、最初に放電完了電圧V1に達した単電池、例えば図2、3に示す単電池4a、4b、4cから構成される組電池4においては、単電池4aを特定単電池4mとする。
微分曲線算出部10は、特定単電池4mの充電時または放電時に所定時間毎に特定単電池4mの電池容量Qを逐次算出すると共に、これに同期して電池電圧Vを取得し、特定単電池4mの電池容量Qの変化量dQに対する電池電圧Vの変化量dVの割合である微分値dV/dQを算出する。そして、得られた微分値dV/dQと電池電圧Vとの関係を示す曲線として微分曲線V−dV/dQを算出する。
In the present embodiment, among the plurality of cell batteries 4n at the time of discharging, the cell battery that first reaches the discharge completion voltage V1, for example, the assembled battery 4 composed of the cell batteries 4a, 4b, and 4c shown in FIGS. In, the cell 4a is a specific cell 4m.
The differential curve calculation unit 10 sequentially calculates the battery capacity Q of the specific cell 4 m at predetermined time intervals when charging or discharging the specific cell 4 m, and acquires the battery voltage V in synchronization with this to obtain the specific cell voltage V. The differential value dV / dQ, which is the ratio of the change amount dV of the battery voltage V to the change amount dQ of the battery capacity Q of 4 m, is calculated. Then, the differential curve V−dV / dQ is calculated as a curve showing the relationship between the obtained differential value dV / dQ and the battery voltage V.

図4は微分曲線V−dV/dQの一例を示す特性図である。図4では、微分値dV/dQを縦軸とし、電池電圧Vを横軸として微分曲線V−dV/dQが表されている。特定単電池4mの充電または放電に伴って、特定単電池4mの充電率(SOC)と共に電池電圧Vが増加または低下し、それに応じて微分値dV/dQが変化することにより、例えば微分曲線V−dV/dQ上には変曲点P1、P2が現れる。 FIG. 4 is a characteristic diagram showing an example of the differential curve V−dV / dQ. In FIG. 4, the differential curve V−dV / dQ is represented with the differential value dV / dQ as the vertical axis and the battery voltage V as the horizontal axis. As the specific cell 4 m is charged or discharged, the battery voltage V increases or decreases with the charge rate (SOC) of the specific cell 4 m, and the differential value dV / dQ changes accordingly, for example, the differential curve V. Inflection points P1 and P2 appear on −dV / dQ.

微分曲線算出部10は、算出した微分曲線V−dV/dQをSOH推定部16に出力する。またこのとき、サブコントローラ5は、温度センサ9により検出された温度T(以下、これらを実測データと称する)をSOH推定部16に出力する。
SOH推定部16は、微分曲線算出部10から出力された微分曲線V−dV/dQ、基準データ、及び実測データを用いて特定単電池4mのSOHを推定する。例えば、基準データのうち、実測データに一致または近似するデータと、微分曲線算出部10から出力された微分曲線V−dV/dQ上に現れる変曲点P1、P2とを照らし合わせ、一致または近似する基準データからSOHを推定する。なお、SOHの推定方法は、他の方法であってもよい。例えば、微分曲線算出部10において、特定単電池4mの電池電圧Vの変化量dVに対する特定単電池4mの電池容量Qの変化量dQの割合であるdQ/dVとの関係を示す微分曲線V-dQ/dVを算出し、この微分曲線V-dQ/dVから特徴点を特定して、特定単電池4mのSOHを推定してもよい。この場合、例えば電池電圧Vの所定の範囲において、微分曲線V-dQ/dVの傾きが最大となる点を特徴点としたり、1つのピークを所定のdQ/dVで横切る2つの点の中点を特徴点としたりすればよい。
The differential curve calculation unit 10 outputs the calculated differential curve V−dV / dQ to the SOH estimation unit 16. At this time, the sub-controller 5 outputs the temperature T (hereinafter, these are referred to as actual measurement data) detected by the temperature sensor 9 to the SOH estimation unit 16.
The SOH estimation unit 16 estimates the SOH of the specific cell 4 m using the differential curve V−dV / dQ, the reference data, and the actual measurement data output from the differential curve calculation unit 10. For example, among the reference data, the data that matches or approximates the measured data is compared with the inflection points P1 and P2 that appear on the differential curve V−dV / dQ output from the differential curve calculation unit 10, and the data matches or approximates. The SOH is estimated from the reference data to be used. The SOH estimation method may be another method. For example, in the differential curve calculation unit 10, the differential curve V-showing the relationship with dQ / dV, which is the ratio of the change amount dQ of the battery capacity Q of the specific cell 4 m to the change amount dV of the battery voltage V of the specific cell 4 m. The dQ / dV may be calculated, the feature points may be specified from the differential curve V-dQ / dV, and the SOH of the specific cell battery 4 m may be estimated. In this case, for example, in a predetermined range of the battery voltage V, the point where the slope of the differential curve V-dQ / dV is maximized is set as a feature point, or the midpoint of two points crossing one peak at a predetermined dQ / dV. May be used as a feature point.

図5は、メインコントローラ2によって実行する、本実施形態に係る組電池4の劣化指標推定制御手順を示すフローチャートである。
以下、組電池4の劣化指標推定制御、即ち組電池4のSOHを推定する制御について、図5を用いて説明する。
本ルーチンは、例えば車両整備工場等において実施される車両メンテナンス時に、作業者の所定の操作によって実行される。なお、本ルーチンの開始条件としては、全ての単電池4nの電圧が指定電圧Vaより高い場合である。この指定電圧Vaは、単電池4nの使用上における最低電圧であり、上記の放電完了電圧V1に相当する。なお、指定電圧Vaについては、放電完了電圧V1より高い値にしてもよい。但し、放電により全ての単電池4nのうちいずれかの単電池4aが指定電圧Vaに達した場合に、更に放電してもこの単電池4aが全ての単電池4nのうち必ず最初に放電完了電圧V1に達することが実験等により判明している場合に、指定電圧Vaを放電完了電圧V1より高い値に設定してもよい。
FIG. 5 is a flowchart showing a deterioration index estimation control procedure of the assembled battery 4 according to the present embodiment, which is executed by the main controller 2.
Hereinafter, the deterioration index estimation control of the assembled battery 4, that is, the control of estimating the SOH of the assembled battery 4 will be described with reference to FIG.
This routine is executed by a predetermined operation of an operator at the time of vehicle maintenance carried out, for example, in a vehicle maintenance shop or the like. The start condition of this routine is that the voltages of all the cell cells 4n are higher than the specified voltage Va. This designated voltage Va is the minimum voltage in use of the cell 4n, and corresponds to the above-mentioned discharge completion voltage V1. The designated voltage Va may be set to a value higher than the discharge completion voltage V1. However, when any of the cells 4n of all the cells 4n reaches the specified voltage Va due to the discharge, even if the cells are further discharged, the cells 4a will always be the first discharge completion voltage of all the cells 4n. When it is known by experiments or the like that V1 is reached, the specified voltage Va may be set to a value higher than the discharge completion voltage V1.

始めに、ステップS10では、組電池4の放電を開始する。したがって、組電池4の直列に接続された全ての単電池4nの電圧が低下する。そして、ステップS20に進む。
ステップS20では、電圧センサ7により各単電池4nの電圧を夫々検出する。そして、ステップS30に進む。
ステップS30では、組電池4の複数の単電池4nのうち、いずれかの単電池が指定電圧Va以下となったか否かを判別する。いずれかの単電池が指定電圧Va以下となった場合には、ステップS40に進む。いずれの単電池も指定電圧Vaより高い場合には、ステップS20に戻る。
First, in step S10, the assembled battery 4 is started to be discharged. Therefore, the voltage of all the cell batteries 4n connected in series with the assembled battery 4 drops. Then, the process proceeds to step S20.
In step S20, the voltage sensor 7 detects the voltage of each cell 4n. Then, the process proceeds to step S30.
In step S30, it is determined whether or not any of the plurality of cell cells 4n of the assembled battery 4 has a specified voltage Va or less. When any of the cells becomes the specified voltage Va or less, the process proceeds to step S40. If any of the cells is higher than the designated voltage Va, the process returns to step S20.

ステップS40では、組電池4からの放電を終了させる。そして、ステップS50に進む。
ステップS50では、ステップS30において指定電圧Va以下となったと判定した単電池、即ち放電を行って最初に指定電圧Va以下となったと判定した単電池4nを特定単電池4mとして記憶する。そして、ステップS60に進む。
In step S40, the discharge from the assembled battery 4 is terminated. Then, the process proceeds to step S50.
In step S50, the cell cell determined to be equal to or less than the designated voltage Va in step S30, that is, the cell cell 4n determined to be equal to or less than the designated voltage Va first after being discharged is stored as the specific cell battery 4m. Then, the process proceeds to step S60.

ステップS60では、組電池4の充電を開始する。そしてステップS70に進む。
ステップS70では、電圧センサ7、電流センサ8及び温度センサ9によって、ステップS50で記憶した特定単電池4mの電圧、電流、温度を計測する。そして、ステップS80に進む。
ステップS80では、ステップS50で記憶した特定単電池4mが推定指標Vpに達したか否かを判別する。推定指標Vpは、SOHを推定可能な単電池の電圧以上に設定すればよい。推定指標Vpは、例えば図4に示すように、微分曲線V−dV/dQにおける変曲点P1及びP2より単電池のSOHを推定する場合には、高電圧側の変曲点P2の電圧より高い値にすればよい。そして、ステップS90に進む。
In step S60, charging of the assembled battery 4 is started. Then, the process proceeds to step S70.
In step S70, the voltage sensor 7, the current sensor 8, and the temperature sensor 9 measure the voltage, current, and temperature of the specific cell 4 m stored in step S50. Then, the process proceeds to step S80.
In step S80, it is determined whether or not the specific cell battery 4 m stored in step S50 has reached the estimation index Vp. The estimation index Vp may be set so that the SOH is equal to or higher than the voltage of the cell cell that can be estimated. As shown in FIG. 4, the estimation index Vp is obtained from the voltage of the inflection point P2 on the high voltage side when the SOH of the cell is estimated from the inflection points P1 and P2 on the differential curve V−dV / dQ. The value should be high. Then, the process proceeds to step S90.

ステップS90では、SOH推定部16において、ステップS50で記憶した特定単電池4mのSOHを推定する。そしてステップS100に進む。
ステップS100では、組電池4全体のSOHを推定する。組電池4全体のSOHは、ステップS90において推定した特定単電池4mのSOHとする。そして、本ルーチンを終了する。
In step S90, the SOH estimation unit 16 estimates the SOH of the specific cell battery 4 m stored in step S50. Then, the process proceeds to step S100.
In step S100, the SOH of the entire assembled battery 4 is estimated. The SOH of the entire assembled battery 4 is the SOH of the specific cell battery 4 m estimated in step S90. Then, this routine is terminated.

以上のように制御することで、本実施形態の二次電池システム1においては、複数の単電池4nを備えた組電池4において、始めに放電を行い、複数の単電池4nのうち最初に指定電圧Vaに低下した単電池を特定単電池4mとして特定する。そして充電を行い、この特定した単電池の劣化指標であるSOHを推定し、組電池4全体のSOHとする。
図6は、単電池番号1〜80の80個の単電池4nを直列に接続して構成した組電池4について、夫々の単電池4nのSOHの推定結果と、組電池4全体のSOHとの関係の一例を示すグラフである。
By controlling as described above, in the secondary battery system 1 of the present embodiment, the assembled battery 4 provided with the plurality of cell cells 4n is first discharged and designated first among the plurality of cell cells 4n. A single battery whose voltage has dropped to Va is specified as a specific single battery 4 m. Then, the battery is charged, and the SOH, which is a deterioration index of the specified cell, is estimated and used as the SOH of the entire assembled battery 4.
FIG. 6 shows the estimation results of the SOH of each battery 4n and the SOH of the entire battery 4 for the assembled battery 4 configured by connecting 80 batteries 4n having cell numbers 1 to 80 in series. It is a graph which shows an example of a relationship.

発明者は、単電池番号1〜80の80個の単電池4nを直列に接続して構成した組電池4について充電を行い、図5に示す劣化指標推定制御を行って特定単電池4mを特定し、更に全ての単電池4nについてSOH推定部16によりSOHを推定した。また、全ての単電池4nのうちいずれかの単電池が放電完了電圧に達した状態から、組電池4を充電していずれかの単電池が満充電電圧に達するまでの組電池4の電圧差に基づいて、組電池4の実SOHを計測した。なお、図6において、組電池4の実SOHをSOHpとして破線で示している。 The inventor charges the assembled battery 4 configured by connecting 80 cells 4n having cell numbers 1 to 80 in series, and performs deterioration index estimation control shown in FIG. 5 to specify the specific cell 4m. Further, the SOH was estimated by the SOH estimation unit 16 for all the cells 4n. Further, the voltage difference of the assembled battery 4 from the state where any of the single batteries 4n reaches the discharge completion voltage until the assembled battery 4 is charged and one of the single batteries reaches the full charge voltage. Based on the above, the actual SOH of the assembled battery 4 was measured. In FIG. 6, the actual SOH of the assembled battery 4 is shown by a broken line as SOHp.

図6に示すように、80個の単電池4nを直列に接続して構成した組電池4のSOHについて、夫々のSOHについて測定したところ、各単電池4nで互いに異なるSOHを示した。しかしながら、上記のように劣化指標推定制御を行って特定した特定単電池4mのSOHは、組電池4全体としての実SOHであるSOHpと一致することが確認された。
これは、組電池4の中で最も劣化した単電池(特定単電池4m)は、最も満充電容量が低下するとともに、放電した際に最も早く電圧が低下するためである。したがって、組電池4を充放電する際に、最も劣化した単電池(4m)によって充電及び放電が制約され、この最も劣化した単電池(4m)のSOHが組電池4のSOHとなる。
As shown in FIG. 6, when the SOH of the assembled batteries 4 configured by connecting 80 cells 4n in series was measured for each SOH, each cell 4n showed different SOH. However, it was confirmed that the SOH of the specific cell battery 4 m specified by performing the deterioration index estimation control as described above matches the SOHp which is the actual SOH of the assembled battery 4 as a whole.
This is because the most deteriorated cell (specific cell 4 m) among the assembled batteries 4 has the lowest full charge capacity and the earliest voltage drop when discharged. Therefore, when charging / discharging the assembled battery 4, charging and discharging are restricted by the most deteriorated cell (4 m), and the SOH of the most deteriorated cell (4 m) becomes the SOH of the assembled battery 4.

このように、本実施形態では、組電池4のSOHを推定する際に、放電により放電完了電圧V1あるいは指定電圧Vaに達した特定単電池4mを特定し、この特定単電池4mのSOHを組電池4全体のSOHとするので、全ての単電池4nのSOHを測定する必要がなく、容易に組電池4全体のSOHを推定することができる。また、単電池4nのSOHにバラツキがあっても、組電池4のSOHを精度よく推定することができる。また、特定単電池4mのSOHが推定完了した時点で組電池4全体のSOHの推定が完了するので、組電池4全体のSOHの推定時間を短縮することができる。 As described above, in the present embodiment, when estimating the SOH of the assembled battery 4, the specific cell 4m that has reached the discharge completion voltage V1 or the designated voltage Va due to discharge is specified, and the SOH of the specific cell 4m is assembled. Since the SOH of the entire battery 4 is used, it is not necessary to measure the SOH of all the cell 4n, and the SOH of the entire assembled battery 4 can be easily estimated. Further, even if the SOH of the cell 4n varies, the SOH of the assembled battery 4 can be estimated accurately. Further, since the estimation of the SOH of the entire assembled battery 4 is completed when the estimation of the SOH of the specific cell 4 m is completed, the estimated time of the SOH of the entire assembled battery 4 can be shortened.

また、本実施形態では、SOH推定部16において、特定単電池4mの電圧Vと、特定単電池4mの電池容量Qの変化量dQに対する特定単電池4mの電圧Vの変化量dVの割合であるdV/dQとの関係を示す微分曲線V−dV/dQにおける特徴点の電圧V、または特定単電池4mの電圧Vと、特定単電池4mの電圧Vの変化量dVに対する特定単電池4mの電池容量Qの変化量dQの割合であるdQ/dVとの関係を示す微分曲線V−dQ/dVにおける特徴点の電圧Vに基づいて、特定単電池4mのSOHを推定する。 Further, in the present embodiment, in the SOH estimation unit 16, the ratio of the voltage V of the specific cell 4m and the change dV of the voltage V of the specific cell 4m to the change dQ of the battery capacity Q of the specific cell 4m. The voltage V of the feature point on the differential curve V-dV / dQ showing the relationship with dV / dQ, or the voltage V of the specific cell 4 m and the battery of the specific cell 4 m with respect to the change amount dV of the voltage V of the specific cell 4 m. The SOH of the specific cell 4 m is estimated based on the voltage V of the feature point on the differential curve V−dQ / dV showing the relationship with dQ / dV, which is the ratio of the amount of change in the capacity Q, dQ.

したがって、特定単電池4mが満充電になるまで充電しなくても、特定単電池4mのSOHを、電圧及び入出力電流の変化に基づいて早期に推定することができる。
また、本実施形態では、特定単電池4mを特定する際に、指定電圧Vaを放電完了電圧V1より高い値にすることで、いずれかの単電池4nが指定電圧Vaに達した時点で放電を完了させることができる。これにより、組電池4のSOHの推定を更に早めることができる。このように放電完了電圧V1まで放電しなくとも、特定単電池4mのSOHは微分曲線V−dV/dQにおける特徴点に基づいて推定することが可能である。
Therefore, the SOH of the specific cell 4m can be estimated at an early stage based on the changes in the voltage and the input / output current without charging the specific cell 4m until it is fully charged.
Further, in the present embodiment, when the specific cell 4m is specified, the designated voltage Va is set to a value higher than the discharge completion voltage V1, so that the discharge is performed when any cell 4n reaches the designated voltage Va. Can be completed. As a result, the estimation of the SOH of the assembled battery 4 can be further accelerated. In this way, the SOH of the specific cell 4 m can be estimated based on the feature points on the differential curve V−dV / dQ without discharging to the discharge completion voltage V1.

以上で本発明に係る二次電池の劣化度合測定装置の説明を終えるが、本発明は上記実施形態に限られるものではなく、発明の主旨を逸脱しない範囲で変更可能である。
例えば、本実施形態では、組電池4のSOHを推定するようにしたが、複数の組電池4からなる電池パック20について、電池パック20全体のSOHを推定するようにしてもよい。
This completes the description of the secondary battery deterioration degree measuring device according to the present invention, but the present invention is not limited to the above embodiment and can be changed without departing from the gist of the present invention.
For example, in the present embodiment, the SOH of the assembled battery 4 is estimated, but the SOH of the entire battery pack 20 may be estimated for the battery pack 20 composed of the plurality of assembled batteries 4.

また、本実施形態では、メインコントローラ2が車両に搭載されているものとしているが、メインコントローラ2を車両と別体にし、SOHを推定するときにのみ接続させるような装置にしてもよい。 Further, in the present embodiment, the main controller 2 is mounted on the vehicle, but the main controller 2 may be separated from the vehicle and connected only when the SOH is estimated.

4 組電池(二次電池ユニット)
4m 特定単電池
4n 単電池
7 電圧センサ
8 電流センサ
14 単電池特定部
16 SOH推定部(劣化指標推定部)
19 放電完了検出部
20 電池パック(二次電池ユニット)
4 sets of batteries (secondary battery unit)
4m specific cell 4n cell 7 voltage sensor 8 current sensor 14 cell specific part 16 SOH estimation part (deterioration index estimation part)
19 Discharge completion detector 20 Battery pack (secondary battery unit)

Claims (6)

複数の単電池を接続して構成された二次電池ユニットの劣化度合を測定する二次電池の劣化度合測定装置であって、
前記複数の単電池それぞれの電圧を測定する電圧センサと、
前記二次電池ユニットが放電した際に、前記電圧センサによって測定された複数の単電池のうち、所定の指定電圧以下に低下した単電池が存在することを検出する放電完了検出部と、
前記放電完了検出部により前記複数の単電池のうちいずれかが前記指定電圧以下に低下したことを検出した際に、前記複数の単電池のうち最初に前記指定電圧以下に低下した特定単電池を特定する単電池特定部と、
前記単電池特定部により特定した前記特定単電池の劣化指標を推定し、当該特定単電池の劣化指標を前記二次電池ユニットの劣化指標として算出する劣化指標推定部と、
を備えたことを特徴とする二次電池の劣化度合測定装置。
It is a secondary battery deterioration degree measuring device that measures the deterioration degree of a secondary battery unit configured by connecting a plurality of single batteries.
A voltage sensor that measures the voltage of each of the plurality of cells and
When the secondary battery unit is discharged, a discharge completion detection unit that detects that, among the plurality of cells measured by the voltage sensor, a cell whose voltage has dropped below a predetermined specified voltage is present,
When the discharge completion detection unit detects that one of the plurality of cells has dropped to the specified voltage or less, the specific cell that first drops to the specified voltage or less among the plurality of cells is selected. The cell identification part to be identified and
A deterioration index estimation unit that estimates the deterioration index of the specific cell specified by the cell specific unit and calculates the deterioration index of the specific cell as a deterioration index of the secondary battery unit.
A secondary battery deterioration degree measuring device characterized by being equipped with.
前記指定電圧は、前記単電池の放電完了電圧であることを特徴とする請求項1に記載の二次電池の劣化度合測定装置。 The device for measuring the degree of deterioration of a secondary battery according to claim 1, wherein the designated voltage is the discharge completion voltage of the single battery. 前記指定電圧は、前記特定単電池が前記指定電圧に達した状態よりも更に前記二次電池ユニットが放電した際に、前記複数の単電池のうち前記特定単電池が放電完了電圧に最も早く低下する範囲で前記放電完了電圧より高い値に設定されることを特徴とする請求項1に記載の二次電池の劣化度合測定装置。 When the secondary battery unit is further discharged than the state in which the specified cell reaches the specified voltage, the specified voltage drops to the discharge completion voltage earliest among the plurality of cells. The degree of deterioration measuring device for a secondary battery according to claim 1, wherein the value is set higher than the discharge completion voltage within the range of the voltage. 前記複数の単電池それぞれの入出力電流を測定する電流センサを有し、
前記劣化指標推定部は、前記電圧センサ及び前記電流センサによって検出される前記二次電池ユニットを充電した際の前記特定単電池の電圧及び入出力電流の変化に基づいて当該特定単電池の劣化指標を推定することを特徴とする請求項1から3のいずれか1項に記載の二次電池の劣化度合測定装置。
It has a current sensor that measures the input / output current of each of the plurality of cells.
The deterioration index estimation unit is a deterioration index of the specific cell based on changes in the voltage and input / output current of the specific cell when the secondary battery unit detected by the voltage sensor and the current sensor is charged. The degree of deterioration measuring device for a secondary battery according to any one of claims 1 to 3, wherein the degree of deterioration of the secondary battery is estimated.
前記劣化指標推定部は、前記特定単電池の電圧Vと、前記特定単電池の電池容量Qの変化量dQに対する前記特定単電池の電圧Vの変化量dVの割合であるdV/dQとの関係を示す微分曲線V-dV/dQにおける特徴点の電圧Vに基づいて、前記特定単電池の劣化指標を推定することを特徴とする請求項4に記載の二次電池の劣化度合測定装置。 The deterioration index estimation unit has a relationship between the voltage V of the specific cell and dV / dQ, which is the ratio of the change dV of the voltage V of the specific cell to the change dQ of the battery capacity Q of the specific cell. The degree of deterioration measuring apparatus for a secondary battery according to claim 4, wherein the deterioration index of the specific cell is estimated based on the voltage V of the feature point on the differential curve V-dV / dQ showing the above. 前記劣化指標推定部は、前記特定単電池の電圧Vと、前記特定単電池の電圧Vの変化量dVに対する前記特定単電池の電池容量Qの変化量dQの割合であるdQ/dVとの関係を示す微分曲線V-dQ/dVにおける特徴点の電圧Vに基づいて、前記特定単電池の劣化指標を推定することを特徴とする請求項4に記載の二次電池の劣化度合測定装置。 The deterioration index estimation unit has a relationship between the voltage V of the specific cell and dQ / dV, which is the ratio of the change dQ of the battery capacity Q of the specific cell to the change dV of the voltage V of the specific cell. The degree of deterioration measuring device for a secondary battery according to claim 4, wherein the deterioration index of the specific cell is estimated based on the voltage V of the feature point on the differential curve V-dQ / dV showing the above.
JP2018051456A 2018-03-19 2018-03-19 Deterioration degree measuring device for secondary batteries Pending JP2021089140A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018051456A JP2021089140A (en) 2018-03-19 2018-03-19 Deterioration degree measuring device for secondary batteries
PCT/JP2018/048294 WO2019181138A1 (en) 2018-03-19 2018-12-27 Device for measuring degree of deterioration of secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018051456A JP2021089140A (en) 2018-03-19 2018-03-19 Deterioration degree measuring device for secondary batteries

Publications (1)

Publication Number Publication Date
JP2021089140A true JP2021089140A (en) 2021-06-10

Family

ID=67986921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018051456A Pending JP2021089140A (en) 2018-03-19 2018-03-19 Deterioration degree measuring device for secondary batteries

Country Status (2)

Country Link
JP (1) JP2021089140A (en)
WO (1) WO2019181138A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022180732A1 (en) * 2021-02-25 2022-09-01
JP2023051291A (en) * 2021-09-30 2023-04-11 横河電機株式会社 Diagnosis device, diagnosis method and diagnosis program
WO2024209887A1 (en) * 2023-04-06 2024-10-10 株式会社デンソー Battery diagnosis device and program

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112021006998T5 (en) * 2021-02-02 2023-11-30 Mitsubishi Electric Corporation BATTERY DEGRADATION DIAGNOSTIC DEVICE AND BATTERY DEGRADATION DIAGNOSTIC METHOD
CN113296010B (en) * 2021-04-27 2022-10-04 国网上海市电力公司 Battery health state online evaluation method based on differential voltage analysis

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3975798B2 (en) * 2002-03-25 2007-09-12 トヨタ自動車株式会社 Abnormality detection apparatus and abnormality detection method for battery pack
JP4561859B2 (en) * 2008-04-01 2010-10-13 トヨタ自動車株式会社 Secondary battery system
JP5397013B2 (en) * 2009-05-20 2014-01-22 日産自動車株式会社 Battery control device
JP5397679B2 (en) * 2009-05-21 2014-01-22 株式会社Gsユアサ Secondary battery deterioration diagnosis method and secondary battery deterioration diagnosis device
WO2011036760A1 (en) * 2009-09-25 2011-03-31 トヨタ自動車株式会社 Secondary battery system
US9735592B2 (en) * 2012-02-29 2017-08-15 Nec Energy Devices, Ltd. Battery control system, battery pack, electronic device
CN102866361B (en) * 2012-08-31 2016-04-06 惠州市亿能电子有限公司 A kind of electric battery SOH estimation on line method
JP6635743B2 (en) * 2015-10-09 2020-01-29 株式会社ピューズ Storage battery maintenance device and storage battery maintenance method
CN106125003B (en) * 2016-08-27 2018-10-19 上海交通大学 A kind of condition estimating device and method of tandem type battery pack

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022180732A1 (en) * 2021-02-25 2022-09-01
JP7370491B2 (en) 2021-02-25 2023-10-27 三菱電機株式会社 Storage battery diagnostic device
JP2023051291A (en) * 2021-09-30 2023-04-11 横河電機株式会社 Diagnosis device, diagnosis method and diagnosis program
WO2024209887A1 (en) * 2023-04-06 2024-10-10 株式会社デンソー Battery diagnosis device and program

Also Published As

Publication number Publication date
WO2019181138A1 (en) 2019-09-26

Similar Documents

Publication Publication Date Title
TWI333288B (en) Method and apparatus of controlling for charging/discharging voltage of battery
WO2019181138A1 (en) Device for measuring degree of deterioration of secondary battery
TWI591358B (en) Cell state calculation apparatus and cell state calculation method
JP6252875B2 (en) Secondary battery charge state measuring device and secondary battery charge state measuring method
JP5282789B2 (en) Battery capacity detection device for lithium ion secondary battery
KR101256079B1 (en) Balancing Method and Balancing System of Battery Pack
US10670664B2 (en) Method for determining resistance factor of secondary battery, and apparatus and method for estimating charge power using determined resistance factor
JP7141012B2 (en) Secondary battery system
EP2711727B1 (en) Battery condition estimation device and method of generating open circuit voltage characteristic
US20180120361A1 (en) Method for preventing battery overcharge and overdischarge and increasing battery efficiency
JP2019045351A (en) Secondary battery system
WO2014167936A1 (en) Battery state determination device
JP2019056595A (en) Secondary battery system
JP2018205139A (en) Secondary battery system
JP6978723B2 (en) Rechargeable battery system
JP2018205138A (en) Secondary battery system
WO2015178075A1 (en) Battery control device
JP2019061741A (en) Secondary battery system
JP6970289B2 (en) Charge control devices, transportation equipment, and programs
JP2019113414A (en) Secondary battery degradation degree measuring device
US10910676B2 (en) Ni—Cd battery with a state of charge indicator
JP2020079723A (en) Secondary battery system
JP2019165553A (en) Charging device for secondary battery unit
JP2000270491A (en) Lithium ion battery charging method and lithium ion battery charger
JP7459440B2 (en) Battery diagnostic equipment, battery diagnostic method, battery pack and electric vehicle