[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2021066780A - Fibrous substance fluid dispersion, and fiber-reinforced resin composition - Google Patents

Fibrous substance fluid dispersion, and fiber-reinforced resin composition Download PDF

Info

Publication number
JP2021066780A
JP2021066780A JP2019191935A JP2019191935A JP2021066780A JP 2021066780 A JP2021066780 A JP 2021066780A JP 2019191935 A JP2019191935 A JP 2019191935A JP 2019191935 A JP2019191935 A JP 2019191935A JP 2021066780 A JP2021066780 A JP 2021066780A
Authority
JP
Japan
Prior art keywords
fibrous substance
dispersion
dispersion liquid
mass
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019191935A
Other languages
Japanese (ja)
Inventor
功一 上野
Koichi Ueno
功一 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2019191935A priority Critical patent/JP2021066780A/en
Publication of JP2021066780A publication Critical patent/JP2021066780A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Artificial Filaments (AREA)

Abstract

To provide fibrous substance fluid dispersion which generates extremely small quantity of aggregate in piping and/or a pump, therefore allows for stabilization of a production process and good dispersion of a fibrous substance in a resin, and allows for provision of a resin composition having good and stable physical properties.SOLUTION: A fibrous substance fluid dispersion is provided that includes 100 pts.mass of a dispersion medium and 0.01-20 pts.mass of a fibrous substance dispersed in the dispersion medium. A fluid dispersion for test prepared from the fibrous substance fluid dispersion has a degree α of 80% or less determined according to the following expression (1): α=1-([A]/[B]). In Expression (1), [A] is a height from a bottom surface to a separation interface of the fluid dispersion, and [B] is a height from the bottom surface to an upper surface of the fluid dispersion.SELECTED DRAWING: None

Description

本発明は、繊維状物質分散液、及び繊維状物質を含有する樹脂組成物に関する。 The present invention relates to a fibrous substance dispersion and a resin composition containing the fibrous substance.

熱可塑性樹脂は、軽く、加工特性に優れるため、自動車部材、電気・電子部材、事務機器ハウジング、精密部品等の多方面に広く使用されている。しかしながら、樹脂単体では、機械特性、寸法安定性等が不十分である場合が多く、樹脂と各種繊維状物質をコンポジットしたものが一般的に用いられている。 Thermoplastic resins are light and have excellent processing characteristics, and are therefore widely used in various fields such as automobile parts, electrical / electronic parts, office equipment housings, and precision parts. However, the resin alone often has insufficient mechanical properties, dimensional stability, and the like, and a composite of the resin and various fibrous substances is generally used.

近年、繊維状物質として、セルロースナノファイバー(CNF)をはじめとしたナノ繊維が用いられるようになってきている。CNFをはじめとしたナノ繊維は、乾燥状態では凝集する性質があるため、安定分散が可能な水分散液として製造される。 In recent years, nanofibers such as cellulose nanofibers (CNF) have come to be used as fibrous substances. Since nanofibers such as CNF have the property of agglutinating in a dry state, they are produced as an aqueous dispersion capable of stable dispersion.

特許文献1には、化粧料や、スプレー品などの性能向上を目的として、増粘性の高い親水性セルロース繊維と、増粘剤とを併用した水分散液が、特許文献2には、紙おむつ等の吸収性物品からリサイクルされた成型体の表面光沢の向上を目的として、パルプ繊維と高吸収性ポリマーとを含む熱可塑性樹脂が、特許文献3及び特許文献4には、セルロース繊維と増粘剤とを食品及び保冷剤において併用した例が、それぞれ記載されている。 Patent Document 1 describes an aqueous dispersion in which a highly viscous hydrophilic cellulose fiber and a thickener are used in combination for the purpose of improving the performance of cosmetics and spray products, and Patent Document 2 describes paper diapers and the like. For the purpose of improving the surface gloss of the molded product recycled from the absorbent article, a thermoplastic resin containing pulp fibers and a highly absorbent polymer is described in Patent Documents 3 and 4, which describes cellulose fibers and a thickener. Examples of the combined use of and in foods and cold insulators are described, respectively.

特開2014−141675号公報Japanese Unexamined Patent Publication No. 2014-141675 特開2016−069543号公報Japanese Unexamined Patent Publication No. 2016-069543 特開2013−236585号公報Japanese Unexamined Patent Publication No. 2013-236585 特開2014−133826号公報Japanese Unexamined Patent Publication No. 2014-133826

近年、熱可塑性樹脂のための新たな繊維強化材として、疎水変性CNFをはじめとした疎水性繊維が用いられるようになってきている。疎水性繊維は、熱可塑性樹脂との親和性が高いため、樹脂中での分散性が高く、機械特性、寸法安定性を大きく改良することが期待されている。 In recent years, hydrophobic fibers such as hydrophobic modified CNF have come to be used as new fiber reinforcing materials for thermoplastic resins. Since the hydrophobic fiber has a high affinity with the thermoplastic resin, it has high dispersibility in the resin, and is expected to greatly improve mechanical properties and dimensional stability.

疎水性繊維は乾燥状態で凝集する性質があるため、安定分散が可能な水分散液として製造される。しかしながら疎水性繊維は本質的に水との親和性が高くないため、配管中の狭い流路、ポンプ内での往復運動により形成される隙間等で疎水性繊維分散液が圧搾され、疎水性繊維の凝集塊が形成されるといった課題がある。圧搾された凝集塊は、疎水性繊維を主成分とするために、水の再浸透がほとんど起こらず、水を媒体として膨潤・分散をさせることは困難である。 Since hydrophobic fibers have the property of agglutinating in a dry state, they are produced as an aqueous dispersion capable of stable dispersion. However, since the hydrophobic fiber does not have a high affinity with water by nature, the hydrophobic fiber dispersion is squeezed in a narrow flow path in the pipe, a gap formed by the reciprocating motion in the pump, etc., and the hydrophobic fiber is squeezed. There is a problem that agglomerates of Since the squeezed agglomerates contain hydrophobic fibers as the main component, water re-permeation hardly occurs, and it is difficult to swell and disperse using water as a medium.

圧搾によって形成された疎水性繊維凝集塊は、配管詰まりやポンプ詰まりといった製造プロセス上の問題を招くだけでなく、樹脂組成物の組成のばらつき、凝集塊の樹脂中への混入によって、樹脂組成物の密度及び強度を不安定にするという問題を招く。 Hydrophobic fiber agglomerates formed by squeezing not only cause problems in the manufacturing process such as pipe clogging and pump clogging, but also due to variations in the composition of the resin composition and mixing of the agglomerates into the resin, the resin composition. It leads to the problem of destabilizing the density and strength of the plastic.

また、疎水性繊維を含む分散液は、保水性が低く、親水性繊維の分散液と比較して短時間で乾燥してしまうという課題もあった。前述の通り、乾燥した疎水性繊維の凝集塊は、樹脂中で再分散することが困難であるため、樹脂組成物中での分散不良、及びこれによる不十分な物性を招来する。 Further, the dispersion liquid containing the hydrophobic fibers has a low water retention property, and has a problem that it dries in a short time as compared with the dispersion liquid of the hydrophilic fibers. As described above, agglomerates of dried hydrophobic fibers are difficult to redisperse in the resin, which leads to poor dispersion in the resin composition and insufficient physical properties due to this.

特許文献1〜4に記載される技術は、分散液の送液性、及び樹脂組成物の機械特性に関する上記のような問題に対処するものではない。 The techniques described in Patent Documents 1 to 4 do not address the above-mentioned problems concerning the liquid transfer property of the dispersion liquid and the mechanical properties of the resin composition.

本発明は、疎水性繊維を含むスラリーに特有の上記課題を解決し、例えば疎水性繊維を用いた場合であっても、配管及び/又はポンプ中での凝集塊の発生が極めて少ないために、製造プロセスの安定化及び樹脂中での繊維状物質の良好な分散が可能であり、良好かつ安定した物性の樹脂組成物を与えることができる、繊維状物質分散液を提供することを目的とする。 The present invention solves the above-mentioned problems peculiar to a slurry containing hydrophobic fibers, and for example, even when hydrophobic fibers are used, the generation of agglomerates in a pipe and / or a pump is extremely small. It is an object of the present invention to provide a fibrous substance dispersion liquid which can stabilize the production process and disperse the fibrous substance in the resin well, and can give a resin composition having good and stable physical characteristics. ..

本発明者は、前記課題を解決するため、鋭意検討を進めた結果、分散液中の繊維状物質の沈降を制御することによって表記の課題を解決できることを見出し、本発明をなすに至った。
すなわち、本発明は以下の態様を包含する。
[1] 分散媒100質量部と、
前記分散媒中に分散している繊維状物質0.01〜20質量部と、
を含む繊維状物質分散液であって、
前記繊維状物質がセルロース繊維であり、
前記繊維状物質分散液から調製された試験用分散液の、下記式(1):
α=1−([A]/[B])・・・(1)
(式(1)中、[A]は分散液底面から分離界面までの高さであり、[B]は分散液底面から分散液上面までの高さである。)
に従って求められる沈降度αが、80%以下であり、
前記試験用分散液は、前記繊維状物質分散液中の前記繊維状物質の濃度が0.05質量%である場合には前記繊維状物質分散液自体であり、前記濃度が0.05質量%でない場合には、前記濃度が0.05質量%となるように前記繊維状物質分散液が濃縮又は前記分散媒と同じ分散媒で希釈されて調製されている、繊維状物質分散液。
[2] 前記分散媒100質量部に対して、増粘剤0.0001〜2質量部を更に含み、
前記繊維状物質の数平均繊維径が、1〜1000nmである、上記態様1に記載の繊維状物質分散液。
[3] 増粘剤が、ポリアクリルアミド、ポリアルキレンオキシド、ポリアクリル酸及びその塩、セルロース誘導体、ポリビニルアルコール、プロピレングリコール、アルギン酸及びその塩、からなる群から選択される1種以上である、上記態様2に記載の繊維状物質分散液。
[4] 前記繊維状物質の表面が疎水性である、上記態様1〜3のいずれかに記載の繊維状物質分散液。
[5] 繊維状物質がセルロースナノファイバーである、上記態様1〜4のいずれかに記載の繊維状物質分散液。
[6] 前記セルロースナノファイバーが、重量平均分子量(Mw)100000以上、及び重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)6以下を有する、上記態様5に記載の繊維状物質分散液。
[7] 前記セルロースナノファイバーが、アルカリ可溶多糖類平均含有率12質量%以下、及び結晶化度60%以上を有する、上記態様5又は6に記載の繊維状物質分散液。
[8] 前記セルロースナノファイバーの酸不溶成分平均含有率が10質量%以下である、上記態様5〜7のいずれかに記載の繊維状物質分散液。
[9] 分散媒が水である、上記態様1〜8のいずれかに記載の繊維状物質分散液。
[10] 粒子状成分を含む、上記態様1〜9のいずれかに記載の繊維状物質分散液。
[11] エマルションである、上記態様10に記載の繊維状物質分散液。
[12] 界面活性剤を含む、上記態様1〜11のいずれかに記載の繊維状物質分散液。
[13] 分散媒と、前記分散媒中に分散している繊維状物質とを含む繊維状物質分散液の送液性を向上させる方法であって、
前記方法は、
前記繊維状物質分散液から調製された試験用分散液の、下記式(1):
α=1−([A]/[B])・・・(1)
(式(1)中、[A]は分散液底面から分離界面までの高さであり、[B]は分散液底面から分散液上面までの高さである。)
に従って求められる沈降度αが、80%以下となるように、前記繊維状物質分散液に増粘剤を含有させることを含み、
前記試験用分散液は、前記繊維状物質分散液中の前記繊維状物質の濃度が0.05質量%である場合には前記繊維状物質分散液自体であり、前記濃度が0.05質量%でない場合には、前記濃度が0.05質量%となるように前記繊維状物質分散液を濃縮又は前記分散媒と同じ分散媒で希釈されて調製されている、方法。
[14] 樹脂100質量部と、平均繊維径1〜1000nmの繊維状物質0.001〜50質量部と、増粘剤0.00001〜5質量部とを含む、樹脂組成物。
[15] 前記樹脂が熱可塑性樹脂である、上記態様14に記載の樹脂組成物。
[16] 引張降伏伸度(TEy)と引張破断伸度(TEb)とが、下記関係式:
[TEb/TEy]≧1
を満たす、上記態様14又は15に記載の樹脂組成物。
[17] 前記増粘剤を含まない他は同組成の比較の樹脂組成物と比較して、引張強度が1.01倍以上に向上している、上記態様14〜16のいずれかの樹脂組成物。
[18] 熱可塑性樹脂と繊維状物質とを含む樹脂組成物の製造方法であって、
上記態様1〜12のいずれかに記載の繊維状物質分散液を調製することと、
前記繊維状物質分散液と前記熱可塑性樹脂とを溶融混練することと、
を含む、方法。
[19] 熱可塑性樹脂と繊維状物質とを含む樹脂組成物の製造方法であって、
上記態様1〜12のいずれかに記載の繊維状物質分散液を調製することと、
前記繊維状物質分散液を乾燥させて乾燥体を調製することと、
前記乾燥体と前記熱可塑性樹脂とを溶融混練することと、
を含む、方法。
As a result of diligent studies in order to solve the above-mentioned problems, the present inventor has found that the above-mentioned problems can be solved by controlling the sedimentation of the fibrous substance in the dispersion liquid, and has reached the present invention.
That is, the present invention includes the following aspects.
[1] With 100 parts by mass of the dispersion medium,
0.01 to 20 parts by mass of fibrous material dispersed in the dispersion medium,
It is a fibrous substance dispersion liquid containing
The fibrous substance is a cellulose fiber,
The test dispersion prepared from the fibrous substance dispersion has the following formula (1):
α = 1-([A] / [B]) ... (1)
(In the formula (1), [A] is the height from the bottom surface of the dispersion liquid to the separation interface, and [B] is the height from the bottom surface of the dispersion liquid to the top surface of the dispersion liquid.)
The sedimentation degree α obtained according to the above is 80% or less.
When the concentration of the fibrous substance in the fibrous substance dispersion liquid is 0.05% by mass, the test dispersion liquid is the fibrous substance dispersion liquid itself, and the concentration is 0.05% by mass. If not, the fibrous substance dispersion is prepared by concentrating or diluting the fibrous substance dispersion with the same dispersion medium as the dispersion medium so that the concentration becomes 0.05% by mass.
[2] To 100 parts by mass of the dispersion medium, 0.0001 to 2 parts by mass of a thickener is further contained.
The fibrous substance dispersion liquid according to the above aspect 1, wherein the number average fiber diameter of the fibrous substance is 1 to 1000 nm.
[3] The thickener is one or more selected from the group consisting of polyacrylamide, polyalkylene oxide, polyacrylic acid and its salt, cellulose derivative, polyvinyl alcohol, propylene glycol, alginic acid and its salt. The fibrous substance dispersion liquid according to the second aspect.
[4] The fibrous substance dispersion liquid according to any one of the above aspects 1 to 3, wherein the surface of the fibrous substance is hydrophobic.
[5] The fibrous substance dispersion liquid according to any one of the above aspects 1 to 4, wherein the fibrous substance is cellulose nanofibers.
[6] The above embodiment 5, wherein the cellulose nanofibers have a weight average molecular weight (Mw) of 100,000 or more and a ratio (Mw / Mn) of 6 or less of the weight average molecular weight (Mw) to the number average molecular weight (Mn). Fibrous material dispersion.
[7] The fibrous substance dispersion liquid according to the above aspect 5 or 6, wherein the cellulose nanofibers have an average content of alkali-soluble polysaccharides of 12% by mass or less and a crystallinity of 60% or more.
[8] The fibrous substance dispersion liquid according to any one of the above aspects 5 to 7, wherein the average content of acid-insoluble components of the cellulose nanofibers is 10% by mass or less.
[9] The fibrous substance dispersion liquid according to any one of the above aspects 1 to 8, wherein the dispersion medium is water.
[10] The fibrous substance dispersion liquid according to any one of the above aspects 1 to 9, which contains a particulate component.
[11] The fibrous substance dispersion liquid according to the above aspect 10, which is an emulsion.
[12] The fibrous substance dispersion liquid according to any one of the above aspects 1 to 11, which contains a surfactant.
[13] A method for improving the liquid transfer property of a fibrous substance dispersion liquid containing a dispersion medium and a fibrous substance dispersed in the dispersion medium.
The method is
The test dispersion prepared from the fibrous substance dispersion has the following formula (1):
α = 1-([A] / [B]) ... (1)
(In the formula (1), [A] is the height from the bottom surface of the dispersion liquid to the separation interface, and [B] is the height from the bottom surface of the dispersion liquid to the top surface of the dispersion liquid.)
The fibrous material dispersion liquid contains a thickener so that the sedimentation degree α obtained according to the above is 80% or less.
When the concentration of the fibrous substance in the fibrous substance dispersion liquid is 0.05% by mass, the test dispersion liquid is the fibrous substance dispersion liquid itself, and the concentration is 0.05% by mass. If not, the method is prepared by concentrating the fibrous substance dispersion liquid or diluting it with the same dispersion medium as the dispersion medium so that the concentration becomes 0.05% by mass.
[14] A resin composition containing 100 parts by mass of a resin, 0.001 to 50 parts by mass of a fibrous substance having an average fiber diameter of 1 to 1000 nm, and 0.00001 to 5 parts by mass of a thickener.
[15] The resin composition according to the above aspect 14, wherein the resin is a thermoplastic resin.
[16] The tensile yield elongation (TEy) and the tensile elongation at break (TEb) are the following relational expressions:
[TEb / TEy] ≧ 1
The resin composition according to the above aspect 14 or 15, which satisfies the above conditions.
[17] The resin composition according to any one of the above aspects 14 to 16, wherein the tensile strength is improved by 1.01 times or more as compared with the comparative resin composition having the same composition except that the thickener is not contained. Stuff.
[18] A method for producing a resin composition containing a thermoplastic resin and a fibrous substance.
To prepare the fibrous substance dispersion according to any one of the above aspects 1 to 12,
Melting and kneading the fibrous material dispersion and the thermoplastic resin,
Including methods.
[19] A method for producing a resin composition containing a thermoplastic resin and a fibrous substance.
To prepare the fibrous substance dispersion according to any one of the above aspects 1 to 12,
To prepare a dried product by drying the fibrous substance dispersion liquid,
Melting and kneading the dried product and the thermoplastic resin,
Including methods.

本発明の一態様によれば、例えば疎水性繊維を用いた場合であっても、配管及び/又はポンプ中での凝集塊の発生が極めて少ないために、製造プロセスの安定化及び樹脂中での繊維状物質の良好な分散が可能であり、良好かつ安定した物性の樹脂組成物を与えることができる、繊維状物質分散液が提供され得る。 According to one aspect of the present invention, for example, even when hydrophobic fibers are used, the generation of agglomerates in piping and / or pumps is extremely small, so that the production process is stabilized and the resin is used. It is possible to provide a fibrous substance dispersion liquid which can disperse the fibrous substance well and can give a resin composition having good and stable physical properties.

IRインデックス1730及びIRインデックス1030の算出法の説明図である。It is explanatory drawing of the calculation method of IR index 1730 and IR index 1030. セルロースの水酸基の平均置換度の算出法の説明図である。It is explanatory drawing of the calculation method of the average degree of substitution of the hydroxyl group of cellulose.

本発明の例示の態様について以下具体的に説明するが、本発明はこれらの態様に限定されるものではない。 Hereinafter, embodiments of the present invention will be specifically described, but the present invention is not limited to these aspects.

≪繊維状物質分散液≫
本発明の一態様は、分散媒と、該分散媒中に分散している繊維状物質とを含む繊維状物質分散液(本開示で、単に分散液ともいう。)を提供する。一態様において、繊維状物質はセルロース繊維である。一態様において、分散液中の繊維状物質の量は、分散媒100質量部に対して0.01〜20質量部である。
≪Fibrous substance dispersion liquid≫
One aspect of the present invention provides a fibrous substance dispersion liquid (also simply referred to as a dispersion liquid in the present disclosure) containing a dispersion medium and a fibrous substance dispersed in the dispersion medium. In one embodiment, the fibrous material is a cellulose fiber. In one embodiment, the amount of fibrous material in the dispersion is 0.01 to 20 parts by mass with respect to 100 parts by mass of the dispersion medium.

一態様において、繊維状物質分散液から調製された試験用分散液の、下記式(1):
α=1−([A]/[B])・・・(1)
(式(1)中、[A]は分散液底面から分離界面までの高さであり、[B]は分散液底面から分散液上面までの高さである。)
に従って求められる沈降度αは、80%以下である。ここで、該試験用分散液は、繊維状物質分散液中の繊維状物質の濃度が0.05質量%である場合には繊維状物質分散液自体であり、当該濃度が0.05質量%でない場合には、当該濃度が0.05質量%となるように繊維状物質分散液が濃縮又は上記分散液中の分散媒と同じ(すなわち同じ物質である)分散媒で希釈されて調製されている。希釈は、分散液に分散媒を必要量添加することで行う。濃縮は、分散液を濾布、メンブレンフィルター、遠心分離等によって分散媒と繊維状物質に分離することで行う。試験用分散液20mlを30ml容量のガラスバイアルに分取した後、ホモジナイザー(回転数10000rpm、1分間)で分散させ、その後素早く試験用分散液8mlを15ml容量のネジ口試験管(アズワン品番:4−565−06)に入れて密封し、手動で振り混ぜて分散液を一様にした後、温度23℃、常圧にて24時間静置する。液中分散安定性評価装置(例えば、FORMULACTION社製「Turbiscan」)によって分離界面を画定し、[A]及び[B]を計測する。
In one embodiment, the test dispersion prepared from the fibrous material dispersion has the following formula (1):
α = 1-([A] / [B]) ... (1)
(In the formula (1), [A] is the height from the bottom surface of the dispersion liquid to the separation interface, and [B] is the height from the bottom surface of the dispersion liquid to the top surface of the dispersion liquid.)
The sedimentation degree α obtained according to the above is 80% or less. Here, the test dispersion liquid is the fibrous substance dispersion liquid itself when the concentration of the fibrous substance in the fibrous substance dispersion liquid is 0.05% by mass, and the concentration is 0.05% by mass. If not, the fibrous substance dispersion is concentrated or diluted with the same (that is, the same substance) dispersion as the dispersion in the dispersion so that the concentration is 0.05% by mass. There is. Dilution is performed by adding a required amount of a dispersion medium to the dispersion liquid. Concentration is performed by separating the dispersion liquid into a dispersion medium and a fibrous substance by a filter cloth, a membrane filter, centrifugation or the like. After dividing 20 ml of the test dispersion into a glass vial having a capacity of 30 ml, disperse it with a homogenizer (rotation speed: 10000 rpm, 1 minute), and then quickly add 8 ml of the test dispersion to a 15 ml capacity screw cap test tube (AS ONE part number: 4). It is placed in −565-06), sealed, and shaken manually to homogenize the dispersion, and then allowed to stand at a temperature of 23 ° C. and normal pressure for 24 hours. The separation interface is defined by an in-liquid dispersion stability evaluation device (for example, "Turbiscan" manufactured by FORMULICION), and [A] and [B] are measured.

本開示の沈降度αは、分散液の繊維状物質の分散安定性(分散媒中での沈降し難さ)の指標であり、値が小さいほど沈降し難い(すなわち、分散媒の繊維状物質からの経時的な分離、滲出が生じ難い)ことを表す。本開示の分散液は種々の繊維状物質濃度を有し得るため、沈降度αは、繊維状物質濃度を0.05質量%に調整したのち測定される。沈降度αは、繊維状物質の良好な分散性の観点から、80%以下であり、好ましくは、70%以下、又は60%以下、又は50%以下である。分散液の調製の容易性の観点から、沈降度αは、1%以上、又は5%以上、又は10%以上であってよい。本開示の分散液の沈降度αを上記範囲に制御する方法としては、繊維状物質の形状の制御(例えば繊維状物質の表面に凹凸、毛羽等を持たせる方法等)、各種添加剤(例えば増粘剤)の使用等が挙げられる。 The sedimentation degree α of the present disclosure is an index of the dispersion stability (difficulty of sedimentation in the dispersion medium) of the fibrous substance of the dispersion liquid, and the smaller the value, the more difficult it is to settle (that is, the fibrous substance of the dispersion medium). (It is unlikely that separation and exudation will occur over time). Since the dispersion liquid of the present disclosure can have various fibrous substance concentrations, the sedimentation degree α is measured after adjusting the fibrous substance concentration to 0.05% by mass. The sedimentation degree α is 80% or less, preferably 70% or less, 60% or less, or 50% or less from the viewpoint of good dispersibility of the fibrous material. From the viewpoint of ease of preparation of the dispersion liquid, the sedimentation degree α may be 1% or more, 5% or more, or 10% or more. As a method of controlling the sedimentation degree α of the dispersion liquid of the present disclosure within the above range, control of the shape of the fibrous substance (for example, a method of giving unevenness, fluff, etc. to the surface of the fibrous substance), various additives (for example, Use of thickener) and the like.

<繊維状物質>
繊維状物質としては、セルロース繊維、合成高分子繊維、ガラス繊維、炭素繊維などを挙げることができる。一態様において、繊維状物質はセルロース繊維、特にセルロースナノファイバーである。セルロースナノファイバーとは、パルプ等を100℃以上の熱水等で処理し、ヘミセルロースを加水分解して脆弱化したのち、高圧ホモジナイザー、マイクロフリュイダイザー、ボールミル、ディスクミル、ミキサー(例えばホモミキサー)等の粉砕法により解繊したセルロースを指す。セルロース繊維は後述の化学修飾がされたものであってもよい。
<Fibrous material>
Examples of the fibrous substance include cellulose fibers, synthetic polymer fibers, glass fibers, carbon fibers and the like. In one aspect, the fibrous material is cellulose fibers, especially cellulose nanofibers. Cellulose nanofibers are made by treating pulp or the like with hot water at 100 ° C. or higher, hydrolyzing hemicellulose to make it fragile, and then using a high-pressure homogenizer, microfluidizer, ball mill, disc mill, mixer (for example, homomixer), etc. Refers to cellulose deflated by the crushing method of. The cellulose fiber may be chemically modified as described below.

一態様において、繊維状物質の数平均繊維径は、繊維状物質による物性向上効果を良好に得る観点から、好ましくは1〜1000nmである。繊維状物質の数平均繊維径は、より好ましくは4nm以上、より好ましくは5nm以上、より好ましくは10nm以上、より好ましくは15nm以上であり、更に好ましくは20nm以上であり、より好ましくは500nm以下、より好ましくは450nm以下、より好ましくは400nm以下、より好ましくは350nm以下、より好ましくは300nm以下、更に好ましくは250nm以下である。
繊維状物質が上記の数平均繊維径を有するセルロースナノファイバーであることは特に好ましい。
In one aspect, the number average fiber diameter of the fibrous material is preferably 1 to 1000 nm from the viewpoint of satisfactorily obtaining the effect of improving the physical properties of the fibrous material. The number average fiber diameter of the fibrous material is more preferably 4 nm or more, more preferably 5 nm or more, more preferably 10 nm or more, more preferably 15 nm or more, still more preferably 20 nm or more, still more preferably 500 nm or less. It is more preferably 450 nm or less, more preferably 400 nm or less, more preferably 350 nm or less, still more preferably 300 nm or less, still more preferably 250 nm or less.
It is particularly preferable that the fibrous substance is a cellulose nanofiber having the above number average fiber diameter.

繊維状物質(好ましくはセルロースナノファイバー)の平均L/Dの下限は、好ましくは50であり、より好ましくは80であり、より好ましくは100であり、さらにより好ましくは120であり、最も好ましくは150である。上限は特に限定されないが、取扱い性の観点から好ましくは5000以下である。繊維状物質を含む樹脂組成物の機械的特性を少量の繊維状物質で良好に向上させる観点から、繊維状物質の平均L/D比は上述の範囲内であることが望ましい。 The lower limit of the average L / D of the fibrous material (preferably cellulose nanofibers) is preferably 50, more preferably 80, more preferably 100, even more preferably 120, and most preferably 120. It is 150. The upper limit is not particularly limited, but is preferably 5000 or less from the viewpoint of handleability. From the viewpoint of improving the mechanical properties of the resin composition containing the fibrous substance with a small amount of the fibrous substance, it is desirable that the average L / D ratio of the fibrous substance is within the above range.

本開示で、繊維状物質の各々の長さ、径、及びL/D比は、繊維状物質の水分散液を水溶性溶媒(例えば、水、エタノール、tert−ブタノール等)で0.01〜0.1質量%まで希釈し、高剪断ホモジナイザー(例えばIKA製、商品名「ウルトラタラックスT18」)を用い、処理条件:回転数25,000rpm×5分間で分散させ、マイカ上にキャストし、風乾したものを測定サンプルとし、高分解能走査型顕微鏡(SEM)又は原子間力顕微鏡(AFM)で計測して求める。具体的には、少なくとも100本の繊維状物質が観測されるように倍率が調整された観察視野にて、無作為に選んだ100本の繊維状物質の長さ(L)及び径(D)を計測し、比(L/D)を算出する。繊維状物質について、長さ(L)の数平均値、径(D)の数平均値、及び比(L/D)の数平均値を算出する。 In the present disclosure, the length, diameter, and L / D ratio of each of the fibrous substances are 0.01 to 0.01 to the aqueous dispersion of the fibrous substances in a water-soluble solvent (for example, water, ethanol, tert-butanol, etc.). Dilute to 0.1% by mass, use a high-shear homogenizer (for example, manufactured by IKA, trade name "Ultratalax T18"), and disperse under treatment conditions: rotation speed 25,000 rpm x 5 minutes, cast on mica, and cast. The air-dried sample is used as a measurement sample and measured with a high-resolution scanning electron microscope (SEM) or an atomic force microscope (AFM). Specifically, the length (L) and diameter (D) of 100 fibrous substances randomly selected in the observation field of view adjusted so that at least 100 fibrous substances can be observed. Is measured and the ratio (L / D) is calculated. For the fibrous material, the number average value of the length (L), the number average value of the diameter (D), and the number average value of the ratio (L / D) are calculated.

なお、後述の組成物中の繊維状物質の長さ、径、及びL/D比は、固体である組成物を測定サンプルとして、上述の測定方法により測定することで確認することができる。又は、組成物中の繊維状物質の長さ、径、及びL/D比は、組成物の樹脂成分を溶解できる有機又は無機の溶媒に組成物中の樹脂成分を溶解させ、繊維状物質を分離し、前記溶媒で充分に洗浄した後、溶媒を純水に置換した水分散液を調製し、繊維状物質濃度を、0.1〜0.5質量%まで純水で希釈し、マイカ上にキャストし、風乾したものを測定サンプルとして上述の測定方法により測定することで確認することができる。この際、測定する繊維状物質は無作為に選んだ100本以上での測定を行う。 The length, diameter, and L / D ratio of the fibrous substance in the composition described later can be confirmed by measuring the solid composition as a measurement sample by the above-mentioned measuring method. Alternatively, the length, diameter, and L / D ratio of the fibrous substance in the composition are determined by dissolving the resin component in the composition in an organic or inorganic solvent capable of dissolving the resin component of the composition to obtain the fibrous substance. After separation and thorough washing with the above solvent, an aqueous dispersion prepared by substituting the solvent with pure water was prepared, and the fibrous substance concentration was diluted with pure water to 0.1 to 0.5% by mass on mica. It can be confirmed by casting to and air-drying as a measurement sample and measuring by the above-mentioned measuring method. At this time, 100 or more randomly selected fibrous substances are measured.

繊維状物質がセルロース繊維である場合の当該セルロース繊維の結晶化度は、好ましくは55%以上である。結晶化度がこの範囲にあると、セルロース繊維自体の力学物性(強度、寸法安定性)が高いため、セルロース繊維を樹脂に分散した際に、樹脂組成物の強度、寸法安定性が高い傾向にある。より好ましい結晶化度の下限は、60%であり、さらにより好ましくは70%であり、最も好ましくは80%である。セルロース繊維の結晶化度についても上限は特に限定されず、高い方が好ましいが、生産上の観点から好ましい上限は99%である。 When the fibrous substance is a cellulose fiber, the crystallinity of the cellulose fiber is preferably 55% or more. When the crystallinity is in this range, the mechanical properties (strength and dimensional stability) of the cellulose fiber itself are high. Therefore, when the cellulose fiber is dispersed in the resin, the strength and dimensional stability of the resin composition tend to be high. is there. The lower limit of the more preferable crystallinity is 60%, even more preferably 70%, and most preferably 80%. The upper limit of the crystallinity of the cellulose fiber is not particularly limited, and a higher value is preferable, but a preferable upper limit is 99% from the viewpoint of production.

植物由来のセルロースのミクロフィブリル同士の間、及びミクロフィブリル束同士の間には、ヘミセルロース等のアルカリ可溶多糖類、及びリグニン等の酸不溶成分が存在する。ヘミセルロースはマンナン、キシラン等の糖で構成される多糖類であり、セルロースと水素結合して、ミクロフィブリル間を結びつける役割を果たしている。またリグニンは芳香環を有する化合物であり、植物の細胞壁中ではヘミセルロースと共有結合していることが知られている。セルロース繊維中のリグニン等の不純物の残存量が多いと、加工時の熱により変色をきたすことがあるため、押出加工時及び成形加工時の樹脂組成物の変色を抑制する観点からも、セルロース繊維の結晶化度は上述の範囲内にすることが望ましい。 Alkali-soluble polysaccharides such as hemicellulose and acid-insoluble components such as lignin are present between microfibrils of plant-derived cellulose and between microfibril bundles. Hemicellulose is a polysaccharide composed of sugars such as mannan and xylan, and plays a role of hydrogen bonding with cellulose to connect microfibrils. Lignin is a compound having an aromatic ring, and is known to be covalently bound to hemicellulose in the cell wall of plants. If the residual amount of impurities such as lignin in the cellulose fiber is large, discoloration may occur due to heat during processing. Therefore, from the viewpoint of suppressing discoloration of the resin composition during extrusion processing and molding processing, the cellulose fiber It is desirable that the degree of crystallinity of is within the above range.

ここでいう結晶化度は、セルロース繊維がセルロースI型結晶(天然セルロース由来)である場合には、サンプルを広角X線回折により測定した際の回折パターン(2θ/deg.が10〜30)からSegal法により、以下の式で求められる。
結晶化度(%)=([2θ/deg.=22.5の(200)面に起因する回折強度]−[2θ/deg.=18の非晶質に起因する回折強度])/[2θ/deg.=22.5の(200)面に起因する回折強度]×100
The degree of crystallinity referred to here is based on the diffraction pattern (2θ / deg. 10 to 30) when the sample is measured by wide-angle X-ray diffraction when the cellulose fiber is a cellulose type I crystal (derived from natural cellulose). It is calculated by the following formula by the Segal method.
Crystallinity (%) = ([Diffraction intensity due to (200) plane of 2θ / deg. = 22.5]-[Diffraction intensity due to amorphous of 2θ / deg. = 18]) / [2θ / Deg. = Diffraction intensity due to 22.5 (200) plane] × 100

また結晶化度は、セルロース繊維がセルロースII型結晶(再生セルロース由来)である場合には、広角X線回折において、セルロースII型結晶の(110)面ピークに帰属される2θ=12.6°における絶対ピーク強度h0 とこの面間隔におけるベースラインからのピーク強度h1 とから、下記式によって求められる。
結晶化度(%) =h1 /h0 ×100
The degree of crystallinity is 2θ = 12.6 °, which is assigned to the (110) plane peak of the cellulose type II crystal in wide-angle X-ray diffraction when the cellulose fiber is a cellulose type II crystal (derived from regenerated cellulose). From the absolute peak intensity h0 in, and the peak intensity h1 from the baseline at this surface spacing, it is calculated by the following equation.
Crystallinity (%) = h1 / h0 x 100

セルロースの結晶形としては、I型、II型、III型、IV型などが知られており、その中でも特にI型及びII型は汎用されており、III型、IV型は実験室スケールでは得られているものの工業スケールでは汎用されていない。本開示のセルロース繊維(一態様においてセルロースナノファイバー)としては、構造上の可動性が比較的高く、当該セルロース繊維を樹脂に分散させることにより、線膨張係数がより低く、引っ張り、曲げ変形時の強度及び伸びがより優れた樹脂組成物が得られることから、セルロースI型結晶又はセルロースII型結晶を含有するセルロース繊維が好ましく、セルロースI型結晶を含有し、かつ結晶化度が55%以上のセルロース繊維がより好ましい。 As the crystal form of cellulose, type I, type II, type III, type IV and the like are known, and among them, type I and type II are widely used, and type III and type IV are obtained on a laboratory scale. Although it has been used, it is not widely used on an industrial scale. The cellulose fibers (cellulose nanofibers in one embodiment) of the present disclosure have relatively high structural mobility, and by dispersing the cellulose fibers in a resin, the linear expansion coefficient is lower, and the cellulose fibers are pulled and bent and deformed. Since a resin composition having more excellent strength and elongation can be obtained, cellulose fibers containing cellulose type I crystals or cellulose type II crystals are preferable, and cellulose type I crystals are contained and the degree of crystallization is 55% or more. Cellulose fibers are more preferred.

また、セルロース繊維の重合度は、好ましくは100以上、より好ましくは150以上、より好ましくは200以上、より好ましくは300以上、好ましくは400以上、より好ましくは420以上であり、より好ましくは430以上、より好ましくは440以上、より好ましくは450以上であり、好ましくは3500以下、より好ましく3300以下、より好ましくは3200以下、より好ましくは3100以下、より好ましくは3000以下である。 The degree of polymerization of the cellulose fiber is preferably 100 or more, more preferably 150 or more, more preferably 200 or more, more preferably 300 or more, preferably 400 or more, more preferably 420 or more, and more preferably 430 or more. , More preferably 440 or more, more preferably 450 or more, preferably 3500 or less, more preferably 3300 or less, more preferably 3200 or less, more preferably 3100 or less, still more preferably 3000 or less.

加工性と機械的特性発現との観点から、セルロース繊維の重合度を上述の範囲内とすることが望ましい。加工性の観点から、重合度は高すぎない方が好ましく、機械的特性発現の観点からは低すぎないことが望まれる。 From the viewpoint of processability and expression of mechanical properties, it is desirable that the degree of polymerization of the cellulose fiber is within the above range. From the viewpoint of processability, it is preferable that the degree of polymerization is not too high, and from the viewpoint of developing mechanical properties, it is desirable that the degree of polymerization is not too low.

セルロース繊維の重合度は、「第十五改正日本薬局方解説書(廣川書店発行)」の確認試験(3)に記載の銅エチレンジアミン溶液による還元比粘度法に従って測定される平均重合度を意味する。 The degree of polymerization of cellulose fibers means the average degree of polymerization measured according to the reduction specific viscosity method with a copper ethylenediamine solution described in the confirmation test (3) of the "15th revised Japanese Pharmacopoeia Manual (published by Hirokawa Shoten)". ..

一態様において、セルロース繊維の重量平均分子量(Mw)は100000以上であり、より好ましくは200000以上である。重量平均分子量と数平均分子量(Mn)との比(Mw/Mn)は6以下であり、好ましくは5.4以下である。重量平均分子量が大きいほどセルロース分子の末端基の数は少ないことを意味する。また、重量平均分子量と数平均分子量との比(Mw/Mn)は分子量分布の幅を表すものであることから、Mw/Mnが小さいほどセルロース分子の末端の数は少ないことを意味する。セルロース分子の末端は熱分解の起点となるため、セルロース繊維のセルロース分子の重量平均分子量が大きいだけでなく、重量平均分子量が大きいと同時に分子量分布の幅が狭い場合に、特に高耐熱性のセルロース繊維、及びセルロース繊維と樹脂とを含む樹脂組成物が得られる。セルロース繊維の重量平均分子量(Mw)は、セルロース原料の入手容易性の観点から、例えば600000以下、又は500000以下であってよい。重量平均分子量と数平均分子量(Mn)との比(Mw/Mn)はセルロース繊維の製造容易性の観点から、例えば1.5以上、又は2以上であってよい。Mwは、目的に応じたMwを有するセルロース原料を選択すること、セルロース原料に対して物理的処理及び/又は化学的処理を適度な範囲で適切に行うこと、等によって上記範囲に制御できる。Mw/Mnもまた、目的に応じたMw/Mnを有するセルロース原料を選択すること、セルロース原料に対して物理的処理及び/又は化学的処理を適度な範囲で適切に行うこと、等によって上記範囲に制御できる。Mwの制御、及びMw/Mnの制御の両者において、上記物理的処理としては、マイクロフリュイダイザー、ボールミル、ディスクミル等の乾式粉砕若しくは湿式粉砕、擂潰機、ホモミキサー、高圧ホモジナイザー、超音波装置等による衝撃、せん断、ずり、摩擦等の機械的な力を加える物理的処理を例示でき、上記化学的処理としては、蒸解、漂白、酸処理、再生セルロース化等を例示できる。 In one embodiment, the weight average molecular weight (Mw) of the cellulose fibers is 100,000 or more, more preferably 200,000 or more. The ratio (Mw / Mn) of the weight average molecular weight to the number average molecular weight (Mn) is 6 or less, preferably 5.4 or less. The larger the weight average molecular weight, the smaller the number of terminal groups of the cellulose molecule. Further, since the ratio (Mw / Mn) of the weight average molecular weight to the number average molecular weight represents the width of the molecular weight distribution, it means that the smaller the Mw / Mn, the smaller the number of terminals of the cellulose molecule. Since the end of the cellulose molecule is the starting point of thermal decomposition, not only the weight average molecular weight of the cellulose molecule of the cellulose fiber is large, but also when the weight average molecular weight is large and the width of the molecular weight distribution is narrow, the cellulose having high heat resistance is particularly high. A resin composition containing fibers and cellulose fibers and a resin can be obtained. The weight average molecular weight (Mw) of the cellulose fibers may be, for example, 600,000 or less, or 500,000 or less, from the viewpoint of availability of the cellulose raw material. The ratio (Mw / Mn) of the weight average molecular weight to the number average molecular weight (Mn) may be, for example, 1.5 or more, or 2 or more, from the viewpoint of ease of producing cellulose fibers. The Mw can be controlled within the above range by selecting a cellulose raw material having Mw according to the purpose, appropriately performing physical treatment and / or chemical treatment on the cellulose raw material within an appropriate range, and the like. Mw / Mn also has the above range by selecting a cellulose raw material having Mw / Mn according to the purpose, appropriately performing physical treatment and / or chemical treatment on the cellulose raw material within an appropriate range, and the like. Can be controlled. In both Mw control and Mw / Mn control, the physical treatment includes dry or wet pulverization of a microfluidizer, ball mill, disc mill, etc., grinder, homomixer, high-pressure homogenizer, ultrasonic device. Physical treatments that apply mechanical forces such as impact, shearing, shearing, and friction due to such factors can be exemplified, and examples of the chemical treatments include cooking, bleaching, acid treatment, and regenerated cellulose formation.

ここでいうセルロースの重量平均分子量及び数平均分子量とは、セルロースを塩化リチウムが添加されたN,N−ジメチルアセトアミドに溶解させたうえで、N,N−ジメチルアセトアミドを溶媒としてゲルパーミエーションクロマトグラフィによって求めた値である。 The weight average molecular weight and number average molecular weight of cellulose referred to here are those obtained by dissolving cellulose in N, N-dimethylacetamide to which lithium chloride is added, and then gel permeation chromatography using N, N-dimethylacetamide as a solvent. This is the calculated value.

セルロース繊維の重合度(すなわち平均重合度)又は分子量を制御する方法としては、加水分解処理等が挙げられる。加水分解処理によって、セルロース繊維内部の非晶質セルロースの解重合が進み、平均重合度が小さくなる。また同時に、加水分解処理により、上述の非晶質セルロースに加え、ヘミセルロースやリグニン等の不純物も取り除かれるため、繊維質内部が多孔質化する。 Examples of the method for controlling the degree of polymerization (that is, the average degree of polymerization) or the molecular weight of the cellulose fibers include hydrolysis treatment and the like. By the hydrolysis treatment, the amorphous cellulose inside the cellulose fiber is depolymerized, and the average degree of polymerization is reduced. At the same time, the hydrolysis treatment removes impurities such as hemicellulose and lignin in addition to the above-mentioned amorphous cellulose, so that the inside of the fiber becomes porous.

加水分解の方法は、特に制限されないが、酸加水分解、アルカリ加水分解、熱水分解、スチームエクスプロージョン、マイクロ波分解等が挙げられる。これらの方法は、単独で使用してもよく、2種以上を併用してもよい。酸加水分解の方法では、例えば、繊維性植物からパルプとして得たα−セルロースをセルロース原料とし、これを水系媒体に分散させた状態で、プロトン酸、カルボン酸、ルイス酸、ヘテロポリ酸等を適量加え、攪拌しながら加温することにより、容易に平均重合度を制御できる。この際の温度、圧力、時間等の反応条件は、セルロース種、セルロース濃度、酸種、酸濃度等により異なるが、目的とする平均重合度が達成されるよう適宜調製されるものである。例えば、2質量%以下の鉱酸水溶液を使用し、100℃以上、加圧下で、10分間以上セルロースを処理するという条件が挙げられる。この条件のとき、酸等の触媒成分がセルロース繊維内部まで浸透し、加水分解が促進され、使用する触媒成分量が少なくなり、その後の精製も容易になる。なお、加水分解時のセルロース原料の分散液は、水の他、本発明の効果を損なわない範囲において有機溶媒を少量含んでいてもよい。 The method of hydrolysis is not particularly limited, and examples thereof include acid hydrolysis, alkali hydrolysis, hydrothermal decomposition, steam explosion, and microwave decomposition. These methods may be used alone or in combination of two or more. In the acid hydrolysis method, for example, α-cellulose obtained as pulp from a fibrous plant is used as a cellulose raw material, and in a state where this is dispersed in an aqueous medium, an appropriate amount of protonic acid, carboxylic acid, Lewis acid, heteropolyacid, etc. is added. In addition, the average degree of polymerization can be easily controlled by heating while stirring. The reaction conditions such as temperature, pressure, and time at this time differ depending on the cellulose type, cellulose concentration, acid type, acid concentration, etc., but are appropriately prepared so as to achieve the desired average degree of polymerization. For example, there is a condition that cellulose is treated for 10 minutes or more under pressure at 100 ° C. or higher using an aqueous mineral acid solution of 2% by mass or less. Under this condition, the catalyst component such as acid permeates into the inside of the cellulose fiber, hydrolysis is promoted, the amount of the catalyst component used is reduced, and the subsequent purification is facilitated. The dispersion liquid of the cellulose raw material at the time of hydrolysis may contain a small amount of an organic solvent in addition to water as long as the effect of the present invention is not impaired.

セルロース繊維が含み得るアルカリ可溶多糖類は、ヘミセルロースのほか、β−セルロース及びγ−セルロースも包含する。アルカリ可溶多糖類とは、植物(例えば木材)を溶媒抽出及び塩素処理して得られるホロセルロースのうちのアルカリ可溶部として得られる成分(すなわちホロセルロースからα−セルロースを除いた成分)として当業者に理解される。アルカリ可溶多糖類は、水酸基を含む多糖であり耐熱性が悪く、熱がかかった場合に分解すること、熱エージング時に黄変を引き起こすこと、セルロース繊維の強度低下の原因になること等の不都合を招来し得ることから、セルロース繊維中のアルカリ可溶多糖類含有量は少ない方が好ましい。 Alkali-soluble polysaccharides that can be contained in cellulose fibers include β-cellulose and γ-cellulose as well as hemicellulose. The alkali-soluble polysaccharide is a component (that is, a component obtained by removing α-cellulose from holocellulose) obtained as an alkali-soluble portion of holocellulose obtained by solvent-extracting and chlorine-treating a plant (for example, wood). Understood by those skilled in the art. Alkali-soluble polysaccharides are polysaccharides containing hydroxyl groups and have poor heat resistance, and are inconvenient because they decompose when heated, cause yellowing during heat aging, and cause a decrease in the strength of cellulose fibers. Therefore, it is preferable that the content of the alkali-soluble polysaccharide in the cellulose fiber is small.

一態様において、セルロース繊維中のアルカリ可溶多糖類平均含有率は、セルロース繊維の良好な分散性を得る観点から、セルロース繊維100質量%に対して、好ましくは、20質量%以下、又は18質量%以下、又は15質量%以下、又は12質量%以下である。上記含有率は、セルロース繊維の製造容易性の観点から、1質量%以上、又は2質量%以上、又は3質量%以上であってもよい。 In one aspect, the average content of alkali-soluble polysaccharides in the cellulose fibers is preferably 20% by mass or less, or 18% by mass, based on 100% by mass of the cellulose fibers, from the viewpoint of obtaining good dispersibility of the cellulose fibers. % Or less, or 15% by mass or less, or 12% by mass or less. The content may be 1% by mass or more, 2% by mass or more, or 3% by mass or more from the viewpoint of ease of production of cellulose fibers.

アルカリ可溶多糖類平均含有率は、非特許文献(木質科学実験マニュアル、日本木材学会編、92〜97頁、2000年)に記載の手法より求めることができ、ホロセルロース含有率(Wise法)からαセルロース含有率を差し引くことで求められる。なおこの方法は当業界においてヘミセルロース量の測定方法として理解されている。1つのサンプルにつき3回アルカリ可溶多糖類含有率を算出し、算出したアルカリ可溶多糖類含有率の数平均をアルカリ可溶多糖類平均含有率とする。 The average content of alkali-soluble polysaccharides can be determined by the method described in non-patent documents (Wood Science Experiment Manual, edited by Japan Wood Society, pp. 92-97, 2000), and the holocellulose content (Wise method). It is obtained by subtracting the α-cellulose content from. This method is understood in the art as a method for measuring the amount of hemicellulose. The alkali-soluble polysaccharide content is calculated three times for one sample, and the number average of the calculated alkali-soluble polysaccharide content is defined as the alkali-soluble polysaccharide average content.

一態様において、セルロース繊維中の酸不溶成分平均含有率は、セルロース繊維の耐熱性低下及びそれに伴う変色を回避する観点から、セルロース繊維100質量%に対して、好ましくは、10質量%以下、又は5質量%以下、又は3質量%以下である。上記含有率は、セルロース繊維の製造容易性の観点から、0.1質量%以上、又は0.2質量%以上、又は0.3質量%以上であってもよい。 In one embodiment, the average content of the acid-insoluble component in the cellulose fiber is preferably 10% by mass or less, or 10% by mass or less, based on 100% by mass of the cellulose fiber, from the viewpoint of avoiding a decrease in heat resistance of the cellulose fiber and the accompanying discoloration. It is 5% by mass or less, or 3% by mass or less. The content may be 0.1% by mass or more, 0.2% by mass or more, or 0.3% by mass or more from the viewpoint of ease of production of cellulose fibers.

酸不溶成分平均含有率は、非特許文献(木質科学実験マニュアル、日本木材学会編、92〜97頁、2000年)に記載のクラーソン法を用いた酸不溶成分の定量として行う。なおこの方法は当業界においてリグニン量の測定方法として理解されている。硫酸溶液中でサンプルを撹拌してセルロース及びヘミセルロース等を溶解させた後、ガラスファイバーろ紙で濾過し、得られた残渣が酸不溶成分に該当する。この酸不溶成分重量より酸不溶成分含有率を算出し、そして、3サンプルについて算出した酸不溶成分含有率の数平均を酸不溶成分平均含有率とする。 The average content of acid-insoluble components is determined as a quantification of acid-insoluble components using the Clarson method described in a non-patent document (Wood Science Experiment Manual, edited by Japan Wood Society, pp. 92-97, 2000). This method is understood in the art as a method for measuring the amount of lignin. The sample is stirred in a sulfuric acid solution to dissolve cellulose, hemicellulose, etc., and then filtered through a glass fiber filter paper, and the obtained residue corresponds to an acid-insoluble component. The acid-insoluble component content is calculated from the weight of the acid-insoluble component, and the number average of the acid-insoluble component contents calculated for the three samples is defined as the acid-insoluble component average content.

セルロース繊維は、化学処理(例えば酸化、又は修飾化剤を用いた化学修飾)がされていてもよい。一例として、Cellulose(1998)5,153−164に示されているような2,2,6,6−テトラメチルピペリジン−1−オキシルラジカルによってセルロース繊維を酸化させた後に、洗浄、機械解繊を経ることにより得られる、微細化セルロース繊維を使用してもよい。 Cellulose fibers may be chemically treated (for example, oxidized or chemically modified with a modifying agent). As an example, after oxidizing cellulose fibers with 2,2,6,6-tetramethylpiperidin-1-oxyl radicals as shown in Cellulose (1998) 5,153-164, washing and mechanical defibration are performed. Finely divided cellulose fibers obtained by passing through may be used.

セルロースの修飾化剤としては、セルロースの水酸基と反応する化合物を使用でき、エステル化剤、エーテル化剤、及びシリル化剤が挙げられる。好ましい態様において、化学修飾は、エステル化剤を用いたアシル化である。エステル化剤としては、酸ハロゲン化物、酸無水物、及びカルボン酸ビニルエステルが好ましい。 As the modifying agent for cellulose, a compound that reacts with the hydroxyl group of cellulose can be used, and examples thereof include an esterifying agent, an etherizing agent, and a silylating agent. In a preferred embodiment, the chemical modification is acylation with an esterifying agent. As the esterifying agent, acid halides, acid anhydrides, and carboxylic acid vinyl esters are preferable.

酸ハロゲン化物は、下記式(1)で表される化合物からなる群より選択された少なくとも1種であってよい。
−C(=O)−X (1)
(式中、Rは炭素数1〜24のアルキル基、炭素数2〜24のアルケニル基、炭素数3〜24のシクロアルキル基、又は炭素数6〜24のアリール基を表し、XはCl、Br又はIである。)
酸ハロゲン化物の具体例としては、塩化アセチル、臭化アセチル、ヨウ化アセチル、塩化プロピオニル、臭化プロピオニル、ヨウ化プロピオニル、塩化ブチリル、臭化ブチリル、ヨウ化ブチリル、塩化ベンゾイル、臭化ベンゾイル、ヨウ化ベンゾイル等が挙げられるが、これらに限定されない。中でも、酸塩化物は反応性と取り扱い性の点から好適に採用できる。尚、酸ハロゲン化物の反応においては、触媒として働くと同時に副生物である酸性物質を中和する目的で、アルカリ性化合物を1種又は2種以上添加してもよい。アルカリ性化合物としては、具体的には:トリエチルアミン、トリメチルアミン等の3級アミン化合物;及びピリジン、ジメチルアミノピリジン等の含窒素芳香族化合物;が挙げられるが、これに限定されない。
The acid halide may be at least one selected from the group consisting of the compounds represented by the following formula (1).
R 1- C (= O) -X (1)
(In the formula, R 1 represents an alkyl group having 1 to 24 carbon atoms, an alkenyl group having 2 to 24 carbon atoms, a cycloalkyl group having 3 to 24 carbon atoms, or an aryl group having 6 to 24 carbon atoms, and X is Cl. , Br or I.)
Specific examples of acid halides include acetyl chloride, acetyl bromide, acetyl iodide, propionyl chloride, propionyl bromide, propionyl iodide, butyryl chloride, butyryl bromide, butyryl iodide, benzoyl chloride, benzoyl bromide, and iodide. Examples include, but are not limited to, benzoyl chloride. Among them, the acid chloride can be preferably adopted from the viewpoint of reactivity and handleability. In the reaction of the acid halide, one or more alkaline compounds may be added for the purpose of neutralizing an acidic substance which is a by-product at the same time as acting as a catalyst. Specific examples of the alkaline compound include, but are not limited to, tertiary amine compounds such as triethylamine and trimethylamine; and nitrogen-containing aromatic compounds such as pyridine and dimethylaminopyridine.

酸無水物としては、任意の適切な酸無水物類を用いることができる。例えば、
酢酸、プロピオン酸、(イソ)酪酸、吉草酸等の飽和脂肪族モノカルボン酸無水物;(メタ)アクリル酸、オレイン酸等の不飽和脂肪族モノカルボン酸無水物;
シクロヘキサンカルボン酸、テトラヒドロ安息香酸等の脂環族モノカルボン酸無水物;
安息香酸、4−メチル安息香酸等の芳香族モノカルボン酸無水物;
二塩基カルボン酸無水物として、例えば、無水コハク酸、アジピン酸等の無水飽和脂肪族ジカルボン酸、無水マレイン酸、無水イタコン酸等の無水不飽和脂肪族ジカルボン酸無水物、無水1−シクロヘキセン−1,2−ジカルボン酸、無水ヘキサヒドロフタル酸、無水メチルテトラヒドロフタル酸等の無水脂環族ジカルボン酸、及び、無水フタル酸、無水ナフタル酸等の無水芳香族ジカルボン酸無水物等;
3塩基以上の多塩基カルボン酸無水物類として、例えば、無水トリメリット酸、無水ピロメリット酸等の(無水)ポリカルボン酸等が挙げられる。
尚、酸無水物の反応においては、触媒として、硫酸、塩酸、燐酸等の酸性化合物、又は金属塩化物、金属トリフラート等のルイス酸、又はトリエチルアミン、ピリジン等のアルカリ性化合物を1種又は2種以上添加してもよい。
As the acid anhydride, any suitable acid anhydride can be used. For example
Saturated aliphatic monocarboxylic acid anhydrides such as acetic acid, propionic acid, (iso) butyric acid and valeric acid; unsaturated aliphatic monocarboxylic acid anhydrides such as (meth) acrylic acid and oleic acid;
Alicyclic monocarboxylic acid anhydrides such as cyclohexanecarboxylic acid and tetrahydrobenzoic acid;
Aromatic monocarboxylic acid anhydrides such as benzoic acid and 4-methylbenzoic acid;
Examples of the dibasic carboxylic acid anhydride include an anhydride-saturated aliphatic dicarboxylic acid such as succinic anhydride and adipic acid, anhydrous unsaturated aliphatic dicarboxylic acid anhydride such as maleic anhydride and itaconic anhydride, and 1-cyclohexene anhydride-1. , 2-Dicarboxylic acid, hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride and other anhydrous alicyclic dicarboxylic acids, and anhydrous phthalic acid, naphthalic anhydride and other anhydrous aromatic dicarboxylic acid anhydrides, etc.;
Examples of polybasic carboxylic acid anhydrides having 3 or more bases include (anhydrous) polycarboxylic acids such as trimellitic anhydride and pyromellitic anhydride.
In the reaction of acid anhydride, one or more acidic compounds such as sulfuric acid, hydrochloric acid and phosphoric acid, Lewis acids such as metal chloride and metal triflate, and alkaline compounds such as triethylamine and pyridine are used as catalysts. It may be added.

カルボン酸ビニルエステルとしては、下記式(1):
R−COO−CH=CH2 …式(1)
{式中、Rは、炭素数1〜24のアルキル基、炭素数2〜24のアルケニル基、炭素数3〜16のシクロアルキル基、又は炭素数6〜24のアリール基のいずれかである。}で表されるカルボン酸ビニルエステルが好ましい。カルボン酸ビニルエステルは、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、カプロン酸ビニル、シクロヘキサンカルボン酸ビニル、カプリル酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ミリスチン酸ビニル、パルミチン酸ビニル、ステアリン酸ビニル、ピバリン酸ビニル、オクチル酸ビニルアジピン酸ジビニル、メタクリル酸ビニル、クロトン酸ビニル、ピバリン酸ビニル、オクチル酸ビニル、安息香酸ビニル、及び桂皮酸ビニルからなる群より選択された少なくとも1種であることがより好ましい。カルボン酸ビニルエステルによるエステル化反応のとき、触媒として、アルカリ金属水酸化物、アルカリ土類金属水酸化物、アルカリ金属炭酸塩、アルカリ土類金属炭酸塩、アルカリ金属炭酸水素塩、1〜3級アミン、4級アンモニウム塩、イミダゾール及びその誘導体、ピリジン及びその誘導体、並びにアルコキシドからなる群より選ばれる1種又は2種以上を添加しても良い。
The carboxylic acid vinyl ester has the following formula (1):
R-COO-CH = CH 2 ... Equation (1)
{In the formula, R is either an alkyl group having 1 to 24 carbon atoms, an alkenyl group having 2 to 24 carbon atoms, a cycloalkyl group having 3 to 16 carbon atoms, or an aryl group having 6 to 24 carbon atoms. } Is preferred. Vinyl carboxylic acid esters include vinyl acetate, vinyl propionate, vinyl butyrate, vinyl caproate, vinyl cyclohexanecarboxylate, vinyl caprilate, vinyl caproate, vinyl laurate, vinyl myristate, vinyl palmitate, vinyl stearate, and pivalin. More preferably, it is at least one selected from the group consisting of vinyl acetate, vinyl octylate divinyl adipate, vinyl methacrylate, vinyl crotonic acid, vinyl pivalate, vinyl octylate, vinyl benzoate, and vinyl cinnamic acid. .. In the esterification reaction with vinyl carboxylate ester, as a catalyst, alkali metal hydroxide, alkaline earth metal hydroxide, alkali metal carbonate, alkaline earth metal carbonate, alkali metal hydrogen carbonate, grades 1 to 3. One or more selected from the group consisting of amines, quaternary ammonium salts, imidazoles and derivatives thereof, pyridines and derivatives thereof, and alkoxides may be added.

アルカリ金属水酸化物及びアルカリ土類金属水酸化物としては、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水酸化カルシウム、水酸化バリウム等が挙げられる。 アルカリ金属炭酸塩、アルカリ土類金属炭酸塩、アルカリ金属炭酸水素塩としては、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、炭酸マグネシウム、炭酸カルシウム、炭酸バリウム、炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素セシウム等が挙げられる。 Examples of the alkali metal hydroxide and alkaline earth metal hydroxide include sodium hydroxide, potassium hydroxide, lithium hydroxide, calcium hydroxide, barium hydroxide and the like. Alkali metal carbonates, alkaline earth metal carbonates, alkali metal bicarbonates include lithium carbonate, sodium carbonate, potassium carbonate, cesium carbonate, magnesium carbonate, calcium carbonate, barium carbonate, lithium hydrogen carbonate, sodium hydrogen carbonate, carbonic acid. Examples include potassium hydrogen hydrogen and cesium hydrogen carbonate.

1〜3級アミンとは、1級アミン、2級アミン、及び3級アミンのことであり、具体例としては、エチレンジアミン、ジエチルアミン、プロリン、N,N,N’,N’−テトラメチルエチレンジアミン、N,N,N’,N’−テトラメチル−1,3−プロパンジアミン、N,N,N’,N’−テトラメチル−1,6−ヘキサンジアミン、トリス(3−ジメチルアミノプロピル)アミン、N,N−ジメチルシクロヘキシルアミン、トリエチルアミン等が挙げられる。 The 1st to 3rd amines are primary amines, secondary amines, and tertiary amines, and specific examples thereof include ethylenediamine, diethylamine, proline, N, N, N', and N'-tetramethylethylenediamine. N, N, N', N'-tetramethyl-1,3-propanediamine, N, N, N', N'-tetramethyl-1,6-hexanediamine, tris (3-dimethylaminopropyl) amine, Examples thereof include N, N-dimethylcyclohexylamine and triethylamine.

イミダゾール及びその誘導体としては、1−メチルイミダゾール、3−アミノプロピルイミダゾール、カルボニルジイミダゾール等が挙げられる。 Examples of imidazole and its derivatives include 1-methylimidazole, 3-aminopropylimidazole, carbonyldiimidazole and the like.

ピリジン及びその誘導体としては、N,N−ジメチル−4−アミノピリジン、ピコリン等が挙げられる。 Examples of pyridine and its derivatives include N, N-dimethyl-4-aminopyridine, picoline and the like.

アルコキシドとしては、ナトリウムメトキシド、ナトリウムエトキシド、カリウム−t−ブトキシド等が挙げられる。 Examples of the alkoxide include sodium methoxide, sodium ethoxide, potassium-t-butoxide and the like.

これらエステル化反応剤の中でも、特に、無水酢酸、無水プロピオン酸、無水酪酸、酢酸ビニル、プロピオン酸ビニル、及び酪酸ビニルからなる群から選択された少なくとも一種、中でも無水酢酸及び酢酸ビニルが、反応効率の観点から好ましい。 Among these esterification reactants, at least one selected from the group consisting of acetic anhydride, propionic anhydride, butyric anhydride, vinyl acetate, vinyl propionate, and vinyl butyrate, among which acetic anhydride and vinyl acetate have reaction efficiencies. It is preferable from the viewpoint of.

本実施形態の化学修飾セルロース繊維の修飾度は水酸基の平均置換度(セルロースの基本構成単位であるグルコース当たりの置換された水酸基の平均数、DSともいう)として表される。一態様において、化学修飾セルロース繊維のDSは0.01以上2.0以下が好ましい。DSが0.01以上であれば、熱分解開始温度が高い化学修飾セルロースを含む樹脂組成物を得ることができる。一方、2.0以下であると、化学修飾セルロース中に未修飾のセルロース骨格が残存するため、セルロース由来の高い引張強度及び寸法安定性と化学修飾由来の高い熱分解開始温度を兼ね備えた化学修飾セルロースを含む樹脂組成物を得ることができる。DSはより好ましくは0.05以上、さらに好ましくは0.1以上、特に好ましくは0.2以上、最も好ましくは0.3以上であって、より好ましくは1.8以下、さらに好ましくは1.5以下、特に好ましくは1.2以下、最も好ましくは1.0以下である。 The degree of modification of the chemically modified cellulose fiber of the present embodiment is expressed as the average degree of substitution of hydroxyl groups (the average number of substituted hydroxyl groups per glucose, which is the basic constituent unit of cellulose, also referred to as DS). In one embodiment, the DS of the chemically modified cellulose fiber is preferably 0.01 or more and 2.0 or less. When the DS is 0.01 or more, a resin composition containing chemically modified cellulose having a high thermal decomposition start temperature can be obtained. On the other hand, when it is 2.0 or less, an unmodified cellulose skeleton remains in the chemically modified cellulose, so that the chemical modification has both high tensile strength and dimensional stability derived from cellulose and a high thermal decomposition start temperature derived from the chemical modification. A resin composition containing cellulose can be obtained. The DS is more preferably 0.05 or more, still more preferably 0.1 or more, particularly preferably 0.2 or more, most preferably 0.3 or more, still more preferably 1.8 or less, still more preferably 1. It is 5 or less, particularly preferably 1.2 or less, and most preferably 1.0 or less.

化学修飾セルロース繊維の修飾基がアシル基の場合、アシル置換度(DS)は、エステル化セルロース繊維の反射型赤外吸収スペクトルから、アシル基由来のピークとセルロース骨格由来のピークとのピーク強度比に基づいて算出することができる。アシル基に基づくC=Oの吸収バンドのピークは1730cm-1に出現し、セルロース骨格鎖に基づくC−Oの吸収バンドのピークは1030cm-1に出現する(図1及び2参照)。エステル化セルロース繊維のDSは、後述するエステル化セルロース繊維の固体NMR測定から得られるDSと、セルロース骨格鎖C−Oの吸収バンドのピーク強度に対するアシル基に基づくC=Oの吸収バンドのピーク強度の比率で定義される修飾化率(IRインデックス1030)との相関グラフを作製し、相関グラフから算出された検量線
置換度DS = 4.13 × IRインデックス(1030)
を使用することで求めることができる。
When the modifying group of the chemically modified cellulose fiber is an acyl group, the degree of acyl substitution (DS) is the peak intensity ratio between the peak derived from the acyl group and the peak derived from the cellulose skeleton from the reflective infrared absorption spectrum of the esterified cellulose fiber. Can be calculated based on. The peak of the C = O absorption band based on the acyl group appears at 1730 cm -1, and the peak of the CO-O absorption band based on the cellulose skeleton chain appears at 1030 cm -1 (see FIGS. 1 and 2). The DS of the esterified cellulose fiber is the DS obtained from the solid-state NMR measurement of the esterified cellulose fiber described later, and the peak intensity of the absorption band of C = O based on the acyl group with respect to the peak intensity of the absorption band of the cellulose skeleton chain CO. A correlation graph with the modification rate (IR index 1030) defined by the ratio of is prepared, and the calibration curve substitution degree DS = 4.13 × IR index (1030) calculated from the correlation graph.
Can be obtained by using.

固体NMRによるエステル化セルロース繊維のDSの算出方法は、凍結粉砕したエステル化セルロース繊維について13C固体NMR測定を行い、50ppmから110ppmの範囲に現れるセルロースのピラノース環由来の炭素C1−C6に帰属されるシグナルの合計面積強度(Inp)に対する修飾基由来の1つの炭素原子に帰属されるシグナルの面積強度(Inf)より下記式で求めることができる。
DS=(Inf)×6/(Inp)
たとえば、修飾基がアセチル基の場合、−CH3に帰属される23ppmのシグナルを用いれば良い。
用いる13C固体NMR測定の条件は例えば以下の通りである。
装置 :Bruker Biospin Avance500WB
周波数 :125.77MHz
測定方法 :DD/MAS法
待ち時間 :75sec
NMR試料管 :4mmφ
積算回数 :640回(約14Hr)
MAS :14,500Hz
化学シフト基準:グリシン(外部基準:176.03ppm)
The method for calculating the DS of the esterified cellulose fiber by solid-state NMR is that 13 C solid-state NMR measurement is performed on the freeze-ground esterified cellulose fiber, and it is attributed to carbon C1-C6 derived from the pyranose ring of cellulose appearing in the range of 50 ppm to 110 ppm. It can be obtained by the following formula from the area intensity (Inf) of the signal assigned to one carbon atom derived from the modifying group with respect to the total area intensity (Inp) of the signal.
DS = (Inf) x 6 / (Inp)
For example, if the modifying group is an acetyl group, a 23 ppm signal attributed to −CH 3 may be used.
The conditions for the 13 C solid-state NMR measurement used are as follows, for example.
Equipment: Bruker Biospin Avance 500WB
Frequency: 125.77MHz
Measurement method: DD / MAS method Waiting time: 75 sec
NMR sample tube: 4 mmφ
Accumulation number: 640 times (about 14 hours)
MAS: 14,500Hz
Chemical shift standard: Glycine (external standard: 176.03 ppm)

化学修飾セルロース繊維の繊維全体の修飾度(DSt)(これは上記のアシル置換度(DS)と同義である。)に対する繊維表面の修飾度(DSs)の比率で定義されるDS不均一比(DSs/DSt)は、好ましくは1.05以上である。DS不均一比の値が大きいほど、鞘芯構造様の不均一構造(すなわち、繊維表層が高度に化学修飾される一方で繊維中心部が元の未修飾に近いセルロースの構造を保持している構造)が顕著であり、セルロース由来の高い引張強度及び寸法安定性を有しつつ、樹脂との複合化時の樹脂との親和性の向上、及び樹脂組成物の寸法安定性の向上が可能である。DS不均一比は、より好ましくは、1.1以上、又は1.2以上、又は1.3以上、又は1.5以上、又は2.0であり、化学修飾セルロース繊維の製造容易性の観点から、好ましくは、30以下、又は20以下、又は10以下、又は6以下、又は4以下、又は3以下である。
DSsの値は、エステル化セルロースの修飾度に応じて変わるが、一例として、好ましくは0.1以上、より好ましくは0.2以上、さらに好ましくは0.3以上、さらに好ましくは0.5以上であり、好ましくは3.0以下、より好ましくは2.5以下、特に好ましくは2.0以下、さらに好ましくは1.5以下、特に好ましくは1.2以下、最も好ましくは1.0以下である。DStの好ましい範囲は、アシル置換基(DS)について前述したとおりである。
The DS non-uniform ratio (DSt) defined by the ratio of the degree of modification (DSs) on the fiber surface to the degree of modification (DSt) of the entire fiber of the chemically modified cellulose fiber (which is synonymous with the above-mentioned degree of acyl substitution (DS)). DSs / DSt) is preferably 1.05 or more. The larger the value of the DS non-uniform ratio, the more non-uniform structure like the sheath core structure (that is, the fiber surface layer is highly chemically modified while the fiber center retains the structure of cellulose which is close to the original unmodified structure. (Structure) is remarkable, and while having high tensile strength and dimensional stability derived from cellulose, it is possible to improve the affinity with the resin at the time of compounding with the resin and the dimensional stability of the resin composition. is there. The DS non-uniform ratio is more preferably 1.1 or more, 1.2 or more, 1.3 or more, 1.5 or more, or 2.0, from the viewpoint of ease of production of chemically modified cellulose fibers. Therefore, it is preferably 30 or less, or 20 or less, or 10 or less, or 6 or less, or 4 or less, or 3 or less.
The value of DSs varies depending on the degree of modification of the esterified cellulose, but as an example, it is preferably 0.1 or more, more preferably 0.2 or more, still more preferably 0.3 or more, still more preferably 0.5 or more. It is preferably 3.0 or less, more preferably 2.5 or less, particularly preferably 2.0 or less, still more preferably 1.5 or less, particularly preferably 1.2 or less, and most preferably 1.0 or less. is there. The preferred range of DSt is as described above for acyl substituents (DS).

化学修飾セルロース繊維のDS不均一比の変動係数(CV)は、小さいほど、樹脂組成物の各種物性のバラつきが小さくなるため好ましい。上記変動係数は、好ましくは、50%以下、又は40%以下、又は30%以下、又は20%以下である。上記変動係数は、例えば、セルロース原料を解繊した後に化学修飾を行って化学修飾セルロース繊維を得る方法(すなわち逐次法)ではより低減され得る一方、セルロース原料の解繊と化学修飾とを同時に行う方法(すなわち同時法)では増大され得る。この作用機序は明確になっていないが、同時法では、解繊の初期に生成した細い繊維において化学修飾がより進行しやすく、そして、化学修飾によってセルロースミクロフィブリル間の水素結合が減少すると解繊がさらに進行する結果、DS不均一比の変動係数が増大すると考えられる。 The smaller the coefficient of variation (CV) of the DS non-uniform ratio of the chemically modified cellulose fiber is, the smaller the variation in various physical properties of the resin composition is, which is preferable. The coefficient of variation is preferably 50% or less, or 40% or less, or 30% or less, or 20% or less. The above fluctuation coefficient can be further reduced by, for example, a method of obtaining chemically modified cellulose fibers by chemically modifying the cellulose raw material after defibrating it (that is, a sequential method), while defibrating and chemically modifying the cellulose raw material at the same time. The method (ie, simultaneous method) can be increased. Although the mechanism of action has not been clarified, it is understood that the simultaneous method makes it easier for chemical modification to proceed in the fine fibers produced in the early stage of defibration, and that the chemical modification reduces hydrogen bonds between cellulose microfibrils. As a result of the further progress of the fibers, it is considered that the coefficient of variation of the DS non-uniformity ratio increases.

DS不均一比の変動係数(CV)は、化学修飾セルロース繊維の水分散体(固形分率10質量%以上)を100g採取し、10gずつ凍結粉砕したものを測定サンプルとし、10サンプルのDSt及びDSsからDS不均一比を算出した後、得られた10個のサンプル間でのDS不均一比の標準偏差(σ)及び算術平均(μ)から、下記式で算出できる。
DS不均一比=DSs/DSt
変動係数(%)=標準偏差σ/算術平均μ×100
For the coefficient of variation (CV) of the DS non-uniform ratio, 100 g of an aqueous dispersion of chemically modified cellulose fibers (solid content of 10% by mass or more) was sampled, and 10 g of each was freeze-ground and used as a measurement sample. After calculating the DS non-uniform ratio from the DSs, it can be calculated by the following formula from the standard deviation (σ) and the arithmetic mean (μ) of the DS non-uniform ratio among the obtained 10 samples.
DS non-uniform ratio = DSs / DSt
Coefficient of variation (%) = standard deviation σ / arithmetic mean μ × 100

DSsの算出方法は以下のとおりである。すなわち、凍結粉砕により粉末化したエステル化セルロースを2.5mmφの皿状試料台に載せ、表面を抑えて平らにし、X線光電子分光法(XPS)による測定を行う。XPSスペクトルは、サンプルの表層のみ(典型的には数nm程度)の構成元素及び化学結合状態を反映する。得られたC1sスペクトルについてピーク分離を行い、セルロースのピラノース環由来の炭素C2−C6帰属されるピーク(289eV、C−C結合)の面積強度(Ixp)に対する修飾基由来の1つの炭素原子に帰属されるピークの面積強度(Ixf)より下記式で求めることができる。
DSs=(Ixf)×5/(Ixp)
たとえば、修飾基がアセチル基の場合、C1sスペクトルを285eV、286eV,288eV,289eVでピーク分離を行った後、Ixpには289evのピークを、Ixfにはアセチル基のO−C=O結合由来のピーク(286eV)を用いれば良い。
用いるXPS測定の条件は例えば以下の通りである。
使用機器 :アルバックファイVersaProbeII
励起源 :mono.AlKα 15kV×3.33mA
分析サイズ :約200μmφ
光電子取出角 :45°
取込領域
Narrow scan:C 1s、O 1s
Pass Energy:23.5eV
The calculation method of DSs is as follows. That is, the esterified cellulose powdered by freeze pulverization is placed on a dish-shaped sample table having a diameter of 2.5 mm, the surface is suppressed and flattened, and measurement is performed by X-ray photoelectron spectroscopy (XPS). The XPS spectrum reflects the constituent elements and the chemical bond state of only the surface layer of the sample (typically about several nm). Peak separation was performed on the obtained C1s spectrum, and the peak (289eV, CC bond) attributed to carbon C2-C6 derived from the pyranose ring of cellulose was assigned to one carbon atom derived from the modifying group with respect to the area intensity (Ipp). It can be calculated by the following formula from the area intensity (Ixf) of the peak to be formed.
DSs = (Ixf) x 5 / (Ixp)
For example, when the modifying group is an acetyl group, the C1s spectrum is peak-separated at 285 eV, 286 eV, 288 eV, and 289 eV, and then the peak of 289 ev is used for Ix and the O-C = O bond of the acetyl group is used for Ixf. A peak (286 eV) may be used.
The conditions for XPS measurement used are as follows, for example.
Equipment used: ULVAC-PHI VersaProbeII
Excitation source: mono. AlKα 15kV x 3.33mA
Analysis size: Approximately 200 μmφ
Photoelectron extraction angle: 45 °
Capture area Now scan: C 1s, O 1s
Pass Energy: 23.5eV

一態様において、繊維状物質は合成高分子繊維である。合成高分子繊維としては、ポリアミド(例えばポリアミド66)繊維、アラミド繊維、ケブラー、ポリプロピレン繊維、ポリエステル繊維、ポリウレタン繊維、及び、これらを後述する解繊方法によって更に解繊したナノ繊維などが挙げられる。 In one embodiment, the fibrous material is a synthetic polymeric fiber. Examples of the synthetic polymer fiber include polyamide (for example, polyamide 66) fiber, aramid fiber, Kevlar, polypropylene fiber, polyester fiber, polyurethane fiber, and nanofiber obtained by further defibrating these by a defibration method described later.

合成高分子繊維の製造方法としては、溶融紡糸法、湿式紡糸法、電界紡糸法、炭酸ガスレーザー超音速延伸法、高圧ホモジナイザー解繊、水中対向衝突法などが挙げられる。これらの方法を単一又は複数併用して合成高分子繊維を製造してよい。 Examples of the method for producing the synthetic polymer fiber include a melt spinning method, a wet spinning method, an electric field spinning method, a carbon dioxide laser supersonic stretching method, a high-pressure homogenizer defibration, and an underwater opposed collision method. Synthetic polymer fibers may be produced by using one or a plurality of these methods in combination.

繊維状物質は、複数の種類を組み合わせて用いても良い。また繊維状物質は、表面修飾剤、界面活性剤等によって表面処理されていても良い。 A plurality of types of fibrous substances may be used in combination. Further, the fibrous substance may be surface-treated with a surface modifier, a surfactant or the like.

一態様において、繊維状物質は疎水性である。本開示における疎水性とは、極性の低い又は無極性の官能基によって分子の親水性が低くなっている状態を言う。疎水性の繊維状物質の具体例としては、アラミド繊維が挙げられる。繊維状物質がセルロース繊維(一態様においてセルロースナノファイバー)である場合、セルロース自体は親水性の高い物質であるが、セルロースの水酸基を、前述のような方法によって、アセチル化、プロピオニル化、ブチル化、ベンジル化、アダマンチル化などの方法によってエステル化することで、疎水性繊維状物質を得ることができる。 In one aspect, the fibrous material is hydrophobic. Hydrophobicity in the present disclosure refers to a state in which the hydrophilicity of a molecule is lowered by a low-polarity or non-polar functional group. Specific examples of hydrophobic fibrous substances include aramid fibers. When the fibrous substance is cellulose fiber (cellulose nanofiber in one embodiment), cellulose itself is a highly hydrophilic substance, but the hydroxyl group of cellulose is acetylated, propionylated, or butylated by the method as described above. , A hydrophobic fibrous substance can be obtained by esterification by a method such as benzylation or adamantylation.

<分散媒>
繊維状物質分散液の分散媒としては、水、有機溶媒等の液体媒体を使用できる。有機溶媒としては一般的に用いられる水混和性有機溶媒を使用できる。水混和性有機溶媒としては、ポリオール(例えばポリプロピレングリコール、ポリエチレングリコールのようなポリエーテルポリオール等)、エタノール、メタノール、ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル、アセトン、酢酸、t-ブタノール等を使用できる。取り扱い性の観点から、特に水が好ましい。一態様において、分散液中の分散媒は水である。
<Dispersion medium>
As the dispersion medium of the fibrous substance dispersion liquid, a liquid medium such as water or an organic solvent can be used. As the organic solvent, a commonly used water-miscible organic solvent can be used. As the water-miscible organic solvent, polyols (for example, polypropylene glycol, polyether polyols such as polyethylene glycol, etc.), ethanol, methanol, dimethylformamide, dimethylsulfoxide, acetonitrile, acetone, acetic acid, t-butanol and the like can be used. Water is particularly preferable from the viewpoint of handleability. In one embodiment, the dispersion medium in the dispersion is water.

<増粘剤>
増粘剤は、分散媒の粘度を増大させ、繊維状物質分散液を安定化することができるものであれば特に制限されない。ここでいう安定化としては、繊維状物質分散液の、相分離性の改善(すなわち、繊維状物質と分散媒との親和性の増大)、繊維状物質の凝集抑制、通液性の改善などが挙げられる。
<Thickener>
The thickener is not particularly limited as long as it can increase the viscosity of the dispersion medium and stabilize the fibrous substance dispersion liquid. Stabilization here includes improvement of phase separability of the fibrous material dispersion (that is, increase of affinity between the fibrous material and the dispersion medium), suppression of aggregation of the fibrous material, improvement of liquid permeability, etc. Can be mentioned.

分散媒100質量部に対する増粘剤の量は、増粘効果を良好に得る観点から、好ましくは0.0001質量部以上、より好ましくは0.001質量部以上、更に好ましくは0.005質量部以上であり、分散液を用いて樹脂組成物を製造した場合に樹脂組成物中の増粘剤の残存による不都合を回避する観点から、好ましくは、2質量部以下、より好ましくは1.5質量部以下、更に好ましくは1質量部以下である。 The amount of the thickener with respect to 100 parts by mass of the dispersion medium is preferably 0.0001 parts by mass or more, more preferably 0.001 parts by mass or more, still more preferably 0.005 parts by mass, from the viewpoint of obtaining a good thickening effect. From the viewpoint of avoiding the inconvenience caused by the residual thickener in the resin composition when the resin composition is produced using the dispersion liquid, it is preferably 2 parts by mass or less, more preferably 1.5 parts by mass. It is less than a part, more preferably 1 part by mass or less.

増粘剤としては、親水性基(例えば、水酸基、アミノ基等)を有するポリマー(例えば、ポリアクリルアミド、ポリアルキレンオキシド、ポリアクリル酸及びその塩、多糖類(例えば、セルロース誘導体、デンプン、アルギン酸及びその塩(例えば、アルギン酸ナトリウム)、グアーガム、ジェランガム、ゼラチン等)、ポリビニルアルコール等)、親水性基を有するモノマー(例えば、プロピレングリコール、N−ビニルアセトアミド等)が挙げられる。これらは分散媒(一態様において水を含む分散媒)中で良好な増粘効果を有し、繊維状物質の良好な分散に寄与する。中でも、ポリアクリルアミド、ポリアルキレンオキシド、ポリアクリル酸及びその塩、セルロース誘導体、ポリビニルアルコール、アルギン酸及びその塩、からなる群から選択される1種以上が好ましい。 As the thickener, polymers having a hydrophilic group (for example, hydroxyl group, amino group, etc.) (for example, polyacrylamide, polyalkylene oxide, polyacrylic acid and salts thereof, polysaccharides (for example, cellulose derivative, starch, alginic acid, etc.) and Examples thereof include salts thereof (for example, sodium alginate), guar gum, gellan gum, gelatin, etc., polyvinyl alcohol, etc., and monomers having a hydrophilic group (for example, propylene glycol, N-vinylacetamide, etc.). These have a good thickening effect in a dispersion medium (a dispersion medium containing water in one embodiment) and contribute to good dispersion of fibrous substances. Among them, one or more selected from the group consisting of polyacrylamide, polyalkylene oxide, polyacrylic acid and salts thereof, cellulose derivatives, polyvinyl alcohol, alginic acid and salts thereof is preferable.

ポリアルキレンオキシドのアルキレンオキシド単位としては、炭素数2〜4のアルキレンオキシド、好ましくはエチレンオキシド及びプロピレンオキシドを例示できる。好ましい態様において、ポリアルキレンオキシドは、エチレンオキシド単位及び/又はプロピレンオキシド単位で構成される。特に好ましいポリアルキレンオキシドはポリエチレンオキシドである。 Examples of the alkylene oxide unit of the polyalkylene oxide include alkylene oxides having 2 to 4 carbon atoms, preferably ethylene oxide and propylene oxide. In a preferred embodiment, the polyalkylene oxide is composed of ethylene oxide units and / or propylene oxide units. A particularly preferred polyalkylene oxide is polyethylene oxide.

セルロース誘導体としては、セルロースエーテル(例えばメチルセルロース、カルボキシメチルセルロース、カルボキシエチルセルロース、ヒドロキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース等)を例示できる。 Examples of the cellulose derivative include cellulose ethers (for example, methyl cellulose, carboxymethyl cellulose, carboxyethyl cellulose, hydroxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, etc.).

増粘剤の重量平均分子量は、好ましくは1000以上、より好ましくは5000以上、更に好ましくは10000以上であり、好ましくは5×10以下、より好ましくは10以下、更に好ましくは5×10以下である。 The weight average molecular weight of the thickener is preferably 1,000 or more, more preferably 5,000 or more, still more preferably 10000 or more, preferably 5 × 10 8 or less, more preferably 10 8 or less, more preferably 5 × 10 7 It is as follows.

一態様において、増粘剤は界面活性剤である。界面活性剤は、親水性の置換基を有する部位と疎水性の置換基を有する部位とが共有結合した化学構造を有する。界面活性剤としては、陰イオン系界面活性剤、非イオン系界面活性剤、両性イオン系界面活性剤、及び陽イオン系界面活性剤のいずれも使用することができるが、繊維状物質の分散液中での沈降をより良好に低減できる点で、非イオン系界面活性剤が好ましい。 In one aspect, the thickener is a surfactant. Surfactants have a chemical structure in which a site having a hydrophilic substituent and a site having a hydrophobic substituent are covalently bonded. As the surfactant, any of anionic surfactant, nonionic surfactant, amphoteric ionic surfactant, and cationic surfactant can be used, but a dispersion liquid of a fibrous substance can be used. Nonionic surfactants are preferred because they can better reduce sedimentation in them.

界面活性剤の親水基としては、繊維状物質(特にセルロース繊維)との親和性の点で、ポリオキシエチレン鎖、カルボキシル基、及び水酸基が好ましく、ポリオキシエチレン鎖が特に好ましい。非イオン系のポリオキシエチレン誘導体は特に好ましい。ポリオキシエチレン誘導体のポリオキシエチレン鎖長は、1以上、又は4以上、又は10以上、又は15以上であってよい。鎖長が長いほど疎水性の繊維状物質との親和性が高まるが、繊維状物質と樹脂とを含む樹脂組成物の特性(例えば機械特性等)とのバランスの観点から、ポリオキシエチレン鎖長は、60以下、又は50以下、又は40以下、又は30以下、又は20以下であってよい。 As the hydrophilic group of the surfactant, a polyoxyethylene chain, a carboxyl group, and a hydroxyl group are preferable, and a polyoxyethylene chain is particularly preferable, in terms of affinity with a fibrous substance (particularly cellulose fiber). Nonionic polyoxyethylene derivatives are particularly preferred. The polyoxyethylene chain length of the polyoxyethylene derivative may be 1 or more, 4 or more, 10 or more, or 15 or more. The longer the chain length, the higher the affinity with the hydrophobic fibrous substance. However, from the viewpoint of the balance between the properties of the resin composition containing the fibrous substance and the resin (for example, mechanical properties), the polyoxyethylene chain length May be 60 or less, or 50 or less, or 40 or less, or 30 or less, or 20 or less.

界面活性剤の疎水基の構造としては、樹脂との親和性が高い点で、アルキルエーテル型、アルキルフェニルエーテル型、ロジンエステル型、ビスフェノールA型、βナフチル型、スチレン化フェニル型、及び硬化ひまし油型が好ましい。疎水基のアルキル鎖の炭素数(アルキルフェニルの場合はフェニル基を除いた炭素数)は、好ましくは、5以上、又は10以上、又は12以上、又は16以上である。例えば樹脂がポリオレフィン系樹脂の場合、界面活性剤の炭素数が多いほど、樹脂との親和性が高まる。上記炭素数は、例えば30以下、又は25以下であってよい。 As for the structure of the hydrophobic group of the surfactant, alkyl ether type, alkyl phenyl ether type, rosin ester type, bisphenol A type, β naphthyl type, styrenated phenyl type, and cured castor oil are used because of their high affinity with the resin. The mold is preferred. The number of carbon atoms of the alkyl chain of the hydrophobic group (in the case of alkylphenyl, the number of carbon atoms excluding the phenyl group) is preferably 5 or more, 10 or more, or 12 or more, or 16 or more. For example, when the resin is a polyolefin resin, the higher the carbon number of the surfactant, the higher the affinity with the resin. The carbon number may be, for example, 30 or less, or 25 or less.

一態様において、分散液は、粒子状成分を含む。粒子状成分は、固体又は液体であり得る。固体としては、球状シリカ、セルロースナノクリスタル、ナノクレイ、ナノタルク等を例示でき、液体としては、エマルションにおける分散相(例えば、ポリウレタン、ポリアミド、変性ポリプロピレン、酢酸ビニル、ABS等)を例示できる。粒子状成分のサイズとしては、0.001〜20μm、又は0.01〜10μm、又は0.1〜1μmを例示できる。 In one aspect, the dispersion contains particulate components. The particulate component can be solid or liquid. Examples of the solid include spherical silica, cellulose nanocrystals, nanoclay, and nanotalc, and examples of the liquid include dispersed phases in emulsions (for example, polyurethane, polyamide, modified polypropylene, vinyl acetate, ABS, etc.). Examples of the size of the particulate component include 0.001 to 20 μm, 0.01 to 10 μm, and 0.1 to 1 μm.

<分散安定剤>
一態様において、分散液は分散安定剤を更に含んでよい。本開示の分散安定剤とは、繊維状物質を安定に分散させる機能を有し、樹脂中での繊維状物質の分散状態を向上又は制御することによって、分散液を用いて製造される樹脂組成物の力学物性を向上させる化合物を意味する。分散安定剤は、繊維状物質の沈降度αへの寄与が小さいことによって、本開示の増粘剤とは区別される。一態様においては、繊維状物質が濃度0.05質量%で分散している分散液(沈降度Aを有する)100質量部に対して2質量部添加されたときの沈降度(沈降度Bとする)が、関係式:(沈降度B)<(沈降度A)×0.9を満たすものを増粘剤、関係式:(沈降度A)×0.9≦(沈降度B)≦(沈降度A)×1.1を満たすものを分散安定剤とする。好ましい態様においては、繊維状物質が、分散安定剤と、該分散安定剤中に分散された繊維状物質とを含む分散体の形態で樹脂組成物中に分散されている。すなわち樹脂組成物は、好ましくは、分散安定剤中に繊維状物質が分散されてなる分散体が、樹脂中に分散されているものである。繊維状物質と分散安定剤との合計100質量%に対する繊維状物質の質量比率は、好ましくは5質量%以上、又は10質量%以上、又は20質量%以上であり、好ましくは90質量%以下、又は80質量%以下、又は50質量%以下である。分散安定剤は、界面活性剤(増粘剤に包含されるものを除く)、沸点160℃以上の有機化合物、及び繊維状物質を高度に分散可能な化学構造を有する樹脂からなる群から選ばれる少なくとも1種であることができ、好ましくは、界面活性剤、及び沸点160℃以上の有機化合物からなる群から選ばれる少なくとも1種である。
<Dispersion stabilizer>
In one embodiment, the dispersion may further contain a dispersion stabilizer. The dispersion stabilizer of the present disclosure has a function of stably dispersing a fibrous substance, and is a resin composition produced by using a dispersion liquid by improving or controlling the dispersion state of the fibrous substance in the resin. It means a compound that improves the mechanical properties of a substance. Dispersion stabilizers are distinguished from the thickeners of the present disclosure by their small contribution of fibrous material to the sedimentation degree α. In one aspect, the sedimentation degree (with sedimentation degree B) when 2 parts by mass is added to 100 parts by mass of the dispersion liquid (having a sedimentation degree A) in which the fibrous substance is dispersed at a concentration of 0.05% by mass. The thickener satisfies the relational expression: (settling degree B) <(settling degree A) × 0.9, and the relational expression: (settling degree A) × 0.9 ≦ (settling degree B) ≦ ( A dispersion stabilizer that satisfies the sedimentation degree A) × 1.1 is used. In a preferred embodiment, the fibrous material is dispersed in the resin composition in the form of a dispersion containing the dispersion stabilizer and the fibrous material dispersed in the dispersion stabilizer. That is, the resin composition is preferably one in which a dispersion in which a fibrous substance is dispersed in a dispersion stabilizer is dispersed in the resin. The mass ratio of the fibrous substance to 100% by mass of the total of the fibrous substance and the dispersion stabilizer is preferably 5% by mass or more, 10% by mass or more, or 20% by mass or more, preferably 90% by mass or less. Or 80% by mass or less, or 50% by mass or less. The dispersion stabilizer is selected from the group consisting of surfactants (excluding those included in thickeners), organic compounds having a boiling point of 160 ° C. or higher, and resins having a chemical structure capable of highly dispersing fibrous substances. It can be at least one kind, and is preferably at least one kind selected from the group consisting of a surfactant and an organic compound having a boiling point of 160 ° C. or higher.

分散安定剤としての界面活性剤としては、陰イオン系界面活性剤、非イオン系界面活性剤、両性イオン系界面活性剤、及び陽イオン系界面活性剤のいずれも使用することができるが、繊維状物質との親和性の点で、陰イオン系界面活性剤、及び非イオン系界面活性剤が好ましく、非イオン系界面活性剤がより好ましい。 As the surfactant as the dispersion stabilizer, any of anionic surfactants, nonionic surfactants, amphoteric ionic surfactants, and cationic surfactants can be used, but fibers. Anionic surfactants and nonionic surfactants are preferable, and nonionic surfactants are more preferable, from the viewpoint of affinity with the state substance.

界面活性剤の親水基としては、繊維状物質との親和性の点で、ポリオキシエチレン鎖、カルボキシル基、及び水酸基が好ましく、ポリオキシエチレン鎖が特に好ましい。非イオン系のポリオキシエチレン誘導体は特に好ましい。ポリオキシエチレン誘導体のポリオキシエチレン鎖長は、3以上、又は5以上、又は10以上、又は15以上であってよい。鎖長が長いほど繊維状物質(特にセルロース繊維)との親和性が高まるが、樹脂組成物の所望の特性(例えば機械特性)とのバランスの観点から、ポリオキシエチレン鎖長は、60以下、又は50以下、又は40以下、又は30以下、又は20以下であってよい。 As the hydrophilic group of the surfactant, a polyoxyethylene chain, a carboxyl group, and a hydroxyl group are preferable, and a polyoxyethylene chain is particularly preferable, in terms of affinity with a fibrous substance. Nonionic polyoxyethylene derivatives are particularly preferred. The polyoxyethylene chain length of the polyoxyethylene derivative may be 3 or more, 5 or more, 10 or more, or 15 or more. The longer the chain length, the higher the affinity with fibrous substances (particularly cellulose fibers), but from the viewpoint of balance with the desired properties (for example, mechanical properties) of the resin composition, the polyoxyethylene chain length is 60 or less. Or it may be 50 or less, 40 or less, 30 or less, or 20 or less.

界面活性剤の疎水基の構造としては、樹脂との親和性が高い点で、アルキルエーテル型、アルキルフェニルエーテル型、ロジンエステル型、ビスフェノールA型、βナフチル型、スチレン化フェニル型、及び硬化ひまし油型が好ましい。疎水基のアルキル鎖の炭素数(アルキルフェニルの場合はフェニル基を除いた炭素数)は、好ましくは、5以上、又は10以上、又は12以上、又は16以上である。例えば樹脂がポリオレフィン系樹脂の場合、界面活性剤の炭素数が多いほど、樹脂との親和性が高まる。上記炭素数は、例えば30以下、又は25以下であってよい。 As for the structure of the hydrophobic group of the surfactant, alkyl ether type, alkyl phenyl ether type, rosin ester type, bisphenol A type, β naphthyl type, styrenated phenyl type, and cured castor oil are used because of their high affinity with the resin. The mold is preferred. The number of carbon atoms of the alkyl chain of the hydrophobic group (in the case of alkylphenyl, the number of carbon atoms excluding the phenyl group) is preferably 5 or more, 10 or more, or 12 or more, or 16 or more. For example, when the resin is a polyolefin resin, the higher the carbon number of the surfactant, the higher the affinity with the resin. The carbon number may be, for example, 30 or less, or 25 or less.

疎水基としては、環状構造を有するもの、又は嵩高く多官能構造を有するものがより好ましい。環状構造を有する疎水基としては、アルキルフェニルエーテル型、ロジンエステル型、ビスフェノールA型、βナフチル型、及びスチレン化フェニル型の基が好ましく、多官能構造を有するものとしては、硬化ひまし油型(例えば硬化ひまし油エーテル)の基が好ましい。ロジンエステル型、及び硬化ひまし油型は特に好ましい。 As the hydrophobic group, one having a cyclic structure or one having a bulky polyfunctional structure is more preferable. As the hydrophobic group having a cyclic structure, an alkylphenyl ether type, a rosin ester type, a bisphenol A type, a β-naphthyl type, and a styrene phenyl type group are preferable, and as a group having a polyfunctional structure, a cured castor oil type (for example, A group of hardened castor oil ether) is preferred. The rosin ester type and the cured castor oil type are particularly preferable.

好ましい態様において、界面活性剤は、ポリエチレングリコール(PEG)−ポリプロピレングリコール(PPG)共重合体である。 In a preferred embodiment, the surfactant is a polyethylene glycol (PEG) -polypropylene glycol (PPG) copolymer.

<凝集体>
繊維状物質分散液においては、繊維状物質同士の絡まりによって凝集体が形成されると液組成が不均一になる。凝集体の形成程度は、繊維状物質分散液を適量採取し、2枚の平板(例えばガラス板)に挟み、0.05MPaの力で挟み込むことで押しつぶしたものを観察し、凝集体の個数及び大きさを測定することで評価できる。例えば、0.3gの分散液を採取して上記方法で測定される凝集体の個数は、好ましくは50以下、又は10以下、又は1以下であり、大きさは、好ましくは25mm以下、又は10mm以下、又は1mm以下である。上記の個数及び大きさの値は小さいほど好ましい。
<Agglomerate>
In the fibrous substance dispersion liquid, the liquid composition becomes non-uniform when aggregates are formed by the entanglement of the fibrous substances. Regarding the degree of formation of aggregates, an appropriate amount of fibrous substance dispersion was collected, sandwiched between two flat plates (for example, glass plates), and crushed by sandwiching with a force of 0.05 MPa, and the number of aggregates and the number of aggregates were observed. It can be evaluated by measuring the size. For example, the number of aggregates measured by the above method by collecting 0.3 g of the dispersion is preferably 50 or less, 10 or less, or 1 or less, and the size is preferably 25 mm 2 or less, or It is 10 mm 2 or less, or 1 mm 2 or less. The smaller the number and size values are, the more preferable.

<通液性>
繊維状物質分散液を、狭い流路に通すとき、前述した相分離(すなわち液成分の分離・滲出)及び/又は凝集体の形成により、通液性が低下する場合がある。通液性の評価方法としては、適当な目開き(具体的には400μm)のストレーナーに繊維状物質分散液を通液し、詰まりが発生するまでの時間を計測する方法がある。上記方法で測定される通液性は、好ましくは、10分以上、又は1時間以上、又は24時間以上である。分散液の通液性は大きいほど好ましいが、分散液の製造容易性の観点から、例えば、5000時間以下、又は1000時間以下、又は100時間以下であってもよい。
<Liquid permeability>
When the fibrous substance dispersion liquid is passed through a narrow flow path, the liquid permeability may decrease due to the above-mentioned phase separation (that is, separation / exudation of liquid components) and / or formation of aggregates. As a method for evaluating the liquid permeability, there is a method in which a fibrous substance dispersion liquid is passed through a strainer having an appropriate opening (specifically, 400 μm) and the time until clogging occurs is measured. The liquid permeability measured by the above method is preferably 10 minutes or longer, 1 hour or longer, or 24 hours or longer. The greater the liquid permeability of the dispersion, the more preferable it is, but from the viewpoint of ease of production of the dispersion, for example, it may be 5000 hours or less, 1000 hours or less, or 100 hours or less.

<繊維状物質分散液の安定供給性>
繊維状物質分散液の安定供給性の評価方法としては、ポンプ等の移送装置を用いて繊維状物質分散液を移送しようとしたときの供給量及び繊維状物質濃度を経時的に測定し、安定的に繊維状物質分散液を供給できているか判断する方法がある。一態様において、配管内径5mmのチューブポンプを用い、移送条件を、蒸留水が150g/minで移送されるのと同じチューブポンプ回転数として、配管径10mmの樹脂配管への繊維状物質分散液の移送を行い、吐出物を容器に受け、その濃度及び供給量(g/min)を1分ごとに計測したときに、供給量の標準偏差(n=10)が50%以内、好ましくは10%以内、より好ましくは5%以内、濃度の標準偏差(n=10)が30%以内、好ましくは10%以内、より好ましくは5%以内であることが好ましい。
<Stable supply of fibrous material dispersion>
As a method for evaluating the stable supply of the fibrous substance dispersion liquid, the supply amount and the fibrous substance concentration when the fibrous substance dispersion liquid is to be transferred using a transfer device such as a pump are measured over time and are stable. There is a method of determining whether or not the fibrous substance dispersion liquid can be supplied. In one embodiment, a tube pump having an inner diameter of 5 mm is used, and the transfer conditions are set to the same tube pump rotation speed at which distilled water is transferred at 150 g / min, and the fibrous substance dispersion liquid to the resin pipe having a pipe diameter of 10 mm is used. When the transfer is performed, the discharged material is received in a container, and the concentration and supply amount (g / min) are measured every minute, the standard deviation (n = 10) of the supply amount is within 50%, preferably 10%. Within, more preferably within 5%, and the standard deviation of concentration (n = 10) is preferably within 30%, preferably within 10%, more preferably within 5%.

本発明の一態様は、
分散媒と、分散媒中に分散している繊維状物質とを含む繊維状物質分散液の送液性を向上させる方法を提供する。該方法は、
繊維状物質分散液から調製された試験用分散液の、下記式(1):
α=1−([A]/[B])・・・(1)
(式(1)中、[A]は分散液底面から分離界面までの高さであり、[B]は分散液底面から分散液上面までの高さである。)
に従って求められる沈降度αが、80%以下となるように、繊維状物質分散液に増粘剤を含有させることを含む。試験用分散液は、繊維状物質分散液中の記繊維状物質の濃度が0.05質量%である場合には繊維状物質分散液自体であり、濃度が0.05質量%でない場合には、濃度が0.05質量%となるように繊維状物質分散液を濃縮又は分散媒と同じ分散媒で希釈されて調製されている。沈降度αの測定方法、試験用分散液の調製方法、及び増粘剤の詳細は前述したのと同様である。
One aspect of the present invention is
Provided is a method for improving the liquid transfer property of a fibrous substance dispersion liquid containing a dispersion medium and a fibrous substance dispersed in the dispersion medium. The method is
The following formula (1): of the test dispersion prepared from the fibrous substance dispersion:
α = 1-([A] / [B]) ... (1)
(In the formula (1), [A] is the height from the bottom surface of the dispersion liquid to the separation interface, and [B] is the height from the bottom surface of the dispersion liquid to the top surface of the dispersion liquid.)
This includes adding a thickener to the fibrous material dispersion so that the sedimentation degree α obtained according to the above is 80% or less. The test dispersion is the fibrous substance dispersion itself when the concentration of the fibrous substance in the fibrous substance dispersion is 0.05% by mass, and the test dispersion is the fibrous substance dispersion itself when the concentration is not 0.05% by mass. , The fibrous substance dispersion is concentrated or diluted with the same dispersion medium as the dispersion medium so that the concentration becomes 0.05% by mass. The details of the method for measuring the sedimentation degree α, the method for preparing the test dispersion, and the thickener are the same as described above.

≪樹脂組成物≫
本発明の一態様は、繊維状物質と樹脂とを含む樹脂組成物も提供する。一態様において繊維状物質は平均繊維径1〜1000nmを有する。一態様において樹脂組成物は増粘剤を含む。一態様において樹脂組成物は本開示の分散液を用いて製造できる。
≪Resin composition≫
One aspect of the present invention also provides a resin composition containing a fibrous substance and a resin. In one embodiment, the fibrous material has an average fiber diameter of 1 to 1000 nm. In one aspect, the resin composition comprises a thickener. In one aspect, the resin composition can be produced using the dispersions of the present disclosure.

<樹脂>
樹脂としては、熱可塑性樹脂、熱硬化性樹脂、及び光硬化性樹脂を用いることができる。樹脂はエラストマーであってもよい。成形性及び生産性の観点から、熱可塑性樹脂がより好ましい。
<Resin>
As the resin, a thermoplastic resin, a thermosetting resin, and a photocurable resin can be used. The resin may be an elastomer. From the viewpoint of moldability and productivity, a thermoplastic resin is more preferable.

(熱可塑性樹脂)
樹脂が熱可塑性樹脂である場合の当該熱可塑性樹脂の融点は、樹脂組成物の用途等に応じて適宜選択してよい。熱可塑性樹脂の融点としては、例えば比較的低融点の樹脂(例えばポリオレフィン系樹脂)について、150℃〜190℃、又は160℃〜180℃、また例えば比較的高融点の樹脂(例えばポリアミド系樹脂)について、220℃〜350℃、又は230℃〜320℃、を例示できる。
(Thermoplastic resin)
When the resin is a thermoplastic resin, the melting point of the thermoplastic resin may be appropriately selected depending on the use of the resin composition and the like. As the melting point of the thermoplastic resin, for example, for a resin having a relatively low melting point (for example, a polyolefin resin), 150 ° C. to 190 ° C., or 160 ° C. to 180 ° C., for example, a resin having a relatively high melting point (for example, a polyamide resin). Can be exemplified with respect to 220 ° C. to 350 ° C. or 230 ° C. to 320 ° C.

熱可塑性樹脂は、好ましくは、ポリオレフィン系樹脂、ポリアセテート系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリエステル系樹脂、ポリフェニレンエーテル系樹脂、及びアクリル系樹脂からなる群から選ばれる少なくとも1種であることができる。 The thermoplastic resin is preferably at least one selected from the group consisting of polyolefin resins, polyacetate resins, polycarbonate resins, polyamide resins, polyester resins, polyphenylene ether resins, and acrylic resins. Can be done.

熱可塑性樹脂として好ましいポリオレフィン系樹脂は、オレフィン類(例えばα−オレフィン類)及び/又はアルケン類をモノマー単位として重合して得られる高分子である。ポリオレフィン系樹脂の具体例としては、低密度ポリエチレン(例えば線状低密度ポリエチレン)、高密度ポリエチレン、超低密度ポリエチレン、超高分子量ポリエチレン等に例示されるエチレン系(共)重合体、ポリプロピレン、エチレン−プロピレン共重合体、エチレン−プロピレン−ジエン共重合体等に例示されるポリプロピレン系(共)重合体、エチレン−アクリル酸共重合体、エチレン−メタクリル酸メチル共重合体、エチレン−グリシジルメタクリレート共重合体等に代表されるエチレンとα−オレフィンとの共重合体が挙げられる。 A preferred polyolefin resin as a thermoplastic resin is a polymer obtained by polymerizing olefins (for example, α-olefins) and / or alkenes as a monomer unit. Specific examples of the polyolefin-based resin include ethylene-based (co) polymers such as low-density polyethylene (for example, linear low-density polyethylene), high-density polyethylene, ultra-low-density polyethylene, and ultra-high-molecular-weight polyethylene, polypropylene, and ethylene. Polypropylene-based (co) copolymers such as -propylene copolymer, ethylene-propylene-diene copolymer, etc., ethylene-acrylic acid copolymer, ethylene-methyl methacrylate copolymer, ethylene-glycidyl methacrylate copolymer Examples thereof include a copolymer of ethylene and α-olefin typified by coalescence.

ここで最も好ましいポリオレフィン系樹脂としては、ポリプロピレンが挙げられる。特に、ISO1133に準拠して230℃、荷重21.2Nで測定されたメルトマスフローレイト(MFR)が、3g/10分以上30g/10分以下であるポリプロピレンが好ましい。MFRの下限値は、より好ましくは5g/10分であり、さらにより好ましくは6g/10分であり、最も好ましくは8g/10分である。また、上限値は、より好ましくは25g/10分であり、さらにより好ましくは20g/10分であり、最も好ましくは18g/10分である。MFRは、樹脂組成物の靱性向上の観点から上記上限値を超えないことが望ましく、樹脂組成物の流動性の観点から上記下限値を超えないことが望ましい。 Here, polypropylene is mentioned as the most preferable polyolefin resin. In particular, polypropylene having a melt mass flow rate (MFR) of 3 g / 10 minutes or more and 30 g / 10 minutes or less measured at 230 ° C. and a load of 21.2 N in accordance with ISO1133 is preferable. The lower limit of MFR is more preferably 5 g / 10 min, even more preferably 6 g / 10 min, and most preferably 8 g / 10 min. The upper limit is more preferably 25 g / 10 minutes, even more preferably 20 g / 10 minutes, and most preferably 18 g / 10 minutes. It is desirable that the MFR does not exceed the above upper limit value from the viewpoint of improving the toughness of the resin composition, and it is desirable that the MFR does not exceed the above lower limit value from the viewpoint of the fluidity of the resin composition.

また、繊維状物質(特にセルロース繊維)との親和性を高めるため、酸変性されたポリオレフィン系樹脂も好適に使用可能である。酸変性に用いる酸としては、モノ又はポリカルボン酸を使用でき、例えば、マレイン酸、フマル酸、コハク酸、フタル酸及びこれらの無水物、並びにクエン酸等を例示できる。変性率の高めやすさから、マレイン酸又はその無水物が特に好ましい。変性方法については特に制限はないが、過酸化物の存在下又は非存在下でポリオレフィン系樹脂を融点以上に加熱して溶融混練する方法が一般的である。酸変性するポリオレフィン樹脂としては前出のポリオレフィン系樹脂をすべて使用可能であるが、ポリプロピレンが特に好適である。酸変性されたポリプロピレン系樹脂は、単独で用いても構わないが、樹脂全体としての変性率を調整するため、変性されていないポリプロピレン系樹脂と混合して使用することがより好ましい。この際のすべてのポリプロピレン系樹脂に対する酸変性されたポリプロピレン系樹脂の割合は、好ましくは0.5質量%〜50質量%である。より好ましい下限は、1質量%、又は2質量%、又は3質量%、又は4質量%、又は5質量%である。また、より好ましい上限は、45質量%、又は40質量%、又は35質量%、又は30質量%、又は20質量%である。樹脂と繊維状物質(特にセルロース繊維)との界面強度を維持するためには、下限以上が好ましく、樹脂としての延性を維持するためには、上限以下が好ましい。 Further, in order to enhance the affinity with fibrous substances (particularly cellulose fibers), an acid-modified polyolefin resin can also be preferably used. As the acid used for acid modification, mono or polycarboxylic acid can be used, and examples thereof include maleic acid, fumaric acid, succinic acid, phthalic acid and their anhydrides, citric acid and the like. Maleic acid or its anhydride is particularly preferable because of the ease of increasing the denaturation rate. The modification method is not particularly limited, but a general method is to heat the polyolefin resin to a temperature higher than the melting point and melt-knead it in the presence or absence of a peroxide. As the acid-modified polyolefin resin, all of the above-mentioned polyolefin resins can be used, but polypropylene is particularly preferable. The acid-modified polypropylene-based resin may be used alone, but it is more preferable to use the acid-modified polypropylene-based resin in combination with an unmodified polypropylene-based resin in order to adjust the modification rate of the resin as a whole. At this time, the ratio of the acid-modified polypropylene-based resin to all the polypropylene-based resins is preferably 0.5% by mass to 50% by mass. A more preferable lower limit is 1% by mass, 2% by mass, or 3% by mass, or 4% by mass, or 5% by mass. Further, a more preferable upper limit is 45% by mass, 40% by mass, or 35% by mass, or 30% by mass, or 20% by mass. In order to maintain the interfacial strength between the resin and the fibrous substance (particularly cellulose fiber), the lower limit or more is preferable, and in order to maintain the ductility of the resin, the upper limit or less is preferable.

酸変性されたポリプロピレン系樹脂の、ISO1133に準拠して230℃、荷重21.2Nで測定されるメルトマスフローレイト(MFR)は、樹脂と繊維状物質(特にセルロース繊維)との界面における親和性を高める観点から、好ましくは、50g/10分以上、又は100g/10分以上、又は150g/10分以上、又は200g/10分以上である。上限は特に限定されないが、機械的強度の維持から、好ましくは500g/10分である。 The melt mass flow rate (MFR) of an acid-modified polypropylene resin measured at 230 ° C. and a load of 21.2 N in accordance with ISO 1133 determines the affinity at the interface between the resin and fibrous substances (particularly cellulosic fibers). From the viewpoint of enhancing, it is preferably 50 g / 10 minutes or more, 100 g / 10 minutes or more, 150 g / 10 minutes or more, or 200 g / 10 minutes or more. The upper limit is not particularly limited, but is preferably 500 g / 10 minutes from the viewpoint of maintaining mechanical strength.

熱可塑性樹脂として好ましいポリアミド系樹脂としては:ラクタム類の重縮合反応により得られるポリアミド(例えばポリアミド6、ポリアミド11、ポリアミド12等);ジアミン類(例えば1,6−ヘキサンジアミン、2−メチル−1,5−ペンタンジアミン、1,7−ヘプタンジアミン、2−メチル−1−6−ヘキサンジアミン、1,8−オクタンジアミン、2−メチル−1,7−ヘプタンジアミン、1,9−ノナンジアミン、2−メチル−1,8−オクタンジアミン、1,10−デカンジアミン、1,11−ウンデカンジアミン、1,12−ドデカンジアミン、m−キシリレンジアミン等)とジカルボン酸類(例えばブタン二酸、ペンタン二酸、ヘキサン二酸、ヘプタン二酸、オクタン二酸、ノナン二酸、デカン二酸、ベンゼン−1,2−ジカルボン酸、ベンゼン−1,3−ジカルボン酸、ベンゼン−1,4ジカルボン酸、シクロヘキサン−1,3−ジカルボン酸、シクロヘキサン−1,4−ジカルボン酸等)との共重合体として得られるポリアミド(例えばポリアミド6,6、ポリアミド6,10、ポリアミド6,11、ポリアミド6,12、ポリアミド6,T、ポリアミド6,I、ポリアミド9,T、ポリアミド10,T、ポリアミド2M5,T、ポリアミドMXD,6、ポリアミド6、C、ポリアミド2M5,C等);及びこれらがそれぞれ共重合された共重合体(例えばポリアミド6,T/6,I等)、が挙げられる。 Preferred polyamide-based resins for the thermoplastic resin are: polyamides obtained by polycondensation of lactams (eg polyamide 6, polyamide 11, polyamide 12, etc.); diamines (eg 1,6-hexanediamine, 2-methyl-1). , 5-Pentanediamine, 1,7-Heptanediamine, 2-Methyl-1-6-hexanediamide, 1,8-Octanediamine, 2-Methyl-1,7-Heptanediamine, 1,9-Nonandiamine, 2- Methyl-1,8-octanediamide, 1,10-decanediamide, 1,11-undecanediamine, 1,12-dodecanediamide, m-xylylene diamine, etc.) and dicarboxylic acids (eg butane diic acid, pentan diic acid, etc.) Hexanic acid, heptanedioic acid, octane diic acid, nonane diic acid, decanedioic acid, benzene-1,2-dicarboxylic acid, benzene-1,3-dicarboxylic acid, benzene-1,4 dicarboxylic acid, cyclohexane-1, Polyamide (for example, polyamide 6, 6, polyamide 6, 10, polyamide 6, 11, polyamide 6, 12, polyamide 6, T) obtained as a copolymer with 3-dicarboxylic acid, cyclohexane-1,4-dicarboxylic acid, etc. , Polyamide 6, I, Polyamide 9, T, Polyamide 10, T, Polyamide 2M5, T, Polyamide MXD, 6, Polyamide 6, C, Polyamide 2M5, C, etc.); For example, polyamide 6, T / 6, I, etc.).

これらポリアミド系樹脂の中でも、ポリアミド6、ポリアミド11、ポリアミド12、ポリアミド6,6、ポリアミド6,10、ポリアミド6,11、ポリアミド6,12等の脂肪族ポリアミド、及び、ポリアミド6,C、ポリアミド2M5,C等の脂環式ポリアミドがより好ましい。 Among these polyamide-based resins, aliphatic polyamides such as polyamide 6, polyamide 11, polyamide 12, polyamide 6, 6, polyamide 6, 10, polyamide 6, 11, polyamide 6, 12 and polyamide 6, C, polyamide 2M5 , C and other alicyclic polyamides are more preferable.

樹脂組成物の耐熱性を良好にする観点から、ポリアミド系樹脂の融点は、好ましくは220℃以上、又は230℃以上、又は240℃以上、又は245℃以上、又は250℃以上であり、樹脂組成物の製造容易性の観点から、上記融点は、好ましくは、350℃以下、又は320℃以下、又は300℃以下である。 From the viewpoint of improving the heat resistance of the resin composition, the melting point of the polyamide resin is preferably 220 ° C. or higher, 230 ° C. or higher, or 240 ° C. or higher, or 245 ° C. or higher, or 250 ° C. or higher, and the resin composition. From the viewpoint of ease of manufacturing the product, the melting point is preferably 350 ° C. or lower, 320 ° C. or lower, or 300 ° C. or lower.

ポリアミド系樹脂の末端カルボキシル基濃度に特に制限はないが、好ましくは、20μモル/g以上、又は30μモル/g以上であり、好ましくは、150μモル/g以下、又は100μモル/g以下、又は80μモル/g以下である。 The concentration of the terminal carboxyl group of the polyamide resin is not particularly limited, but is preferably 20 μmol / g or more, or 30 μmol / g or more, and preferably 150 μmol / g or less, or 100 μmol / g or less, or It is 80 μmol / g or less.

ポリアミド系樹脂において、全末端基に対するカルボキシル末端基比率([COOH]/[全末端基])は、繊維状物質(特にセルロース繊維)の樹脂組成物中での分散性の観点から、好ましくは、0.30以上、又は0.35以上、又は0.40以上、又は0.45以上であり、樹脂組成物の色調の観点から、好ましくは、0.95以下、又は0.90以下、又は0.85以下、又は0.80以下である。 In a polyamide resin, the ratio of carboxyl terminal groups to total terminal groups ([COOH] / [total terminal groups]) is preferably from the viewpoint of dispersibility of fibrous substances (particularly cellulose fibers) in the resin composition. It is 0.30 or more, 0.35 or more, 0.40 or more, or 0.45 or more, and is preferably 0.95 or less, or 0.90 or less, or 0 from the viewpoint of the color tone of the resin composition. It is .85 or less, or 0.80 or less.

ポリアミド系樹脂の末端基濃度は、公知の方法で調整できる。調整方法としては、ポリアミドの重合時に、所定の末端基濃度となるように末端基と反応する末端調整剤(例えば、ジアミン化合物、モノアミン化合物、ジカルボン酸化合物、モノカルボン酸化合物、酸無水物、モノイソシアネート、モノ酸ハロゲン化物、モノエステル、モノアルコール等)を重合液に添加する方法が挙げられる。 The terminal group concentration of the polyamide resin can be adjusted by a known method. As a preparation method, a terminal modifier (for example, a diamine compound, a monoamine compound, a dicarboxylic acid compound, a monocarboxylic acid compound, an acid anhydride, or a mono) that reacts with a terminal group so as to have a predetermined terminal group concentration during polymerization of polyamide is used. Examples thereof include a method of adding (isocyanate, monoacid halide, monoester, monoalcohol, etc.) to the polymerization solution.

末端アミノ基と反応する末端調整剤としては、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、カプリル酸、ラウリン酸、トリデカン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ピバリン酸、イソ酪酸等の脂肪族モノカルボン酸;シクロヘキサンカルボン酸等の脂環式モノカルボン酸;安息香酸、トルイル酸、α−ナフタレンカルボン酸、β−ナフタレンカルボン酸、メチルナフタレンカルボン酸、フェニル酢酸等の芳香族モノカルボン酸;及びこれらから任意に選ばれる複数の混合物が挙げられる。これらの中でも、反応性、封止末端の安定性、価格等の点から、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、カプリル酸、ラウリン酸、トリデカン酸、ミリスチン酸、パルミチン酸、ステアリン酸及び安息香酸からなる群より選ばれる1種以上の末端調整剤が好ましく、酢酸が最も好ましい。 Examples of the terminal modifier that reacts with the terminal amino group include acetic acid, propionic acid, butylic acid, valeric acid, caproic acid, capric acid, lauric acid, tridecanoic acid, myristic acid, palmitic acid, stearic acid, pivalic acid, and isobutylic acid. Alicyclic monocarboxylic acid such as aliphatic monocarboxylic acid; alicyclic monocarboxylic acid such as cyclohexanecarboxylic acid; aromatic monocarboxylic acid such as benzoic acid, toluic acid, α-naphthalenecarboxylic acid, β-naphthalenecarboxylic acid, methylnaphthalenecarboxylic acid and phenylacetic acid ; And a plurality of mixtures arbitrarily selected from these. Among these, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, lauric acid, tridecanoic acid, myristic acid, palmitic acid, stearic acid, etc. One or more terminal modifiers selected from the group consisting of benzoic acid and benzoic acid are preferable, and acetic acid is most preferable.

末端カルボキシル基と反応する末端調整剤としては、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ヘキシルアミン、オクチルアミン、デシルアミン、ステアリルアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン等の脂肪族モノアミン;シクロヘキシルアミン、ジシクロヘキシルアミン等の脂環式モノアミン;アニリン、トルイジン、ジフェニルアミン、ナフチルアミン等の芳香族モノアミン及びこれらの任意の混合物が挙げられる。これらの中でも、反応性、沸点、封止末端の安定性、価格等の点から、ブチルアミン、ヘキシルアミン、オクチルアミン、デシルアミン、ステアリルアミン、シクロヘキシルアミン及びアニリンからなる群より選ばれる1種以上の末端調整剤が好ましい。 Aliphatic monoamines such as methylamine, ethylamine, propylamine, butylamine, hexylamine, octylamine, decylamine, stearylamine, dimethylamine, diethylamine, dipropylamine and dibutylamine; Aliphatic monoamines such as cyclohexylamines and dicyclohexylamines; aromatic monoamines such as aniline, toluidine, diphenylamines and naphthylamines and any mixtures thereof. Among these, one or more terminals selected from the group consisting of butylamine, hexylamine, octylamine, decylamine, stearylamine, cyclohexylamine and aniline from the viewpoints of reactivity, boiling point, stability of sealing terminal, price and the like. Regulators are preferred.

ポリアミド系樹脂のアミノ末端基及びカルボキシル末端基の濃度は、1H−NMRにより、各末端基に対応する特性シグナルの積分値から求めることができる。この方法は、精度及び簡便さの点で好ましい。より具体的には、特開平7−228775号公報に記載された方法を用い、測定溶媒として重トリフルオロ酢酸を用い、積算回数を300スキャン以上とすることが推奨される。 The concentrations of the amino-terminal group and the carboxyl-terminal group of the polyamide resin can be determined by 1 H-NMR from the integrated value of the characteristic signal corresponding to each terminal group. This method is preferable in terms of accuracy and simplicity. More specifically, it is recommended to use the method described in JP-A-7-228775, to use heavy trifluoroacetic acid as the measurement solvent, and to set the number of integrations to 300 scans or more.

ポリアミド系樹脂の、濃硫酸中30℃の条件下で測定した固有粘度[η]は、樹脂組成物を例えば射出成形する際に、金型内流動性が良好で成形片の外観が良好であるという観点から、好ましくは、0.6〜2.0dL/g、又は0.7〜1.4dL/g、又は0.7〜1.2dL/g、又は0.7〜1.0dL/gである。本開示において、「固有粘度」とは、一般的に極限粘度と呼ばれている粘度と同義である。固有粘度は、96%濃硫酸中、30℃の温度条件下で、濃度の異なるいくつかの測定溶媒のηsp/cを測定し、そのそれぞれのηsp/cと濃度(c)との関係式を導き出し、濃度をゼロに外挿する方法で求められる。このゼロに外挿された値が固有粘度である。上記方法の詳細は、例えば、Polymer Process Engineering(Prentice−Hall,Inc 1994)の291ページ〜294ページ等に記載されている。上記の濃度の異なるいくつかの測定溶媒における濃度は、少なくとも4点(例えば、0.05g/dL、0.1g/dL、0.2g/dL、0.4g/dL)とすることが精度の観点から望ましい。 The intrinsic viscosity [η] of the polyamide resin measured under the condition of 30 ° C. in concentrated sulfuric acid has good fluidity in the mold and a good appearance of the molded piece when the resin composition is injection-molded, for example. From the viewpoint, preferably 0.6 to 2.0 dL / g, or 0.7 to 1.4 dL / g, or 0.7 to 1.2 dL / g, or 0.7 to 1.0 dL / g. is there. In the present disclosure, "intrinsic viscosity" is synonymous with viscosity generally called intrinsic viscosity. For the intrinsic viscosity, ηsp / c of several measuring solvents having different concentrations was measured under a temperature condition of 30 ° C. in 96% concentrated sulfuric acid, and the relational expression between each ηsp / c and the concentration (c) was calculated. It is obtained by deriving and extrapolating the concentration to zero. The value extrapolated to zero is the intrinsic viscosity. Details of the above method are described, for example, on pages 291 to 294 of Prentice-Hall, Inc. (Prentice-Hall, Inc. 1994). It is accurate that the concentration in some measurement solvents having different concentrations is at least 4 points (for example, 0.05 g / dL, 0.1 g / dL, 0.2 g / dL, 0.4 g / dL). Desirable from the point of view.

熱可塑性樹脂として好ましいポリエステル系樹脂としては、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリブチレンテレフタレート(PBT)、ポリブチレンサクシネート(PBS)、ポリブチレンサクシネートアジペート(PBSA)、ポリブチレンアジペートテレフタレート(PBAT)、ポリヒドロキシアルカン酸(PHA)、ポリ乳酸(PLA)、ポリアリレート(PAR)等から選ばれる1種又は2種以上を用いることができる。中でも、PET、PBS、PBSA、PBT及びPENがより好ましく、PBS、PBSA、及びPBTが特に好ましい。 Preferred polyester resins as the thermoplastic resin include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polybutylene terephthalate (PBT), polybutylene succinate (PBS), polybutylene succinate adipate (PBSA), and polybutylene. One or more selected from adipate terephthalate (PBAT), polyhydroxyalkanoic acid (PHA), polylactic acid (PLA), polyallylate (PAR) and the like can be used. Among them, PET, PBS, PBSA, PBT and PEN are more preferable, and PBS, PBSA and PBT are particularly preferable.

ポリエステル系樹脂の末端基は、重合時のモノマー比率、末端安定化剤の添加の有無及び量、等によって任意に変えることができる。ポリエステル系樹脂の全末端基に対するカルボキシル末端基比率([COOH]/[全末端基])は、樹脂組成物中の繊維状物質(特にセルロース繊維)の分散性の観点から、好ましくは、0.30以上、又は0.35以上、又は0.40であり、又は0.45であり、樹脂組成物の色調の観点から、好ましくは、0.95以下、又は0.90以下、又は0.85以下、又は0.80以下である。 The terminal group of the polyester resin can be arbitrarily changed depending on the monomer ratio at the time of polymerization, the presence / absence and amount of the terminal stabilizer added, and the like. The ratio of carboxyl end groups to all end groups ([COOH] / [all end groups]) of the polyester resin is preferably 0. From the viewpoint of dispersibility of fibrous substances (particularly cellulose fibers) in the resin composition. It is 30 or more, 0.35 or more, or 0.40, or 0.45, and is preferably 0.95 or less, or 0.90 or less, or 0.85 from the viewpoint of the color tone of the resin composition. Below, or 0.80 or less.

熱可塑性樹脂として好ましいポリアセタール系樹脂としては、ホルムアルデヒドを原料とするホモポリアセタールと、トリオキサンを主モノマーとし、1,3−ジオキソランをコモノマー成分として含むコポリアセタールとが一般的であり、両者とも使用可能であるが、加工時の熱安定性の観点から、コポリアセタールが好ましい。コモノマー成分(例えば1,3−ジオキソラン)由来構造の量は、押出加工及び成形加工時の熱安定性の観点から、好ましくは、0.01モル%以上、又は0.05モル%以上、又は0.1モル%以上、又は0.2モル%以上であり、機械的強度の観点から、好ましくは、4モル%以下、又は3.5モル%以下、又は3.0モル%以下、又は2.5モル%以下、又は2.3モル%以下である。 As the preferred polyacetal resin as the thermoplastic resin, homopolyacetal using formaldehyde as a raw material and copolyacetal containing trioxane as a main monomer and 1,3-dioxolan as a comonomer component are generally used, and both can be used. However, copolyacetal is preferable from the viewpoint of thermal stability during processing. The amount of the structure derived from the comonomer component (for example, 1,3-dioxolane) is preferably 0.01 mol% or more, 0.05 mol% or more, or 0 from the viewpoint of thermal stability during extrusion processing and molding processing. .1 mol% or more, or 0.2 mol% or more, preferably 4 mol% or less, 3.5 mol% or less, or 3.0 mol% or less, or 2. It is 5 mol% or less, or 2.3 mol% or less.

(熱硬化性樹脂)
熱硬化性樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールM型エポキシ樹脂、ビスフェノールP型エポキシ樹脂、ビスフェノールZ型エポキシ樹脂等のビスフェノール型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラックエポキシ樹脂等のノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、アリールアルキレン型エポキシ樹脂、テトラフェニロールエタン型エポキシ樹脂、ナフタレン型エポキシ樹脂、アントラセン型エポキシ樹脂、フェノキシ型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ノルボルネン型エポキシ樹脂、アダマンタン型エポキシ樹脂、フルオレン型エポキシ樹脂、グリシジルメタアクリレート共重合系エポキシ樹脂、シクロヘキシルマレイミドとグリシジルメタアクリレートとの共重合エポキシ樹脂、エポキシ変性のポリブタジエンゴム誘導体、CTBN変性エポキシ樹脂、トリメチロールプロパンポリグリシジルエーテル、フェニル−1,3−ジグリシジルエーテル、ビフェニル−4,4’−ジグリシジルエーテル、1,6−ヘキサンジオールジグリシジルエーテル、エチレングリコール又はプロピレングリコールのジグリシジルエーテル、ソルビトールポリグリシジルエーテル、トリス(2,3−エポキシプロピル)イソシアヌレート、トリグリシジルトリス(2−ヒドロキシエチル)イソシアヌレート、フェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールAノボラック樹脂等のノボラック型フェノール樹脂、未変性のレゾールフェノール樹脂、桐油、アマニ油、クルミ油等で変性した油変性レゾールフェノール樹脂等のレゾール型フェノール樹脂等のフェノール樹脂、フェノキシ樹脂、尿素(ユリア)樹脂、メラミン樹脂等のトリアジン環含有樹脂、不飽和ポリエステル樹脂、ビスマレイミド樹脂、ジアリルフタレート樹脂、シリコーン樹脂、ベンゾオキサジン環を有する樹脂、ノルボルネン系樹脂、シアネート樹脂、イソシアネート樹脂、ウレタン樹脂、ベンゾシクロブテン樹脂、マレイミド樹脂、ビスマレイミドトリアジン樹脂、ポリアゾメチン樹脂、熱硬化性ポリイミド等が挙げられる。
(Thermosetting resin)
Examples of the thermosetting resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol E type epoxy resin, bisphenol M type epoxy resin, bisphenol P type epoxy resin, and bisphenol Z type epoxy resin. Novolak type epoxy resin such as bisphenol type epoxy resin, bisphenol A novolac type epoxy resin, phenol novolac type epoxy resin, cresol novolac epoxy resin, biphenyl type epoxy resin, biphenyl aralkyl type epoxy resin, arylalkylene type epoxy resin, tetraphenylol ethane Type epoxy resin, naphthalene type epoxy resin, anthracene type epoxy resin, phenoxy type epoxy resin, dicyclopentadiene type epoxy resin, norbornene type epoxy resin, adamantan type epoxy resin, fluorene type epoxy resin, glycidyl methacrylate copolymer type epoxy resin, Copolymerized epoxy resin of cyclohexyl maleimide and glycidyl methacrylate, epoxy-modified polybutadiene rubber derivative, CTBN-modified epoxy resin, trimethylolpropane polyglycidyl ether, phenyl-1,3-diglycidyl ether, biphenyl-4,4'-di Glycidyl ether, 1,6-hexanediol diglycidyl ether, ethylene glycol or propylene glycol diglycidyl ether, sorbitol polyglycidyl ether, tris (2,3-epoxypropyl) isocyanurate, triglycidyltris (2-hydroxyethyl) isocia Novolak type phenol resin such as nurate, phenol novolac resin, cresol novolak resin, bisphenol A novolak resin, unmodified resolephenol resin, oil-modified resolephenol resin modified with tung oil, flaxseed oil, walnut oil, etc. Such as phenol resin, phenoxy resin, urea (ureia) resin, triazine ring-containing resin such as melamine resin, unsaturated polyester resin, bismaleimide resin, diallyl phthalate resin, silicone resin, resin having benzoxazine ring, norbornene resin, etc. Examples thereof include cyanate resin, isocyanate resin, urethane resin, benzocyclobutene resin, maleimide resin, bismaleimide triazine resin, polyazomethin resin, and thermosetting polyimide.

(光硬化性樹脂)
光硬化性樹脂としては、(メタ)アクリレート樹脂、ビニル樹脂、エポキシ樹脂等が挙げられる。これらは、反応機構により、概ね光により発生したラジカルによりモノマーが反応するラジカル反応型と、モノマーがカチオン重合するカチオン反応型とに分類される。ラジカル反応型のモノマーには、(メタ)アクリレート化合物、ビニル化合物(例えばある種のビニルエーテル)等が該当する。カチオン反応型としては、エポキシ化合物、ある種のビニルエーテル等が該当する。なお、例えば、カチオン反応型として用いることができるエポキシ化合物は、熱硬化性樹脂及び光硬化性樹脂の両者のモノマーとなり得る。
(Photocurable resin)
Examples of the photocurable resin include (meth) acrylate resin, vinyl resin, epoxy resin and the like. These are roughly classified into a radical reaction type in which a monomer reacts with a radical generated by light and a cationic reaction type in which a monomer is cationically polymerized, depending on the reaction mechanism. Examples of the radical reaction type monomer include (meth) acrylate compounds and vinyl compounds (for example, some vinyl ethers). Epoxy compounds, certain vinyl ethers, and the like correspond to the cationic reaction type. For example, the epoxy compound that can be used as a cationic reaction type can be a monomer of both a thermosetting resin and a photocurable resin.

(メタ)アクリレート化合物は、(メタ)アクリレート基を分子内に一つ以上有する化合物である。(メタ)アクリレート化合物としては、単官能(メタ)アクリレート、多官能(メタ)アクリレート、エポキシアクリレート、ポリエステルアクリレート、ウレタンアクリレート等が挙げられる。 The (meth) acrylate compound is a compound having one or more (meth) acrylate groups in the molecule. Examples of the (meth) acrylate compound include monofunctional (meth) acrylate, polyfunctional (meth) acrylate, epoxy acrylate, polyester acrylate, urethane acrylate and the like.

ビニル化合物としては、ビニルエーテル、スチレン及びスチレン誘導体等が挙げられる。ビニルエーテルとしては、エチルビニルエーテル、プロピルビニルエーテル、ヒドロキシエチルビニルエーテル、エチレングリコールジビニルエーテル等が挙げられる。スチレン誘導体としては、メチルスチレン、エチルスチレン等が挙げられる。その他のビニル化合物としては、トリアリルイソイシアヌレート、トリメタアリルイソシアヌレート等が挙げられる。 Examples of the vinyl compound include vinyl ether, styrene and styrene derivatives. Examples of the vinyl ether include ethyl vinyl ether, propyl vinyl ether, hydroxyethyl vinyl ether, ethylene glycol divinyl ether and the like. Examples of the styrene derivative include methylstyrene and ethylstyrene. Examples of other vinyl compounds include triallyl isocyanurate and trimetaallyl isocyanurate.

光硬化性樹脂の原料として、いわゆる反応性オリゴマーを用いてもよい。反応性オリゴマーとしては、(メタ)アクリレート基、エポキシ基、ウレタン結合、及びエステル結合から選ばれる任意の組合せを同一分子内に併せ持つオリゴマー、例えば、(メタ)アクリレート基とウレタン結合とを同一分子内に併せ持つウレタンアクリレート、(メタ)アクリレート基とエステル結合とを同一分子内に併せ持つポリエステルアクリレート、エポキシ樹脂から誘導され、エポキシ基と(メタ)アクリレート基とを同一分子内に併せ持つエポキシアクリレート、等が挙げられる。 A so-called reactive oligomer may be used as a raw material for the photocurable resin. As the reactive oligomer, an oligomer having an arbitrary combination selected from a (meth) acrylate group, an epoxy group, a urethane bond, and an ester bond in the same molecule, for example, a (meth) acrylate group and a urethane bond in the same molecule. Urethane acrylate having both (meth) acrylate group and ester bond in the same molecule, epoxy acrylate derived from epoxy resin and having epoxy group and (meth) acrylate group in the same molecule, etc. Be done.

(エラストマー)
エラストマー(すなわちゴム)としては、天然ゴム(NR)、ブタジエンゴム(BR)、スチレン−ブタジエン共重合体ゴム(SBR)、イソプレンゴム(IR)、ブチルゴム(IIR)、アクリロニトリル−ブタジエンゴム(NBR)、アクリロニトリル−スチレン−ブタジエン共重合体ゴム、クロロプレンゴム、スチレン−イソプレン共重合体ゴム、スチレン−イソプレン−ブタジエン共重合体ゴム、イソプレン−ブタジエン共重合体ゴム、クロロスルホン化ポリエチレンゴム、改質天然ゴム(エポキシ化天然ゴム(ENR)、水素化天然ゴム、脱タンパク天然ゴム等)、エチレン−プロピレン共重合体ゴム、アクリルゴム、エピクロルヒドリンゴム、多硫化ゴム、シリコーンゴム、フッ素ゴム、ウレタンゴム等が挙げられる。
(Elastomer)
Examples of the elastomer (that is, rubber) include natural rubber (NR), butadiene rubber (BR), styrene-butadiene copolymer rubber (SBR), isoprene rubber (IR), butyl rubber (IIR), acrylonitrile-butadiene rubber (NBR), and the like. Acrylonitrile-styrene-butadiene copolymer rubber, chloroprene rubber, styrene-isoprene copolymer rubber, styrene-isoprene-butadiene copolymer rubber, isoprene-butadiene copolymer rubber, chlorosulfonated polyethylene rubber, modified natural rubber ( Epoxidized natural rubber (ENR), hydrogenated natural rubber, deproteinized natural rubber, etc.), ethylene-propylene copolymer rubber, acrylic rubber, epichlorohydrin rubber, polysulfide rubber, silicone rubber, fluororubber, urethane rubber, etc. ..

樹脂(一態様において熱可塑性樹脂)100質量部に対する繊維状物質の量は、好ましくは0.001〜100質量部の範囲内である。繊維状物質の量の下限は、より好ましくは0.01質量部、さらに好ましくは0.1質量部、最も好ましくは1質量部である。繊維状物質の量の上限は、より好ましくは80質量部、さらに好ましくは70質量部、最も好ましくは50質量部である。加工性と機械的特性のバランスの観点から、繊維状物質の量を上述の範囲内とすることが望ましい。 The amount of the fibrous substance with respect to 100 parts by mass of the resin (thermoplastic resin in one embodiment) is preferably in the range of 0.001 to 100 parts by mass. The lower limit of the amount of the fibrous substance is more preferably 0.01 part by mass, further preferably 0.1 part by mass, and most preferably 1 part by mass. The upper limit of the amount of the fibrous substance is more preferably 80 parts by mass, further preferably 70 parts by mass, and most preferably 50 parts by mass. From the viewpoint of the balance between workability and mechanical properties, it is desirable that the amount of fibrous substance is within the above range.

一態様において、樹脂(一態様において熱可塑性樹脂)100質量部に対する増粘剤の量は、好ましくは、0.00001質量部以上、又は0.0001質量部以上、又は0.001質量部以上、又は0.01質量部以上であってよく、好ましくは、5質量部以下、又は3質量%以下、又は1質量%以下、又は0.5質量%以下であってよい。 In one embodiment, the amount of the thickener with respect to 100 parts by mass of the resin (in one embodiment, the thermoplastic resin) is preferably 0.00001 parts by mass or more, 0.0001 parts by mass or more, or 0.001 parts by mass or more. Alternatively, it may be 0.01 parts by mass or more, preferably 5 parts by mass or less, 3% by mass or less, 1% by mass or less, or 0.5% by mass or less.

本開示の樹脂組成物の、引張降伏伸度TEyと引張破断伸度TEbとの比(TEb/TEy)は、繊維状物質の分散性向上による伸度向上の観点から大きい方が好ましく、1.0以上、又は1.5以上、又は2.0以上が好ましい。上記比が大きい場合、樹脂組成物は破断前に降伏し、良好な伸度を発現する。上記比は、伸度向上の観点からは大きい程好ましいが、製造容易性の観点から、一態様において、1000以下、又は100以下、又は10以下であってよい。 The ratio (TEb / TEy) of the tensile yield elongation TEy and the tensile elongation at break TEb of the resin composition of the present disclosure is preferably large from the viewpoint of improving the elongation by improving the dispersibility of the fibrous material. It is preferably 0 or more, 1.5 or more, or 2.0 or more. When the above ratio is large, the resin composition yields before breaking and exhibits good elongation. The larger the ratio is, the more preferable it is from the viewpoint of improving the elongation, but from the viewpoint of ease of production, in one aspect, it may be 1000 or less, 100 or less, or 10 or less.

本開示の樹脂組成物が増粘剤を含む場合、当該樹脂組成物の引張強度の、増粘剤を含まない他は同組成である比較樹脂組成物の引張強度に対する比は、繊維状物質の分散性向上による強度向上の観点から大きい方が好ましく、1.01倍以上、又は1.05倍以上、又は1.10倍以上、又は1.15倍以上が好ましい。上記比は、伸度向上の観点からは大きい程好ましいが、製造容易性の観点から、一態様において、100倍以下、又は10倍以下、又は5倍以下であってよい。 When the resin composition of the present disclosure contains a thickener, the ratio of the tensile strength of the resin composition to the tensile strength of the comparative resin composition having the same composition except that it does not contain the thickener is the ratio of the fibrous substance. From the viewpoint of improving the strength by improving the dispersibility, the larger one is preferable, and 1.01 times or more, 1.05 times or more, 1.10 times or more, or 1.15 times or more is preferable. The larger the ratio is, the more preferable it is from the viewpoint of improving the elongation, but from the viewpoint of ease of production, in one aspect, it may be 100 times or less, 10 times or less, or 5 times or less.

≪樹脂組成物の製造方法≫
樹脂が熱可塑性樹脂である場合、本開示の繊維状物質分散液、又は当該分散液を乾燥させて得た乾燥体(以下、単に乾燥体ともいう。)を熱可塑性樹脂と混練して樹脂組成物を製造できる。樹脂組成物のより具体的な製造方法としては、
−樹脂モノマーと繊維状物質分散液又は乾燥体とを混合し、重合反応を行い、得られた樹脂組成物をストランド状に押出し、水浴中で冷却固化させ、ペレット状成形体を得る方法、
−単軸又は二軸押出機を用いて、樹脂と繊維状物質分散液又は乾燥体との混合物を溶融混練し、ストランド状に押出し、水浴中で冷却固化させ、ペレット状成形体を得る方法、
−単軸又は二軸押出機を用いて、樹脂と繊維状物質分散液又は乾燥体との混合物を溶融混練し、棒状又は筒状に押出し冷却して押出成形体を得る方法、
−単軸又は二軸押出機を用いて、樹脂と繊維状物質分散液又は乾燥体との混合物を溶融混練し、Tダイより押出しシート、又はフィルム状の成形体を得る方法、
等が挙げられる。好ましい態様においては、単軸又は二軸押出機を用いて、樹脂と繊維状物質分散液又は乾燥体との混合物を溶融混練し、ストランド状に押出し、水浴中で冷却固化させ、ペレット状成形体を得る。
樹脂と繊維状物質分散液又は乾燥体の溶融混練方法の具体例としては、樹脂と、所望の比率で搬送された繊維状物質分散液又は乾燥体とを混合した後、溶融混練する方法が挙げられる。
樹脂が熱可塑性樹脂である場合、熱可塑性樹脂供給業者が推奨する最低加工温度は、ナイロン66では255〜270℃、ナイロン6では225〜240℃、ポリアセタール樹脂では170℃〜190℃、ポリプロピレンでは160〜180℃である。加熱設定温度は、これらの推奨最低加工温度より20℃高い温度の範囲が好ましい。混合温度をこの温度範囲とすることにより、繊維状物質と樹脂とを均一に混合することができる。
≪Manufacturing method of resin composition≫
When the resin is a thermoplastic resin, the fibrous substance dispersion liquid of the present disclosure or a dried product obtained by drying the dispersion liquid (hereinafter, also simply referred to as a dried product) is kneaded with a thermoplastic resin to form a resin composition. Can manufacture things. As a more specific manufacturing method of the resin composition,
-A method of mixing a resin monomer with a fibrous substance dispersion or a dried product, carrying out a polymerization reaction, extruding the obtained resin composition into a strand shape, cooling and solidifying in a water bath, and obtaining a pellet-shaped molded product.
-A method of melt-kneading a mixture of a resin and a fibrous substance dispersion or a dried product using a single-screw or twin-screw extruder, extruding it into a strand, and cooling and solidifying it in a water bath to obtain a pellet-shaped molded product.
-A method in which a mixture of a resin and a fibrous substance dispersion or a dried product is melt-kneaded using a single-screw or twin-screw extruder, extruded into a rod or cylinder, and cooled to obtain an extruded product.
-A method of melt-kneading a mixture of a resin and a fibrous substance dispersion or a dried product using a single-screw or twin-screw extruder to obtain an extruded sheet or a film-shaped molded product from a T-die.
And so on. In a preferred embodiment, a single-screw or twin-screw extruder is used to melt-knead a mixture of resin and fibrous material dispersion or dried product, extrude into strands, cool and solidify in a water bath, and pellet-molded product. To get.
Specific examples of the method for melt-kneading the resin and the fibrous material dispersion or the dried product include a method in which the resin and the fibrous material dispersion or the dried product transported in a desired ratio are mixed and then melt-kneaded. Be done.
When the resin is a thermoplastic resin, the minimum processing temperature recommended by the thermoplastic resin supplier is 255 to 270 ° C for nylon 66, 225 to 240 ° C for nylon 6, 170 ° C to 190 ° C for polyacetal resin, and 160 ° C for polypropylene. ~ 180 ° C. The heating set temperature is preferably in the temperature range of 20 ° C. higher than these recommended minimum processing temperatures. By setting the mixing temperature within this temperature range, the fibrous substance and the resin can be uniformly mixed.

樹脂として熱可塑性樹脂を含む樹脂組成物は、種々の形状での提供が可能である。具体的には、樹脂ペレット状、シート状、繊維状、板状、棒状等が挙げられるが、樹脂ペレット形状が、後加工の容易性や運搬の容易性からより好ましい。この際の好ましいペレット形状としては、丸型、楕円型、円柱型などが挙げられ、これらは押出加工時のカット方式により異なる。アンダーウォーターカットと呼ばれるカット方法で切断されたペレットは、丸型になることが多く、ホットカットと呼ばれるカット方法で切断されたペレットは丸型又は楕円型になることが多く、ストランドカットと呼ばれるカット方法で切断されたペレットは円柱状になることが多い。丸型ペレットの場合、その好ましい大きさは、ペレット直径として1mm以上、3mm以下である。また、円柱状ペレットの場合の好ましい直径は、1mm以上3mm以下であり、好ましい長さは、2mm以上10mm以下である。上記の直径及び長さは、押出時の運転安定性の観点から、下限以上とすることが望ましく、後加工での成形機への噛み込み性の観点から、上限以下とすることが望ましい。 Resin compositions containing a thermoplastic resin as a resin can be provided in various shapes. Specific examples thereof include a resin pellet shape, a sheet shape, a fibrous shape, a plate shape, a rod shape, and the like, but the resin pellet shape is more preferable from the viewpoint of ease of post-processing and ease of transportation. Preferred pellet shapes at this time include a round shape, an elliptical shape, a cylindrical shape, and the like, which differ depending on the cutting method at the time of extrusion processing. Pellets cut by a cutting method called underwater cut often have a round shape, and pellets cut by a cutting method called hot cut often have a round or oval shape, which is called a strand cut. Pellets cut by the method often have a columnar shape. In the case of round pellets, the preferred size is 1 mm or more and 3 mm or less as the pellet diameter. Further, in the case of columnar pellets, the preferable diameter is 1 mm or more and 3 mm or less, and the preferable length is 2 mm or more and 10 mm or less. The above diameter and length are preferably not more than the lower limit from the viewpoint of operational stability during extrusion, and preferably not more than the upper limit from the viewpoint of biting into the molding machine in post-processing.

樹脂として熱可塑性樹脂を含む樹脂組成物は、種々の樹脂成形体として利用が可能である。樹脂成形体の製造方法に関しては特に制限はなく、いずれの製造方法でも構わないが、射出成形法、押出成形法、ブロー成形法、インフレーション成形法、発泡成形法などが使用可能である。これらの中では射出成形法がデザイン性とコストの観点より、最も好ましい。 Resin compositions containing a thermoplastic resin as a resin can be used as various resin molded products. The method for producing the resin molded product is not particularly limited, and any production method may be used, but an injection molding method, an extrusion molding method, a blow molding method, an inflation molding method, a foam molding method, or the like can be used. Of these, the injection molding method is the most preferable from the viewpoint of design and cost.

樹脂が熱硬化性樹脂又は光硬化性樹脂である場合、例えば、樹脂溶液又は樹脂粉末分散体中に繊維状物質分散液又は乾燥体を十分に分散させて乾燥する方法、樹脂モノマー液中に繊維状物質分散液又は乾燥体を十分に分散させて熱、UV照射、重合開始剤等によって重合する方法、繊維状物質分散液の乾燥体からなる成形体(例えば、シート、粉末粒子成形体等)に樹脂溶液又は樹脂粉末分散体を十分に含浸させて乾燥する方法、繊維状物質分散液の乾燥体からなる成形体に樹脂モノマー液を十分に含浸させて熱、UV照射、重合開始剤等によって重合する方法等によって、樹脂組成物を製造できる。硬化に際し、種々の重合開始剤、硬化剤、硬化促進剤、重合禁止剤等を配合することができる。 When the resin is a thermosetting resin or a photocurable resin, for example, a method of sufficiently dispersing a fibrous substance dispersion liquid or a dried product in a resin solution or a resin powder dispersion and drying the resin, fibers in a resin monomer liquid. A method of sufficiently dispersing a state material dispersion or a dried body and polymerizing with heat, UV irradiation, a polymerization initiator, etc., a molded body composed of a dried body of a fibrous substance dispersion (for example, a sheet, a powder particle molded body, etc.) Is sufficiently impregnated with a resin solution or a resin powder dispersion and dried, or a molded product made of a dried fibrous substance dispersion is sufficiently impregnated with a resin monomer solution and subjected to heat, UV irradiation, a polymerization initiator, etc. The resin composition can be produced by a method of polymerization or the like. At the time of curing, various polymerization initiators, curing agents, curing accelerators, polymerization inhibitors and the like can be blended.

樹脂が熱硬化性樹脂又は光硬化性樹脂である場合、未硬化又は半硬化のプリプレグと呼ばれるシートを作製した後、プリプレグを単層又は積層にして、加圧及び加熱によって樹脂を硬化及び成形する方法を用いてよい。加圧及び加熱の方法としては、プレス成形法、オートクレーブ成形法、バッギング成形法、ラッピングテープ法、内圧成形法等が挙げられる。 When the resin is a thermosetting resin or a photocurable resin, a sheet called an uncured or semi-cured prepreg is prepared, and then the prepreg is made into a single layer or a laminated layer, and the resin is cured and molded by pressurization and heating. The method may be used. Examples of the pressurizing and heating methods include a press molding method, an autoclave molding method, a bagging molding method, a lapping tape method, and an internal pressure molding method.

樹脂が光硬化性樹脂である場合、活性エネルギー線を用いた各種硬化方法を用いて樹脂成形体を製造できる。 When the resin is a photocurable resin, a resin molded product can be produced by using various curing methods using active energy rays.

樹脂がエラストマーである場合、繊維状物質分散液の乾燥体と原料ゴムとを乾式で混練する方法、繊維状物質分散液の分散体又は乾燥体と原料ゴムとを分散媒中に分散又は溶解させた後、乾燥させて混合する方法等によって、樹脂組成物を製造できる。混合方法としては、高い剪断力と圧力とをかけ、分散を促進できる点で、ホモジナイザーによる混合方法が好ましいが、その他、プロペラ式攪拌装置、ロータリー攪拌装置、電磁攪拌装置、手動による攪拌、等の方法を用いることもできる。エラストマーを含む樹脂組成物を、金型成形、射出成形、押出成形、中空成形、発泡成形等の所望の成形方法を用いて成形し、シート、ペレット、粉末等の所望の形状の未加硫の成形体を得ることができる。未加硫の成形体を、必要に応じて熱処理等で加硫して、樹脂成形体を得ることができる。 When the resin is an elastomer, a method of kneading the dried body of the fibrous substance dispersion liquid and the raw material rubber in a dry manner, or dispersing or dissolving the dispersion or the dried body of the fibrous substance dispersion liquid and the raw material rubber in a dispersion medium. After that, the resin composition can be produced by a method of drying and mixing. As the mixing method, a homogenizer mixing method is preferable in that high shearing force and pressure can be applied to promote dispersion, but in addition, a propeller type stirring device, a rotary stirring device, an electromagnetic stirring device, manual stirring, etc. The method can also be used. A resin composition containing an elastomer is molded by a desired molding method such as mold molding, injection molding, extrusion molding, hollow molding, foam molding, etc., and unsulfurized in a desired shape such as a sheet, pellet, powder, etc. A molded product can be obtained. The unvulcanized molded product can be vulcanized by heat treatment or the like, if necessary, to obtain a resin molded product.

熱可塑性樹脂又はエラストマーを含む樹脂成形体は、その一部(例えば数箇所)を加熱処理して溶融させ、例えば樹脂又は金属の基板に接着して用いても構わない。また、樹脂成形体は、樹脂又は金属の基板に塗布された塗膜であってもよく、基板との積層体を形成してもよい。また、シート状、フィルム状又は繊維状の樹脂成形体には、アニール処理、エッチング処理、コロナ処理、プラズマ処理、シボ転写、切削、表面研磨等の二次加工を行っても構わない。 A resin molded product containing a thermoplastic resin or an elastomer may be used by heat-treating a part (for example, several places) thereof to melt it and adhering it to a resin or metal substrate, for example. Further, the resin molded body may be a coating film applied to a resin or metal substrate, or may form a laminate with the substrate. Further, the sheet-shaped, film-shaped or fibrous resin molded body may be subjected to secondary processing such as annealing treatment, etching treatment, corona treatment, plasma treatment, grain transfer, cutting and surface polishing.

本開示の樹脂組成物は、繊維状物質の搬送性が向上されていることで、安定な製造が可能であり、バラツキが少なく、安定した物性を発現することができる。 Since the resin composition of the present disclosure has improved transportability of fibrous substances, stable production is possible, there is little variation, and stable physical properties can be exhibited.

本発明を実施例に基づいて更に説明するが、本発明はこれら実施例に限定されない。 The present invention will be further described with reference to the examples, but the present invention is not limited to these examples.

[原料及び評価方法]
以下に、使用した原料及び、評価方法について説明する。
[Ingredients and evaluation method]
The raw materials used and the evaluation method will be described below.

≪熱可塑性樹脂(ポリアミド樹脂)≫
・「UBEナイロン 1013B」宇部興産株式会社製
ポリアミド6(以下、PAと称す。)
カルボキシル末端基比率が、([COOH]/[全末端基])=0.59
≪Thermoplastic resin (polyamide resin) ≫
-"UBE Nylon 1013B" Polyamide 6 manufactured by Ube Industries, Ltd. (hereinafter referred to as PA)
Carboxylic acid end group ratio is ([COOH] / [all end groups]) = 0.59

≪熱可塑性樹脂(ポリプロピレン樹脂)≫
・プライムポリプロ J105G プライムポリマー製
≪Thermoplastic resin (polypropylene resin) ≫
・ Made of Prime Polypro J105G Prime Polymer

≪繊維状物質(セルロース繊維)≫
・セルロース繊維A(以下、CNF−Aと略すことがある)
ろ紙を裁断後、1質量部、一軸撹拌機(アイメックス社製 DKV−1 φ125mmディゾルバー)を用いジメチルスルホキサイド(DMSO)30質量部中で500rpmにて1時間、常温で攪拌した。続いて、ホースポンプでビーズミル(アイメックス社製 NVM−1.5)にフィードし、DMSOのみで180分間循環運転させ、固形分率3.2質量%の微細セルロース繊維スラリー(S1、DMSO溶媒)を31質量部得た。
循環運転の際、ビーズミルの回転数は2500rpm、周速12m/sとし、用いたビーズはジルコニア製で、φ2.0mm、充填率70%とした(ビーズミルのスリット隙間は0.6mmとした)。また、循環運転の際は、摩擦による発熱を吸収するためにチラーによりスラリー温度を40℃に温度管理した。
スラリーS1に純水30質量部を加えて十分に撹拌した後、脱水機に入れて濃縮した。得られたウェットケーキを再度30質量部の純水に分散、撹拌、濃縮する洗浄操作を合計5回繰り返すことで、DMSOを除去し、固形分率10質量%の微細セルロース繊維ケーキ(K1、水溶媒)を10質量部得た。
≪Fibrous substance (cellulose fiber) ≫
-Cellulose fiber A (hereinafter, may be abbreviated as CNF-A)
After cutting the filter paper, 1 part by mass was stirred at 500 rpm for 1 hour at room temperature in 30 parts by mass of dimethyl sulfoxide (DMSO) using a uniaxial stirrer (DKV-1 φ125 mm dissolver manufactured by IMEX). Subsequently, it was fed to a bead mill (NVM-1.5 manufactured by Imex) with a hose pump and circulated for 180 minutes using only DMSO to prepare a fine cellulose fiber slurry (S1, DMSO solvent) having a solid content of 3.2% by mass. 31 parts by mass was obtained.
During the circulation operation, the rotation speed of the bead mill was 2500 rpm and the peripheral speed was 12 m / s, and the beads used were made of zirconia, φ2.0 mm, and the filling rate was 70% (the slit gap of the bead mill was 0.6 mm). Further, during the circulation operation, the slurry temperature was controlled to 40 ° C. by a chiller in order to absorb heat generated by friction.
After adding 30 parts by mass of pure water to the slurry S1 and stirring it sufficiently, it was put into a dehydrator and concentrated. DMSO is removed by repeating the washing operation of dispersing, stirring, and concentrating the obtained wet cake in 30 parts by mass of pure water again a total of 5 times, and a fine cellulose fiber cake (K1, water) having a solid content of 10% by mass is removed. Solvent) was obtained in an amount of 10 parts by mass.

(アセチル化工程)
得られたセルロース繊維前駆体Aをアセチル化し、セルロース繊維Aを得た。
実施例2におけるスラリーS2を防爆型ディスパーザータンクに投入した後、酢酸ビニル3.2質量部、炭酸水素ナトリウム0.49質量部を加え、タンク内温度を50℃とし、120分間撹拌を行い、固形分率2.9質量%のスラリー(DMSO溶媒)を35質量部得た。反応を停止するため、純水30質量部を加えて十分に撹拌した後、脱水機に入れて濃縮した。得られたウェットケーキを再度30質量部の純水に分散、撹拌、濃縮する洗浄操作を合計5回繰り返すことで、未反応試薬及び溶媒等を除去し、固形分率10質量%のアセチル化された微細セルロース繊維ケーキ(K3、水溶媒)を10質量部得た。
平均繊維径=90nm
結晶化度=80%
変性度(DS)=1.02
Mw=360000、Mw/Mn=2
アルカリ可溶多糖類平均含有率=8.3質量%
(Acetylation process)
The obtained cellulose fiber precursor A was acetylated to obtain cellulose fiber A.
After the slurry S2 in Example 2 was put into an explosion-proof disperser tank, 3.2 parts by mass of vinyl acetate and 0.49 parts by mass of sodium hydrogen carbonate were added, the temperature in the tank was set to 50 ° C., and stirring was performed for 120 minutes. 35 parts by mass of a slurry (DMSO solvent) having a solid content of 2.9% by mass was obtained. In order to stop the reaction, 30 parts by mass of pure water was added, the mixture was sufficiently stirred, and then the mixture was placed in a dehydrator for concentration. By repeating the washing operation of dispersing, stirring, and concentrating the obtained wet cake in 30 parts by mass of pure water again a total of 5 times, unreacted reagents and solvents were removed, and acetylation with a solid content of 10% by mass was performed. 10 parts by mass of a fine cellulose fiber cake (K3, aqueous solvent) was obtained.
Average fiber diameter = 90 nm
Crystallinity = 80%
Degeneration (DS) = 1.02
Mw = 360000, Mw / Mn = 2
Average content of alkali-soluble polysaccharides = 8.3% by mass

・セルロース繊維B(以下、CNF−Bと略すことがある)
タンク内温度を40℃、攪拌時間を60分とした他はCNF−Aの製造と同様の手順で、CNF−Bのスラリーを得た。得られたCNFの特性を後述の方法で評価した。結果を下記に示す。
平均繊維径=90nm
結晶化度=82%
変性度(DS)=0.50
Mw=410000、Mw/Mn=3.2
アルカリ可溶多糖類平均含有率=7.1質量%
-Cellulose fiber B (hereinafter, may be abbreviated as CNF-B)
A slurry of CNF-B was obtained in the same procedure as in the production of CNF-A except that the temperature in the tank was 40 ° C. and the stirring time was 60 minutes. The characteristics of the obtained CNF were evaluated by the method described later. The results are shown below.
Average fiber diameter = 90 nm
Crystallinity = 82%
Degeneration (DS) = 0.50
Mw = 410000, Mw / Mn = 3.2
Average content of alkali-soluble polysaccharides = 7.1% by mass

・セルロース繊維C(以下、CNF−Cと略すことがある)
タンク内温度を30℃、攪拌時間を30分とした他はCNF−Aの製造と同様の手順で、CNF−Bのスラリーを得た。得られたCNFの特性を後述の方法で評価した。結果を下記に示す。
平均繊維径=92nm
結晶化度=84%
変性度(DS)=0.30
Mw=380000、Mw/Mn=2.5
アルカリ可溶多糖類平均含有率=7.5質量%
-Cellulose fiber C (hereinafter, may be abbreviated as CNF-C)
A slurry of CNF-B was obtained in the same procedure as in the production of CNF-A except that the temperature in the tank was 30 ° C. and the stirring time was 30 minutes. The characteristics of the obtained CNF were evaluated by the method described later. The results are shown below.
Average fiber diameter = 92 nm
Crystallinity = 84%
Degeneration (DS) = 0.30
Mw = 380000, Mw / Mn = 2.5
Average content of alkali-soluble polysaccharides = 7.5% by mass

≪セルロース繊維の評価≫
セルロース繊維の物性は下記手法で作製された多孔質シートを用いて評価した。
[多孔質シート]
まず、ウェットケーキをtert−ブタノール中に添加し、さらにミキサー等で凝集物が無い状態まで分散処理を行った。セルロース繊維固形分重量0.5gに対し、濃度が0.5質量%となるように調整した。得られたtert−ブタノール分散液100gをろ紙上で濾過し、150℃にて乾燥させた後、ろ紙を剥離してシートを得た。このシートの透気抵抗度がシート目付10g/m2あたり100sec/100ml以下のものを多孔質シートとし、測定サンプルとして使用した。
23℃、50%RHの環境で1日静置したサンプルの目付W(g/m2)を測定した後、王研式透気抵抗試験機(旭精工(株)製、型式EG01)を用いて透気抵抗度R(sec/100ml)を測定した。この時、下記式に従い、10g/m2目付あたりの値を算出した。
目付10g/m2あたり透気抵抗度(sec/100ml)=R/W×10
≪Evaluation of cellulose fiber≫
The physical characteristics of the cellulose fibers were evaluated using a porous sheet prepared by the following method.
[Porous sheet]
First, the wet cake was added to tert-butanol, and further dispersed with a mixer or the like until there were no agglutinates. The concentration was adjusted to 0.5% by mass with respect to the weight of the cellulose fiber solid content of 0.5 g. 100 g of the obtained tert-butanol dispersion was filtered on a filter paper, dried at 150 ° C., and then the filter paper was peeled off to obtain a sheet. A porous sheet having an air permeation resistance of 100 sec / 100 ml or less per 10 g / m 2 of the sheet was used as a measurement sample.
After measuring the basis weight W (g / m 2 ) of the sample left to stand in an environment of 23 ° C. and 50% RH for 1 day, a Wangken type air permeability resistance tester (manufactured by Asahi Seiko Co., Ltd., model EG01) was used. The air permeation resistance R (sec / 100 ml) was measured. At this time, the value per 10 g / m 2 basis weight was calculated according to the following formula.
Air permeation resistance per 10 g / m 2 basis weight (sec / 100 ml) = R / W x 10

[DS]
多孔質シートの5か所のATR−IR法による赤外分光スペクトルを、フーリエ変換赤外分光光度計(JASCO社製 FT/IR−6200)で測定した。赤外分光スペクトル測定は以下の条件で行った。
積算回数:64回、
波数分解能:4cm-1
測定波数範囲:4000〜600cm-1
ATR結晶:ダイヤモンド、
入射角度:45°
得られたIRスペクトルよりIRインデックスを、下記式(1):
IRインデックス= H1730/H1030・・・(1)
に従って算出した。式中、H1730及びH1030は1730cm-1、1030cm-1(セルロース骨格鎖C−O伸縮振動の吸収バンド)における吸光度である。ただし、それぞれ1900cm-1と1500cm-1を結ぶ線と800cm-1と1500cm-1を結ぶ線をベースラインとして、このベースラインを吸光度0とした時の吸光度を意味する。
そして、各測定場所の平均置換度をIRインデックスより下記式(2)に従って算出し、その平均値をDSとした。
DS=4.13×IRインデックス・・・(2)
[DS]
The infrared spectroscopic spectra of the porous sheet at five locations by the ATR-IR method were measured with a Fourier transform infrared spectrophotometer (FT / IR-6200 manufactured by JASCO). Infrared spectroscopic spectrum measurement was performed under the following conditions.
Accumulation number: 64 times,
Wavenumber resolution: 4 cm -1 ,
Wavenumber range: 4000-600cm -1 ,
ATR crystal: diamond,
Incident angle: 45 °
From the obtained IR spectrum, the IR index was calculated by the following formula (1):
IR index = H1730 / H1030 ... (1)
Calculated according to. In the formula, H1730 and H1030 are the absorbances at 1730 cm -1 and 1030 cm -1 (absorption band of cellulose skeleton chain CO stretching vibration). However, each of the line connecting the lines and 800 cm -1 and 1500 cm -1 connecting 1900 cm -1 and 1500 cm -1 as a baseline, means absorbance when the baseline was zero absorbance.
Then, the average degree of substitution at each measurement location was calculated from the IR index according to the following equation (2), and the average value was taken as DS.
DS = 4.13 x IR index ... (2)

[結晶化度]
多孔質シートのX線回折測定を行い、下記式より結晶化度を算出した。
結晶化度(%)=[I(200)−I(amorphous)]/I(200)×100
(200):セルロースI型結晶における200面(2θ=22.5°)による回折ピーク強度
(amorphous):セルロースI型結晶におけるアモルファスによるハローピーク強度であって、200面の回折角度より4.5°低角度側(2θ=18.0°)のピーク強度
[Crystallinity]
X-ray diffraction measurement of the porous sheet was performed, and the crystallinity was calculated from the following formula.
Crystallinity (%) = [I (200) -I (amorphous) ] / I (200) x 100
I (200) : Diffraction peak intensity due to amorphous in the cellulose type I crystal by 200 planes (2θ = 22.5 °) I (amorphous): Hello peak intensity due to amorphous in the cellulose type I crystal, 4 from the diffraction angle of 200 planes Peak intensity on the low angle side (2θ = 18.0 °) of .5 °

(X線回折測定条件)
装置 MiniFlex(株式会社リガク製)
操作軸 2θ/θ
線源 CuKα
測定方法 連続式
電圧 40kV
電流 15mA
開始角度 2θ=5°
終了角度 2θ=30°
サンプリング幅 0.020°
スキャン速度 2.0°/min
サンプル:試料ホルダー上に多孔質シートを貼り付け
(X-ray diffraction measurement conditions)
Equipment MiniFlex (manufactured by Rigaku Co., Ltd.)
Operating axis 2θ / θ
Radioactive source CuKα
Measurement method Continuous voltage 40kV
Current 15mA
Start angle 2θ = 5 °
End angle 2θ = 30 °
Sampling width 0.020 °
Scan speed 2.0 ° / min
Sample: Paste a porous sheet on the sample holder

[平均繊維径]
ウェットケーキをtert−ブタノールで0.01質量%まで希釈し、高剪断ホモジナイザー(IKA製、商品名「ウルトラタラックスT18」)を用い、処理条件:回転数25,000rpm×5分間で分散させ、マイカ上にキャストし、風乾したものを、高分解能走査型顕微鏡で測定した。測定は、少なくとも100本のセルロース繊維が観測されるように倍率を調整して行い、無作為に選んだ100本のセルロース繊維の長径(L)を測定し、100本のセルロース繊維の加算平均を算出した。
[Average fiber diameter]
The wet cake was diluted with tert-butanol to 0.01% by mass, and dispersed using a high-shear homogenizer (manufactured by IKA, trade name "Ultratalax T18") under treatment conditions: rotation speed of 25,000 rpm x 5 minutes. Casting on mica and air-dried was measured with a high-resolution scanning microscope. The measurement was performed by adjusting the magnification so that at least 100 cellulose fibers were observed, the major axis (L) of 100 randomly selected cellulose fibers was measured, and the added average of 100 cellulose fibers was calculated. Calculated.

[重量平均分子量(Mw)、数平均分子量(Mn)及びMw/Mn比]
多孔質シートを0.88g秤量し、ハサミで小片に切り刻んだ後、軽く攪拌したうえで、純水20mLを加え1日放置した。次に遠心分離によって水と固形分を分離した。続いてアセトン20mLを加え、軽く攪拌したうえで1日放置した。次に遠心分離によってアセトンと固形分を分離した。続いてN、N−ジメチルアセトアミド20mLを加え、軽く攪拌したうえで1日放置した。再度、遠心分離によってN、N−ジメチルアセトアミドと固形分を分離したのち、N,N−ジメチルアセトアミド20mLを加え、軽く攪拌したうえで1日放置した。遠心分離によってN,N−ジメチルアセトアミドと固形分を分離し、固形分に塩化リチウムが8質量パーセントになるように調液したN,N−ジメチルアセトアミド溶液を19.2g加え、スターラーで攪拌し、目視で溶解するのを確認した。セルロースを溶解させた溶液を0.45μmフィルターでろ過し、ろ液をゲルパーミエーションクロマトグラフィ用の試料として供した。用いた装置と測定条件は下記である。
装置 :東ソー社 HLC−8120
カラム:TSKgel SuperAWM−H(6.0mmI.D.×15cm)×2本
検出器:RI検出器
溶離液:N、N−ジメチルアセトアミド(塩化リチウム0.2%)
流速:0.6mL/分
検量線:プルラン換算
[Weight average molecular weight (Mw), number average molecular weight (Mn) and Mw / Mn ratio]
0.88 g of the porous sheet was weighed, chopped into small pieces with scissors, stirred lightly, 20 mL of pure water was added, and the mixture was left to stand for 1 day. The water and solids were then separated by centrifugation. Subsequently, 20 mL of acetone was added, and the mixture was lightly stirred and left to stand for 1 day. Acetone and solids were then separated by centrifugation. Subsequently, 20 mL of N, N-dimethylacetamide was added, and the mixture was lightly stirred and left to stand for 1 day. After separating N, N-dimethylacetamide and solid content by centrifugation again, 20 mL of N, N-dimethylacetamide was added, and the mixture was lightly stirred and left to stand for 1 day. The N, N-dimethylacetamide and the solid content were separated by centrifugation, 19.2 g of the N, N-dimethylacetamide solution prepared so that lithium chloride was 8% by mass was added to the solid content, and the mixture was stirred with a stirrer. It was confirmed that it was visually dissolved. The solution in which cellulose was dissolved was filtered through a 0.45 μm filter, and the filtrate was used as a sample for gel permeation chromatography. The equipment and measurement conditions used are as follows.
Equipment: Tosoh HLC-8120
Column: TSKgel SuperAWM-H (6.0 mm ID x 15 cm) x 2 Detector: RI detector Eluent: N, N-dimethylacetamide (lithium chloride 0.2%)
Flow velocity: 0.6 mL / min Calibration curve: Pullulan conversion

[アルカリ可溶多糖類平均含有率]
アルカリ可溶多糖類含有率はセルロース繊維について非特許文献(木質科学実験マニュアル、日本木材学会編、92〜97頁、2000年)に記載の手法より、ホロセルロース含有率(Wise法)からαセルロース含有率を差し引くことで求めた。1つのサンプルにつき3回アルカリ可溶多糖類含有率を算出し、算出したアルカリ可溶多糖類含有率の数平均をセルロース繊維のアルカリ可溶多糖類平均含有率とした。
[Average content of alkali-soluble polysaccharides]
The alkali-soluble polysaccharide content is determined from the holocellulose content (Wise method) based on the method described in the non-patent literature (Wood Science Experiment Manual, edited by Japan Wood Society, pp. 92-97, 2000) for cellulose fibers. It was calculated by subtracting the content rate. The alkali-soluble polysaccharide content was calculated three times for each sample, and the number average of the calculated alkali-soluble polysaccharide content was taken as the average alkali-soluble polysaccharide content of the cellulose fiber.

≪繊維状物質(アラミド繊維 PA−Fiber)≫
市販のアラミド繊維として、ダイセルファインケム製のティアラKY400Sを使用した。
≪木粉≫
スギ木材をカッターミルにより2〜5mm程度に粉砕し、木粉を得た。
≪Fibrous substance (aramid fiber PA-Fiber) ≫
As a commercially available aramid fiber, Tiara KY400S manufactured by Daicel FineChem was used.
≪Wood flour≫
Sugi wood was crushed to about 2 to 5 mm with a cutter mill to obtain wood powder.

≪増粘剤≫
市販の増粘剤として、
ポリアクリルアミド MTアクアポリマー製のアコフロックN−104
カルボキシメチルセルロースナトリウム 東京化成工業製
ヒドロキシプロピルセルロース 東京化成工業製
ヒドロキシエチルセルロース 東京化成工業製
ポリアクリル酸 富士フイルム和光純薬製
ポリビニルアルコール 東京化成工業製
N−ビニルアセトアミド 東京化成工業製
ポリエチレンオキシド 明成化学製のアルコックスE−300
プロピレングリコール 東京化成工業製
可溶性でんぷん ナカライテスク製
グアーガム 東京化成工業製
ジェランガム ナカライテスク製
ゼラチン ナカライテスク製
アルギン酸ナトリウム ナカライテスク製
を使用した。
≪Thickener≫
As a commercially available thickener
Akovloc N-104 made of polyacrylamide MT aquapolymer
Carboxymethyl Cellulose Sodium Tokyo Chemical Industry Hydroxypropyl Cellulose Tokyo Chemical Industry Hydroxyethyl Cellulose Tokyo Chemical Industry Polyacrylic Acid Fujifilm Wako Pure Chemical Industries Polyvinyl Alcohol Tokyo Chemical Industry N-Vinyl Acetamide Tokyo Chemical Industry Polyethylene Oxide Al Cox E-300
Propylene Glycol Soluble starch made by Tokyo Chemical Industry Guar gum made by Nacalai Tesque Guar gum made by Tokyo Chemical Industry Gellan gum made by Nacalai Tesque Gelatin made by Nacalai Tesque Sodium alginate made by Nacalai Tesque was used.

≪粒子状成分≫
市販の粒子状成分として、球状シリカ スノーテックス(親水性、50nm) 日産化学製を使用した。
≪Particular component≫
Spherical silica Snowtex (hydrophilic, 50 nm) manufactured by Nissan Chemical Industries, Ltd. was used as a commercially available particulate component.

≪界面活性剤≫
市販の界面活性剤としてPEG−PPG GL−3000 三洋化成製、硬化ひまし油エーテル RCW−20 青木油脂製を使用した。
≪Surfactant≫
As a commercially available surfactant, PEG-PPG GL-3000 manufactured by Sanyo Chemical Industries, Ltd. and hardened castor oil ether RCW-20 manufactured by Aoki Oil & Fat Co., Ltd. were used.

≪繊維状物質分散液の調製と評価≫
得られた繊維状物質と蒸留水と上記市販の増粘剤、粒子状成分、界面活性剤とを表1及び2に示す割合で混合した後、300rpmで回転する撹拌羽で1時間撹拌して、繊維状物質分散液を調製した。
≪Preparation and evaluation of fibrous material dispersion ≫
The obtained fibrous substance, distilled water, and the above-mentioned commercially available thickener, particulate component, and surfactant are mixed at the ratios shown in Tables 1 and 2, and then stirred for 1 hour with a stirring blade rotating at 300 rpm. , A fibrous substance dispersion was prepared.

[沈降度α]
得られた繊維状物質分散液に、繊維状物質が0.05質量%になるよう蒸留水を添加して試験用分散液を調製した。試験用分散液20mlを30ml容量のガラスバイアルに分取した後、ホモジナイザー(回転数10000rpm、1分間)で分散させ、その後素早く試験用分散液8mlを15ml容量のネジ口試験管(内径12mm)に入れて密封し、手動で振り混ぜて分散液を一様にした。このときの分散液の波長850nmにおける透過度(以下、初期透過度ともいう。)を、液中分散安定性評価装置 Turbiscan(FORMULACTION社製)を用いて測定した。また、この試験管を23℃で24時間静置した後、分散液の底面から分離界面までの高さと、分散液底面から分散液上面までの高さとを、上記液中分散安定性評価装置を用い、上記波長で透過度50%になる高さを分離界面と定義して測定し、下記式(1):
α=1−([A]/[B])・・・(1)
(式(1)中、[A]は分散液底面から分離界面までの高さであり、[B]は分散液底面から分散液上面までの高さである。)
に従って、沈降度αを求めた。なお、上記の透過度50%になる高さが画定されない場合には、上記初期透過度よりも透過度が高い領域を上澄部、低い領域を堆積部とし、上澄部と体積部との境界を分離界面と定義し、上記(1)に従って沈降度αを求めた。沈降度αが小さいほど、繊維状物質分散液としての安定性に優れ、後述するポンプでの供給安定性が良好で、分散液を移送する上での取り扱い性に優れるため、工業的に有用である。また、沈降度αが小さいほど、繊維状物質の分散性が良好であり、したがって樹脂組成物の機械特性(特に引張伸度及び引張強度)が良好である。
[Settlement α]
Distilled water was added to the obtained fibrous substance dispersion liquid so that the fibrous substance content was 0.05% by mass to prepare a test dispersion liquid. After dividing 20 ml of the test dispersion into a glass vial having a capacity of 30 ml, disperse it with a homogenizer (rotation speed 10000 rpm, 1 minute), and then quickly put 8 ml of the test dispersion into a 15 ml capacity screw cap test tube (inner diameter 12 mm). It was added, sealed, and manually shaken to homogenize the dispersion. The transmittance of the dispersion liquid at a wavelength of 850 nm (hereinafter, also referred to as initial transmittance) at this time was measured using a liquid dispersion stability evaluation device Turbiscan (manufactured by FORMULICION). Further, after allowing this test tube to stand at 23 ° C. for 24 hours, the height from the bottom surface of the dispersion liquid to the separation interface and the height from the bottom surface of the dispersion liquid to the top surface of the dispersion liquid are determined by the above-mentioned in-liquid dispersion stability evaluation device. The height at which the transmittance is 50% at the above wavelength is defined as the separation interface and measured.
α = 1-([A] / [B]) ... (1)
(In the formula (1), [A] is the height from the bottom surface of the dispersion liquid to the separation interface, and [B] is the height from the bottom surface of the dispersion liquid to the top surface of the dispersion liquid.)
Therefore, the degree of sedimentation α was determined. When the height at which the transmittance is 50% is not defined, the region having a higher transmittance than the initial transmittance is defined as the supernatant portion and the region having a lower transmittance is defined as the deposition portion, and the supernatant portion and the volume portion are used. The boundary was defined as the separation interface, and the sedimentation degree α was determined according to (1) above. The smaller the sedimentation degree α, the better the stability as a fibrous material dispersion liquid, the better the supply stability in the pump described later, and the better the handleability in transferring the dispersion liquid, so that it is industrially useful. is there. Further, the smaller the sedimentation degree α, the better the dispersibility of the fibrous substance, and therefore the better the mechanical properties (particularly the tensile elongation and the tensile strength) of the resin composition.

[分散性]
繊維状物質分散液を十分に撹拌した後、1滴(約0.3mL)をスライドグラス上に滴下し、2枚のスライドグラスで0.05MPaの力で挟みこむことで、配管内での圧搾を再現した。この方法で観察される直径(すなわち最大差し渡し長さ)1mm以上の凝集体の個数により、分散性を評価した。
A・・・0個
B・・・1個
C・・・2〜10個
D・・・11個以上
[Dispersiveness]
After sufficiently stirring the fibrous substance dispersion, one drop (about 0.3 mL) is dropped on a slide glass, and the two slide glasses are sandwiched with a force of 0.05 MPa to squeeze in the pipe. Was reproduced. Dispersibility was evaluated by the number of aggregates having a diameter (that is, the maximum transfer length) of 1 mm or more observed by this method.
A ... 0 pieces B ... 1 piece C ... 2-10 pieces D ... 11 pieces or more

[供給量及び濃度安定性]
配管内径5mmのチューブポンプを用い、移送条件を、蒸留水を150g/minで移送する回転数として、配管径10mmの樹脂配管への繊維状物質分散液の移送を行い、吐出物を容器に受け、その濃度及び供給量(g/min)を1分ごとに計測し、供給量安定性及び濃度安定性を以下の基準で評価した。
(供給量安定性)
A・・・30分間の運転でポンプの詰まりが無く、供給量の標準偏差が5%以内
B・・・30分間の運転でポンプの詰まりが無く、供給量の標準偏差が5%超10%以内
C・・・5〜30分の運転でポンプが詰まる若しくは、供給量の標準偏差が10%超50%以内
D・・・5分未満でポンプが詰まり、運転不能
(濃度安定性)
A・・・濃度の標準偏差が5%以内
B・・・濃度の標準偏差が5%超10%以内
C・・・濃度の標準偏差が10%超30%以内
D・・・濃度の標準偏差が30%超
[Supply and concentration stability]
Using a tube pump with an inner diameter of 5 mm, the transfer condition is set to the number of revolutions at which distilled water is transferred at 150 g / min, and the fibrous substance dispersion is transferred to the resin pipe with a pipe diameter of 10 mm, and the discharged material is received in the container. , The concentration and the supply amount (g / min) were measured every minute, and the supply amount stability and the concentration stability were evaluated according to the following criteria.
(Supply stability)
A: Pump is not clogged after 30 minutes of operation, and the standard deviation of supply is within 5%. B: Pump is not clogged after 30 minutes of operation, and the standard deviation of supply is more than 5% and 10%. Within C: The pump is clogged after 5 to 30 minutes of operation, or the standard deviation of the supply amount is more than 10% and within 50%. D: The pump is clogged in less than 5 minutes and cannot be operated (concentration stability).
A ... Concentration standard deviation within 5% B ... Concentration standard deviation over 5% and within 10% C ... Concentration standard deviation over 10% and within 30% D ... Concentration standard deviation Is over 30%

≪樹脂組成物の調製と評価≫
繊維状物質分散液をプラネタリーミキサー(プライミクス株式会社、商品名「ハイビスミックス2P−1」)中で50rpm、10分間、25℃、大気圧で撹拌処理した後、ジャケット温度80℃、−0.1MPaの減圧条件、50rpmで8時間減圧乾燥処理を行い、繊維状物質乾燥体を得た。
≪Preparation and evaluation of resin composition≫
The fibrous substance dispersion was stirred in a planetary mixer (Primix Corporation, trade name "Hibismix 2P-1") at 50 rpm, 10 minutes, 25 ° C., and atmospheric pressure, and then the jacket temperature was 80 ° C., −0. A dried fibrous substance was obtained by performing a vacuum drying treatment at 50 rpm for 8 hours under a reduced pressure condition of 1 MPa.

得られた繊維状物質と熱可塑性樹脂とをシリンダーブロック数が13個ある二軸押出機(STEER社製 OMEGA30H、L/D=60)を用いて表1及び2に示す割合で下記条件で溶融混練し、繊維状物質強化熱可塑性樹脂のペレットを得た。
(溶融混練条件)
回転数:300rpm
シリンダー温度:250℃(実施例35及び比較例15以外について)又は200℃(実施例35及び比較例15について)
The obtained fibrous material and thermoplastic resin are melted under the following conditions at the ratios shown in Tables 1 and 2 using a twin-screw extruder (OMEGA30H manufactured by STEER, L / D = 60) having 13 cylinder blocks. The mixture was kneaded to obtain pellets of a fibrous material-reinforced thermoplastic resin.
(Melting and kneading conditions)
Rotation speed: 300 rpm
Cylinder temperature: 250 ° C (other than Example 35 and Comparative Example 15) or 200 ° C (for Example 35 and Comparative Example 15)

[引張降伏強度、引張降伏伸度(TEy)、引張破断伸度(TEb)]
最大型締圧力75トンの射出成形機を用いて、ISO294−3に準拠した多目的試験片を成形し、JIS K6920−2に準拠した条件でn=10で実施した。なお、ポリアミド樹脂は、吸湿による変化が起きるため、成形直後にアルミ防湿袋に保管し、吸湿を抑制した。
引張降伏伸度(TEy)と引張破断伸度(TEb)との比[TEb/TEy]を算出した。
[Tensile yield strength, tensile yield elongation (TEy), tensile elongation at break (TEb)]
A multipurpose test piece compliant with ISO294-3 was molded using an injection molding machine with a maximum mold clamping pressure of 75 tons, and carried out at n = 10 under the conditions compliant with JIS K6920-2. Since the polyamide resin changes due to moisture absorption, it was stored in an aluminum moisture-proof bag immediately after molding to suppress moisture absorption.
The ratio [TEb / TEy] of the tensile yield elongation (TEy) and the tensile elongation at break (TEb) was calculated.

表1及び2から明らかなように、実施例1〜28で得られた繊維状物質分散液は、増粘剤を含む繊維状物質分散液であって繊維状物質が高度に分散しているため、分散性に加えて、ポンプ移送時の供給量及び供給濃度の安定性に優れていた。一方、比較例1〜8の繊維状物質分散液は、繊維状物質が低濃度であっても移送時の供給量や濃度が安定せず、ポンプ内での詰まりが発生し、繊維状物質が高濃度になると、送液ができない状態となった。 As is clear from Tables 1 and 2, the fibrous substance dispersions obtained in Examples 1 to 28 are fibrous substance dispersions containing a thickener, and the fibrous substances are highly dispersed. In addition to the dispersibility, the stability of the supply amount and supply concentration during pump transfer was excellent. On the other hand, in the fibrous substance dispersions of Comparative Examples 1 to 8, even if the fibrous substance has a low concentration, the supply amount and concentration at the time of transfer are not stable, clogging occurs in the pump, and the fibrous substance is present. When the concentration became high, it became impossible to send the liquid.

表3から明らかなように、実施例29〜40で得られた繊維状物質強化熱可塑性樹脂は、増粘剤による保水効果により、繊維状物質の凝集が抑制され、繊維状物質が高度に分散しているために、引張強度及び引張伸度に優れていた。一方、比較例9〜15の繊維状物質強化熱可塑性樹脂は、繊維状物質の分散が不十分であるために、いずれも実施例よりも劣る引張強度及び引張伸度であった。 As is clear from Table 3, the fibrous material-reinforced thermoplastic resins obtained in Examples 29 to 40 suppress the aggregation of the fibrous material due to the water-retaining effect of the thickener, and the fibrous material is highly dispersed. Therefore, it was excellent in tensile strength and tensile elongation. On the other hand, the fibrous material-reinforced thermoplastic resins of Comparative Examples 9 to 15 had inferior tensile strength and tensile elongation as those of the examples due to insufficient dispersion of the fibrous material.

Figure 2021066780
Figure 2021066780

Figure 2021066780
Figure 2021066780

Figure 2021066780
Figure 2021066780

本開示の繊維状物質分散液は、繊維状物質の高度の分散によって高い強度を樹脂成形体に与えることができるため、例えば自動車の内装材料及び外装材料用途等の分野で好適に利用できる。 Since the fibrous substance dispersion liquid of the present disclosure can impart high strength to the resin molded product by highly dispersing the fibrous substance, it can be suitably used in fields such as automobile interior materials and exterior materials.

Claims (19)

分散媒100質量部と、
前記分散媒中に分散している繊維状物質0.01〜20質量部と、
を含む繊維状物質分散液であって、
前記繊維状物質がセルロース繊維であり、
前記繊維状物質分散液から調製された試験用分散液の、下記式(1):
α=1−([A]/[B])・・・(1)
(式(1)中、[A]は分散液底面から分離界面までの高さであり、[B]は分散液底面から分散液上面までの高さである。)
に従って求められる沈降度αが、80%以下であり、
前記試験用分散液は、前記繊維状物質分散液中の前記繊維状物質の濃度が0.05質量%である場合には前記繊維状物質分散液自体であり、前記濃度が0.05質量%でない場合には、前記濃度が0.05質量%となるように前記繊維状物質分散液が濃縮又は前記分散媒と同じ分散媒で希釈されて調製されている、繊維状物質分散液。
With 100 parts by mass of dispersion medium,
0.01 to 20 parts by mass of fibrous material dispersed in the dispersion medium,
It is a fibrous substance dispersion liquid containing
The fibrous substance is a cellulose fiber,
The test dispersion prepared from the fibrous substance dispersion has the following formula (1):
α = 1-([A] / [B]) ... (1)
(In the formula (1), [A] is the height from the bottom surface of the dispersion liquid to the separation interface, and [B] is the height from the bottom surface of the dispersion liquid to the top surface of the dispersion liquid.)
The sedimentation degree α obtained according to the above is 80% or less.
When the concentration of the fibrous substance in the fibrous substance dispersion liquid is 0.05% by mass, the test dispersion liquid is the fibrous substance dispersion liquid itself, and the concentration is 0.05% by mass. If not, the fibrous substance dispersion is prepared by concentrating or diluting the fibrous substance dispersion with the same dispersion medium as the dispersion medium so that the concentration becomes 0.05% by mass.
前記分散媒100質量部に対して、増粘剤0.0001〜2質量部を更に含み、
前記繊維状物質の数平均繊維径が、1〜1000nmである、請求項1に記載の繊維状物質分散液。
To 100 parts by mass of the dispersion medium, 0.0001 to 2 parts by mass of a thickener was further contained.
The fibrous material dispersion liquid according to claim 1, wherein the number average fiber diameter of the fibrous material is 1 to 1000 nm.
増粘剤が、ポリアクリルアミド、ポリアルキレンオキシド、ポリアクリル酸及びその塩、セルロース誘導体、ポリビニルアルコール、プロピレングリコール、アルギン酸及びその塩、からなる群から選択される1種以上である、請求項2に記載の繊維状物質分散液。 The thickener is at least one selected from the group consisting of polyacrylamide, polyalkylene oxide, polyacrylic acid and salts thereof, cellulose derivatives, polyvinyl alcohol, propylene glycol, alginic acid and salts thereof, according to claim 2. The fibrous substance dispersion liquid described. 前記繊維状物質の表面が疎水性である、請求項1〜3のいずれか一項に記載の繊維状物質分散液。 The fibrous substance dispersion liquid according to any one of claims 1 to 3, wherein the surface of the fibrous substance is hydrophobic. 繊維状物質がセルロースナノファイバーである、請求項1〜4のいずれか一項に記載の繊維状物質分散液。 The fibrous substance dispersion liquid according to any one of claims 1 to 4, wherein the fibrous substance is cellulose nanofibers. 前記セルロースナノファイバーが、重量平均分子量(Mw)100000以上、及び重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)6以下を有する、請求項5に記載の繊維状物質分散液。 The fibrous form according to claim 5, wherein the cellulose nanofibers have a weight average molecular weight (Mw) of 100,000 or more and a ratio (Mw / Mn) of 6 or less of the weight average molecular weight (Mw) to the number average molecular weight (Mn). Material dispersion. 前記セルロースナノファイバーが、アルカリ可溶多糖類平均含有率12質量%以下、及び結晶化度60%以上を有する、請求項5又は6に記載の繊維状物質分散液。 The fibrous substance dispersion liquid according to claim 5 or 6, wherein the cellulose nanofibers have an average content of alkali-soluble polysaccharides of 12% by mass or less and a crystallinity of 60% or more. 前記セルロースナノファイバーの酸不溶成分平均含有率が10質量%以下である、請求項5〜7のいずれか一項に記載の繊維状物質分散液。 The fibrous substance dispersion according to any one of claims 5 to 7, wherein the average content of acid-insoluble components of the cellulose nanofibers is 10% by mass or less. 分散媒が水である、請求項1〜8のいずれか一項に記載の繊維状物質分散液。 The fibrous substance dispersion liquid according to any one of claims 1 to 8, wherein the dispersion medium is water. 粒子状成分を含む、請求項1〜9のいずれか一項に記載の繊維状物質分散液。 The fibrous substance dispersion liquid according to any one of claims 1 to 9, which contains a particulate component. エマルションである、請求項10に記載の繊維状物質分散液。 The fibrous substance dispersion liquid according to claim 10, which is an emulsion. 界面活性剤を含む、請求項1〜11のいずれか一項に記載の繊維状物質分散液。 The fibrous substance dispersion liquid according to any one of claims 1 to 11, which contains a surfactant. 分散媒と、前記分散媒中に分散している繊維状物質とを含む繊維状物質分散液の送液性を向上させる方法であって、
前記方法は、
前記繊維状物質分散液から調製された試験用分散液の、下記式(1):
α=1−([A]/[B])・・・(1)
(式(1)中、[A]は分散液底面から分離界面までの高さであり、[B]は分散液底面から分散液上面までの高さである。)
に従って求められる沈降度αが、80%以下となるように、前記繊維状物質分散液に増粘剤を含有させることを含み、
前記試験用分散液は、前記繊維状物質分散液中の前記繊維状物質の濃度が0.05質量%である場合には前記繊維状物質分散液自体であり、前記濃度が0.05質量%でない場合には、前記濃度が0.05質量%となるように前記繊維状物質分散液を濃縮又は前記分散媒と同じ分散媒で希釈されて調製されている、方法。
A method for improving the liquid transfer property of a fibrous substance dispersion liquid containing a dispersion medium and a fibrous substance dispersed in the dispersion medium.
The method is
The test dispersion prepared from the fibrous substance dispersion has the following formula (1):
α = 1-([A] / [B]) ... (1)
(In the formula (1), [A] is the height from the bottom surface of the dispersion liquid to the separation interface, and [B] is the height from the bottom surface of the dispersion liquid to the top surface of the dispersion liquid.)
The fibrous material dispersion liquid contains a thickener so that the sedimentation degree α obtained according to the above is 80% or less.
When the concentration of the fibrous substance in the fibrous substance dispersion liquid is 0.05% by mass, the test dispersion liquid is the fibrous substance dispersion liquid itself, and the concentration is 0.05% by mass. If not, the method is prepared by concentrating the fibrous substance dispersion liquid or diluting it with the same dispersion medium as the dispersion medium so that the concentration becomes 0.05% by mass.
樹脂100質量部と、平均繊維径1〜1000nmの繊維状物質0.001〜50質量部と、増粘剤0.00001〜5質量部とを含む、樹脂組成物。 A resin composition containing 100 parts by mass of a resin, 0.001 to 50 parts by mass of a fibrous substance having an average fiber diameter of 1 to 1000 nm, and 0.00001 to 5 parts by mass of a thickener. 前記樹脂が熱可塑性樹脂である、請求項14に記載の樹脂組成物。 The resin composition according to claim 14, wherein the resin is a thermoplastic resin. 引張降伏伸度(TEy)と引張破断伸度(TEb)とが、下記関係式:
[TEb/TEy]≧1
を満たす、請求項14又は15に記載の樹脂組成物。
The tensile yield elongation (TEy) and the tensile elongation at break (TEb) are the following relational expressions:
[TEb / TEy] ≧ 1
The resin composition according to claim 14 or 15.
前記増粘剤を含まない他は同組成の比較の樹脂組成物と比較して、引張強度が1.01倍以上に向上している、請求項14〜16のいずれか一項に記載の樹脂組成物。 The resin according to any one of claims 14 to 16, wherein the tensile strength is improved by 1.01 times or more as compared with the comparative resin composition having the same composition except that the thickener is not contained. Composition. 熱可塑性樹脂と繊維状物質とを含む樹脂組成物の製造方法であって、
請求項1〜12のいずれか一項に記載の繊維状物質分散液を調製することと、
前記繊維状物質分散液と前記熱可塑性樹脂とを溶融混練することと、
を含む、方法。
A method for producing a resin composition containing a thermoplastic resin and a fibrous substance.
To prepare the fibrous substance dispersion liquid according to any one of claims 1 to 12,
Melting and kneading the fibrous material dispersion and the thermoplastic resin,
Including methods.
熱可塑性樹脂と繊維状物質とを含む樹脂組成物の製造方法であって、
請求項1〜12のいずれか一項に記載の繊維状物質分散液を調製することと、
前記繊維状物質分散液を乾燥させて乾燥体を調製することと、
前記乾燥体と前記熱可塑性樹脂とを溶融混練することと、
を含む、方法。
A method for producing a resin composition containing a thermoplastic resin and a fibrous substance.
To prepare the fibrous substance dispersion liquid according to any one of claims 1 to 12,
To prepare a dried product by drying the fibrous substance dispersion liquid,
Melting and kneading the dried product and the thermoplastic resin,
Including methods.
JP2019191935A 2019-10-21 2019-10-21 Fibrous substance fluid dispersion, and fiber-reinforced resin composition Pending JP2021066780A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019191935A JP2021066780A (en) 2019-10-21 2019-10-21 Fibrous substance fluid dispersion, and fiber-reinforced resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019191935A JP2021066780A (en) 2019-10-21 2019-10-21 Fibrous substance fluid dispersion, and fiber-reinforced resin composition

Publications (1)

Publication Number Publication Date
JP2021066780A true JP2021066780A (en) 2021-04-30

Family

ID=75636652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019191935A Pending JP2021066780A (en) 2019-10-21 2019-10-21 Fibrous substance fluid dispersion, and fiber-reinforced resin composition

Country Status (1)

Country Link
JP (1) JP2021066780A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024080299A1 (en) * 2022-10-14 2024-04-18 旭化成株式会社 Cellulose fibers, and products using said cellulose fibers

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011524476A (en) * 2008-06-17 2011-09-01 アクゾ ノーベル ナムローゼ フェンノートシャップ Cellulose products
JP2017048293A (en) * 2015-09-01 2017-03-09 株式会社スギノマシン Cellulose nanofiber dispersion, method for producing the same and cellulose nanofiber film
JP2017145391A (en) * 2016-02-18 2017-08-24 スターライト工業株式会社 Cellulose nanofiber dispersion and method for producing cellulose nanofiber dispersion
WO2019088014A1 (en) * 2017-10-31 2019-05-09 ユニチカ株式会社 Resin composition for molding material of fused deposition molding 3d printer, and filament-shaped molded body thereof
WO2019123191A1 (en) * 2017-12-19 2019-06-27 Stora Enso Oyj A method to produce a fibrous product comprising microfibrillated cellulose

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011524476A (en) * 2008-06-17 2011-09-01 アクゾ ノーベル ナムローゼ フェンノートシャップ Cellulose products
JP2017048293A (en) * 2015-09-01 2017-03-09 株式会社スギノマシン Cellulose nanofiber dispersion, method for producing the same and cellulose nanofiber film
JP2017145391A (en) * 2016-02-18 2017-08-24 スターライト工業株式会社 Cellulose nanofiber dispersion and method for producing cellulose nanofiber dispersion
WO2019088014A1 (en) * 2017-10-31 2019-05-09 ユニチカ株式会社 Resin composition for molding material of fused deposition molding 3d printer, and filament-shaped molded body thereof
WO2019123191A1 (en) * 2017-12-19 2019-06-27 Stora Enso Oyj A method to produce a fibrous product comprising microfibrillated cellulose

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
南井宣明 他: "増粘剤", 色材, vol. 66, JPN7023003801, 1993, pages 434 - 444, ISSN: 0005169473 *
熊谷明夫 他: "沈降法によるセルロースナノファイバーの評価", 紙パ技協誌, vol. 第73巻第5号, JPN7023001368, May 2019 (2019-05-01), pages 66 - 73, ISSN: 0005169475 *
近藤哲男: "セルロースナノファイバーの応用技術の発掘", 研究開発リーダー, vol. 10, no. 10, JPN7023001369, 2014, pages 43 - 49, ISSN: 0005169474 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024080299A1 (en) * 2022-10-14 2024-04-18 旭化成株式会社 Cellulose fibers, and products using said cellulose fibers

Similar Documents

Publication Publication Date Title
JP6688438B1 (en) High heat resistant resin composite containing chemically modified cellulose fine fibers
JP2021169579A (en) Dried cellulose fiber and method for producing the same, and method for producing resin composite
JP7488096B2 (en) Dried cellulose fiber body, its manufacturing method, and manufacturing method of resin composite
JP2021169578A (en) Method for producing dried cellulose fiber and method for producing resin composite
JP7385625B2 (en) Composite particles and resin compositions
JP2021127383A (en) Cellulose nanofiber dried solid body and manufacturing method of cellulose nanofiber redispersion liquid
JP7444669B2 (en) Composite particles containing fine cellulose fibers and resin compositions containing composite particles
JP7411378B2 (en) Cellulose resin composition
JP2021187885A (en) Cellulose resin composition and method for producing the same
JP2021066780A (en) Fibrous substance fluid dispersion, and fiber-reinforced resin composition
JP2022003120A (en) Cellulose resin composition and method for producing the same
JP6937817B2 (en) Cellulose composition
JP2022001631A (en) Manufacturing method of dry powder of cellulose fiber
JP2021070747A (en) Cellulose nanofiber powder and method for producing the same
JP7342142B2 (en) Cellulose resin composition
JP7547040B2 (en) Fine cellulose fiber and resin composite
JP7564943B2 (en) Polyacetal resin composition and its manufacturing method
JP2020204112A (en) Chemically-modified cellulose fiber
JP2024101346A (en) Method for producing chemical modification fine cellulose fiber
JP2024077608A (en) Resin composition and production method of the same
WO2022260175A1 (en) Resin composition and method for producing same
JP2022128430A (en) Method for producing esterified cellulose nanofiber and resin composition
JP2022158112A (en) Method for producing resin composition
CN117413027A (en) Resin composition and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231010

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240312

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20241029