以下、本発明の一実施形態に係るガスバリア性組成物、ガスバリア材、及び積層体について説明する。
<ガスバリア組成物>
本実施形態のガスバリア性組成物は、3枚以上の平板状アルミナにより形成され、前記平板状アルミナが固着したカードハウス構造を有し、平均粒子径が3〜1000μmであるアルミナ粒子を含有する。
本実施形態のガスバリア性組成物に含まれるアルミナ粒子は、上記構成を有することから、球状のアルミナ粒子で構成されるガスバリア性組成物と比較して高いガスバリア性を有する。
次いで、本実施形態のガスバリア性組成物に含まれる各構成成分について、以下に詳細を説明する。
<カードハウス構造を有するアルミナ粒子>
カードハウス構造を有するアルミナ粒子は、3枚以上の平板状アルミナにより形成され、前記平板状アルミナが互いに固着したカードハウス構造を有する。以下、カードハウス構造を有するアルミナ粒子を、単にアルミナ粒子と略記することがある。平板状とは、例えば、立体的には六面体の板の形であって、二次元の投影面の形状が角が四つの典型的な四角形であるか(四角板状)、または二次元の投影面の形状が角が五つ以上の多角形(以下、後者を多角板状と称する場合がある)を例示できる。実施形態のアルミナ粒子は、カリウムを含んでいてもよい。実施形態のアルミナ粒子は、ムライト及び/又はゲルマニウム化合物を含んでいてもよい。アルミナ粒子がカードハウス構造を有することで、カードハウス構造を構成する平板状アルミナ由来の内部構造を有することにより、ガスバリア性が効果的に発揮される。
アルミナ粒子の形態は、走査型電子顕微鏡(SEM)により確認することができる。カードハウス構造とは、例えば板状粒子が配向せず複雑に配置した構造であるものを言う。本明細書における「カードハウス構造」とは、3枚以上の平板状アルミナにより形成され、前記平板状アルミナが互いに固着したものを言い(例えば、図1参照)、例えば、3枚以上の平板状アルミナが、2箇所以上の複数箇所で交差し集合したものであり、交差した互いの前記平板状アルミナの面方向は無秩序に配置された状態のことであってよい(図2参照)。交差する位置は平板状アルミナの如何なる位置であっても構わない。無秩序に配置された状態とは、互いの面が交差する向きがX軸、Y軸、Z軸何れの方位においても制限がなく、また、互いの面が交差する角度は如何なる角度であっても構わないことをいう。「平板状アルミナ」の詳細については後に詳記する。
必要とするアルミナ粒子の平均粒子径により異なるが、ガスバリア性組成物として用いる場合は、一つのアルミナ粒子当たりに含まれる平板状アルミナの枚数は、例えば3〜10000枚、中でも10〜5000枚、特に15〜3000枚であることが、性能上でも容易に製造できる上でも好ましい。
平板状アルミナの交差は、3枚以上の平板状アルミナが、何らかの相互作用、例えば、焼成工程により結晶形成する過程で固着して集合したことで発現する。結果として貫入型に見える場合もある。平板状アルミナが互いに強固に固着することでカードハウス構造の強度が増すことになる。
また、交差とは、2つ以上の面が一つの箇所で交わることを表わし、互いの面が交わる位置・径・面積等に制限はない。また、交差した箇所を起点とした面の方位数は3方位であっても、4方位以上であっても構わない。
また、当カードハウス構造に含まれる平板状アルミナ自体の面の長径、短径、および厚みは如何なるサイズでも良い。また、複数のサイズの平板状アルミナを含むものでも良い。
上記した通り、平板状アルミナは、四角板状のアルミナ、または多角板状のアルミナであっても良い。単一のアルミナ粒子内において、四角板状のアルミナと多角板状のアルミナが片方のみ存在しても、両方存在しても構わず、その比率においても制限は無い。
また、カードハウス構造以外に、2枚の平板状アルミナが交差した略X字型(双晶アルミナ粒子と呼ばれる場合がある。図1参照。)、略T字型、略L字型などの粒子や、1枚からなる平板状アルミナを、如何なる状態で含んでいても構わない。優れた流動性を得るためには、これらの含有割合は少ない方が好ましく、3枚以上の平板状アルミナにより形成され、前記平板状アルミナが互いに固着したカードハウス構造を有するアルミナ粒子の含有割合が、重量基準又は個数基準で80%以上が好ましい。より好ましくは90%以上であり、さらに好ましくは95%以上である。双晶や1枚の平板状アルミナは篩分級、風力分級など、一般的な分級操作で容易に含有割合を調整することが可能である。
カードハウス構造を有するアルミナ粒子は、その特異な構造上、圧壊強度が非常に高く、外部応力が加わっても容易には圧壊しない。これにより、ガスバリア性組成物と配合した際、アルミナ粒子自体の異方性に基づく流動性不良が起こり難い。従って、アルミナ粒子が本来もつ機能を存分に引き出せる上に、その構造上、長手方向だけでなく、厚み方向に対しても優れた機械強度、ガスバリア性等を発現できる。
アルミナ粒子は、その特異な構造に基づき、粉体としての流動性に優れ、工業製品として応用する為の、ホッパーやフィーダー等、機械搬送の際に用いる供給機の吐出を上げる事が可能となる。アルミナ粒子は、その特有の構造により内部に空隙を持つ為、かさ比重は板状アルミナ粒子と大きくは変わらないが、板状アルミナ粒子と比較し、球形度が高くかつ上述の通り圧壊強度が高く壊れにくいものである為、アルミナ粒子の転がりによる搬送のし易さに与える効果が高いと推測される。
アルミナ粒子は、カードハウス構造を有する。カードハウス構造は上記説明したとおりである。このアルミナ粒子は、好ましくは平板状アルミナが四角形以上の多角形状であって、隣接するアルミナ粒子の少なくとも一部が互いに接触している状態であり、より好ましくは平板状アルミナが五角形以上の多角板状であって、隣接するアルミナ粒子の少なくとも一部が互いに接触しているである。
[結晶形・α結晶化率]
アルミナ粒子は酸化アルミニウムであり、結晶形は特に制限されず、例えば、γ、δ、θ、κ等の各種の結晶形の遷移アルミナであっても、または遷移アルミナ中にアルミナ水和物を含んでいるものであっても良いが、より機械的な強度に優れる点で、基本的にα結晶形であることが好ましい。
アルミナ粒子のα結晶化率は、XRD測定により求めることができる。
例えば、後述する広角X線回折(XRD)装置(リガク社製、Ultima IV)を用い、作製した試料を測定試料用ホルダーにのせセットし、Cu/Kα線、40kV/30mA、スキャンスピード1.0°/分、走査範囲5〜80°の条件で測定し、ベースラインに対するα−アルミナのピークの強度比からα結晶化度を求める。α結晶化率は焼成条件や使用する原料により異なり、アルミナ粒子の圧壊強度及び流動性を向上させるとの観点からは、α結晶化率が90%以上であることが好ましく、更に好ましくは95%以上である。なお、測定に供する試料は、アルミナ粒子であっても、何らかの機械処理によりカードハウス構造を解して得た平板状アルミナであっても良い。
[平均粒子径]
カードハウス構造を有するアルミナ粒子の平均粒子径は、その構造が形成できる範囲においては如何なるサイズでも構わないが、流動性に優れ、ガスバリア性が向上するという点においては平均粒子径3μm以上であり、10μm以上が好ましい。また、サイズが大きすぎるとコーティング剤及び接着剤の塗膜において、カードハウス構造が露出することによる外観不良を起こす可能性がある為、平均粒子径1000μm以下であり、300μm以下が好ましく、100μm以下がより好ましい。
上記数値の数値範囲の一例としては、3μm以上300μm以下であり、10μm以上100μm以下であってもよい。
なお、本明細書において「アルミナ粒子の平均粒子径」とは、レーザー回折式乾式粒度分布計により測定された体積基準の累積粒度分布から、体積基準メジアン径D50として算出された値とする。
[最大粒子径]
また、アルミナ粒子の体積基準の最大粒子径(本明細書では、以下、単に「最大粒子径」と記載する場合がある。)は特に限定されるものではないが、通常3000μm以下であり、好ましくは1000μm以下、より好ましくは500μm以下である。
アルミナ粒子の最大粒子径が、上記上限より大きいと、コーティング剤及び接着剤の塗膜 の表面にアルミナ粒子が突出して、外観不良を引き起こす恐れがあるため好ましくない。
尚、ここでいうアルミナ粒子の平均粒子径および最大粒子径は、3枚以上の平板状アルミナにより形成され、前記平板状アルミナが互いに固着したカードハウス構造を有するアルミナ粒子そのものをレーザー回折式粒度分布計を用いて測定した乾式法により求めた値である。
また、上記平均粒径及び最大粒子径は、例えば、これを適当な溶剤に分散させ、具体的には、分散安定剤としてヘキサメタリン酸ナトリウム等を含有する純水媒体中にアルミナ粒子を分散させた試料を、レーザー回折/散乱式粒度分布測定装置にて測定する、湿式法により推測することもできる。
[平板状アルミナのアスペクト比]
平板状アルミナは、多角板状であり、かつ厚みに対する粒子径の比率であるアスペクト比が2〜500であることが好ましい。アスペクト比が2以上であると、平板状アルミナ特有の性能を保持した状態でのカードハウス構造の形成に有利であり好ましく、アスペクト比が500以下であると、アルミナ粒子の平均粒子径の調整が容易に行える上、コーティング剤及び接着剤の塗膜において、カードハウス構造が露出することによる外観不良の発生や機械的強度低下が抑制でき、好ましい。より好ましくは、アスペクト比が5〜300、更に好ましくは7〜100であり、特に好ましくは7〜50である。アスペクト比が7〜100であると、平板状アルミナの熱的特性や輝度をはじめとする光学特性に優れ、かつ流動性及びガスバリア性の高いカードハウス構造を有するアルミナ粒子が得られ、実用性の点で好ましい。
なお、本明細書において、平板状アルミナの厚みは、走査型電子顕微鏡(SEM)を用いて、10個の厚みを測定した平均値を採用するものとする。
また、平板状アルミナの粒子径は、板の輪郭線上の2点間の距離のうち、最大の長さの算術平均値を意味し、その値は走査型電子顕微鏡(SEM)を用いて測定された値を採用するものとする。
平板状アルミナの長径の値は、任意の100個の平板状アルミナ粒子の長径を走査型電子顕微鏡(SEM)により得られたイメージから測定、算出された値を意味する。
尚、平板状アルミナの長径を求める方法は、例えば、アルミナ粒子をSEMで観察し、アルミナ粒子中央に位置する平板状アルミナの最大の長さを測定する方法を用いる。あるいは、アルミナ粒子に風力分級操作を行うことで得られる単片の最大の長さを、SEMで測定する方法を用いても良い。または、平板状アルミナ自体を破壊しない条件下において、何らかの機械処理によりカードハウス構造を解して単片を得て、SEMで最大の長さを測定する方法を用いても良い。
また、カードハウス構造を有するアルミナ粒子は、例えば、平均粒子径3μm以上1000μm以下が好ましいことから、それを構成する、平板状アルミナは、例えば、厚みが0.01μm〜5μm、長径が0.1μm〜500μm、厚みに対する長径の比率であるアスペクト比が2〜500であることが好ましい。なかでも、このアルミナ粒子をガスバリア性組成物として用いる場合には、その使い勝手が良好なことから、平板状アルミナの厚みが0.03μm〜3μmであり、長径が0.5μm〜100μmであり、アスペクト比が5〜300であることがより好ましい。更に好ましくは、平板状アルミナの厚みが0.1μm〜3μmであり、長径が1μm〜30μmであり、アスペクト比が7〜100である。
[珪素・ゲルマニウム]
また、カードハウス構造を有するアルミナ粒子は、珪素(珪素原子及び/又は無機珪素化合物)及び/又はゲルマニウム(ゲルマニウム原子及び/又は無機ゲルマニウム化合物)を含有していることが好ましく、なかでも、珪素及び/又はゲルマニウムを、当該平板状アルミナの表面に含有しているものが好ましい。特に、表面に局在的に含有している方が、それを内部に含有しているよりも、より少量で、例えばバインダーとの親和性を効果的に向上させるためには好ましい。
当該珪素及びゲルマニウムは、後述するアルミナ粒子の製造方法において、形状制御剤として用いた珪素、珪素化合物、及びゲルマニウム化合物に由来するものであってよい。
アルミナ粒子が含む珪素は、珪素単体であってもよく、珪素化合物中の珪素であってもよい。実施形態に係る平板状アルミナ粒子は、珪素又は珪素化合物として、ムライト、Si、SiO2、SiO、及びアルミナと反応して生成した珪酸アルミニウムからなる群から選択される少なくとも一種を含んでいてもよく、上記物質を表層に含んでいてもよい。ムライトについては、後述する。
珪素及び/又はゲルマニウムを含む平板状アルミナの、表面にどの程度の量、珪素及び/又はゲルマニウムが偏在しているかについては、例えば、蛍光X線分析装置(XRF)を用いた分析、ならびに、X線光電子分光法(XPS)を用いた分析で測定することができる。
一般的に、蛍光X線分析法(XRF)はX線の照射により発生する蛍光X線を検出し、波長と強度を測定することにより材料のバルク組成の定量分析を行う手法である。また、一般的に、X線光電子分光法(XPS)は試料表面にX線を照射し、試料表面から放出される光電子の運動エネルギーを計測することで、試料表面を構成する元素組成の分析を行う手法である。珪素及び/又はゲルマニウムが、平板状アルミナの表面及びその近傍に偏って存在することは、具体的には、生成物のXRF分析結果により求められる[Si]/[Al]%(バルク、モル比)又は[Ge]/[Al]%(バルク、モル比)と比較し、XPS分析結果により求められる[Si]/[Al]%(表面)又は[Ge]/[Al]%(表面)は大きい値を示すか否かから推定できると考えられる。これは、珪素及び/又はゲルマニウムを配合することによって得られた平板状アルミナ表面は、珪素及び/又はゲルマニウムの量が、平板状アルミナの最内部と比較し多い事を意味するからである。尚、上記した様なXRF分析は、株式会社リガク製、Primus IV等を用いて行うことができる。また、XPS分析は、アルバックファイ社製、Quantera SXM等を用いて行うことができる。
アルミナ粒子としては、好ましくは、それを構成する平板状アルミナの表面に珪素原子及び/又は無機珪素化合物が局在的に含有しているのが良い。XPS分析において、Alに対するSiのモル比[Si]/[Al]の値が、0.001以上であることが好ましく、0.01以上であることがより好ましく、0.02以上であることがさらに好ましく、0.1以上であることが特に好ましい。
前記XPS分析のモル比[Si]/[Al]の値の上限は特に限定されるものではないが、0.5以下であってもよく、0.4以下であってもよく、0.3以下であってもよい。
アルミナ粒子は、XPS分析において取得された、Alに対するSiのモル比[Si]/[Al]の値が、0.001以上0.5以下であることが好ましく、0.01以上0.4以下であることがより好ましく、0.02以上0.3以下であることがさらに好ましく、0.1以上0.3以下であることが特に好ましい。XPS分析により取得された、Alに対するSiのモル比が上記範囲内であることで、平板状アルミナにより形成されたカードハウス構造を有するアルミナ粒子を容易に取得でき、また得られたアルミナ粒子は、優れた流動性及び圧壊強度を発揮し、ガスバリア性を向上できるため好ましい。また、例えばバインダーとの親和性をより良好とすることができる。
平板状アルミナ表面に珪素原子及び/又は無機珪素化合物の量が多いことで、それが存在しない場合に比べて、平板状アルミナからなるアルミナ粒子の表面性状をより疎水化することができるだけでなく、ガスバリア性組成物として用いた際の有機化合物や種々のバインダーやマトリックスとの親和性を向上させる事が可能となる。更に、アルミナ粒子表面に存在する珪素原子及び/又は珪素化合物を反応点として、有機シラン化合物をはじめとする各種カップリング剤との反応へも寄与し、アルミナ表面の表面状態を容易に調整することも可能となる。
アルミナ粒子表面のSi量の分析を、上記X線光電子分光(XPS)装置を用いて行う場合、試料を両面テープ上にプレス固定し、以下の条件で組成分析を行うことができる。
・X線源:単色化AlKα、ビーム径100μmφ、出力25W
・測定:エリア測定(1000μm四方)、n=3
・帯電補正:C1s=284.8eV
アルミナ粒子が、更に珪素を含む場合、XRF分析によってSiが検出される。実施形態に係るアルミナ粒子は、XRF分析によって取得された、Alに対するSiのモル比[Si]/[Al]が、0.0003以上0.1以下であることが好ましく、0.0005以上0.08以下であることがより好ましく、0.005以上0.05以下であることがより好ましく、0.005以上0.01以下であることがさらに好ましい。
前記XRF分析により取得された前記モル比[Si]/[Al]の値が、上記範囲内であることで、平板状アルミナにより形成されたカードハウス構造を有するアルミナ粒子を容易に取得でき、また得られたアルミナ粒子は、優れた流動性及び圧壊強度を発揮し、ガスバリア性を向上できるため好ましい。
アルミナ粒子は、その製造方法で用いた珪素又は珪素化合物に対応した、珪素を含むものである。XRF分析において取得された、アルミナ粒子100質量%に対する珪素の含有量は、二酸化珪素(SiO2)換算で、0.01質量%以上8質量%以下であることが好ましく、0.1質量%以上5質量%以下であることがより好ましく、0.5質量%以上4質量以下であることがさらに好ましく、0.5質量%以上2質量%以下であることが特に好ましい。
珪素の含有量が上記範囲内であることで、平板状アルミナにより形成されたカードハウス構造を有するアルミナ粒子を容易に取得でき、また得られたアルミナ粒子は、優れた流動性及び圧壊強度を発揮し、ガスバリア性を向上できるため好ましい。
XRF分析は、後述する実施例に記載の測定条件と同一の条件、又は同一の測定結果が得られる互換性のある条件のもと実施されるものとする。
(ゲルマニウム)
アルミナ粒子は、ゲルマニウムを含んでいてもよい。また、アルミナ粒子は、ゲルマニウムを表層に含んでいてもよい。
使用する原料によっても異なるが、アルミナ粒子は、ゲルマニウム又はゲルマニウム化合物として、例えば、Ge、GeO2、GeO、GeCl2、GeBr4、GeI4、GeS2、AlGe、GeTe、GeTe3、As2、GeSe、GeS3As、SiGe、Li2Ge、FeGe、SrGe、GaGe等の化合物、及びこれらの酸化物等からなる群から選択される少なくとも一種を含んでいてもよく、上記物質を表層に含んでいてもよい。
なお、実施形態に係るアルミナ粒子が含む「ゲルマニウム又はゲルマニウム化合物」と、原料の形状制御剤として用いる「原料ゲルマニウム化合物」とは同じ種類のゲルマニウム化合物であってもよい。
実施形態に係るアルミナ粒子は、表層にゲルマニウム又はゲルマニウム化合物を含んでいてもよい。表層にゲルマニウム又はゲルマニウム化合物を含むことにより、例えば、樹脂と混合してガスバリア性組成物を製造する場合に、樹脂とのなじみがよく、密着性が高く、より一層ガスバリア性に優れたガスバリア性組成物を提供できる。また、アルミナ粒子の表層にモース硬度の低いゲルマニウム又はゲルマニウム化合物を含むことにより、機器を摩耗させ難いものとすることができる。
ゲルマニウム又はゲルマニウム化合物は、アルミナ粒子の表層に含まれることで、顕著なガスバリア性及び機器の摩耗低減効果が発現する。ここで「表層」とは実施形態に係る平板状アルミナ粒子の表面から10nm以内のことをいう。この距離は、XPSの検出深さに対応する。尚、このゲルマニウムを含む表層は、10nm以内の非常に薄い層になり、例えば二酸化ゲルマニウムであった場合、表面及び界面における二酸化ゲルマニウム構造の欠陥等が多くなれば、樹脂とのなじみがさらに良好になり、構造欠陥の無い或いは少ない二酸化ゲルマニウムに比べて、更に、ガスバリア性を顕著に発揮することができる。
アルミナ粒子は、ゲルマニウム又はゲルマニウム化合物が表層に偏在していることが好ましい。ここで「表層に偏在」するとは、前記表層における単位体積あたりのゲルマニウム又はゲルマニウム化合物の質量が、前記表層以外における単位体積あたりのゲルマニウム又はゲルマニウム化合物の質量よりも多い状態をいう。ゲルマニウム又はゲルマニウム化合物が表層に偏在していることは、XPSによる表面分析と、XRFによる全体分析の結果を比較することで判別できる。ゲルマニウム又はゲルマニウム化合物は表層に偏在させることで、表層だけでなく表層以外(内層)にもゲルマニウム又はゲルマニウム化合物を存在させる場合に比べて、より少量で、同様水準でゲルマニウム又はゲルマニウム化合物に基づく優れたガスバリア性及び機器の摩耗低減効果を発揮することができる。
XRF分析において取得された、アルミナ粒子100質量%に対するゲルマニウムの含有量は、二酸化ゲルマニウム(GeO2)換算で、0.01質量%以上8質量%以下であることが好ましく、0.1質量%以上5質量%以下であることがより好ましく、0.5質量%以上4質量%以下であることがさらに好ましい。
(ムライト)
実施形態に係るアルミナ粒子は、表層にムライトを含んでいてもよい。表層にムライトを含むことにより、例えば、樹脂と混合してガスバリア性組成物を製造する場合に、樹脂とのなじみがよく、密着性が高く、より一層ガスバリア性に優れたガスバリア性組成物を提供できる。また、アルミナ粒子の表層にモース硬度の低いムライトを含むことにより、機器を摩耗させ難いものとすることができる。
ムライトは、アルミナ粒子の表層に含まれることで、顕著なガスバリア性及び機器の摩耗低減効果が発現する。アルミナ粒子が表層に含んでもよい「ムライト」は、AlとSiとの複合酸化物でありAlXSiYOz表わされるが、x、y、zの値に特に制限はない。より好ましい範囲はAl2Si1O5〜Al6Si2O13であり、例えば、Al2.85Si1O6.3、Al3Si1O6.5、Al3.67Si1O7.5、Al4Si1O8、又はAl6Si2O13を含むものである。平板状アルミナ粒子は、Al2.85Si1O6.3、Al3Si1O6.5、Al3.67Si1O7.5、Al4Si1O8、およびAl6Si2O13からなる群から選択される少なくとも一種の化合物を表層に含んでいてもよい。ここで「表層」とは平板状アルミナの表面から10nm以内のことをいう。この距離は、XPSの検出深さに対応する。尚、このムライト表層は、10nm以内の非常に薄い層になり、表面及び界面におけるムライト結晶の欠陥等が多くなれば、樹脂とのなじみがさらに良好になり、結晶欠陥の無い或いは少ないムライトに比べて、更に、ガスバリア性を顕著に発揮することができる。
アルミナ粒子は、ムライトが表層に偏在していることが好ましい。ここで「表層に偏在」するとは、前記表層における単位体積あたりのムライトの質量が、前記表層以外における単位体積あたりのムライトの質量よりも多い状態をいう。ムライトが表層に偏在していることは、XPSによる表面分析と、XRFによる全体分析の結果を比較することで判別できる。ムライトは表層に偏在させることで、表層だけでなく表層以外(内層)にもムライトを存在させる場合に比べて、より少量で、同様水準でムライトに基づく優れたガスバリア性及び機器の摩耗低減効果を発揮することができる。
また、前記表層のムライトは、ムライト層を形成していてもよく、ムライトとアルミナとが混在した状態であってもよい。表層のムライトとアルミナとの界面は、ムライトとアルミナとが物理的に接触した状態であってもよく、ムライトとアルミナとがSi−O−Alなどの化学結合を形成していてもよい。アルミナとSiO2との組み合わせに対して、アルミナとムライトとを必須成分とする組み合わせは、構成原子組成の類似性の高さや、フラックス法を採用した場合には、それに基づく上記Si−O−Alなどの化学結合の形成し易さの観点から、よりアルミナとムライトとが強固に結着し剥がれ難いものとすることが出来る。このことから、Si量が同等水準であれば、アルミナとムライトとを必須成分とする組み合わせは、機器をより長期間に亘ってガスバリア性及び機器の摩耗低減効果を発揮することが出来るため、より好ましい。アルミナとムライトとを必須成分とする組み合わせでの技術的効果は、アルミナとムライトのみでも、アルミナとムライトとシリカでも期待はできるが、どちらかと言えば、前者の二者組み合わせが技術的効果の水準はより高くなる。
また、アルミナ粒子表面のムライトの有無の分析は、リガク社製、Ultima IV等の広角X線回折(XRD)装置を用いて行うことができる。
例えば、試料を0.5mm深さの測定試料用ホルダーにのせ、一定荷重で平らになるように充填し、それを上記広角X線回折(XRD)装置にセットし、Cu/Kα線、40kV/40mA、スキャンスピード2度/分、走査範囲10〜70度の条件で測定を行う。
2θ=26.2±0.2度に認められるムライトのピーク高さをA、2θ=35.1±0.2度に認められる(104)面のα−アルミナのピーク高さをBとし、2θ=30±0.2度のベースラインの値をCとして、下記の式よりムライトの有無を判定することができる。Rの値は、例えば0.02以上であるのが好ましい。
R=(A−C)/(B−C)
(R:α−アルミナの(104)面のピーク高さBに対するムライトのピークの高さAの比)
[モリブデン]
カードハウス構造を有するアルミナ粒子は、モリブデンを含有していてもよい。
モリブデンは、後述するアルミナ粒子の製造方法において、フラックス剤として用いたモリブデン化合物に由来するものであってよい。
モリブデンは触媒機能、光学的機能を有する。また、モリブデンを活用することにより、後述するように製造方法において、流動性に優れたアルミナ粒子を製造することができる。
当該モリブデンとしては、特に制限されないが、モリブデン金属の他、酸化モリブデンや一部が還元されたモリブデン化合物、モリブデン酸塩等が含まれる。モリブデン化合物のとりうる多形のいずれか、または組み合わせで平板状アルミナ粒子に含まれてよく、α-MoO3、β-MoO3、MoO2、MoO、モリブデンクラスター構造等として平板状アルミナ粒子に含まれてもよい。
モリブデンの含有形態は、特に制限されず、カードハウス構造を有するアルミナ粒子の平板状アルミナの表面に付着する形態で含まれていても、アルミナの結晶構造のアルミニウムの一部に置換された形態で含まれていてもよいし、これらの組み合わせであってもよい。
XRF分析において取得された、前記アルミナ粒子100質量%に対するモリブデンの含有量は、三酸化モリブデン(MoO3)換算で、好ましくは、10質量%以下であり、焼成温度、焼成時間、フラックス条件を調整する事で、好ましくは、0.001質量%以上8質量%以下であり、より好ましくは、0.01質量%以上8質量%以下であり、さらに好ましくは、0.1質量%以上5質量%以下である。モリブデンの含有量が10質量%以下であると、アルミナのα単結晶品質を向上させることから好ましい。
XRF分析は、後述する実施例に記載の測定条件と同一の条件、又は同一の測定結果が得られる互換性のある条件のもと実施されるものとする。
アルミナ粒子表面のMo量の分析は、上記のX線光電子分光(XPS)装置を用いて行うことができる。
例えば、上記X線光電子分光(XPS)装置を用い、試料を両面テープ上にプレス固定し、以下の条件で組成分析を行うことができる。XPS分析結果により求められる[Mo]/[Al](モル比)をカードハウス型アルミナ粒子表面のMo量としたとき、Mo量は、0.0005以上であるのが好ましい。
・X線源:単色化AlKα、ビーム径100μmφ、出力25W
・測定:エリア測定(1000μm四方)、n=3
・帯電補正:C1s=284.8eV
[カリウム]
カードハウス構造を有するアルミナ粒子は、カリウムを含有していてもよい。
カリウムは後述のアルミナ粒子の製造方法においてフラックス剤として使用可能なカリウムに由来するものであってよい。
カリウムを活用することにより、後述するアルミナ粒子の製造方法において、流動性に優れるアルミナ粒子を高効率に製造することができる。
当該カリウムとしては、特に制限されないが、カリウム金属の他、酸化カリウムや一部が還元されたカリウム化合物等が含まれる。
カリウムの含有形態は、特に制限されず、カードハウス構造を有するアルミナ粒子の平板状アルミナの表面に付着する形態で含まれていても、アルミナの結晶構造のアルミニウムの一部に置換された形態で含まれていてもよいし、これらの組み合わせであってもよい。
XRF分析において取得された、前記アルミナ粒子100質量%に対するカリウムの含有量が、酸化カリウム(K2O)換算で、0.05質量%以上であることが好ましく、0.05〜5質量%であることがより好ましく、0.1〜3質量%であることがさらに好ましく、0.1〜1質量%であることが特に好ましい。カリウムの含有量が上記範囲内であるアルミナ粒子は、カードハウス構造を有し、平均粒径等の値が好適なものとなるため好ましい。また、流動性に優れ、ガスバリア性を向上できるため好ましい。
XRF分析は、後述する実施例に記載の測定条件と同一の条件、又は同一の測定結果が得られる互換性のある条件のもと実施されるものとする。
(不可避不純物)
アルミナ粒子は不可避不純物を含みうる。
不可避不純物は、製造で使用する金属化合物に由来したり、原料中に存在したり、製造工程において不可避的にアルミナ粒子に混入するものであり、本来は不要なものであるが、微量であり、アルミナ粒子の特性に影響を及ぼさない不純物を意味する。
不可避不純物としては、特に制限されないが、マグネシウム、カルシウム、ストロンチウム、バリウム、スカンジウム、イットリウム、ランタン、セリウム、ナトリウム、等が挙げられる。これらの不可避不純物は単独で含まれていても、2種以上が含まれていてもよい。
アルミナ粒子中の不可避不純物の含有量は、アルミナ粒子の質量に対して、10000ppm以下であることが好ましく、1000ppm以下であることがより好ましく、10〜500ppmであることがさらに好ましい。
(他の原子)
他の原子は、本発明の効果を阻害しない範囲において、ガスバリア性、機械強度、電気や磁性機能付与を目的として意図的にアルミナ粒子に添加されるものを意味する。
他の原子としては、特に制限されないが、亜鉛、マンガン、カルシウム、ストロンチウム、イットリウム等が挙げられる。これらの他の原子は単独で用いても、2種以上を混合して用いてもよい。
アルミナ粒子中の他の原子の含有量は、アルミナ粒子の質量に対して、5質量%以下であることが好ましく、2質量%以下であることがより好ましい。
[有機化合物]
一実施形態において、アルミナ粒子は有機化合物を含んでいてもよい。当該有機化合物は、アルミナ粒子の表面に存在し、アルミナ粒子の表面物性を調節する機能を有する。例えば、表面に有機化合物を含んだアルミナ粒子は樹脂との親和性を向上することから、ガスバリア性組成物としてアルミナ粒子の機能を最大限に発現することができる。
有機化合物としては、特に制限されないが、有機シラン、アルキルホスホン酸、およびポリマーが挙げられる。
前記有機シランとしては、メチルトリメトキシシラン、ジメチルジメトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、n−プロピルトリメトキシシラン、n−プロピルトリエトキシシラン、iso−プロピルトリメトキシシラン、iso−プロピルトリエトキシシラン、ペンチルトリメトキシシラン、ヘキシルトリメトキシシラン等のアルキル基の炭素数が1〜22までのアルキルトリメトキシシランまたはアルキルトリクロロシラン類、3,3,3−トリフルオロプロピルトリメトキシシラン、トリデカフルオロ−1,1,2,2−テトラヒドロオクチル)トリクロロシラン類、フェニルトリメトキシシラン、フェニルトリエトキシシラン、p−クロロメチルフェニルトリメトキシシラン、p−クロロメチルフェニルトリエトキシシラン類等が挙げられる。
前記ホスホン酸としては、例えばメチルホスホン酸、エチルホスホン酸、プロピルホスホン酸、ブチルホスホン酸、ペンチルホスホン酸、ヘキシルホスホン酸、ヘプチルホスホン酸、オクチルホスホン酸、デシルホスホン酸、ドデシルホスホン酸、オクタデシルホスホン酸、2_エチルヘキシルホスホン酸、シクロヘキシルメチルホスホン酸、シクロヘキシルエチルホスホン酸、ベンジルホスホン酸、フェニルホスホン酸、ドデシルベンゼンホスホン酸が挙げられる。
前記ポリマーとしては、例えば、ポリ(メタ)アクリレート類を好適に用いることができる。具体的には、ポリメチル(メタ)アクリレート、ポリエチル(メタ)アクリレート、ポリブチル(メタ)アクリレート、ポリベンジル(メタ)アクリレート、ポリシクロヘキシル(メタ)アクリレート、ポリt−ブチル(メタ)アクリレート、ポリグリシジル(メタ)アクリレート、ポリペンタフルオロプロピル(メタ)アクリレート等であり、また、汎用のポリスチレン、ポリ塩化ビニル、ポリビニル酢酸エステル、エポキシ樹脂、ポリエステル、ポリイミド、ポリカーボネート等ポリマーを挙げることができる。
なお、上記有機化合物は、単独で含まれていても、2種以上を含んでいてもよい。
有機化合物の含有形態としては、特に制限されず、アルミナと共有結合により連結されていてもよいし、アルミナを被覆していてもよい。
有機化合物の含有率は、アルミナ粒子の質量に対して、20質量%以下であることが好ましく、10〜0.01質量%であることがさらに好ましい。有機化合物の含有率が20質量%以下であると、アルミナ粒子由来の物性発現が容易にできることから好ましい。
[圧壊強度]
アルミナ粒子は、圧縮・せん断等の機械分散により、カードハウス構造が壊れてしまうと本来の流動性を損なう為、圧壊強度はより高いことが好ましい。圧壊強度は、平板状アルミナの交差する位置、数、面積、平板状アルミナの厚みやアスペクト比等により異なる上、種々の用途において求められる圧壊強度は異なり、実用性の面において圧壊強度1MPa〜100MPaであることが好ましく、20MPa〜100MPaであることがより好ましく、50MPa〜100MPaであることが更に好ましい。
アルミナ粒子の圧壊強度は、例えば株式会社ナノシーズ製 微小粒子圧壊力測定装置NS−A100型、あるいは、株式会社島津製作所製MCT−510等を用いて測定する事が可能である。圧壊時のピーク値とベースライン(何も力がかかっていない状況)との差を圧壊力F[N]とし、圧壊強度S[Pa]は次式より算出した10個の値の平均値とする。
S=2.8F/(π・D2)
ただし、上記式中、Fは圧壊力[N]、Dは粒子径[m]である。
尚、アルミナ粒子は、上述のように、3枚以上の平板状アルミナにより形成され、固着したカードハウス構造を有する。アルミナ粒子としては、珪素原子及び/又は無機珪素化合物を適度に含むものは、これらを含まないものに比べて、上記した圧壊強度は高いことを本発明者等は知見している。珪素原子及び/又は無機珪素化合物の含有量によっても、上記圧壊強度は異なり、それが適度に多くなる程、粒子の流動性及び圧壊強度は高く出来る。また、例えば、その製造方法として、特定の製造条件を採用することで上記圧壊強度を高めることも可能である。製造条件においても上記圧壊強度を任意に調整することが可能であり、一例を挙げると、焼成温度をより高くすることで、アルミナ粒子の圧壊強度をより高くすることが出来る。
[粉体の流動性]
実施形態に係るアルミナ粒子の粉体は、それを構成するアルミナ自体が特有の構造であることや、好ましくは特定の平均粒子径を有していることにより、板状アルミナ粒子や双晶アルミナ粒子に比べ、粉体としての流動性に優れるが、より流動性を高める為に、一単位のカードハウス構造を成すアルミナ粒子は、当該粒子を構成する全ての平板状アルミナを包摂する様に囲んだ際の体積基準の最大の包囲面の形状が、球状または略球状である事が好ましい。また、必要ならば、更に、流動性向上の為に滑剤や微粒子シリカなどを任意に添着させても構わない。
カードハウス構造のアルミナ粒子の粉体としての流動性は、例えば、JIS R9301−2−2による安息角測定等により求めることができる。安息角の値としては、フィーダーやホッパー等による機械搬送において、ホッパーブリッジやフィードネック、供給の不均一化、吐出量低下等の問題が起きにくいことから、50°以下が好ましい。より好ましくは40°以下である。
アルミナ粒子は、3枚以上の平板状アルミナにより形成され、前記平板状アルミナが互いに固着したカードハウス構造を有し、平均粒子径が1〜1000μmであってもよい。より好適には、前記アルミナ粒子の内部構造に、固着したカードハウス構造として、前記3枚以上の平板状アルミナが、2箇所以上の複数箇所で交差し集合したものであり、交差した互いの平板の面方向は無秩序に配置された状態にあるアルミナ粒子であることが好ましい。
従来公知の双晶アルミナ粒子は、その形状からして、角が目立つ構造であり、実施形態に係るアルミナ粒子よりも転がり難い形状であることから、フィラー(充填剤)として、そもそも充分な流動性が得られない。また、仮に実施形態に係るアルミナ粒子と同一のカードハウス構造を有したアルミナ粒子であったとして、平均粒子径が適度に大きいほうが流動性に優れる。実施形態に係るアルミナ粒子は、カードハウス構造と、その好ましい平均粒子径の相乗効果により、特に優れた流動性を発揮する。
[等電点のpH]
アルミナ粒子の等電点のpHは、例えば2〜8の範囲であり、2.5〜7の範囲であることが好ましく、3〜6の範囲であることがより好ましい。等電点のpHが上記範囲内にあるアルミナ粒子は、静電反発力が高く、それ自体で上記した様な被分散媒体へ配合した際の分散安定性を高めることができ、更なる性能向上を意図したカップリング処理剤等の表面処理による改質がより容易となる。
等電点のpHの値は、ゼータ電位測定をゼータ電位測定装置(マルバーン社製、ゼータサイザーナノZSP)にて、試料20mgと10mM KCl水溶液10mLを泡取り錬太郎(シンキー社製、ARE−310)にて攪拌・脱泡モードで3分間攪拌し、5分静置した上澄みを測定用試料とし、自動滴定装置により、試料に0.1N HClを加え、pH=2までの範囲でゼータ電位測定を行い(印加電圧100V、Monomodlモード)、電位ゼロとなる等電点のpHを評価することで得られる。
[比表面積]
アルミナ粒子の粉体の比表面積は、通常50〜0.001m2/gの範囲であるが、好ましくは10m2/g〜0.01m2/gの範囲、より好ましくは5.0m2/g〜1m2/gの範囲である。上記の範囲にあると、カードハウス構造をなす平板状アルミナの数が適切であり、ガスバリア性に優れ、スラリ化した際の粘度の著しい増大もなく加工性に優れる。
なお、この比表面積は、JIS Z 8830:BET1点法(吸着ガス:窒素)等で測定することができる。
[空隙率]
アルミナ粒子は、3枚以上の平板状アルミナにより形成され、前記平板状アルミナが互いに固着したカードハウス構造を有することにより、アルミナ粒子内に空隙をもち、空隙の割合が大きいと形状が均一となりやすく流動性も向上する傾向にあることから、当該空隙率は10体積%以上である事が好ましい。より好ましくは30体積%以上である。また、空隙の割合が大きいと、粉体として圧壊強度が低くなる為、空隙率は90体積%以下が好ましい。より好ましくは70体積%以下である。空隙率がこの範囲であると、かさ比重が適当であり、流動性を損なわず、かつハンドリング性も良好である。この空隙率は、JIS Z 8831などの、ガス吸着法や水銀圧入法等の測定により求めることができる。
簡便には、上記空隙率は、アルミナ粒子を、エポキシ化合物や(メタ)アクリルモノマー等の液状硬化性化合物と混合した後に硬化し、その後断面を切削・研磨後、SEM観察することにより空隙率を推測することができる。
<アルミナ粒子の製造方法>
次に、実施形態に係るアルミナ粒子の製造方法の詳細を例示する。本実施形態に係るアルミナ粒子の製造方法は、以下に示すアルミナ粒子の製造方法に限定されない。
アルミナ粒子における、その平均粒子径、流動性、比表面積、機械強度、空隙率、平板状アルミナの厚みやアスペクト比等は、後に詳述する製造方法において、調整することができる。製造方法として、例えば、フラックス法を採用する場合には、フラックス剤であるモリブデン化合物(好ましくはさらにカリウム化合物)と、アルミニウム化合物種、アルミニウム化合物の平均粒子径、アルミニウム化合物の純度、珪素、珪素化合物及びゲルマニウム化合物から選ばれる少なくとも一種の形状制御剤の使用割合、その他形状制御剤の種類、その他形状制御剤との使用割合、珪素、珪素化合物及びゲルマニウム化合物から選ばれる少なくとも一種の形状制御剤とアルミニウム化合物との存在状態、その他形状制御剤とアルミニウム化合物との存在状態などにより調整することができる。
アルミナ粒子は、カードハウス構造を有することができさえすれば、どの様な製造方法に基づいて得たものであっても良い。しかしながら、既存構造のアルミナを用いて、後処理にて、カードハウス構造という特異構造を有するアルミナを得ることは、製造工程が多段となり生産性が劣るので好ましくない。例えば、既存のアルミナの原料から、構造として選択的にカードハウス構造を形成することができ、かつ、モリブデンを容易にそこに含有させることができ、更にはカリウム、珪素、ゲルマニウム等を容易にそこに含有させることができる、一挙にそれらが満たされるアルミナ粒子の製造方法を採用することが、生産性の観点からも好ましい。
即ちアルミナ粒子を得るに当たっては、より流動性や分散性に優れ、生産性に優れる点で、モリブデン化合物と、珪素、珪素化合物及びゲルマニウム化合物から選ばれる少なくとも一種の形状制御剤と、必要に応じてその他形状制御剤との存在下で、アルミニウム化合物を焼成する事により得ることが好ましい。
また、製造されるアルミナ粒子のほぼ全てを、カードハウス構造を有するものとでき、より生産性に優れる点で、モリブデン化合物及びカリウム化合物と、珪素、珪素化合物及びゲルマニウム化合物から選ばれる少なくとも一種の形状制御剤と、必要に応じてその他形状制御剤との存在下で、アルミニウム化合物を焼成する事により得ることが好ましい。
より詳細には、アルミナ粒子の好ましい製造方法は、モリブデン化合物と、珪素、珪素化合物及びゲルマニウム化合物から選ばれる少なくとも一種の形状制御剤との存在下でアルミニウム化合物を焼成する工程(焼成工程)を含む。焼成工程は焼成対象の混合物を得る工程(混合工程)で得られた混合物を焼成する工程であってもよい。前記混合物は、さらにカリウム化合物を含むことが好ましい。前記混合物は、さらに後述の金属化合物を含むことが好ましい。金属化合物としては、イットリウム化合物が好ましい。
モリブデン化合物や珪素化合物として有機化合物を用いた場合には、焼成によりその有機成分は焼失する。すなわち、アルミナ粒子は、モリブデン化合物がアルミニウム化合物と高温で反応し、モリブデン酸アルミニウムを形成した後、このモリブデン酸アルミニウムが、さらに、より高温でアルミナと酸化モリブデンに分解する際に、モリブデンをアルミナ粒子内に取り込む事で、より容易に得られる。酸化モリブデンは昇華するが、これを回収して、再利用することもできる。以下、この製造方法をフラックス法という。このフラックス法については、後に詳記する。
形状制御剤は板状結晶成長に重要な役割を果たす。一般的に行なわれるモリブデン化合物を用いたフラックス法では、酸化モリブデンがアルミニウム化合物と反応することでモリブデン酸アルミニウムを形成させ、次いで、このモリブデン酸アルミニウムが分解する過程における化学ポテンシャルの変化が結晶化の駆動力となっているため、自形面(113)の発達した六角両錘型の多面体粒子が形成する。実施形態の製造方法では、形状制御剤が、α−アルミナ成長過程において粒子表面近傍に局在化することで、自形面(113)の生長が著しく阻害される結果、相対的に面方向の結晶方位の生長が速くなり、(001)面又は(006)面が成長し、板状形態を形成することができると考えられる。モリブデン化合物をフラックス剤として用いることで、α結晶化率が高い、中でもα結晶化率が90%以上の、モリブデンを含む平板状アルミナからなる、アルミナ粒子をより容易に形成できる。
なお、上記メカニズムはあくまで推測のものであり、上記メカニズムと異なるメカニズムによって本発明の効果が得られる場合であっても本発明の技術的範囲に含まれる。
前記アルミナ粒子は、モリブデン化合物を活用することにより、アルミナは高いα結晶率を有し、自形を持つことから、マトリックスに対する優れた分散性と機械強度、高熱伝導性を実現することができる。
また、上記製造方法で得たアルミナ粒子は、粒子にモリブデンを含むことから、通常のアルミナに比べてゼータ電位の等電点が酸性側にシフトしているため、分散性に優れる。また、アルミナ粒子に含まれたモリブデンの特性を利用して、酸化反応触媒、光学材料の用途に適用することが可能となりうる。
[フラックス法によるアルミナ粒子の製造方法]
アルミナ粒子の製造方法は、特に制限されないが、相対的に低温で高α結晶化率を有するアルミナを好適に制御することができる観点から、好ましくはモリブデン化合物を利用したフラックス法での製造方法が適用されうる。
より詳細には、アルミナ粒子の好ましい製造方法は、モリブデン化合物と、珪素、珪素化合物及びゲルマニウム化合物からなる群から選ばれる少なくとも一種の形状制御剤と、必要に応じその他形状制御剤との存在下で、アルミニウム化合物を焼成する工程を含む。
本発明者らは、フラックス法において、モリブデン化合物をフラックス剤として用い、形状制御剤を併用して、これらをアルミニウム化合物と混合して焼成する製造方法を採用する際には、原料アルミニウム化合物の大きさ、モリブデン化合物の使用量、(カリウム化合物をフラックス剤として用いる場合にはさらにカリウム化合物の使用量)、形状制御剤の使用量が、アルミナ粒子を選択的に生成できる重要因子であることを、新たに見出した。
フラックス法においては、モリブデン化合物及びカリウム化合物をフラックス剤として用いることも好ましい。
なお、フラックス剤としての、モリブデンとカリウムとを含有する化合物は、例えば、より安価かつ入手が容易な、モリブデン化合物及びカリウム化合物を原料として焼成の過程で生じさせることができる。ここでは、モリブデン化合物及びカリウム化合物をフラックス剤として用いる場合、モリブデンとカリウムとを含有する化合物をフラックス剤として用いる場合、の両者を合わせて、モリブデン化合物及びカリウム化合物をフラックス剤として用いる場合を例に説明する。
モリブデン化合物を必須のフラックス剤として用い、形状制御剤を併用して、これらをアルミニウム化合物と混合して焼成するアルミナ粒子の製造方法において、三酸化モリブデンの様なモリブデン化合物のみを用いる場合に比べて、モリブデン化合物及びカリウム化合物をフラックス剤として用いる場合、または、モリブデンとカリウムとを含有する化合物をフラックス剤として用いる場合は、焼成工程が、気化し難いモリブデンとカリウムとを含有する化合物の存在下で行われることで、フラックス剤が系外に放出されずに焼成作業環境の悪化が軽減されること、更には、冷却工程で生じたアルミナ粒子とフラックス剤粒子との混合物に含まれる、モリブデンとカリウムとを含有する化合物は水溶性が高いことが多いため、アルミナからモリブデンをより多くより容易に除去することが可能となる。
モリブデン化合物及びカリウム化合物をフラックス剤として用いること、または、モリブデンとカリウムとを含有する化合物をフラックス剤として用いること、及び上記冷却工程を含むことにより、強い解砕を必要とせずにカードハウス構造を有するアルミナ粒子を得ることができ、更にはカードハウス構造を有するアルミナ粒子の収率を非常に高くできる。このことは、かかる構成により、カードハウス構造を有するアルミナ粒子間をフラックス剤が占め、フラックス剤がいわばスペーサーのように働き、粒子同士の融着が防止されることと、フラックス剤を後処理工程において容易に除去可能であることによるものと考えられる。
粒子同士の融着を防止する観点からは、フラックス剤の使用量(酸化物換算した原料全量を100質量%とした際の、モリブデン化合物及びカリウム化合物の配合量)は、Mo2K2O7換算で2質量%以上であることが好ましい。
[混合工程]
混合工程は、アルミニウム化合物、モリブデン化合物、形状制御剤等の原料を混合して混合物とする工程である。前記混合物は、さらにカリウム化合物を含んでもよい。以下、混合物の内容について説明する。
(アルミニウム化合物)
原料アルミニウム化合物は、上記アルミナ粒子の原料であり、熱処理によりアルミナになるものであれば特に限定されず、例えば、塩化アルミニウム、硫酸アルミニウム、塩基性酢酸アルミニウム、水酸化アルミニウム、ベーマイト、擬ベーマイト、遷移アルミナ(γ−アルミナ、δ−アルミナ、θ−アルミナなど)、α−アルミナ、二種以上の結晶相を有する混合アルミナなどが使用でき、水酸化アルミニウム及び/又は遷移アルミナが好ましい。
また、アルミニウム化合物は、アルミニウム化合物のみからなるものであっても、アルミニウム化合物と有機化合物との複合体であってもよい。例えば、有機シラン化合物を用いて、アルミニウム化合物を修飾して得られる有機/無機複合体、ポリマーを吸着したアルミニウム化合物複合体などであっても好適に用いることができる。有機化合物は、焼成により有機成分は焼失するので、これらの複合体を用いる場合、有機化合物の含有率としては、特に制限はないが、カードハウス構造を有するアルミナ粒子を効率的に製造できる観点より、当該含有率は60質量%以下であることが好ましく、30質量%以下であることがより好ましい。
アルミニウム化合物の比表面積は特に限定されるものではない。フラックス剤のモリブデン化合物が効果的に作用するため、比表面積が大きい方が好ましいが、焼成条件やモリブデン化合物の使用量を調整する事で、いずれの比表面積のものでも原料として使用することができる。
アルミナ粒子の形状は、下で詳記するフラックス法によれば、原料のアルミニウム化合物の形状を反映する。球状、無定形、アスペクトのある構造体(ワイヤ、ファイバー、リボン、チューブなど)、シートなどのいずれであっても用いることができるが、粉体の流動性を向上させるという点において、球状のアルミニウム化合物を用いることが、得られるアルミナ粒子が球状により近くなる為好ましい。
また、アルミニウム化合物からのアルミナ粒子の製造方法では、アルミナ粒子の平均粒子径も、基本的には原料のアルミニウム化合物の粒子径を反映する。
下記するフラックス法によれば、焼成工程において、主に、原料アルミニウム化合物粒子内に平板状アルミナの結晶形成、および近接する3枚以上の平板状アルミナの交差が進行し、固着することで、カードハウス構造となると推測される。これより、得られるカードハウス構造を有するアルミナ粒子の平均粒子径は、主に原料アルミニウム粒子の平均粒子径を反映すると推測される。
従って、原料として、平均粒子径がより小さいアルミニウム化合物を用いた場合、平均粒子径がより小さいアルミナ粒子が得られ易くなり、平均粒子径がより大きいアルミニウム化合物を用いた場合、平均粒子径がより大きいアルミナ粒子が得られ易くなる。
アルミナ粒子は、平均粒子径が3μm以上1000μm以下であることが好ましいことから、前記範囲内で、生成させたい特定の平均粒子径のアルミナ粒子に相当する、それと同一ないし略同一の平均粒子径のアルミニウム化合物を用いるようにするのがよい。
カードハウス構造を有するアルミナ粒子は、例えば、モリブデン化合物と、珪素、珪素化合物及びゲルマニウム化合物から選ばれる少なくとも一種の形状制御剤と、必要に応じその他形状制御剤との存在下でアルミニウム化合物を焼成する工程を含むアルミナ粒子の製造方法にて、平板状アルミナを形成させ、その3枚以上の平板状アルミナを、形成と同時に複数箇所で互いの結晶面と接触させ、交差させ、固着させることにより得る事ができる。その固着により、カードハウス構造が、圧力等の外部応力によって容易には壊れない(解れない)、それが固定された状態が得られる。例えば、平板状アルミナが形成する際のフラックス条件等は、得られるカードハウス構造を有するアルミナ粒子の圧壊強度等に影響する。
モリブデン化合物の量がより少ないほど、アルミニウム化合物粒子内に3枚以上の平板状アルミナの固着が早くなり、また頻度も高くなるため、圧壊強度の高い強固なカードハウス構造を得ることができる。
フラックス法に着眼した本発明者等の知見によれば、具体的には例えば、1)原料のアルミニウム化合物として、平均粒子径が2μm以上、中でも4μm以上の、得たいアルミナ粒子の粒子径に対応したアルミニウム化合物を用いて、かつ2)フラックス剤としてのモリブデン化合物の量を、アルミニウム化合物のアルミニウム金属1モルに対して、モリブデン化合物のモリブデン金属として0.005〜0.236モルとし、かつ3)形状制御剤としての珪素化合物の量を、アルミニウム化合物のアルミニウム金属1モルに対して、珪素化合物の珪素金属として0.003〜0.09モルとした場合、より流動性の高く、より圧壊強度の高いカードハウス構造を有するアルミナ粒子が得られるため好ましい。
フラックス法においては、モリブデン化合物及びカリウム化合物をフラックス剤として用い、形状制御剤として珪素又は珪素化合物を併用して、これらをアルミニウム化合物と混合して焼成するアルミナ粒子の製造方法において、1)特定の平均粒子径の原料アルミニウム化合物を用いて、2)モリブデン化合物及びカリウム化合物の使用量を特定範囲に制限し、かつ、3)珪素又は珪素化合物の使用量を特定範囲に制限することで、特定の平均粒子径の範囲にある、3枚以上の平板状アルミナにより形成され、前記平板状アルミナが互いに固着したカードハウス構造を有することを特徴とするアルミナ粒子を選択的に生成できるので好ましい。
また、カードハウス構造を有するアルミナ粒子は、後述する解砕工程、分級工程により平均粒子径や形状を任意に調整することが可能である。
(モリブデン化合物)
モリブデン化合物は、後述するように、アルミナのα結晶成長においてフラックス剤として機能する。モリブデン化合物としては、特に制限されないが、酸化モリブデン、モリブデン金属が酸素との結合からなる酸根アニオン(MoOx n−)を含有する化合物が挙げられる。
前記酸根アニオン(MoOx n−)を含有する化合物としては、特に制限されないが、モリブデン酸、モリブデン酸ナトリウム、モリブデン酸カリウム、モリブデン酸リチウム、H3PMo12O40、H3SiMo12O40、NH4Mo7O12、二硫化モリブデン等が挙げられる。
モリブデン化合物にナトリウムまたはシリコンを含むことも可能であり、その場合、該ナトリウムまたはシリコンを含むモリブデン化合物がフラックス剤と形状制御剤と両方の役割を果たす。
上述のモリブデン化合物のうち、コストの観点から、酸化モリブデンを用いることが好ましい。また、上述のモリブデン化合物は、単独で用いても、2種以上を組み合わせて用いてもよい。
また、モリブデン酸カリウム(K2MonO3n+1、n=1〜3)は、カリウムを含むため、後述するカリウム化合物としての機能も有しうる。実施形態の製造方法において、モリブデン酸カリウムをフラックス剤として用いることは、モリブデン化合物及びカリウム化合物をフラックス剤として用いることと同義である。
モリブデン化合物の使用量は、特に制限されないが、アルミニウム化合物のアルミニウム金属1モルに対して、モリブデン化合物のモリブデン金属として0.005〜0.236モルであることが好ましく、0.007〜0.09モルであることがより好ましく、0.01〜0.04モルであることが更に好ましい。モリブデン化合物の使用量が上記範囲にあると、高アスペクト比と優れた分散性を有する平板状アルミナからなるカードハウス構造のアルミナ粒子が得られやすいことから好ましい。また、フラックス法を採用した際に、フラックス剤としてモリブデン化合物を用いた場合には、アルミナ粒子に、モリブデンを含むことから、それを証左に、未知のアルミナ粒子がどの様な製造方法で製造されたかを特定できる。
モリブデン化合物及びカリウム化合物をフラックス剤として用いる場合、モリブデン化合物の使用量は、特に制限されないが、アルミニウム化合物のアルミニウム元素に対するモリブデン化合物のモリブデン元素のモル比(モリブデン元素/アルミニウム元素)は、0.01〜3.0であることが好ましく、0.1〜1.0であることがより好ましく、生産性良く、結晶成長を好適に進行させるために0.30〜0.70であることがさらに好ましい。モリブデン化合物の使用量が上記範囲にあると、高アスペクト比と優れた分散性を有する平板状アルミナからなるカードハウス構造のアルミナ粒子が得られやすいことから好ましい。
(カリウム化合物)
モリブデン化合物及びカリウム化合物をフラックス剤として用いる場合、カリウム化合物としては、特に制限されないが、塩化カリウム、亜塩素酸カリウム、塩素酸カリウム、硫酸カリウム、硫酸水素カリウム、亜硫酸カリウム、亜硫酸水素カリウム、硝酸カリウム、炭酸カリウム、炭酸水素カリウム、酢酸カリウム、酸化カリウム、臭化カリウム、臭素酸カリウム、水酸化カリウム、珪酸カリウム、燐酸カリウム、燐酸水素カリウム、硫化カリウム、硫化水素カリウム、モリブデン酸カリウム、タングステン酸カリウム等が挙げられる。この際、前記カリウム化合物は、モリブデン化合物の場合と同様に、異性体を含む。これらのうち、炭酸カリウム、炭酸水素カリウム、酸化カリウム、水酸化カリウム、塩化カリウム、硫酸カリウム、又はモリブデン酸カリウムを用いることが好ましく、炭酸カリウム、炭酸水素カリウム、塩化カリウム、硫酸カリウム、又はモリブデン酸カリウムを用いることがより好ましい。
なお、上述のカリウム化合物は、単独で用いても、2種以上を組み合わせて用いてもよい。
また、上記と同様に、モリブデン酸カリウムは、モリブデンを含むため、上述のモリブデン化合物としての機能も有しうる。実施形態の製造方法において、モリブデン酸カリウムをフラックス剤として用いることは、モリブデン化合物及びカリウム化合物をフラックス剤として用いることと同義である。
原料仕込み時に用いる又は焼成に当たって昇温過程の反応で生じるカリウム化合物として、水溶性のカリウム化合物、例えばモリブデン酸カリウムは、焼成温度域でも気化することなく、焼成後に洗浄で、容易に回収できるため、モリブデン化合物が焼成炉外へ放出される量も低減され、生産コストとしても大幅に低減することができる。
モリブデン化合物及びカリウム化合物をフラックス剤として用いる場合、カリウム化合物のカリウム元素に対するモリブデン化合物のモリブデン元素のモル比(モリブデン元素/カリウム元素)は、5以下であることが好ましく、0.01〜3であることがより好ましく、0.5〜1.5であることが、生産コストをより低減することができるため、さらに好ましい。前記モル比(モリブデン元素/カリウム元素)が上記範囲内にあると、好ましい粒子サイズのアルミナ粒子が得られる。
(珪素又は珪素化合物)
アルミナ粒子の製造方法においては、珪素又は珪素化合物を形状制御剤として用いると、結果的に得られるアルミナ粒子の流動性等がより良好となる点で好ましい。珪素又は珪素化合物は、モリブデン化合物の存在下でアルミナ化合物を焼成する事による、アルミナの平板状結晶成長に重要な役割を果たす。
珪素化合物の珪素はアルミナのα結晶の[113]面に選択的に吸着し、フラックス剤である酸化モリブデンの[113]面への選択的な吸着を抑制することで、(001)面又は(006)面の発達した熱力学的に最も安定的な稠密六方格子の結晶構造を有する平板状形態を形成することができる。これより珪素の量が大きくなる程、(001)面又は(006)面の結晶形成を助長すると推測され、厚みが薄い平板状アルミナが得られる。
また、珪素は、アルミナのα結晶の[113]面に選択的に吸着し得る十分な量が存在することで、酸化モリブデンの[113]面への選択的な吸着を抑制し、(001)面又は(006)面の発達した熱力学的に最も安定的な稠密六方格子の結晶構造を有する平板状形態を形成することができる。これより珪素の量が大きくなる程、互いの平板状アルミナの交差箇所も、他の箇所と同様に熱力学的に最も安定的な稠密六方格子の結晶構造を有し、強固な固着となり得ると推測される。すなわち、珪素量が適度に多くなる程、得られるカードハウス構造を有するアルミナ粒子の圧壊強度は向上する。
珪素又は珪素化合物の種類は特に制限されず、珪素原子のみならず珪素化合物であれば公知のものが使用されうる。これらの具体例としては、金属シリコン(珪素原子)、有機シラン化合物、シリコーン樹脂、シリカ(SiO2)微粒子、シリカゲル、メソポーラスシリカ、SiC、ムライト等の人工合成シリコン化合物;バイオシリカ等の天然シリコン化合物等が挙げられる。これらのうち、アルミニウム化合物との複合、混合がより均一的に形成できる観点から、有機シラン化合物、シリコーン樹脂、シリカ微粒子を用いることが好ましい。なお、上記したものは、単独で用いても、2種以上を組み合わせて用いてもよい。
この珪素化合物が有機珪素化合物の場合は、焼成することで有機成分が焼失し、珪素原子または無機珪素化合物となって、アルミナ粒子に含有されることになる。珪素化合物が無機珪素化合物の場合は、焼成することで、珪素原子または焼成時の高温で分解しない無機珪素化合物はそのままで、平板状アルミナの表面に局在的に含有されることになる。上記の観点から、同一分子量ならばより少量で珪素原子の含有率を高められる、珪素原子及び/又は無機珪素化合物を用いることが好ましい。
珪素又は珪素化合物の形状は、特に制限されず、例えば、球状、無定形、アスペクトのある構造体(ワイヤ、ファイバー、リボン、チューブなど)、シートなどを好適に用いることができる。
珪素又は珪素化合物の使用量は特に制限されないが、アルミナのα結晶の[113]面に選択的に吸着し得る十分な量を用いるようにすることが好ましく、原料とするアルミニウム化合物のアルミニウム金属1モルに対して、珪素化合物の珪素金属として0.003〜0.09モルであることが好ましく、0.005〜0.04モルであることがより好ましく、0.007〜0.03モルが更に好ましい。
モリブデン化合物及びカリウム化合物をフラックス剤として用いる場合、アルミニウム化合物に対する珪素化合物の添加率は、0.01〜10質量%であることが好ましく、0.03〜7質量%であることがより好ましく、0.03〜3質量%であることがさらに好ましい。
珪素化合物の使用量が上記範囲にあると、平板状アルミナのアスペクト比が高く、優れた分散性を有するアルミナ粒子が得られやすいことから好ましい。珪素化合物の量が不十分であると、フラックス剤である酸化モリブデンの[113]面への吸着が十分に抑制できないことが多く、平板状アルミナのアスペクト比が小さく、かつ不均一な平板状アルミナとなる傾向がある。更に、珪素化合物の量が不十分であると、生成するアルミナ粒子が、カードハウス構造でない、多面体状のアルミナとなりやすくなるので好ましくない。また珪素化合物の量が多過ぎると、余剰な珪素が単独で酸化物となる他、3Al2O3・2SiO2の様なアルミナ以外の異種結晶を含むこととなるので、好ましくない。
また、珪素又は珪素化合物は、上記した通り、アルミニウム化合物に任意に添加しても良いが、アルミニウム化合物中に不純物として含まれていても良い。
上記製造方法において、珪素又は珪素化合物の添加方法に特に制限はなく、粉体として直接添加混合するドライブレンド方式や、混合機を用いた混合、または予め溶媒やモノマー等に分散させ添加する方式を用いても良い。
モリブデン化合物および珪素化合物の存在下で、アルミニウム化合物を焼成する工程を経る事で、珪素原子及び/又は無機珪素化合物が平板状アルミナの表面及びその近傍に偏在した、カードハウス構造を有するアルミナ粒子を容易に得ることができる。本発明者らの知見では、仕込み時における珪素化合物の使用は、カードハウス構造を容易に得るための重要な要素、一方、焼成により生成したアルミナ粒子の表面及びその近傍に偏在した珪素原子及び/又は無機珪素化合物の存在は、元来、活性点に乏しいアルミナの表面状態に大きな変化をもたらし、それ自体で優れたアルミナの特性を最大限に引き出すだけでなく、更にその活性点を起点とした、反応による表面処理剤との一体化でのより優れた表面状態付与が可能となるといった重要な要素、となる。
(ゲルマニウム化合物)
珪素又は珪素化合物と併用して、又は珪素又は珪素化合物に代えて、形状制御剤としてゲルマニウム化合物を用いてもよい。ゲルマニウム化合物は、モリブデン化合物の存在下でアルミナ化合物を焼成する事による、アルミナの平板状結晶成長に重要な役割を果たす。
形状制御剤として用いる原料ゲルマニウム化合物としては、特に制限されず、公知のものが使用されうる。原料ゲルマニウム化合物の具体例としては、ゲルマニウム金属、二酸化ゲルマニウム、一酸化ゲルマニウム、四塩化ゲルマニウム、Ge−C結合を有する有機ゲルマニウム化合物等が挙げられる。なお、原料ゲルマニウム化合物は、単独で用いても、2種以上を組み合わせて用いてもよい。また、本発明における効果を損なわない限りにおいて、他の形状制御剤と併用して使用してもよい。
原料ゲルマニウム化合物の形状は、特に制限されず、例えば、球状、無定形、アスペクトのある構造体(ワイヤ、ファイバー、リボン、チューブなど)、シートなどを好適に用いることができる。
ゲルマニウム化合物の使用量は特に制限されないが、原料とするアルミニウム化合物のアルミニウム金属1モルに対して、ゲルマニウム化合物のゲルマニウム金属として0.002〜0.09モルであることが好ましく、0.004〜0.04モルであることがより好ましく、0.005〜0.03モルが更に好ましい。
(その他の形状制御剤)
アルミナ粒子において、珪素、珪素化合物及びゲルマニウム化合物から選ばれる少なくとも一種の形状制御剤による平板状アルミナの形成を阻害しない限りにおいて、必要に応じ、流動性や分散性、機械強度、および平均粒子径や平板状アルミナのアスペクト比等を調整する為に、上記以外のその他の形状制御剤を用いても良い。その他の形状制御剤はこれらと同様に、モリブデン化合物の存在下でアルミナ化合物を焼成する事による、アルミナの板状結晶成長に寄与する。
その他の形状制御剤の存在状態は、アルミニウム化合物との接触ができれば、特に制限されない。例えば、形状制御剤とアルミニウム化合物と物理混合物、形状制御剤がアルミニウム化合物の表面または内部に均一または局在に存在した複合体などが好適に用いることができる。
また、その他の形状制御剤は、アルミニウム化合物に任意に添加しても良いが、アルミニウム化合物中に不純物として含まれていても良い。
その他の形状制御剤の添加方法に特に制限はなく、粉体として直接添加混合するドライブレンド方式や、混合機を用いた混合、または予め溶媒やモノマー等に分散させ添加する方式を用いても良い。
その他の形状制御剤の種類については、珪素、珪素化合物及びゲルマニウム化合物から選ばれる少なくとも一種の形状制御剤と同様に、モリブデン化合物の存在下、高温焼成中、酸化モリブデンがα−アルミナの[113]面に選択的な吸着を抑制し、板状形態を形成することが出来れば、特に制限されない。より平板状アルミナのアスペクト比が高く、よりアルミナ粒子の流動性や分散性に優れ、より生産性に優れる点で、モリブデン化合物とアルミニウム化合物を除く金属化合物を用いることが好ましい。または、ナトリウム原子及び/又はナトリウム化合物を用いることがより好ましい。
ナトリウム原子及び/又はナトリウム化合物としては、特に制限されず、公知のものが使用されうる。これらの具体例としては、炭酸ナトリウム、モリブデンナトリウム、酸化ナトリウム、硫酸ナトリウム、水酸化ナトリウム、硝酸ナトリウム、塩化ナトリウム、金属ナトリウム等が挙げられる。これらのうち、工業的に容易入手と取扱いし易さの観点から炭酸ナトリウム、モリブデン酸ナトリウム、酸化ナトリウム、硫酸ナトリウムを用いることが好ましい。なお、ナトリウムあるいはナトリウム原子を含む化合物は、単独で用いても、2種以上を組み合わせて用いてもよい。
ナトリウム原子及び/又はナトリウム化合物の形状は、特に制限されず、例えば、球状、無定形、アスペクトのある構造体(ワイヤ、ファイバー、リボン、チューブなど)、シートなどを好適に用いることができる。
ナトリウム原子及び/又はナトリウム化合物の使用量は特に制限されないが、アルミニウム化合物のアルミニウム金属1モルに対して、ナトリウム金属として0.0001〜2モルであることが好ましく、0.001〜1モルであることがより好ましい。ナトリウム原子及び/又はナトリウム化合物の使用量が上記範囲にあると、高アスペクト比と優れた分散性を有するアルミナ粒子が得られやすいことから好ましい。
(金属化合物)
金属化合物は、後述するように、アルミナの結晶成長を促進する機能を有しうる。当該金属化合物は所望により焼成時に使用されうる。なお、金属化合物は、α−アルミナの結晶成長を促進する機能を有するものであるため、アルミナ粒子の製造に必須ではない。
金属化合物としては、特に制限されないが、第II族の金属化合物、第III族の金属化合物からなる群から選択される少なくとも1つを含むことが好ましい。
前記第II族の金属化合物としては、マグネシウム化合物、カルシウム化合物、ストロンチウム化合物、バリウム化合物等が挙げられる。
前記第III族の金属化合物としては、スカンジウム化合物、イットリウム化合物、ランタン化合物、セリウム化合物等が挙げられる。
なお上述の金属化合物は、金属元素の酸化物、水酸化物、炭酸化物、塩化物を意味する。例えば、イットリウム化合物であれば、酸化イットリウム(Y2O3)、水酸化イットリウム、炭酸化イットリウムが挙げられる。これらのうち、金属化合物は金属元素の酸化物であることが好ましい。なお、これらの金属化合物は異性体を含む。
これらのうち、第3周期元素の金属化合物、第4周期元素の金属化合物、第5周期元素の金属化合物、第6周期元素の金属化合物であることが好ましく、第4周期元素の金属化合物、第5周期元素の金属化合物であることがより好ましく、第5周期元素の金属化合物であることがさらに好ましい。具体的には、マグネシウム化合物、カルシウム化合物、イットリウム化合物、ランタン化合物、を用いることが好ましく、マグネシウム化合物、カルシウム化合物、イットリウム化合物を用いることがより好ましく、イットリウム化合物を用いることが特に好ましい。
金属化合物の添加率は、アルミニウム化合物中のアルミニウム原子の質量換算値に対して、0.02〜20質量%であることが好ましく、0.1〜20質量%であることがより好ましい。金属化合物の添加率が0.02質量%以上であると、モリブデンを含むα−アルミナの結晶成長が好適に進行しうることから好ましい。一方、金属化合物の添加率が20質量%以下であると、金属化合物由来の不純物の含有量の低いアルミナ粒子を得ることができることから好ましい。
(イットリウム)
金属化合物として、イットリウム化合物の存在下で、アルミニウム化合物を焼成した場合には、この焼成工程において、結晶成長がより好適に進行し、α−アルミナと水溶性イットリウム化合物が生成する。この際に、アルミナ粒子であるα−アルミナの表面に、当該水溶性イットリウム化合物が局在化しやすいことから、必要ならば、水、アルカリ水、これらを温めた液体等にて洗浄を行うことで、イットリウム化合物をアルミナ粒子から除去することができる。
モリブデン化合物をフラックス剤として用いる場合、上記のアルミニウム化合物、モリブデン化合物及び形状制御剤の使用量は、特に限定されるものではないが、モリブデン元素を含む化合物を、三酸化モリブデン(MoO3)として酸化物換算し、酸化物換算した原料全量を100質量%とした際に、以下の1)又は2)の混合物を焼成することが挙げられる。
1−1)Al2O3換算で80質量%以上のアルミニウム元素を含むアルミニウム化合物と、
MoO3換算で1.0質量%以上のモリブデン化合物と、
SiO2換算で0.4質量%以上の珪素又は珪素元素を含む珪素化合物と、
を混合した混合物。
1−2)Al2O3換算で80質量%以上のアルミニウム元素を含むアルミニウム化合物と、
MoO3換算で1.0質量%以上のモリブデン化合物と、
GeO2換算で0.4質量%以上のゲルマニウム化合物と、
を混合した混合物。
上記1−1)又は1−2)の混合物を用いることにより、より高効率にカードハウス構造を有するアルミナ粒子を製造可能である。
上記1−1)又は1−2)の混合物を焼成した場合に生じる現象の共通点として、結晶成長の開始初期に、原料として用いたアルミニウム化合物の原形の、少なくとも一部をとどめた状態で、結晶成長が進行することが考えられる。これにより、原料のアルミニウム化合物の一部分をそれぞれ起点として、各々に平板状アルミナが形成されることで、3枚以上の平板状アルミナにより形成され、前記平板状アルミナが互いに固着したカードハウス構造が形成されるものと考えられる。
上記1−1)では、SiO2換算で0.4質量%以上の珪素又は珪素元素を含む珪素化合物を使用し、その割合を比較的多く使用することで、原料アルミニウム化合物の形状崩れが抑制され、原料として用いたアルミニウム化合物の形状をとどめることができると考えられる。
上記2)では、GeO2換算で0.4質量%以下のゲルマニウム化合物を使用し、その割合を比較的多く使用することで、原料アルミニウム化合物の形状崩れが抑制され、原料として用いたアルミニウム化合物の形状をとどめることができると考えられる。
上記1−1)において、カードハウス構造を有し、優れた流動性を発揮するアルミナ粒子をより容易に製造可能である点で、酸化物換算した原料全量を100質量%とした際の、前記混合物における各原料の配合量は以下であることが好ましい。
上記1−1)において、酸化物換算した原料全量を100質量%とした際の、アルミニウム化合物の配合量は、Al2O3換算で80質量%以上であることが好ましく、85質量%以上99質量%以下であることがより好ましく、85質量%以上95質量%以下であることがさらに好ましい。
上記1−1)において、酸化物換算した原料全量を100質量%とした際の、モリブデン化合物は、MoO3換算で1.0質量%以上であることが好ましく、2.0質量%以上15質量%以下であることがより好ましく、4.0質量%以上10質量%以下であることがさらに好ましい。
上記1−1)において、酸化物換算した原料全量を100質量%とした際の、珪素又は珪素元素を含む珪素化合物の配合量は、SiO2換算で0.4質量%以上であることが好ましく、0.4質量%以上5.0質量%以下であることがより好ましく、0.5質量%以上2.0質量%以下であることがさらに好ましい。
上記1−2)において、カードハウス構造を有し、優れた流動性を発揮するアルミナ粒子をより容易に製造可能である点で、酸化物換算した原料全量を100質量%とした際の、前記混合物における各原料の配合量は以下であることが好ましい。
上記1−2)において、酸化物換算した原料全量を100質量%とした際の、アルミニウム化合物の配合量は、Al2O3換算で80質量%以上であることが好ましく、85質量%以上99質量%以下であることがより好ましく、85質量%以上95質量%以下であることがさらに好ましい。
上記1−2)において酸化物換算した原料全量を100質量%とした際の、モリブデン化合物の配合量は、MoO3換算で1.0質量%以上であることが好ましく、2.0質量%以上15質量%以下であることがより好ましく、4.0質量%以上10質量%以下であることがさらに好ましい。
上記1−2)において、酸化物換算した原料全量を100質量%とした際の、ゲルマニウム化合物の配合量は、GeO2換算で0.4質量%以上であることが好ましく、0.4質量%以上5.0質量%以下であることがより好ましく、0.5質量%以上2.0質量%以下であることがさらに好ましい。
モリブデン化合物及びカリウム化合物をフラックス剤として用いる場合、上記のアルミニウム化合物、モリブデン化合物、カリウム化合物、及び形状制御剤の使用量は、特に限定されるものではないが、モリブデン元素及びカリウム元素を含む化合物、又は、モリブデン元素を含むモリブデン化合物及びカリウム元素を含むカリウム化合物を、モリブデン酸カリウム(Mo2K2O7)として酸化物換算し、酸化物換算した原料全量を100質量%とした際に、以下の1)又は2)の混合物を焼成することが挙げられる。
2−1)Al2O3換算で10質量%以上のアルミニウム元素を含むアルミニウム化合物と、
Mo2K2O7換算で50質量%以上の前記モリブデン化合物及び前記カリウム化合物と、
SiO2換算で0.3質量%以上の珪素又は珪素元素を含む珪素化合物と、
を混合した混合物。
2−2)Al2O3換算で50質量%以上のアルミニウム元素を含むアルミニウム化合物と、
Mo2K2O7換算で30質量%以下の前記モリブデン化合物及び前記カリウム化合物と、
SiO2換算で0.01質量%以上の珪素又は珪素元素を含む珪素化合物と、
を混合した混合物。
上記2−1)又は2−2)の混合物を用いることにより、より高効率にカードハウス構造を有するアルミナ粒子を製造可能である。
上記2−1)又は2−2)の混合物を焼成した場合に生じる現象の共通点として、結晶成長の開始初期に、原料として用いたアルミニウム化合物の原形の、少なくとも一部をとどめた状態で、結晶成長が進行することが考えられる。これにより、原料のアルミニウム化合物の一部分をそれぞれ起点として、各々に平板状アルミナが形成されることで、3枚以上の平板状アルミナにより形成され、前記平板状アルミナが互いに固着したカードハウス構造が形成されるものと考えられる。
上記2−1)では、SiO2換算で0.3質量%以上の珪素又は珪素元素を含む珪素化合物を使用し、その割合を比較的多く使用することで、原料アルミニウム化合物の形状崩れが抑制され、原料として用いたアルミニウム化合物の形状をとどめることができると考えられる。
上記2)では、Mo2K2O7換算で30質量%以下の前記モリブデン化合物及び前記カリウム化合物を使用し、その割合を比較的少なく使用することで、原料アルミニウム化合物の形状崩れが抑制され、原料として用いたアルミニウム化合物の形状をとどめることができると考えられる。
上記2−1)において、カードハウス構造を有し、優れた流動性を発揮するアルミナ粒子をより容易に製造可能である点で、酸化物換算した原料全量を100質量%とした際の、前記混合物における各原料の配合量は以下であることが好ましい。
上記2−1)において、酸化物換算した原料全量を100質量%とした際の、アルミニウム化合物の配合量は、Al2O3換算で10質量%以上であることが好ましく、10質量%以上70質量%以下であることがより好ましく、20質量%以上45質量%以下であることがさらに好ましく、25質量%以上40質量%以下であることが特に好ましい。
上記2−1)において、酸化物換算した原料全量を100質量%とした際の、モリブデン化合物及びカリウム化合物の配合量は、Mo2K2O7換算で50質量%以上であることが好ましく、50質量%以上80質量%以下であることがより好ましく、55質量%以上75質量%以下であることがさらに好ましく、60質量%以上70質量%以下であることがさらに好ましい。
上記2−1)において、酸化物換算した原料全量を100質量%とした際の、珪素又は珪素元素を含む珪素化合物の配合量は、SiO2換算で0.3質量%以上であることが好ましく、0.3質量%以上5質量%以下であることがより好ましく、0.4質量%以上3質量%以下であることがさらに好ましい。
上記2−2)において、カードハウス構造を有し、優れた流動性を発揮するアルミナ粒子をより容易に製造可能である点で、酸化物換算した原料全量を100質量%とした際の、前記混合物における各原料の配合量は以下であることが好ましい。
上記2−2)において、酸化物換算した原料全量を100質量%とした際の、アルミニウム化合物の配合量は、Al2O3換算で50質量%以上であることが好ましく、50質量%以上96質量%以下であることがより好ましく、60質量%以上95質量%以下であることがさらに好ましく、70質量%以上90質量%以下であることが特に好ましい。
上記2−2)において酸化物換算した原料全量を100質量%とした際の、モリブデン化合物及びカリウム化合物の配合量は、Mo2K2O7換算で30質量%以下であることが好ましく、2質量%以上30質量%以下であることがより好ましく、3質量%以上25質量%以下であることがさらに好ましく、4質量%以上10質量%以下であることが特に好ましい。
上記2−2)において、酸化物換算した原料全量を100質量%とした際の、珪素又は珪素元素を含む珪素化合物の配合量は、SiO2換算で0.01質量%以上であることが好ましく、0.01質量%以上5質量%以下であることがより好ましく、0.05質量%以上3質量%以下であることがさらに好ましく、0.15質量%以上3質量%以下であることが特に好ましい。
前記混合物が、さらに上記のイットリウム化合物を含む場合、イットリウム化合物の使用量は、特に限定されるものではないが、好ましくは、酸化物換算した原料全量を100質量%とした際に、Y2O3換算で5質量%以下のイットリウム化合物を混合することができる。より好ましくは、酸化物換算した原料全量を100質量%とした際に、Y2O3換算で0.01質量%以上3質量%以下のイットリウム化合物を混合することができる。結晶成長をより好適に進行させるためにさらに好ましくは、酸化物換算した原料全量を100質量%とした際に、Y2O3換算で0.1質量%以上1質量%以下のイットリウム化合物を混合することができる。
モリブデン化合物及びカリウム化合物をフラックス剤として用いる場合、モリブデン化合物及びカリウム化合物と、珪素、珪素化合物及びゲルマニウム化合物から選ばれる少なくとも一種の形状制御剤との存在下で、アルミニウム化合物を焼成する工程を経る事で、珪素及び/又はゲルマニウムが平板状アルミナの表面及びその近傍に偏在した、カードハウス構造を有するアルミナ粒子を容易に得ることができる。本発明者らの知見では、仕込み時における珪素、珪素化合物及びゲルマニウム化合物から選ばれる少なくとも一種の形状制御剤の使用は、カードハウス構造を容易に得るための重要な要素、一方、焼成により生成したアルミナ粒子の表面及びその近傍に偏在した珪素及び/又はゲルマニウムの存在は、元来、活性点に乏しいアルミナの表面状態に大きな変化をもたらし、それ自体で優れたアルミナの特性を最大限に引き出すだけでなく、更にその活性点を起点とした、反応による表面処理剤との一体化でのより優れた表面状態付与が可能となるといった重要な要素、となる。
[焼成工程]
焼成工程は、好適には、モリブデン化合物と、珪素、珪素化合物及びゲルマニウム化合物から選ばれる少なくとも一種の形状制御剤と、必要に応じその他形状制御剤との存在下で、アルミニウム化合物を焼成する工程である。焼成工程は、前記混合工程で得られた混合物を焼成する工程であってもよい。
アルミナ粒子は、例えば、モリブデン化合物、および形状制御剤の存在下で、アルミニウム化合物を焼成することで得られる。上記した通り、この製造方法はフラックス法と呼ばれる。上記したフラックス法に基づくと、平板状アルミナの形成と、3枚以上の左記平板状アルミナの固着に伴うカードハウス構造の形成とは、並行的に進むものと推定される。
フラックス法は、溶液法に分類される。フラックス法とは、より詳細には、結晶−フラックス2成分系状態図が共晶型を示すことを利用した結晶成長の方法である。フラックス法のメカニズムとしては、以下の通りであると推測される。すなわち、溶質およびフラックスの混合物を加熱していくと、溶質およびフラックスは液相となる。この際、フラックスは融剤であるため、換言すれば、溶質−フラックス2成分系状態図が共晶型を示すため、溶質は、その融点よりも低い温度で溶融し、液相を構成することとなる。この状態で、フラックスを蒸発させると、フラックスの濃度は低下し、換言すれば、フラックスによる前記溶質の融点低下効果が低減し、フラックスの蒸発が駆動力となって溶質の結晶成長が起こる(フラックス蒸発法)。液相のフラックス剤中で結晶成長させることも好ましい方法であり、溶質およびフラックスは液相を冷却することによっても溶質の結晶成長を起こすことができる(徐冷法)。
フラックス法は、融点よりもはるかに低い温度で結晶成長をさせることができる、結晶構造を精密に制御できる、自形をもつ多面体結晶体を形成できる等のメリットを有する。
フラックスとしてモリブデン化合物を用いたフラックス法によるアルミナ粒子の製造では、そのメカニズムは必ずしも明らかではないが、例えば、以下のようなメカニズムによるものと推測される。すなわち、モリブデン化合物の存在下でアルミニウム化合物を焼成すると、まず、モリブデン酸アルミニウムが形成される。この際、当該モリブデン酸アルミニウムは、上述の説明からも理解されるように、アルミナの融点よりも低温でアルミナ結晶を成長する。そして、例えば、フラックスを蒸発させることで、モリブデン酸アルミニウムが分解し、結晶成長することでアルミナ粒子を得ることができる。すなわち、モリブデン化合物がフラックスとして機能し、モリブデン酸アルミニウムという中間体を経由してアルミナ粒子が製造されるのである。
ここで、上記フラックス法においてカリウム化合物及び形状制御剤を併用すると、3枚以上の平板状アルミナにより形成されたカードハウス構造を有するアルミナ粒子を高効率に製造することが可能となる。より詳細には、モリブデン化合物とカリウム化合物とを併用すると、まず、モリブデン化合物とカリウム化合物が反応してモリブデン酸カリウムが形成される。同時に、モリブデン化合物がアルミニウム化合物と反応してモリブデン酸アルミニウムを形成する。そして、例えば、モリブデン酸カリウムの存在下でモリブデン酸アルミニウムが分解し、形状制御剤の存在下で結晶成長することで、3枚以上の平板状アルミナにより形成されたカードハウス構造を有するアルミナ粒子を得ることができる。すなわち、モリブデン酸アルミニウムという中間体を経由してアルミナ粒子を製造する際に、モリブデン酸カリウムが存在すると、3枚以上の平板状アルミナにより形成されたカードハウス構造を有するアルミナ粒子が得られるのである。
上記のとおり、カリウム又はカリウム化合物は、モリブデン酸カリウムとして、フラックス剤としての役割を果たす。
なお、上記メカニズムはあくまで推測のものであり、上記メカニズムと異なるメカニズムによって本発明の効果が得られる場合であっても本発明の技術的範囲に含まれる。
上述したモリブデン酸カリウムの構成は特に制限されないが、通常、モリブデン原子、カリウム原子および酸素原子を含む。構造式としては、好ましくはK2MonO3n+1で表される。この際は、nは特に制限されないが、1〜3の範囲であると、アルミナ粒子成長促進が効果的に機能することから好ましい。なお、モリブデン酸カリウムには他の原子が含まれていてもよく、当該他の原子としては、ナトリウム、マグネシウム、シリコン、等が挙げられる。
本発明の一実施形態において、上述の焼成は、金属化合物の存在下で行われてもよい。すなわち、前記焼成は、モリブデン化合物およびカリウム化合物とともに上述金属化合物が併用されうる。これにより、より流動性が優れたアルミナ粒子が製造されうる。そのメカニズムについては必ずしも明らかではないが、例えば、以下のようなメカニズムによるものと推測される。すなわち、アルミナ粒子の結晶成長の際に、金属化合物が存在することで、アルミナ結晶核の過剰形成の防止もしくは抑制および/またはアルミナの結晶成長に必要なアルミニウム化合物の拡散促進、換言すれば、結晶核の過剰発生の防止および/またはアルミニウム化合物の拡散速度の上昇の機能が発揮され、アルミナの結晶成長方向のより緻密な制御が可能となり、前駆体の形状を反映させるなどの形状制御が容易となり、より流動性の高いアルミナ粒子が得られると考えられる。なお、上記メカニズムはあくまで推測のものであり、上記メカニズムと異なるメカニズムによって本発明の効果が得られる場合であっても本発明の技術的範囲に含まれる。
焼成の方法は、特に限定はなく、公知慣用の方法で行う事ができる。焼成温度が700℃を超えると、アルミニウム化合物と、モリブデン化合物が反応して、モリブデン酸アルミニウムを形成する。さらに、焼成温度が900℃以上になると、モリブデン酸アルミニウムが分解し、形状制御剤の作用で平板状アルミナを形成する。また、平板状アルミナは、モリブデン酸アルミニウムが分解することで、アルミナと酸化モリブデンになる際に、モリブデンを酸化アルミニウム粒子内に取り込む事で得られる。
また、焼成する時に、アルミニウム化合物と、形状制御剤と、モリブデン化合物と、カリウム化合物の状態は特に限定されず、モリブデン化合物とカリウム化合物と形状制御剤がアルミニウム化合物に作用できる程度に近接して存在する状態であればよい。具体的には、モリブデン化合物と形状制御剤とアルミニウム化合物との粉体を混ぜ合わせる簡便な混合、粉砕機等を用いた機械的な混合、乳鉢等を用いた混合であっても良く、乾式状態、湿式状態での混合であっても良い。
焼成温度の条件に特に限定は無く、目的とするアルミナ粒子の平均粒子径、流動性、分散性、平板状アルミナのアスペクト比等により、適宜、決定される。通常、焼成の温度については、最高温度がモリブデン酸アルミニウム(Al2(MoO4)3)の分解温度である900℃以上であればよい。
一般的に、焼成後に得られるα−アルミナの形状を制御しようとすると、α−アルミナの融点に近い2000℃以上の高温焼成を行う必要があるが、焼成炉へ負担や燃料コストの点から、産業上利用する為には大きな課題がある。
アルミナ粒子の上記した様な好適な製造方法は、2000℃を超えるような高温であっても実施可能であるが、1600℃以下というα−アルミナの融点よりかなり低い温度であっても、α結晶化率が高くアスペクト比の高い平板状アルミナからなるアルミナ粒子を形成することができる。
上記した様な好適な製造方法に依れば、最高焼成温度が900℃〜1600℃の条件であっても、平板状アルミナのアスペクト比が高く、α結晶化率が90%以上であるアルミナ粒子の形成を簡便かつ低コストで効率的に行うことができ、最高温度が920〜1500℃での焼成がより好ましく、最高温度が950〜1400℃の範囲の焼成が最も好ましい。
焼成温度が高温となるほど、平板状アルミナの交差箇所のα結晶化も、他の箇所と同様に向上し、機械強度に優れるカードハウス構造を有するアルミナ粒子が得られる。
焼成の時間については、所定最高温度への昇温時間を15分〜10時間の範囲で行い、且つ焼成最高温度における保持時間を5分〜30時間の範囲で行うことが好ましい。平板状アルミナの形成を効率的に行うには、10分〜15時間程度の時間の焼成保持時間であることがより好ましい。
焼成最高温度における保持時間が長時間となるほど、平板状アルミナの交差箇所のα結晶化も、他の箇所と同様に向上し、圧壊強度に優れるカードハウス構造を有するアルミナ粒子が得られる。
焼成の雰囲気としては、本発明の効果が得られるのであれば特に限定されないが、例えば、空気や酸素のといった含酸素雰囲気や、窒素やアルゴンといった不活性雰囲気が好ましく、コストの面を考慮した場合は空気雰囲気がより好ましい。
焼成するための装置としても必ずしも限定されず、いわゆる焼成炉を用いることができる。焼成炉は昇華した酸化モリブデンと反応しない材質で構成されていることが好ましく、さらに酸化モリブデンを効率的に利用するように、密閉性の高い焼成炉を用いる事が好ましい。この際使用されうる焼成炉としては、トンネル炉、ローラーハース炉、ロータリーキルン、マッフル炉等が挙げられる。
上記した好適な製造方法では、カードハウス構造を有するアルミナ粒子が選択的に得られ、当該アルミナ粒子を個数基準で全体の60%以上の割合で含んだ粉体が容易に得られる。前記製造方法の中でより好適な条件を選択して製造することにより、前記アルミナ粒子の中でも、前記3枚以上の平板状アルミナが、2箇所以上の複数箇所で交差し集合したものであり、交差した互いの平板の面方向は無秩序に配置された状態にあるカードハウス構造を有するアルミナ粒子を個数基準で全体の80%以上の割合で含んだ粉体が、より容易に得ることができるので好ましい。
[冷却工程]
モリブデン化合物及びカリウム化合物をフラックス剤として用いる場合、アルミナ粒子の製造方法は、冷却工程を含んでいてもよい。当該冷却工程は、焼成工程において結晶成長したアルミナを冷却する工程である。より具体的には、焼成工程により得られたアルミナ及び液相のフラックス剤を含む組成物を冷却する工程であってよい。
冷却速度は、特に制限されないが、1〜1000℃/時間であることが好ましく、5〜500℃/時間であることがより好ましく、50〜100℃/時間であることがさらに好ましい。冷却速度が1℃/時間以上であると、製造時間が短縮されうることから好ましい。一方、冷却速度が1000℃/時間以下であると、焼成容器がヒートショックで割れることが少なく、長く使用できることから好ましい。
冷却方法は特に制限されず、自然放冷であっても、冷却装置を使用してもよい。
[後処理工程]
実施形態に係るアルミナ粒子の製造方法は、後処理工程を含んでいてもよい。当該後処理工程は、カードハウス構造を有するアルミナ粒子の後処理工程であり、フラックス剤を除去する工程である。後処理工程は、上述の焼成工程の後に行ってもよいし、上述の冷却工程の後に行ってもよいし、焼成工程および冷却工程の後に行ってもよい。また、必要に応じて、2度以上繰り返し行ってもよい。
後処理の方法としては、洗浄および高温処理が挙げられる。これらは組み合わせて行うことができる。
前記洗浄方法としては、特に制限されないが、水、アンモニア水溶液、水酸化ナトリウム水溶液、酸性水溶液で洗浄することにより除去することができる。
この際、使用する水、アンモニア水溶液、水酸化ナトリウム水溶液、酸性水溶液の濃度、使用量、および洗浄部位、洗浄時間等を適宜変更することで、モリブデン含有量を制御することができる。
また、高温処理の方法としては、フラックスの昇華点または沸点以上に昇温する方法が挙げられる。
[粉砕工程]
焼成物はアルミナ粒子が凝集して、実施形態に好適な粒子径の範囲を満たさない場合がある。そのため、アルミナ粒子は、必要に応じて、実施形態に好適な粒子径の範囲を満たすように粉砕してもよい。
焼成物の粉砕の方法は特に限定されず、ボールミル、ジョークラッシャー、ジェットミル、ディスクミル、スペクトロミル、グラインダー、ミキサーミル等の従来公知の粉砕方法を適用できる。
[分級工程]
アルミナ粒子は、平均粒子径を調整し、粉体の流動性を向上するため、またはマトリックスを形成するためのバインダーに配合したときの粘度上昇を抑制するために、好ましくは分級処理する。
分級は湿式、乾式のいずれでも良いが、生産性の観点からは、乾式の分級が好ましい。乾式の分級には、篩による分級のほか、遠心力と流体抗力の差によって分級する風力分級などがあるが、分級精度の観点からは、風力分級が好ましく、コアンダ効果を利用した気流分級機、旋回気流式分級機、強制渦遠心式分級機、半自由渦遠心式分級機などの分級機を用いて行うことができる。
上記した粉砕工程や分級工程は、後述する有機化合物層形成工程の前後を含めて、必要な段階において行うことができる。これら粉砕や分級の有無やそれらの条件選定により、例えば、得られるアルミナ粒子の平均粒子径を調整することができる。アルミナ粒子の平均粒子径は、その安息角と密接な関係にあり、上記した様なアルミナ粒子自体の製造方法や製造条件だけで充分に調整が行えなかった場合であっても、分級等の条件選定によりアルミナ粒子の平均粒子径を変化させる(間接的に安息角を変化させる)ことにより、アルミナ粒子の流動性を調整することができる。
具体的には、例えば、目的とする平均粒子径のカードハウス構造を有するアルミナ粒子が無い場合には、より大きな平均粒子径のアルミナ粒子を分級等することで、より小さな平均粒子径を有する、同一平均粒子径同士の対比においては、公知のアルミナ粒子より流動性が優れた、カードハウス構造を有するアルミナ粒子が得られる。
[有機化合物層形成工程]
一実施形態において、上記したアルミナ粒子の製造方法は、平板状アルミナの表面に有機化合物層を形成する有機化合物層形成工程をさらに含んでいてもよい。当該有機化合物層形成工程は、必要であれば、当該有機化合物が分解しない温度、通常、焼成工程の後、または後処理工程の後に行われる。
アルミナ粒子の平板状アルミナの表面に有機化合物層を形成する方法としては、特に制限されず、公知の方法が適宜採用されうる。例えば、有機化合物を含む溶液又は分散液をモリブデンを含むアルミナ粒子に接触させ、乾燥する方法等が挙げられる。
なお、この有機化合物層の形成に使用されうる有機化合物としては、例えば有機シラン化合物が挙げられる。
(有機シラン化合物)
カードハウス構造を有するアルミナ粒子は、珪素原子及び/又は無機珪素化合物含む場合には、それを含まない場合に比べて上記した様な表面改質効果が期待できるが、更に、珪素原子及び/又は無機珪素化合物を含むアルミナ粒子と、有機シラン化合物との反応物とした上で用いることもできる。珪素原子及び/又は無機珪素化合物を含有しかつカードハウス構造を有するアルミナ粒子に比べて、それと有機シラン化合物との反応物であるカードハウス構造を有するアルミナ粒子の方が、アルミナ粒子を構成する平板状アルミナ粒子表面に局在化する珪素原子及び/又は無機珪素化合物と、有機シラン化合物との反応に基づき、マトリックスとの親和性をより良好とすることができ好ましい。
前記有機シラン化合物としては、例えば、メチルトリメトキシシラン、ジメチルジメトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、n−プロピルトリメトキシシラン、n−プロピルトリエトキシシラン、iso−プロピルトリメトキシシラン、iso−プロピルトリエトキシシラン、ペンチルトリメトキシシラン、ヘキシルトリメトキシシラン等のアルキル基の炭素数が1〜22までのアルキルトリメトキシシランまたはアルキルトリクロロシラン類、3,3,3−トリフルオロプロピルトリメトキシシラン、トリデカフルオロ−1,1,2,2−テトラヒドロオクチル)トリクロロシラン類、フェニルトリメトキシシラン、フェニルトリエトキシシラン、p−クロロメチルフェニルトリメトキシシラン、p−クロロメチルフェニルトリエトキシシラン類等、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシシラン、γ−アミノプロピルトリエトキシシラン、N−β(アミノエチル)γ−アミノプロピルトリメトキシシラン、N−β(アミノエチル)γ−アミノプロピルメチルジメトキシシラン、γ−アミノプロピルトリメトキシシラン、γ−ウレイドプロピルトリエトキシシラン等のアミノシラン、3−メルカプトプロピルトリメトキシシラン等のメルカプトシラン、p−スチリルトリメトキシシラン、ビニルトリクロルシラン、ビニルトリス(β−メトキシエトキシ)シラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン等のビニルシラン、さらに、エポキシ系、アミノ系、ビニル系の高分子タイプのシランが挙げられる。なお、上記有機シラン化合物は、単独で含まれていても、2種以上を含んでいてもよい。
有機シラン化合物は、反応により、アルミナ粒子の平板状アルミナの表面の珪素原子及び/又は無機珪素化合物の少なくとも一部又は全部と共有結合により連結されていればよく、アルミナ一部だけでなく全体が上記反応物で被覆されていてもよい。アルミナ表面への提供方法としては、浸漬による付着や化学蒸着(CVD)を採用することができる。
有機シラン化合物の使用量は、アルミナ粒子の平板状アルミナの表面に含有される珪素原子又は無機珪素化合物の質量に対して、珪素原子基準で、20質量%以下であることが好ましく、10〜0.01質量%であることがさらに好ましい。有機シラン化合物の使用量が20質量%以下であると、アルミナ粒子由来の物性発現が容易にできることから好ましい。
珪素原子及び/又は無機珪素化合物を含むアルミナ粒子と、有機シラン化合物との反応は、公知慣用のフィラーの表面改質方法により行なう事ができ、例えば、流体ノズルを用いた噴霧方式、せん断力のある攪拌、ボールミル、ミキサー等の乾式法、水系または有機溶剤系等の湿式法を採用することができる。せん断力を利用した処理は、実施形態で用いるアルミナ粒子の破壊が起こらない程度にして行うことが望ましい。
乾式法における系内温度ないしは湿式法における処理後の乾燥温度は、有機シラン化合物の種類に応じ、それが熱分解しない領域で適宜決定される。例えば、上記した様な有機シラン化合物で処理する場合は、80〜150℃の温度が望ましい。
[後加工工程]
アルミナ粒子の製造方法では、その効果を損なわない限り、当該アルミナ粒子の製造の途中に任意工程を追加したり、後処理工程を追加し、任意に粒度や形状等を調整しても良い。例えば、転動造粒や圧縮造粒等の造粒工程、結着剤をバインダーとしたスプレードライ製法による造粒などが挙げられ、市販の機器を用いて容易に得る事ができる。
本実施形態のガスバリア性組成物は、前記アルミナ粒子と樹脂とを含有する樹脂組成物であることが好ましい。樹脂としては、特に限定されず、熱硬化性樹脂、熱可塑性樹脂等を例示できる。
樹脂組成物は、硬化させて樹脂組成物の硬化物とすることができ、硬化及び成形して、樹脂組成物の成形物とすることができる。成形のために、樹脂組成物に対して溶融や混練などの処理を、適宜施すことができる。成形方法としては、圧縮成型、射出成型、押出成型、発泡成形等が挙げられる。なかでも、押出成形機による押出成形が好ましく、二軸押出機による押出成形がより好ましい。
樹脂組成物をガスバリア材、コーティング剤、接着剤等として用いる場合、樹脂組成物を塗布対象に塗布して、樹脂組成物の硬化物を有する塗膜を形成することができる。
<樹脂組成物の製造方法>
当該製造方法は、アルミナ粒子と、樹脂とを混合する工程を含む。
アルミナ粒子としては、上述したものが用いられうることからここでは説明を省略する。
なお、前記アルミナ粒子は、表面処理されたものを用いることができる。
また、使用するアルミナ粒子は、1種のみ使用しても、2種以上を組み合わせて使用してもよい。
さらに、アルミナ粒子と他のフィラー(アルミナ、スピネル、窒化ホウ素、窒化アルミニウム、酸化マグネシウム、炭酸マグネシウム等)とを組み合わせて使用してもよい。
アルミナ粒子の含有量は、樹脂組成物の質量100質量%に対して、5〜95質量%であることが好ましく、10〜90質量%であることがより好ましく、30〜80質量%であることがさらに好ましい。アルミナ粒子の含有量が5質量%以上であると、ガスバリア性がより一層優れたものになる。一方、アルミナ粒子の含有量が95質量%以下であると、成形性に優れた樹脂組成物を得ることができることから好ましい。
樹脂組成物をガスバリア材、コーティング剤、接着剤等として用いる場合、塗膜の形成を容易とする観点から、アルミナ粒子の含有量は、樹脂組成物の固形分質量100質量%に対して、0.1〜95質量%であることが好ましく、1〜50質量%であることがより好ましく、3〜30質量%であることがさらに好ましい。
[樹脂]
樹脂としては、特に制限されず、熱可塑性樹脂および熱硬化性樹脂が挙げられる。
前記熱可塑性樹脂としては、特に制限されず、成形材料等に使用される公知慣用の樹脂が用いられうる。具体的には、ポリエチレン樹脂、ポリプロピレン樹脂、ポリメタクリル酸メチル樹脂、ポリ酢酸ビニル樹脂、エチレン−プロピレン共重合体、エチレン−酢酸ビニル共重合体、ポリ塩化ビニル樹脂、ポリスチレン樹脂、ポリアクリロニトリル樹脂、ポリアミド樹脂、ポリカーボネート樹脂、ポリアセタール樹脂、ポリエチレンテレフタレート樹脂、ポリフェニレンオキシド樹脂、ポリフェニレンスルフィド樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリエーテルエーテルケトン樹脂、ポリアリルスルホン樹脂、熱可塑性ポリイミド樹脂、熱可塑性ウレタン樹脂、ポリアミノビスマレイミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、ビスマレイミドトリアジン樹脂、ポリメチルペンテン樹脂、フッ化樹脂、液晶ポリマー、オレフィン−ビニルアルコール共重合体、アイオノマー樹脂、ポリアリレート樹脂、アクリロニトリル−エチレン−スチレン共重合体、アクリロニトリル−ブタジエン−スチレン共重合体、アクリロニトリル−スチレン共重合体などが挙げられる。
前記熱硬化性樹脂としては、加熱または放射線や触媒などの手段によって硬化される際に実質的に不溶かつ不融性に変化し得る特性を持った樹脂であり、一般的には、成形材料等に使用される公知慣用の樹脂が用いられうる。具体的には、フェノールノボラック樹脂、クレゾールノボラック樹脂等のノボラック型フェノール樹脂;未変性のレゾールフェノール樹脂、桐油、アマニ油、クルミ油等で変性した油変性レゾールフェノール樹脂等のレゾール型フェノール樹脂等のフェノール樹脂;ビスフェノールAエポキシ樹脂、ビスフェノールFエポキシ樹脂等のビスフェノール型エポキシ樹脂;脂肪鎖変性ビスフェノール型エポキシ樹脂、ノボラックエポキシ樹脂、クレゾールノボラックエポキシ樹脂等のノボラック型エポキシ樹脂;ビフェニル型エポキシ樹脂、ポリアルキレングルコール型エポキシ樹脂等のエポキシ樹脂;ユリア(尿素)樹脂、メラミン樹脂等のトリアジン環を有する樹脂;(メタ)アクリル樹脂やビニルエステル樹脂等のビニル樹脂:不飽和ポリエステル樹脂、ビスマレイミド樹脂、ポリウレタン樹脂、ジアリルフタレート樹脂、シリコーン樹脂、ベンゾオキサジン環を有する樹脂、シアネートエステル樹脂等が挙げられる。
上述の樹脂は単独で用いても、2種以上を組み合わせて用いてもよい。この際、熱可塑性樹脂を2種以上使用してもよいし、熱硬化性樹脂を2種以上使用してもよいし、熱可塑性樹脂を1種以上および熱硬化性樹脂を1種以上使用してもよい。
樹脂の含有量は、樹脂組成物の質量100質量%に対して、5〜90質量%であることが好ましく、10〜70質量%であることがより好ましい。樹脂の含有量が5質量%以上であると、樹脂組成物の接着性及び密着性が向上することから好ましい。一方、樹脂の含有量が90質量%以下であると、樹脂組成物のガスバリア性が向上することから好ましい。
[硬化剤]
樹脂組成物には、必要に応じて硬化剤を混合してもよい。
硬化剤としては、特に制限されず、公知のものが使用されうる。
具体的には、アミン系化合物、アミド系化合物、酸無水物系化合物、フェノ−ル系化合物などが挙げられる。
前記アミン系化合物としては、ジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、イミダゾ−ル、BF3−アミン錯体、グアニジン誘導体等が挙げられる。
前記アミド系化合物としては、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンとより合成されるポリアミド樹脂等が挙げられる。
前記酸無水物系化合物としては、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸等が挙げられる。
前記フェノール系化合物としては、フェノールノボラック樹脂、クレゾールノボラック樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂、ジシクロペンタジエンフェノール付加型樹脂、フェノールアラルキル樹脂(ザイロック樹脂)、レゾルシンノボラック樹脂に代表される多価ヒドロキシ化合物とホルムアルデヒドから合成される多価フェノールノボラック樹脂、ナフトールアラルキル樹脂、トリメチロールメタン樹脂、テトラフェニロールエタン樹脂、ナフトールノボラック樹脂、ナフトール−フェノール共縮ノボラック樹脂、ナフトール−クレゾール共縮ノボラック樹脂、ビフェニル変性フェノール樹脂(ビスメチレン基でフェノール核が連結された多価フェノール化合物)、ビフェニル変性ナフトール樹脂(ビスメチレン基でフェノール核が連結された多価ナフトール化合物)、アミノトリアジン変性フェノール樹脂(メラミン、ベンゾグアナミンなどでフェノール核が連結された多価フェノール化合物)やアルコキシ基含有芳香環変性ノボラック樹脂(ホルムアルデヒドでフェノール核およびアルコキシ基含有芳香環が連結された多価フェノール化合物)等の多価フェノール化合物が挙げられる。
上述硬化剤は、単独で用いても、2種以上を組み合わせて用いてもよい。
[硬化促進剤]
樹脂組成物には、必要に応じて硬化促進剤を混合してもよい。
硬化促進剤は、組成物を硬化する際に硬化を促進させる機能を有する。
前記硬化促進剤としては、特に制限されないが、リン系化合物、第3級アミン、イミダゾール、有機酸金属塩、ルイス酸、アミン錯塩等が挙げられる。
上述の硬化促進剤は単独で用いても、2種以上を組み合わせて用いてもよい。
[硬化触媒]
樹脂組成物には、必要に応じて硬化触媒を混合してもよい。
硬化触媒は、前記硬化剤の代わりに、エポキシ基を有する化合物の硬化反応を進行させる機能を有する。
硬化触媒としては、特に制限されず、公知慣用の熱重合開始剤や活性エネルギー線重合開始剤が用いられうる。
なお、硬化触媒は単独で用いても、2種以上を組み合わせて用いてもよい。
[粘度調節剤]
樹脂組成物には、必要に応じて粘度調節剤を混合してもよい。
粘度調節剤は、組成物の粘度を調整する機能を有する。
粘度調節剤としては、特に制限されず、有機ポリマー、ポリマー粒子、無機粒子等が用いられうる。
なお、粘度調節剤は単独で用いても、2種以上を組み合わせて用いてもよい。
[可塑剤]
樹脂組成物には、必要に応じて可塑剤を混合してもよい。
可塑剤は、熱可塑性合成樹脂の加工性、柔軟性、耐候性等を向上させる機能を有する。
可塑剤としては、特に制限されず、フタル酸エステル、アジピン酸エステル、リン酸エステル、トリメリット酸エステル、ポリエステル、ポリオレフィン、ポリシロキサン等が用いられうる。
なお、上述の可塑剤は単独で用いても、2種以上を組み合わせて用いてもよい。
[混合]
樹脂組成物は、アルミナ粒子と樹脂、さらに必要に応じてその他の配合物を混合することにより得られる。その混合方法に特に限定はなく、公知慣用の方法により、混合される。
樹脂が熱硬化性樹脂である場合、一般的な熱硬化性樹脂とアルミナ粒子等との混合方法としては、所定の配合量の熱硬化性樹脂と、アルミナ粒子、必要に応じてその他の成分をミキサー等によって充分に混合した後、三本ロール等で混練し、流動性ある液状の組成物を得る方法が挙げられる。また、別の実施形態における熱硬化性樹脂とアルミナ粒子等との混合方法として、所定の配合量の熱硬化性樹脂と、アルミナ粒子、必要に応じてその他の成分をミキサー等によって充分に混合した後、ミキシングロール、押出機等で溶融混練した後、冷却することで、固形の組成物として得る方法が挙げられる。混合状態に関して、硬化剤や触媒等を配合した場合は、硬化性樹脂とそれらの配合物が充分に均一に混合されていればよいが、アルミナ粒子も均一に分散混合された方がより好ましい。
樹脂が熱可塑性樹脂である場合の一般的な熱可塑性樹脂とアルミナ粒子等との混合方法としては、熱可塑性樹脂、アルミナ粒子、および必要に応じてその他の成分を、例えばタンブラーやヘンシェルミキサーなどの各種混合機を用い予め混合した後、バンバリーミキサー、ロール、ブラベンダー、単軸混練押出機、二軸混練押出機、ニーダー、混合ロールなどの混合機で溶融混練する方法が挙げられる。なお、溶融混練の温度は特に制限されないが、通常100〜320℃の範囲である。
樹脂組成物は、更に修飾剤を含有してもよい。修飾剤としては、カップリング剤、シラン化合物、酸無水物等が挙げられる。樹脂組成物がこれらの修飾剤を含有する場合、アルミナ粒子の濡れ性が向上し、樹脂組成物への分散性が向上する。修飾剤は、1種を単独で用いてよく、複数種を組み合わせて用いてもよい。
カップリング剤としては、例えばシランカップリング剤、チタンカップリング剤、ジルコニウムカップリング剤、アルミカップリング剤等が挙げられる。
シランカップリング剤としては、例えばエポキシ基含有シランカップリング剤、アミノ基含有シランカップリング剤、(メタ)アクリル基含有シランカップリング剤、イソシアネート基含有シランカップリング剤等が挙げられる。エポキシ基含有シランカップリング剤としては、例えば3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン、2−(3,4エポキシシクロヘキシル)エチルトリメトキシシラン等が挙げられる。アミノ基含有シランカップリング剤としては、例えば3−アミノプロピルトリメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルメチルジメトキシシラン、3−トリエトキシシリル−N−(1,3−ジメチルブチリデン)プロピルアミン、N−フェニル−γ−アミノプロピルトリメトキシシラン等が挙げられる。(メタ)アクリル基含有シランカップリング剤としては、例えば3−アクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルトリエトキシシラン等が挙げられる。イソシアネート基含有シランカップリング剤としては、例えば3−イソシアネートプロピルトリエトキシシラン等が挙げられる。
チタンカップリング剤としては、例えば、イソプロピルトリイソステアロイルチタネート、イソプロピルトリオクタノイルチタネート、イソプロピルジメタクリルイソステアロイルチタネート、イソプロピルイソステアロイルジアクリルチタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、テトラ(2,2−ジアリルオキシメチル−1−ブチル)ビス(ジトリデシル)ホスファイトチタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、ビス(ジオクチルパイロホスフェート)エチレンチタネート等が挙げられる。
ジルコニウムカップリング剤としては、例えば、酢酸ジルコニウム、炭酸ジルコニウムアンモニウム、フッ化ジルコニウム等が挙げられる。
アルミカップリング剤としては、アセトアルコキシアルミニウムジイソプロピレート、アルミニウムジイソプロポキシモノエチルアセトアセテート、アルミニウムトリスエチルアセトアセテート、アルミニウムトリスアセチルアセトネート等が挙げられる。
シラン化合物としては、アルコキシシラン、シラザン、シロキサン等が挙げられる。アルコキシシランとしては、メチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、n-プロピルトリメトキシシラン、n-プロピルトリエトキシシラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、オクチルトリエトキシシラン、デシルトリメトキシシラン、1,6-ビス(トリメトキシシリル)ヘキサン、トリフルオロプロピルトリメトキシシラン等が挙げられる。シラザンとしてはヘキサメチルジシラザン等が挙げられる。シロキサンとしては加水分解性基含有シロキサン等が挙げられる。
酸無水物としては、無水コハク酸、無水マレイン酸、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸アルケニル無水コハク酸等が挙げられる。
修飾剤の配合量としては、特に制限されないが、樹脂の質量に対して、0.01〜5質量%であることが好ましく、0.1〜3質量%であることがより好ましい。
樹脂組成物は、使用用途に応じて溶剤を含有してもよい。溶剤としては有機溶剤が挙げられ、例えばメチルエチルケトン、アセトン、酢酸エチル、酢酸ブチル、トルエン、ジメチルホルムアミド、アセトニトリル、メチルイソブチルケトン、メタノール、エタノール、メトキシプロパノール、シクロヘキサノン、メチルセロソルブ、エチルジグリコールアセテート、プロピレングリコールモノメチルエーテルアセテート等が挙げられる。溶剤の種類及び使用量は使用用途によって適宜選択すればよい。
樹脂組成物は、本発明の効果を損なわない範囲で、各種の添加剤(樹脂、アルミナ粒子、硬化剤、硬化促進剤、硬化触媒、粘度調節剤、可塑剤及び修飾剤に該当する化合物は除く)を含有してもよい。添加剤としては、例えば、有機フィラー、無機フィラー、安定剤(酸化防止剤、熱安定剤、紫外線吸収剤等)、帯電防止剤、滑剤、ブロッキング防止剤、着色剤、結晶核剤、酸素捕捉剤(酸素捕捉機能を有する化合物)、粘着付与剤等が例示できる。これらの各種添加剤は単独で又は二種以上組み合わせて使用される。
添加剤のうち、無機フィラーとしては、金属、金属酸化物、樹脂、鉱物等の無機物及びこれらの複合物が挙げられる。無機フィラーの具体例としては、シリカ、チタン、ジルコニア、銅、鉄、銀、マイカ、タルク、アルミニウムフレーク、ガラスフレーク及び粘土鉱物が挙げられる。これらの中でも、ガスバリア性を向上させる目的で、粘土鉱物を使用することが好ましく、粘土鉱物の中でも膨潤性無機層状化合物を使用することがより好ましい。
膨潤性無機層状化合物としては、例えば、含水ケイ酸塩(フィロケイ酸塩鉱物等)、カオリナイト族粘土鉱物(ハロイサイト等)、スメクタイト族粘土鉱物(モンモリロナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト、ソーコナイト、スティーブンサイト等)、バーミキュライト族粘土鉱物(バーミキュライト等)などが挙げられる。これらの鉱物は天然粘土鉱物であっても合成粘土鉱物であってもよい。膨潤性無機層状化合物は単独でまたは二種以上組み合わせて使用される。
酸素捕捉機能を有する化合物としては、例えば、ヒンダードフェノール系化合物、ビタミンC、ビタミンE、有機燐化合物、没食子酸、ピロガロール等の酸素と反応する低分子有機化合物や、コバルト、マンガン、ニッケル、鉄、銅等の遷移金属化合物等が挙げられる。
粘着付与剤としては、キシレン樹脂、テルペン樹脂、ロジン樹脂等が挙げられる。粘着付与剤を添加することで塗布直後の各種フィルム材料に対する粘着性を向上させることができる。粘着性付与剤の添加量は樹脂組成物全量100質量部に対して0.01〜5質量部であることが好ましい。
本実施形態のガスバリア性組成物は、ガスバリア性、特に酸素バリア性が優れているため、ガスバリア材として好適に用いることができる。
本実施形態のガスバリア材は、コーティング剤として好適に用いることができる。コーティング剤は、上述したガスバリア性組成物を含むものであればよい。コーティング剤のコーティング方法は特に限定されない。具体的な方法としては、ロールコート、グラビアコート等の各種コーティング方法を例示することができる。また、コーティング装置についても特に限定されない。本実施形態のガスバリア材は、高いガスバリア性を有することから、ガスバリア性コーティング剤として好適に利用可能である。
本実施形態のガスバリア材は、接着性に優れるため、接着剤として好適に用いることができる。接着剤の形態には特に限定はなく、液状又はペースト状の接着剤としてもよく、固形状の接着剤としてもよい。本実施形態のガスバリア材は、高いガスバリア性を有することから、この接着剤はガスバリア性接着剤として好適に利用可能である。
液状又はペースト状の接着剤の場合は、使用方法としては特に限定はないが、接着面に塗布後又は接着面の界面に注入後、接着し、硬化させてよい。
固形状の接着剤の場合は、粉末状、チップ状、又はシート状に成形した接着剤を、接着面の界面に設置し、熱溶解させることで接着し、硬化させてよい。
本実施形態の積層体は、基材と、上述したガスバリア性組成物を含有する層(以下、ガスバリア層とも称する)とを有する。ガスバリア層は、ガスバリア性組成物の硬化物からなっていてよい。ガスバリア層の成形方法は任意であり、用途によって適時選択すればよい。ガスバリア層の形状に制限はなく、板状、シート状、又はフィルム状であってもよく、立体形状を有していてもよく、基材に塗布されたものであってもよく、基材と基材の間に存在する形で成形されたものであってもよい。
板状、シート状のガスバリア層を成形する場合、例えば押し出し成形法、平面プレス、異形押し出し成形法、ブロー成形法、圧縮成形法、真空成形法、射出成形法等を用いてガスバリア性組成物を成形する方法が挙げられる。また、フィルム状のガスバリア層を成形する場合、例えば溶融押出法、溶液キャスト法、インフレーションフィルム成形、キャスト成形、押出ラミネーション成形、カレンダー成形、シート成形、繊維成形、ブロー成形、射出成形、回転成形、被覆成形が挙げられる。
ガスバリア性組成物が液状である場合、塗工により成形してもよい。塗工方法としては、スプレー法、スピンコート法、ディップ法、ロールコート法、ブレードコート法、ドクターロール法、ドクターブレード法、カーテンコート法、スリットコート法、スクリーン印刷法、インクジェット法、ディスペンス法等が挙げられる。
本実施形態の積層体は、2層構造であってもよく、3層構造以上であってもよい。
基材の材質は特に限定はなく、用途に応じて適宜選択すればよく、例えば木材、金属、プラスチック、紙、シリコン又は変性シリコン等が挙げられ、異なる素材を接合して得られた基材であってもよい。基材の形状は特に制限はなく、平板、シート状、又は3次元形状全面に、若しくは一部に、曲率を有するもの等目的に応じた任意の形状であってよい。
また、基材の硬度、厚さ等にも制限はない。
積層体は、基材上に上述したガスバリア層を積層することで得ることができる。基材上に積層するガスバリア層は、基材に対し直接塗工又は直接成形により形成してもよく、ガスバリア層の成形体を積層してもよい。直接塗工する場合、塗工方法としては特に限定はなく、スプレー法、スピンコート法、ディップ法、ロールコート法、ブレードコート法、ドクターロール法、ドクターブレード法、カーテンコート法、スリットコート法、スクリーン印刷法、インクジェット法等が挙げられる。直接成形する場合は、インモールド成形、インサート成形、真空成形、押出ラミネート成形、プレス成形等が挙げられる。ガスバリア性組成物の硬化物からなるガスバリア層を積層する場合、未硬化又は半硬化のガスバリア性組成物層を基材上に積層してから硬化させてもよく、ガスバリア性組成物を完全硬化した硬化物層を基材上に積層してもよい。
また、積層体は、ガスバリア性組成物の硬化物に対して基材の前駆体を塗工して硬化させることで得てもよく、基材の前駆体又はガスバリア性組成物が未硬化若しくは半硬化の状態で接着させた後に硬化させることで得てもよい。基材の前駆体としては特に限定はなく、各種硬化性樹脂組成物等が挙げられる。また、実施形態のガスバリア性組成物を接着剤として用いることで積層体を作成してもよい。
以下に実施例を比較例と共に挙げて本発明を詳細に説明するが、本発明はそれら実施例によって何ら限定されるものではない。
<アルミナ粒子の合成>
[合成例1]アルミナ粒子の合成
水酸化アルミニウム(日本軽金属株式会社製、平均粒子径40μm)144.8gと、二酸化珪素(関東化学株式会社製、特級)0.95gと、三酸化モリブデン(太陽鉱工株式会社製)5gとを乳鉢で混合し、混合物を得た。得られた混合物を坩堝に入れ、セラミック電気炉にて1100℃で10時間焼成を行なった。降温後、坩堝を取り出し、105.0gの薄青色の粉末を得た。得られた粉末を乳鉢で、106μm篩を通るまで解砕した。
続いて、得られた前記薄青色粉末の100gを0.5%アンモニア水の150mLに分散し、分散溶液を室温(25℃以上30℃以下程度)で0.5時間攪拌後、ろ過によりアンモニア水を除き、水洗浄と乾燥を行う事で、粒子表面に残存するモリブデンを除去し、98gの粉末を得た。その後、コアンダ効果を利用した気流分級機((株)パウダーシステムズ製ハイプレック分級機 HPC−ZERO型)で微粒成分を分級除去し、アルミナ粒子粉末65gを得た。また、ゼータ電位の測定を行ったところ、得られたアルミナ粒子の等電点はpH5.3であることが解った。
得られた粉末は、SEM観察により、3枚以上の平板状アルミナにより形成され、固着したカードハウス構造を有するアルミナ粒子であることを確認した。得られた粉末の平均粒子径を測定したところ、35μmであった。また、カードハウス構造を構成する平板状アルミナ自体は、形状が多角板状で、厚みが400nm,平均粒子径が8μm、アスペクト比が20であることを確認した。さらに、XRD測定を行ったところ、α−アルミナに由来する鋭い散乱ピークが表れ、α結晶構造の以外のアルミナ結晶系ピークは観察されなかった。また、α化率は99%以上(ほぼ100%)であった。また、蛍光X線定量分析(XRF)の結果から、得られた粒子は、ケイ素を二酸化ケイ素換算で0.71質量%含み、モリブデンを三酸化モリブデン換算で0.76質量%含み、Alに対するSiのモル比[Si]/[Al]は0.007であった。
また、得られた粉末のX線光電子分光法(XPS)で分析した結果、アルミナ粒子の平板状アルミナの表面組成の[Si]/[Al]は0.24であり、蛍光X線定量分析のバルク組成の[Si]/[Al]%値より大幅に高く、珪素原子及び/又は無機珪素化合物が平板状アルミナの表面に偏在することを確認した。
また、XRD測定により平板状アルミナの表面にムライト層の形成を確認した。
また、得られた粉末の比表面積を測定したところ、1.4(m2/g)であり、安息角は33°であることが解った。
更に、得られた粉末を株式会社ナノシーズ製 微小粒子圧壊力測定装置NS−A100型を用い、圧壊強度を算出した結果、28MPaであった。
<合成例で得られたアルミナ粒子、及び市販の球状アルミナ粒子の評価>
合成例で得られたアルミナ粒子、及び市販の球状アルミナ粒子(デンカ株式会社製、DAS−30)を試料として、以下の評価を行った。
[走査電子顕微鏡によるアルミナ粒子の形状分析]
上記試料を両面テープにてサンプル支持台に固定し、それを表面観察装置(キーエンス社製、VE−9800)にて観察して、アルミナ粒子のカードハウス構造の有無を確認した。
[平板状アルミナ粒子の長径Lの計測]
平板状アルミナの長径Lは、アルミナ粒子中央に位置する任意の100個の平板状アルミナについて、板の輪郭線上の2点間の距離のうち、最大の長さを、走査型電子顕微鏡(SEM)を用いて測定し、算術平均値として算出した。
[板状アルミナ粒子の厚みDの計測]
走査型電子顕微鏡(SEM)を用いて、10個の厚みを測定した平均値を採用し、厚みD(μm)とした。
[アスペクト比L/D]
アスペクト比は下記の式を用いて求めた。
(アスペクト比)=(平板状アルミナ粒子の長径L/平板状アルミナ粒子の厚みD)
[粒度分布測定によるアルミナ粒子の平均粒子径測定]
上記試料を、レーザー回折式乾式粒度分布計日本レーザー社製、HELOS(H3355)&RODOS)を用いて、散圧0.3MPa、引圧90hPaの条件で測定し、体積基準の累積粒度分布から、D50(μm)を求めて、これをアルミナ粒子の平均粒子径とした。
[安息角の計測]
上記試料を300g用意し、JIS R9301−2−2に準じた方法で、試料の安息角を測定した。
[比表面積の計測]
上記試料を300℃3時間の条件で前処理を行った後、マイクロメリティックス社製、TriStar3000を用いて前処理後の試料の比表面積を測定した。
[XRDピーク強度比・ムライトの有無の分析]
作製した試料を0.5mm深さの測定試料用ホルダーにのせ、一定荷重で平らになるように充填し、それを広角X線回折(XRD)装置(株式会社リガク製 Ultima IV)にセットし、Cu/Kα線、40kV/40mA、スキャンスピード2度/分、走査範囲10〜70度の条件で測定を行った。
2θ=26.2±0.2度に認められるムライトのピーク高さをA、2θ=35.1±0.2度に認められる(104)面のα−アルミナのピーク高さをBとし、2θ=30±0.2度のベースラインの値をCとして下記の式よりムライトの有無を判定した。
値が0.02以上はムライトが「有」とし、0.02未満はムライトが「無」と判定した。
[平板状アルミナ表層のSi量]
X線光電子分光(XPS)装置Quantera SXM(アルバックファイ社)を用い、作製した試料を両面テープ上にプレス固定し、以下の条件で組成分析を行った。
(測定条件)
・X線源:単色化AlKα、ビーム径100μmφ、出力25W・測定:エリア測定(1000μm四方)、n=3
・帯電補正:C1s=284.8eV
XPS分析結果により求められる[Si]/[Al]を平板状アルミナ粒子表層のSi量とした。
[α化率の分析]
上記試料を0.5mm深さの測定試料用ホルダーにのせ、一定荷重で平らになる様充填し、それを広角X線回折装置(株式会社リガク製 Ultima IV)にセットし、Cu/Kα線、40kV/40mA、スキャンスピード2度/分、走査範囲10〜70度の条件で測定を行った。α−アルミナと遷移アルミナの最強ピーク高さの比よりα化率を求めた。
[アルミナ粒子内に含まれるSi量の分析]
蛍光X線(XRF)分析装置PrimusIV(株式会社リガク製)を用い、上記試料約70mgをろ紙にとり、PPフィルムをかぶせて組成分析を行った。
XRF分析結果により求められる[Si]/[Al]をアルミナ粒子内のSi量とした。
XRF分析結果により求められるケイ素量を、アルミナ粒子100質量%に対する二酸化ケイ素換算(質量%)により求めた。
[アルミナ粒子内に含まれるMo量の分析]
蛍光X線分析装置PrimusIV(株式会社リガク製)を用い、上記試料約70mgをろ紙にとり、PPフィルムをかぶせて組成分析を行った。
XRF分析結果により求められるモリブデン量を、アルミナ粒子100質量%に対する三酸化モリブデン換算(質量%)により求めた。
[圧壊強度の計測]
圧壊強度は、株式会社ナノシーズ製 微小粒子圧壊力測定装置NS−A100型を用いて測定した。圧壊時のピーク値とベースライン(何も力がかかっていない状況)との差を圧壊力F[N]とし、圧壊強度S[Pa]は次式より算出した10個の値の平均値とした。
S=2.8F/(π・D2)
上記式中、Fは圧壊力[N]、Dは粒子径[m]である。
[等電点の測定]
ゼータ電位測定をゼータ電位測定装置(マルバーン社、ゼータサイザーナノZSP)にて行った。試料20mgと10mM KCl水溶液10mLを泡取り錬太郎(シンキー社、ARE−310)にて攪拌・脱泡モードで3分間攪拌し、5分静置した上澄みを測定用試料とした。自動滴定装置により、試料に0.1N HClを加え、pH=2までの範囲でゼータ電位測定を行い(印加電圧100V、Monomodlモード)、電位ゼロとなる等電点のpHを評価した。
原料化合物の酸化物換算の配合(全体を100質量%とする)と、合成例で得られたアルミナ粒子、及び市販の球状アルミナ粒子の評価結果を以下の表1に示す。なお、表1中、「N.D.」はnot detectedの略であり、不検出であることを表す。
<フィルムの作製>
[実施例1]
(シランカップリング剤溶液の調製)
1.0gのシランカップリング剤(3−メタクリロキシプロピルトリメトキシシラン、商品名:KBM503、信越化学工業株式会社製)、0.215gの蒸留水、10gのイソプロパノールを混合し、常温にてスターラーで攪拌することで均一溶液を得た。
(アルミナ分散液の調製)
0.95gの前記シランカップリング剤溶液と3.0gのジオール樹脂(ポリカーボネートジオール、商品名:デュラノールT5651、旭化成株式会社製)を、酢酸エチル12.5gに添加し、常温にてスターラーで撹拌することで、T5651を完全に溶解した溶液を調製した。得られた溶液に、上記合成例1で得られたアルミナ粒子を1.2g添加し、常温にてスターラーで撹拌し、一定時間分散状態を保持するアルミナ分散液を調製した。
(コーティング剤溶液の調製)
8.0gの前記アルミナ分散液を超音波ホモジナイザー(SONIFIER BRANSON、日本エマソン株式会社製)で5分間処理した後、これに1.4gのイソシアネート樹脂(メタキシリレンジイソシアネートのトリメチロールプロパンアダクト体、不揮発成分:75.0%、NCO%:11.5%、商品名:タケネートD−110N、三井化学株式会社製)と5.6gの酢酸エチルを添加し、コーティング剤溶液を得た。
(コーティング剤溶液の塗工方法)
得られたコーティング剤溶液を、PETフィルム(PET#12、商品名:東洋紡エステルフィルムE5100、厚み12μm、東洋紡株式会社製)にバーコーター#20を用いて塗布量3.0g/m2(固形分)となるように塗工し、80℃設定の乾燥機中に30秒間設置し溶媒を揮発させた後、40℃設定の乾燥機中に3日間設置し、樹脂を硬化させ、均一なコーティング層を有するフィルムを得た。
[比較例1]
アルミナ粒子として、合成例1で得られたアルミナ粒子の代わりに市販の球状アルミナ粒子(デンカ株式会社製、DAS−30)を用いた以外は、実施例1と同様の方法を用いてフィルムを作製した。
[比較例2]
3.0gのジオール樹脂(ポリカーボネートジオール、商品名:デュラノールT5651、旭化成株式会社製)を、酢酸エチル12.5gに添加し、常温にてスターラーで撹拌することで、T5651を完全に溶解した溶液を調製し、このうちの8.0gを、1.4gのイソシアネート樹脂(メタキシリレンジイソシアネートのトリメチロールプロパンアダクト体、不揮発成分:75.0%、NCO%:11.5%、商品名:タケネートD−110N、三井化学株式会社製)と5.6gの酢酸エチルと混合し、コーティング剤溶液を得た。得られたコーティング剤溶液を用いて、実施例1と同様の方法でフィルムを作製した。
<フィルムの評価>
実施例1及び比較例1〜2のフィルムについて、酸素透過性を評価した。評価結果を表2に示す。なお、酸素透過性の評価は以下の方法で実施した。
(酸素透過率測定方法)
得られたフィルムを、モコン社製酸素透過率測定装置OX−TRAN1/50を用いてJIS−K7126(等圧法)に準じ、23℃、0%RHおよび23℃、90%RHの雰囲気下で測定した。なお、RHは相対湿度を示す。
表2から、実施例1のフィルムは、比較例1〜2のフィルムよりも、23℃、0%RH及び23℃、90%RHの何れにおいても、酸素バリア性が優れていることが確かめられた。とくに、23℃、0%RHでの酸素バリア性において優れていることが確かめられた。
各実施形態における各構成及びそれらの組み合わせ等は一例であり、本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。また、本発明は各実施形態によって限定されることはなく、請求項(クレーム)の範囲によってのみ限定される。