[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2021059462A - Hydrous silicic acid slurry and its production method - Google Patents

Hydrous silicic acid slurry and its production method Download PDF

Info

Publication number
JP2021059462A
JP2021059462A JP2019183129A JP2019183129A JP2021059462A JP 2021059462 A JP2021059462 A JP 2021059462A JP 2019183129 A JP2019183129 A JP 2019183129A JP 2019183129 A JP2019183129 A JP 2019183129A JP 2021059462 A JP2021059462 A JP 2021059462A
Authority
JP
Japan
Prior art keywords
silicic acid
slurry
hydrous silicic
particle size
laser diffraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019183129A
Other languages
Japanese (ja)
Other versions
JP7316177B2 (en
Inventor
英紀 中上
Hidenori NAKAGAMI
英紀 中上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Silica Corp
Original Assignee
Tosoh Silica Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Silica Corp filed Critical Tosoh Silica Corp
Priority to JP2019183129A priority Critical patent/JP7316177B2/en
Publication of JP2021059462A publication Critical patent/JP2021059462A/en
Application granted granted Critical
Publication of JP7316177B2 publication Critical patent/JP7316177B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Silicon Compounds (AREA)

Abstract

To provide a hydrous silicic acid slurry having a form in which nano-sized primary particles are agglomerated and which does not settle easily, despite having a BET specific surface area of 35 m2/g or less.SOLUTION: A hydrous silicic acid slurry comprises a hydrous silicic acid having a BET specific surface area of 10 to 35 m2/g, a volume average particle size (D50) of 0.4 to 0.9 μm as measured by laser diffraction, and a particle size (D90) of 1.0 to 5.0 μm at 90% of volume integrated cumulative values from the bottom in particle size distribution as measured by laser diffraction. A method for producing the hydrous silicic acid slurry comprises the steps of mixing a hydrous silicic acid having a BET specific surface area of 10 to 35 m2/g and a volume average particle size (D50) of 1.0 μm or more as measured by laser diffraction with a dispersing medium to make a slurry, and wet-milling the resulting slurry until having a volume average particle size (D50) of 0.4 to 0.9 μm as measured by laser diffraction and a particle size (D90) of 1.0 to 5.0 μm at 90% of volume integrated cumulative values from the bottom in particle size distribution as measured by laser diffraction.SELECTED DRAWING: Figure 1

Description

本発明は、含水ケイ酸スラリー及びその製造方法に関する。 The present invention relates to a hydrous silicic acid slurry and a method for producing the same.

シリカを水系分散媒に分散したシリカスラリーは多種多様なものがある。あらかじめスラリー状態で合成されるコロイダルタイプやゾルタイプの含シリカスラリーをはじめ、粉体で供給さる乾式シリカを溶剤に分散したスラリーも多く利用されている。これらは、ナノサイズのシリカ一次粒子が単分散或いは単分散に近い凝集構造を有するシリカスラリーである。 There are a wide variety of silica slurries in which silica is dispersed in an aqueous dispersion medium. In addition to colloidal-type and sol-type silica-containing slurries that are synthesized in advance in a slurry state, slurries in which dry silica supplied as powder is dispersed in a solvent are also widely used. These are silica slurries in which nano-sized silica primary particles have a monodisperse or a cohesive structure close to monodisperse.

一方、約10〜30nmの一次粒子がおよそ50〜500nmのサイズに強く凝集した構造を持ち、粉体で供給される含水ケイ酸を水系分散媒に分散した含水ケイ酸スラリーは、含水ケイ酸が凝集構造を有することで、コロイダルシリカや乾式シリカとは異なる特性を有しており、そのため様々なタイプが検討されている。 On the other hand, the hydrous silicic acid slurry, which has a structure in which primary particles of about 10 to 30 nm are strongly aggregated to a size of about 50 to 500 nm and the hydrous silicic acid supplied as a powder is dispersed in an aqueous dispersion medium, contains hydrous silicic acid. By having an agglomerated structure, it has properties different from colloidal silica and dry silica, and therefore various types are being studied.

含水ケイ酸スラリーの製造方法としては、粉体の含水ケイ酸を水などの水系分散媒に分散し、ビーズミルや高圧ホモジナイザーなどの湿式粉砕機を用いて粒子径を調整する方法が開示されている。(特許文献1〜3) As a method for producing a hydrous silicic acid slurry, a method of dispersing hydrous silicic acid in powder in an aqueous dispersion medium such as water and adjusting the particle size using a wet pulverizer such as a bead mill or a high-pressure homogenizer is disclosed. .. (Patent Documents 1 to 3)

また、含水ケイ酸スラリー中の含水ケイ酸は凝集構造を有しているために、凝集沈澱を起こし易いという欠点がある。その対策としてカチオン樹脂等を添加する方法が開示されている。(特許文献1, 3) Further, since the hydrous silicic acid in the hydrous silicic acid slurry has an aggregated structure, there is a drawback that aggregation and precipitation are likely to occur. As a countermeasure, a method of adding a cationic resin or the like is disclosed. (Patent Documents 1 and 3)

含水ケイ酸スラリーの用途としては、インクジェット光沢紙(特許文献1)、研磨剤(特許文献2, 4)のほか、フィルムや樹脂コーティングの添加剤(特許文献3)、塗料、インキの艶消し剤などがある。透明性を要求されるインクジェット光沢紙やフィルム樹脂のコーティング添加剤分野ではBET比表面積が高く、細孔容量(または吸油量)が大きな含水ケイ酸が好まれる。 Hydrous silicic acid slurry is used for inkjet glossy paper (Patent Document 1), abrasives (Patent Documents 2 and 4), film and resin coating additives (Patent Document 3), paints, and ink matting agents. and so on. In the field of coating additives for inkjet glossy paper and film resins, which require transparency, hydrous silicic acid having a high BET specific surface area and a large pore capacity (or oil absorption) is preferred.

特開平10-181190号公報Japanese Unexamined Patent Publication No. 10-181190 特開2003-146645号公報Japanese Unexamined Patent Publication No. 2003-146645 特開2006-69870号公報Japanese Unexamined Patent Publication No. 2006-69870 特開2016-1000034号公報Japanese Unexamined Patent Publication No. 2016-1000034

近年、従来にはないBET比表面積が小さく(例えば、BET比表面積35m2/g以下)、一次粒子径が大きく(例えば、直径で60nm以上)、かつ凝集形態を有した非球状のサブミクロンサイズの含水ケイ酸のスラリーに対するニーズが高まっている。以下、本願明細書において、サブミクロンサイズとは、数値限定していない場合、0.1〜1.0ミクロンのサイズを指す。 In recent years, a non-spherical submicron size having a small BET specific surface area (for example, BET specific surface area of 35 m 2 / g or less), a large primary particle diameter (for example, 60 nm or more in diameter), and an aggregated morphology, which has never been seen before. There is an increasing need for a slurry of hydrous silicic acid. Hereinafter, in the present specification, the submicron size refers to a size of 0.1 to 1.0 micron, if not numerically limited.

このようなスラリーは、例えば、研磨剤用途で使用した場合、研磨面の平滑性はコロイダルシリカ等、他のタイプの含水ケイ酸スラリーには劣るものの、研磨速度の向上などが期待できる。また、フィルムや樹脂コーティング添加剤として使用した場合、透明性は劣るものの、コーティング材料との密着性の向上に伴う接着強度の向上や、コート面のブロッキング性能の向上や表面が何かに擦れた時の耐キズ性の向上が期待できる。 When such a slurry is used as an abrasive, for example, the smoothness of the polished surface is inferior to that of other types of hydrous silicic acid slurries such as colloidal silica, but an improvement in polishing speed can be expected. In addition, when used as a film or resin coating additive, although the transparency is inferior, the adhesive strength is improved due to the improved adhesion to the coating material, the blocking performance of the coated surface is improved, and the surface is rubbed against something. It can be expected to improve the scratch resistance at the time.

以下、本願明細書において、特に断らない限り、含水ケイ酸とは粉体状態の含水ケイ酸を指し、スラリーとは、含水ケイ酸スラリーを指す。 Hereinafter, in the present specification, unless otherwise specified, the hydrous silicic acid refers to a hydrous silicic acid in a powder state, and the slurry refers to a hydrous silicic acid slurry.

ケイ酸は、ケイ酸ソーダと鉱酸の中和反応により析出した一次粒子を成長させることで合成される。そのため、BET比表面積が35m2/g以下の含水ケイ酸であっても調製することは可能である。しかし、通常、この方法では、析出した小さな一次粒子が凝集状態を保ったまま粒子成長していくため、含水ケイ酸のBET比表面積が35m2/g以下に至るまで成長させると、硬く大きな凝集粒子となってしまう。 Silicic acid is synthesized by growing primary particles precipitated by the neutralization reaction of sodium silicate and mineral acid. Therefore, even hydrous silicic acid having a BET specific surface area of 35 m 2 / g or less can be prepared. However, in this method, the deposited small primary particles usually grow while maintaining the agglomerated state. Therefore, when the hydrous silicic acid is grown to a BET specific surface area of 35 m 2 / g or less, it is hard and large agglomerates. It becomes a particle.

本発明者らの実験によれば、従来法を用いてBET比表面積35m2/g以下の含水ケイ酸を調製すると、凝集粒子径が数10μmサイズの硬い不定形な含水ケイ酸になり、その後の粉砕が困難であり、特に1μm未満のサブミクロンサイズまで粉砕することは実質的に不可能であった。 According to the experiments of the present inventors, when a hydrous silicic acid having a BET specific surface area of 35 m 2 / g or less is prepared by a conventional method, it becomes a hard amorphous silicic acid having an aggregated particle size of several tens of μm in size, and then becomes a hard amorphous silicic acid. It was difficult to grind, and it was practically impossible to grind to a submicron size of less than 1 μm.

さらに、含水ケイ酸特有の問題として、スラリー中の含水ケイ酸の沈降問題が挙げられる。特にBET比表面積35m2/g以下の含水ケイ酸ではそれが顕著であった。含水ケイ酸の沈降防止方法は特許文献1から3にあるように、カチオン樹脂等を添加する方法も提案されているが、BET比表面積35m2/g以下の含水ケイ酸ではこの添加効果は低かった。さらに、スラリーにカチオン樹脂等を添加すると、例えば、コーティング添加剤用途では後のpH調整でゲル化をしてしまうという問題があり、研磨用途ではカチオン樹脂成分による摩擦抵抗の低下で研磨速度が低下するなどの問題が有った。このように用途によっては、これら沈降防止方法は好ましくない場合があった。 Further, as a problem peculiar to hydrous silicic acid, there is a problem of sedimentation of hydrous silicic acid in the slurry. This was particularly noticeable with hydrous silicic acid with a BET specific surface area of 35 m 2 / g or less. As described in Patent Documents 1 to 3, a method of adding a cationic resin or the like has been proposed as a method for preventing sedimentation of hydrous silicic acid, but this addition effect is low for hydrous silicic acid having a BET specific surface area of 35 m 2 / g or less. It was. Further, when a cationic resin or the like is added to the slurry, for example, in a coating additive application, there is a problem that gelation occurs at a later pH adjustment, and in a polishing application, the polishing speed decreases due to a decrease in frictional resistance due to the cationic resin component. There was a problem such as doing. As described above, depending on the application, these sedimentation prevention methods may not be preferable.

そこで本発明者らは、これらの課題を解決するために、BET比表面積が35m2/g以下であるにも関わらず、ナノサイズの一次粒子が凝集した形態を有し、かつ沈降しにくいスラリーについて種々検討を行った。 Therefore, in order to solve these problems, the present inventors have a slurry in which nano-sized primary particles are aggregated and hard to settle even though the BET specific surface area is 35 m 2 / g or less. Was examined in various ways.

上述のように、従来法で調製したBET比表面積が35m2/g以下の含水ケイ酸は凝集力が強く、1μm未満のサブミクロン領域まで粉砕することが出来ない。そこで、BET比表面積が35m2/g以下でありながら、例えば、湿式粉砕によって1μm未満のサブミクロン領域まで粉砕することが出来るような含水ケイ酸の新規な合成方法の検討を行った。 As described above, the hydrous silicic acid having a BET specific surface area of 35 m 2 / g or less prepared by the conventional method has a strong cohesive force and cannot be pulverized to a submicron region of less than 1 μm. Therefore, we investigated a new method for synthesizing hydrous silicic acid that can be pulverized to a submicron region of less than 1 μm by wet pulverization while having a BET specific surface area of 35 m 2 / g or less.

その結果、後述するような従来法と同様にケイ酸ソーダと鉱酸の中和反応を用いる方法ではあるが、濃度が低い鉱酸を用い、従来よりゆっくりと粒子成長をさせることで、BET比表面積が35m2/g以下でありながら、ナノサイズの一次粒子が凝集した形態を有し、かつ1μm未満のサブミクロン領域まで粉砕することができる含水ケイ酸の合成に成功した。 As a result, although it is a method using a neutralization reaction of sodium silicate and mineral acid as in the conventional method as described later, the BET ratio is obtained by using a mineral acid having a low concentration and allowing the particles to grow more slowly than before. We have succeeded in synthesizing hydrous silicic acid, which has a surface area of 35 m 2 / g or less, has an aggregated form of nano-sized primary particles, and can be pulverized to a submicron region of less than 1 μm.

さらに、この方法で合成したBET比表面積35m2/g以下の含水ケイ酸を1μm未満のサブミクロン領域まで湿式粉砕して、ナノサイズの一次粒子が凝集した形態を有し、かつ沈降しにくい含水ケイ酸スラリーの調製に成功し、本発明を完成するに至った。 Furthermore, the hydrous silicic acid with a BET specific surface area of 35 m 2 / g or less synthesized by this method is wet-pulverized to a submicron region of less than 1 μm, and has a form in which nano-sized primary particles are aggregated and is difficult to settle. Succeeded in preparing a silicic acid slurry, and completed the present invention.

加えて、調製した含水ケイ酸スラリーに特定の無機塩を添加することにより、含水ケイ酸の沈降が抑制され、分散状態が維持できることも見出した。 In addition, it was also found that by adding a specific inorganic salt to the prepared hydrous silicic acid slurry, the precipitation of the hydrous silicic acid is suppressed and the dispersed state can be maintained.

本発明は、以下の通りである。
[1]
BET比表面積が10〜35m2/gであり、レーザー回折法で測定した体積平均粒子径(D50)が0.4〜0.9μmであり、かつレーザー回折法で測定した粒度分布における下位からの体積積算累積値の90%の粒子径(D90)が1.0〜5.0μmである含水ケイ酸を含む、含水ケイ酸スラリー。
[2]
含水ケイ酸濃度が20〜45重量%である、[1]に記載の含水ケイ酸スラリー。
[3]
弱酸強塩基を除く無機塩をさらに含有する、[1]に記載の含水ケイ酸スラリー。
[4]
前記無機塩をスラリー100重量部に対して2.0〜5.0重量部の割合で含有する、[3]に記載の含水ケイ酸スラリー。
[5]
スラリーの分散媒が水または水含有溶液である、[1]に記載の含水ケイ酸スラリー。
[6]
スラリーのpHが3.0〜8.0であり、電気伝導度(E.C.)が15〜100mS/cm(ミリジーメンス)である、[1]の含水ケイ酸スラリー。
[7]
BET比表面積が10〜35m2/gであり、かつレーザー回折法で測定した体積平均粒子径(D50)が1.0μm以上の含水ケイ酸を分散媒と混合し、スラリー化を行う工程、及び
得られたスラリーを、レーザー回折法で測定した体積平均粒子径(D50)が0.4〜0.9μmであり、かつレーザー回折法で測定した粒度分布における下位からの体積積算累積値の90%の粒子径(D90)が1.0〜5.0μmになるまで湿式粉砕を行う工程、
を含む、[1]に記載の含水ケイ酸スラリーの製造方法。
[8]
含水ケイ酸と分散媒との混合は、20〜45重量%の濃度のスラリーが得られるように行う、[7]に記載の製造方法。
[9]
スラリーの分散媒が水または水含有溶液である、[7]〜[8]のいずれかに記載の製造方法。
[10]
湿式粉砕工程後に得られたスラリーに対して、弱酸強塩基を除く無機塩を添加して、前記無機塩を含有する含水ケイ酸スラリーを得る、[7]〜[9]のいずれかに記載の製造方法。
[11]
前記無機塩は、前記スラリー100重量部に対し2.0〜5.0重量部の割合で添加する、[10]に記載の製造方法。
The present invention is as follows.
[1]
The BET specific surface area is 10 to 35 m 2 / g, the volume average particle size (D50) measured by the laser diffraction method is 0.4 to 0.9 μm, and the cumulative volume from the bottom in the particle size distribution measured by the laser diffraction method is cumulative. A hydrous silicic acid slurry comprising a hydrous silicic acid having a particle size (D90) of 90% of the value of 1.0 to 5.0 μm.
[2]
The hydrous silicic acid slurry according to [1], wherein the hydrous silicic acid concentration is 20 to 45% by weight.
[3]
The hydrous silicic acid slurry according to [1], which further contains an inorganic salt excluding a weak acid and a strong base.
[Four]
The hydrous silicic acid slurry according to [3], which contains the inorganic salt in a proportion of 2.0 to 5.0 parts by weight with respect to 100 parts by weight of the slurry.
[Five]
The hydrous silicic acid slurry according to [1], wherein the dispersion medium of the slurry is water or a water-containing solution.
[6]
The hydrous silicic acid slurry of [1], the slurry having a pH of 3.0 to 8.0 and an electrical conductivity (EC) of 15 to 100 mS / cm (millisiemens).
[7]
A step of mixing a hydrous silicic acid having a BET specific surface area of 10 to 35 m 2 / g and a volume average particle diameter (D50) of 1.0 μm or more measured by a laser diffraction method with a dispersion medium to form a slurry, and obtaining a slurry. The volume average particle diameter (D50) of the obtained slurry measured by the laser diffraction method is 0.4 to 0.9 μm, and the particle diameter (D50) is 90% of the volume integrated cumulative value from the lower part in the particle size distribution measured by the laser diffraction method. A process of wet pulverization until D90) reaches 1.0 to 5.0 μm,
The method for producing a hydrous silicic acid slurry according to [1].
[8]
The production method according to [7], wherein the hydrous silicic acid and the dispersion medium are mixed so as to obtain a slurry having a concentration of 20 to 45% by weight.
[9]
The production method according to any one of [7] to [8], wherein the dispersion medium of the slurry is water or a water-containing solution.
[Ten]
The water-containing silicic acid slurry containing the inorganic salt is obtained by adding an inorganic salt other than a weak acid and a strong base to the slurry obtained after the wet pulverization step, according to any one of [7] to [9]. Production method.
[11]
The production method according to [10], wherein the inorganic salt is added at a ratio of 2.0 to 5.0 parts by weight with respect to 100 parts by weight of the slurry.

本発明によれば、BET比表面積が10〜35m2/gで、体積平均粒子径(D50)が0.4〜0.9μmであり、体積積算累積値90%(D90)が1.0〜5.0μmである、ナノサイズの一次粒子が凝集した形態を有し、かつ沈降しにくい含水ケイ酸スラリーを提供することができる。 According to the present invention, the BET specific surface area is 10 to 35 m 2 / g, the volume average particle size (D50) is 0.4 to 0.9 μm, and the volume integrated cumulative value 90% (D90) is 1.0 to 5.0 μm. It is possible to provide a hydrous silicate slurry having a form in which nano-sized primary particles are aggregated and which is difficult to settle.

さらに、本発明の含水ケイ酸スラリーは、含水ケイ酸濃度を20〜45重量%までの高濃度化することも可能である。 Further, the hydrous silicic acid slurry of the present invention can increase the hydrous silicic acid concentration to a high concentration of 20 to 45% by weight.

加えて本発明によれば、弱酸強塩基を除く無機塩をスラリーに添加することで、沈降安定性により優れた含水ケイ酸スラリーを提供することができる。 In addition, according to the present invention, it is possible to provide a hydrous silicic acid slurry having more excellent sedimentation stability by adding an inorganic salt excluding a weak acid and a strong base to the slurry.

BET比表面積が35m2/g以下の含水ケイ酸の一次粒子成長モデルを示す。A primary particle growth model of hydrous silicic acid with a BET specific surface area of 35 m 2 / g or less is shown. 実施例、比較例の含水ケイ酸スラリーの製造フローProduction flow of hydrous silicic acid slurry of Examples and Comparative Examples 実施例3の湿式粉砕前後のレーザー回折法体積粒度分布Laser diffraction volume particle size distribution before and after wet grinding in Example 3 比較例1の湿式粉砕前後のレーザー回折法体積粒度分布Laser diffraction volume particle size distribution before and after wet pulverization of Comparative Example 1

本発明は、BET比表面積が10〜35m2/gであり、レーザー回折法で測定した体積平均粒子径(D50)が0.4〜0.9μmであり、かつレーザー回折法で測定した粒度分布における下位からの体積積算累積値90%(D90)が1.0〜5.0μmである含水ケイ酸を含む、含水ケイ酸スラリーに関する。 In the present invention, the BET specific surface area is 10 to 35 m 2 / g, the volume average particle diameter (D50) measured by the laser diffraction method is 0.4 to 0.9 μm, and the particle size distribution measured by the laser diffraction method is from the bottom. Containing a hydrous silicic acid having a cumulative cumulative value of 90% (D90) of 1.0 to 5.0 μm.

本発明の含水ケイ酸スラリーに含まれる含水ケイ酸のBET比表面積は、10〜35m2/gの範囲である。BET比表面積35m2/gを超える含水ケイ酸スラリーは、例えば研磨分野では研磨速度が不十分であり、コーティング用途では接着強度や耐キズ特性が不十分である。一方、BET比表面積が10m2/g未満の場合には、含水ケイ酸の製造自体が困難である。含水ケイ酸スラリーに含まれる含水ケイ酸のBET比表面積は、好ましくは15〜30m2/g、さらに好ましくは15〜25 m2/gの範囲である。BET比表面積は小さい程、スラリーを高濃度化することが可能である。さらに、研磨用途等では研磨速度の更なる向上やコーティング剤との密着性の更なる向上も期待できる。 The BET specific surface area of the hydrous silicic acid contained in the hydrous silicic acid slurry of the present invention is in the range of 10 to 35 m 2 / g. A hydrous silicic acid slurry having a BET specific surface area of more than 35 m 2 / g has an insufficient polishing rate, for example, in the polishing field, and has insufficient adhesive strength and scratch resistance in coating applications. On the other hand, when the BET specific surface area is less than 10 m 2 / g, it is difficult to produce hydrous silicic acid itself. BET specific surface area of hydrous silicic acid contained in the hydrated silica slurry is preferably in the range of 15 to 30 m 2 / g, more preferably 15~25 m 2 / g. The smaller the BET specific surface area, the higher the concentration of the slurry. Further, in polishing applications and the like, further improvement in polishing speed and further improvement in adhesion to the coating agent can be expected.

本発明の含水ケイ酸スラリーに含まれる含水ケイ酸の体積平均粒子径(D50)は0.4〜0.9μmの範囲であり、体積積算累積値90%粒子径(D90)は1.0〜5.0μmの範囲である。本発明の含水ケイ酸の粒子径の測定は、含水ケイ酸の非球状の凝集粒子の大きさを、レーザー回折法で測定した体積分布基準の値を示し、D50値は粒度分布における体積積算累積値が50%の値(メジアン径)、D90は粒度分布における体積積算累積値が下位から90%(または上位10%)の値を示す。これらは、Microtracシリーズ(MicrotracBEL社製)、Mastersizerシリーズ(Malvern社製)、LSシリーズ(BECKMAN COULTER社製)などの市販のレーザー回折式粒度分布計で測定出来る。 The volume average particle size (D50) of the hydrous silicic acid contained in the hydrous silicic acid slurry of the present invention is in the range of 0.4 to 0.9 μm, and the volume integrated cumulative value 90% particle size (D90) is in the range of 1.0 to 5.0 μm. is there. The measurement of the particle size of the hydrous silicic acid of the present invention indicates the value of the volume distribution reference measured by the laser diffraction method for the size of the non-spherical aggregated particles of the hydrous silicic acid, and the D50 value is the cumulative volume integration in the particle size distribution. The value is 50% (Median diameter), and D90 is the value of the cumulative volume integration value in the particle size distribution of 90% (or the top 10%) from the bottom. These can be measured with commercially available laser diffraction particle size distribution meters such as the Microtrac series (MicrotracBEL), Mastersizer series (Malvern), and LS series (BECKMAN COULTER).

D50は、100〜200nm程度の一次粒子が数個〜数100個程度凝集した非球状構造を持つ含水ケイ酸粒子のメジアン径を示している。D50が0.4μm未満の場合、一次粒子が十分に凝集していないことを意味し、凝集形態を有した非球状のサブミクロンサイズの含水ケイ酸のスラリーを提供する本発明の目的から逸脱する。D50が0.9μmを超える場合、凝集粒子は粒度分布を有することからミクロンサイズの粒子が多数存在することを意味し、好ましくない。D50は0.5〜0.8μmの範囲が好ましい。 D50 indicates the median diameter of hydrous silicic acid particles having a non-spherical structure in which several to several hundred primary particles of about 100 to 200 nm are aggregated. When D50 is less than 0.4 μm, it means that the primary particles are not sufficiently aggregated, which deviates from the object of the present invention to provide a slurry of non-spherical submicron-sized hydrous silicic acid having an aggregated morphology. When D50 exceeds 0.9 μm, it means that a large number of micron-sized particles are present because the aggregated particles have a particle size distribution, which is not preferable. D50 is preferably in the range of 0.5 to 0.8 μm.

D90は1.0μm以上である。D50が0.4〜0.9μmの範囲であることから、D90が1.0μm未満である含水ケイ酸のスラリーの調製は実質的に困難である。D90の値や最大粒子径は可能な限り小さく、D50の値に近づく程、理想的ではあるが、少なくとも5.0μm以下でなければならない。D90が5.0μmを超えると、例えば研磨用途ではキズの発生原因になり、コーティング用途ではいわゆるブツ発生要因になる。D90は好ましくは1.0〜3.0μmの範囲、さらに好ましくは1.0〜2.0μmの範囲である。 D90 is 1.0 μm or more. Since D50 is in the range of 0.4 to 0.9 μm, it is practically difficult to prepare a slurry of hydrous silicic acid with D90 of less than 1.0 μm. The value of D90 and the maximum particle size should be as small as possible, and the closer to the value of D50, ideally, but at least 5.0 μm or less. If D90 exceeds 5.0 μm, it causes scratches in polishing applications, and causes so-called bumps in coating applications. D90 is preferably in the range of 1.0 to 3.0 μm, more preferably in the range of 1.0 to 2.0 μm.

発明の含水ケイ酸スラリーは、含水ケイ酸濃度が20〜45重量%であることが好ましい。含水ケイ酸スラリーの含水ケイ酸濃度は、輸送コストなどの経済的な側面を考慮すると高い方が好ましく、20重量%以上の濃度であることが好ましい。但し、20重量%未満のスラリーを排除する意図ではない。スラリーは水などで希釈して含水ケイ酸濃度を調整することが可能であり、高濃度であることが実用上、好ましいが、45重量%を超える高濃度になると、粘度が急激に上昇し、スラリー形態を維持することが難しくなる。粘度の急激上昇は、凝集形態を有する含水ケイ酸が有する細孔構造に起因する。スラリーの粘度を考慮すると、含水ケイ酸濃度は20〜45%の範囲が好ましい。さらに、スラリーの長期安定性や粘度を考えると、含水ケイ酸濃度は、好ましくは20〜40重量%の範囲、さらに好ましくは25〜35重量%の範囲である。 The hydrous silicic acid slurry of the present invention preferably has a hydrous silicic acid concentration of 20 to 45% by weight. The hydrous silicic acid concentration of the hydrous silicic acid slurry is preferably high in consideration of economic aspects such as transportation cost, and is preferably 20% by weight or more. However, it is not intended to exclude slurries less than 20% by weight. The slurry can be diluted with water or the like to adjust the concentration of hydrated silicic acid, and a high concentration is practically preferable. However, when the concentration exceeds 45% by weight, the viscosity sharply increases. It becomes difficult to maintain the slurry form. The rapid increase in viscosity is due to the pore structure of hydrous silicic acid having an aggregated form. Considering the viscosity of the slurry, the hydrous silicic acid concentration is preferably in the range of 20 to 45%. Further, considering the long-term stability and viscosity of the slurry, the hydrous silicic acid concentration is preferably in the range of 20 to 40% by weight, more preferably in the range of 25 to 35% by weight.

一般にスラリー粘度は低い方が良いとされ、工業的に使用されるスラリーの粘度は500mPa・s以下、更に好ましくは200mPa・s以下である。本発明のスラリーは、濃度が45重量%以下であれば、スラリー粘度は概ね工業的に使用されるスラリーの粘度の範囲内となる。 Generally, it is preferable that the slurry viscosity is low, and the viscosity of the industrially used slurry is 500 mPa · s or less, more preferably 200 mPa · s or less. When the concentration of the slurry of the present invention is 45% by weight or less, the viscosity of the slurry is generally within the range of the viscosity of the slurry used industrially.

本発明の含水ケイ酸スラリーは、経時で含水ケイ酸が沈降するが、ハードケークを形成することはなく、経時沈降により形成されたソフトケーク化やソフトゲル化等軽い攪拌や振とうするなど簡単な操作によって容易に流動性が取り戻せる。このような再分散が可能な範囲での経時変化は実用的には許容レベルである。本発明の含水ケイ酸スラリーは、このような再分散性を有することから、製造後、長期間保存した後でも、研磨剤として、或いはフィルムや樹脂コーティング添加剤として、インキの艶消し剤やその他の用途で、有用に使用することができる。但し、経時沈降しない含水ケイ酸スラリーであれば、さらに好ましい。 In the hydrous silicic acid slurry of the present invention, the hydrous silicic acid precipitates over time, but does not form hard cakes, and the soft cakes and soft gels formed by the sedimentation over time can be easily stirred or shaken. Liquidity can be easily regained by various operations. The change with time within the range where such redispersion is possible is a practically acceptable level. Since the hydrous silicic acid slurry of the present invention has such redispersibility, it can be used as an abrasive, as a film or resin coating additive, as an ink matting agent or the like, even after being manufactured and stored for a long period of time. It can be usefully used in the above applications. However, a hydrous silicic acid slurry that does not settle over time is more preferable.

本発明の含水ケイ酸スラリーは、弱酸強塩基を除く無機塩をさらに含有することが好ましい。無機塩類の含有により、スラリー中での含水ケイ酸の経時沈降を抑制乃至防止することができる。本発明のスラリーに含有させる塩は弱酸強塩基塩以外の無機塩であればよい。無機塩の具体例を挙げれば、強酸強塩基の例としては、硫酸ナトリウム、硫酸カリウム、塩化ナトリウム、硝酸カリウム等、強酸弱塩基の例としては、塩化アンモニウム、硝酸アンモニウム等が例示できる。無機塩類の添加による沈降を防止の原理は詳細には判明していないし、理論に拘泥する意図はないが、含水ケイ酸の表面電荷と水系分散媒中のイオン電荷の何らかの相互作用によるものと考えられる。なお、弱酸強塩基塩の場合は、pHの説明項でも後述するが、スラリーのpHがアルカリ性となり、シリカが溶解し、スラリーの性状が変化するため本発明には適さない。 The hydrous silicic acid slurry of the present invention preferably further contains an inorganic salt excluding a weak acid and a strong base. By containing the inorganic salts, it is possible to suppress or prevent the water-containing silicic acid from settling over time in the slurry. The salt contained in the slurry of the present invention may be an inorganic salt other than a weak acid and a strong base salt. Specific examples of the inorganic salt include sodium sulfate, potassium sulfate, sodium chloride, potassium nitrate and the like as examples of strong acid strong bases, and ammonium chloride, ammonium nitrate and the like as examples of strong acid weak bases. The principle of preventing sedimentation due to the addition of inorganic salts has not been clarified in detail, and there is no intention to stick to the theory, but it is thought that it is due to some interaction between the surface charge of hydrous silicic acid and the ionic charge in the aqueous dispersion medium. Be done. In the case of a weak acid strong base salt, which will be described later in the description of pH, it is not suitable for the present invention because the pH of the slurry becomes alkaline, silica dissolves, and the properties of the slurry change.

無機塩(弱酸強塩基除く)濃度は、無機塩の種類にもよるが、スラリー100重量部に対して、例えば、2.0〜5.0重量部の範囲であることが適当である。無機塩濃度が2.0重量部以上であれば、十分な沈降防止効果が見られ、粒子の沈澱によるハードケーク形成を回避できる。また、無機塩は5.0重量部以下の含有量であれば、粘度上昇を招くこともない。また、そもそも含水ケイ酸にとっては不純物である無機塩の含有量は抑制することが好ましい。このような観点から無機塩の含有量は、スラリー100重量部に対して好ましくは2.0〜4.0重量部、さらに好ましくは2.0〜3.0重量部の範囲である。 The concentration of the inorganic salt (excluding the weak acid and the strong base) depends on the type of the inorganic salt, but is appropriately in the range of, for example, 2.0 to 5.0 parts by weight with respect to 100 parts by weight of the slurry. When the concentration of the inorganic salt is 2.0 parts by weight or more, a sufficient effect of preventing precipitation can be seen, and hard cake formation due to precipitation of particles can be avoided. Further, if the content of the inorganic salt is 5.0 parts by weight or less, the viscosity does not increase. In addition, it is preferable to suppress the content of inorganic salts, which are impurities for hydrous silicic acid in the first place. From this point of view, the content of the inorganic salt is preferably in the range of 2.0 to 4.0 parts by weight, more preferably 2.0 to 3.0 parts by weight with respect to 100 parts by weight of the slurry.

本発明の含水ケイ酸スラリーへの、第4級アルキルアンモニウム塩、アルキルカルボン酸塩等に代表される有機官能基を持つ塩の添加は、本発明の目的およびスラリーの長期安定性の面から好ましくない。特に第4級アルキルアンモニウム塩は、スラリーの増粘化を招き、さらに界面活性剤の成分を含むことが多いので、例えば研磨用途では摩擦抵抗の低下、艶消し用途では塗膜強度の低下を招き易く好ましくなく、アルキルカルボン酸塩等は経時分解し変色するなどの問題も引き起こす。 The addition of a salt having an organic functional group represented by a quaternary alkylammonium salt, an alkylcarboxylic acid salt, or the like to the hydrous silicic acid slurry of the present invention is preferable from the viewpoint of the object of the present invention and the long-term stability of the slurry. Absent. In particular, the quaternary alkylammonium salt causes thickening of the slurry and often contains a surfactant component, so that, for example, it causes a decrease in frictional resistance in polishing applications and a decrease in coating film strength in matting applications. It is not easy and unfavorable, and alkylcarboxylic acid salts and the like cause problems such as decomposition over time and discoloration.

本発明の含水ケイ酸スラリーの分散媒が水または水含有溶液であることが適当である。水含有溶液は、水に加えて、例えば、アルコール、エチレングリコール等の水溶性有機溶媒を含有する溶液であることができる。但し、水の単独使用が最も好ましい。アルコールやエチレングリコール等の水溶性有機溶媒を含有する水含有溶液を分散媒として用いると、製造過程での湿式粉砕の際に、粉砕エネルギーにより発熱することがあるので、安全面を考慮すると水を単独で使用するのが最も好ましい。 It is appropriate that the dispersion medium of the hydrous silicic acid slurry of the present invention is water or a water-containing solution. The water-containing solution can be a solution containing, for example, a water-soluble organic solvent such as alcohol or ethylene glycol in addition to water. However, the single use of water is most preferable. If a water-containing solution containing a water-soluble organic solvent such as alcohol or ethylene glycol is used as the dispersion medium, heat may be generated due to the crushing energy during wet crushing in the manufacturing process. Most preferably used alone.

本発明の含水ケイ酸スラリーは、pHが3.0〜8.0の範囲であることが好ましい。スラリーのpHは、スラリーそのもののpHであり、具体的にはスラリーにpH電極を差し込んで測定した値を意味する。pHが3.0以上であれば、強酸性となりすぎず、使用用途が限られる心配はない。pHが8.0以下であれば、含水ケイ酸が経時的に溶解してスラリー性能が変化してしまう心配はない。pHは好ましくは3.0〜7.5、さらに好ましくは4.0〜7.0 の範囲である。 The hydrous silicic acid slurry of the present invention preferably has a pH in the range of 3.0 to 8.0. The pH of the slurry is the pH of the slurry itself, and specifically means a value measured by inserting a pH electrode into the slurry. If the pH is 3.0 or higher, it will not become too strong acid and there is no concern that its intended use will be limited. If the pH is 8.0 or less, there is no concern that the hydrous silicic acid will dissolve over time and the slurry performance will change. The pH is preferably in the range of 3.0 to 7.5, more preferably 4.0 to 7.0.

本発明の含水ケイ酸スラリーは、電気伝導度(E.C.)が15〜100mS/cm(ミリジーメンス)の範囲であることが好ましい。スラリーの電気伝導度は、スラリーそのものの電気伝導度であり、具体的にはスラリーに電気伝導度測定用電極を差し込んで測定した値を意味する。スラリーの電気伝導度は、無機塩を含有しない場合には、洗浄の度合にもよるが、一般に1mS/cm以下であることから、スラリー中の塩分濃度を示す指標でもある。本発明の含水ケイ酸スラリーが無機塩を含有する場合、電気伝導度が15mS/cm以上であれば、無機塩濃度が低いことで生じる経時安定性の低下を抑制でき、100mS/cm以下であれば、無機塩が多すぎることもなく好ましい。電気伝導度は、好ましくは15〜80mS/cm、さらに好ましくは15〜60mS/cmの範囲である。 The hydrous silicic acid slurry of the present invention preferably has an electrical conductivity (E.C.) in the range of 15 to 100 mS / cm (millisiemens). The electrical conductivity of the slurry is the electrical conductivity of the slurry itself, and specifically means a value measured by inserting an electrode for measuring electrical conductivity into the slurry. When the slurry does not contain an inorganic salt, the electrical conductivity of the slurry depends on the degree of cleaning, but is generally 1 mS / cm or less, and is therefore an index indicating the salt concentration in the slurry. When the hydrous silicic acid slurry of the present invention contains an inorganic salt, if the electrical conductivity is 15 mS / cm or more, the decrease in stability over time caused by the low concentration of the inorganic salt can be suppressed, and it should be 100 mS / cm or less. For example, it is preferable that there is not too much inorganic salt. The electrical conductivity is preferably in the range of 15-80 mS / cm, more preferably 15-60 mS / cm.

<含水ケイ酸スラリーの製造方法>
本発明の含水ケイ酸スラリーは、
(1)BET比表面積が10〜35m2/gであり、かつレーザー回折法で測定した体積平均粒子径(D50)が1.0μm以上の含水ケイ酸(以下、原料含水ケイ酸と呼ぶ)を分散媒と混合し、スラリー化を行う工程、及び
(2)得られたスラリーを、レーザー回折法で測定した体積平均粒子径(D50)が0.4〜0.9μmであり、かつレーザー回折法で測定した粒度分布における下位からの体積積算累積値90%までの粒子径(D90)が1.0〜5.0μmになるまで湿式粉砕を行う工程、
を含む方法により製造することができる。
<Manufacturing method of hydrous silicic acid slurry>
The hydrous silicic acid slurry of the present invention
(1) Disperse hydrous silicic acid (hereinafter referred to as raw material hydrous silicic acid) having a BET specific surface area of 10 to 35 m 2 / g and a volume average particle diameter (D50) of 1.0 μm or more measured by laser diffraction method. The process of mixing with a medium to form a slurry, and
(2) The volume average particle size (D50) of the obtained slurry measured by the laser diffraction method is 0.4 to 0.9 μm, and the cumulative volume value from the lower part in the particle size distribution measured by the laser diffraction method is up to 90%. Wet pulverization until the particle size (D90) of
It can be manufactured by a method including.

工程(1)
BET比表面積が10〜35m2/gであり、かつレーザー回折法で測定した体積平均粒子径(D50)が1.0μm以上の原料含水ケイ酸を準備する。一般的に、BET比表面積が35m2/g以下の低BET含水ケイ酸は、鉱酸とケイ酸アルカリ水溶液との反応時に添加物を加えて粒子の凝集を促進させることで製造される。それに対して、本発明では、原料含水ケイ酸は、濃度の低い硫酸などの鉱酸を用い、かつゆっくりと含水ケイ酸粒子成長をさせることにより、添加物を加えることなく、一次粒子の大きな低BET含水ケイ酸を合成する。凝集による低BET含水ケイ酸は粒子骨格が強固になり、粉砕が困難になるのが一般的である。それに対して、本発明においては、含水ケイ酸は、中和反応におけるケイ酸アルカリ水溶液と低濃度の鉱酸を用い、ゆっくりと時間をかけて粒子成長をさせることで、低BETながら粉砕性のよい原料含水ケイ酸を得ることができる。
Process (1)
Prepare a raw material hydrous silicic acid having a BET specific surface area of 10 to 35 m 2 / g and a volume average particle size (D50) of 1.0 μm or more measured by a laser diffraction method. Generally, low BET hydrous silicic acid having a BET specific surface area of 35 m 2 / g or less is produced by adding an additive during the reaction of a mineral acid with an aqueous alkali silicate solution to promote particle aggregation. On the other hand, in the present invention, the raw material hydrous silicic acid uses a mineral acid such as sulfuric acid having a low concentration and slowly grows the hydrous silicic acid particles, so that the primary particles are large and low without adding additives. Synthesize BET hydrous silicic acid. Low BET hydrous silicic acid due to aggregation generally strengthens the particle skeleton and makes it difficult to pulverize. On the other hand, in the present invention, the hydrous silicic acid uses an aqueous alkali silicate solution and a low-concentration mineral acid in the neutralization reaction to slowly grow particles over a long period of time, so that the hydrous silicic acid has a low BET but is grindable. A good raw material hydrous silicic acid can be obtained.

具体的には、鉱酸(例えば、硫酸)の濃度は、5〜20%の範囲であり、粒子成長をさせる時間は、反応の規模にもよるが、例えば、500〜700分の範囲とし、従来比で3倍以上の時間をかけて行うことが好ましい。また、中和反応時には循環ポンプやラインミキサー等を併用すると、低BETながら粉砕性のよい原料含水ケイ酸をより効果的に調製できる。 Specifically, the concentration of mineral acid (for example, sulfuric acid) is in the range of 5 to 20%, and the time for particle growth is, for example, in the range of 500 to 700 minutes, depending on the scale of the reaction. It is preferable to take 3 times or more time as compared with the conventional method. Further, when a circulation pump, a line mixer, or the like is used in combination during the neutralization reaction, a raw material hydrous silicic acid having a low BET but good grindability can be prepared more effectively.

中和反応後は一般的な含水ケイ酸の製造方法と同様の方法で、含水ケイ酸の濾過、水洗、乾燥、乾式粉砕、乾式分級等を行ってレーザー回折法で測定した体積平均粒子径(D50)が1.0μm以上のミクロンサイズの含水ケイ酸を得る。濾過、水洗方法に限定はないが、一般的なフィルター式の濾過が利用でき、濾過後に水洗を行って中和反応で生じ、含水ケイ酸内に残留する塩の除去を行う。乾燥には一般的な静置乾燥や流動乾燥、噴霧乾燥などが利用できる。乾式粉砕には市販のピンミルやジェットミル等を使用することができ、必要に応じて風力分級機等を用いた分級を行い、粗粒子の除去を行うことができる。 After the neutralization reaction, the volume average particle size (volume average particle size) measured by laser diffraction method after filtering, washing, drying, dry pulverization, dry classification, etc. of the hydrous silicic acid by the same method as the general method for producing hydrous silicic acid. Obtain a micron-sized hydrous silicic acid having a D50) of 1.0 μm or more. The method of filtration and washing with water is not limited, but a general filter type filtration can be used. After the filtration, washing with water is performed to remove the salt generated by the neutralization reaction and remaining in the hydrous silicic acid. For drying, general static drying, fluid drying, spray drying and the like can be used. A commercially available pin mill, jet mill, or the like can be used for the dry pulverization, and if necessary, classification is performed using a wind power classifier or the like to remove coarse particles.

但し、上記に例示した乾式の粉砕機、乾式の分級機を用いるだけでは上記で合成した原料含水ケイ酸をサブミクロンサイズまで粉砕することは困難である。そこで、乾式による粉砕・分級段階では、可能な範囲での微粒化を行うに止めることが望ましい。これにより、従来の方法よりは中和合成に時間がかかるが、後工程での湿式粉砕性が良好な含水ケイ酸(原粉となる粉体)が得られる。 However, it is difficult to pulverize the raw material hydrous silicic acid synthesized above to a submicron size only by using the dry crusher and the dry classifier illustrated above. Therefore, in the dry crushing / classification stage, it is desirable to limit the atomization to the extent possible. As a result, although it takes longer to neutralize and synthesize than the conventional method, hydrous silicic acid (powder to be the raw powder) having good wet grindability in the subsequent step can be obtained.

上記に例示した製造方法によって得られる原料含水ケイ酸は低BET比表面積でありながら、従来の含水ケイ酸とは異なり一次粒子間の凝集が強くないため、後工程で、サブミクロンの大きさまで粉砕できるものと考えられる。分かり易く説明するために、図1にBET比表面積が35m2/g以下の含水ケイ酸の一次粒子成長モデルを示す。従来法で合成した含水ケイ酸は、初期段階で一次粒子が凝集したまま成長するので、BET比表面積が35m2/g以下まで成長すると一次粒子間の結合が強くなり、硬い凝集粒子になる。一方、本発明の含水ケイ酸は、先述の説明のように低濃度でゆっくりと時間をかけて一次粒子を成長させるので、一次粒子間の結合も少なく、強くない凝集構造を持つ。そのために、粉砕も比較的容易で、後工程でサブミクロンサイズまで粉砕できるものと考えられる。 Although the raw material hydrous silicic acid obtained by the above-exemplified production method has a low BET specific surface area, unlike conventional hydrous silicic acid, aggregation between primary particles is not strong, so that it is pulverized to a size of submicron in a subsequent step. It is thought that it can be done. For easy understanding, FIG. 1 shows a primary particle growth model of hydrous silicic acid having a BET specific surface area of 35 m 2 / g or less. Hydrous silicic acid synthesized by the conventional method grows with the primary particles agglomerated at the initial stage, so when the BET specific surface area grows to 35 m 2 / g or less, the bonds between the primary particles become stronger and become hard agglomerated particles. On the other hand, the hydrous silicic acid of the present invention grows primary particles slowly at a low concentration over time as described above, so that there are few bonds between the primary particles and the aggregate structure is not strong. Therefore, pulverization is relatively easy, and it is considered that pulverization can be performed to a submicron size in a later process.

本発明のスラリーは上記で製造した原料含水ケイ酸を用いて製造することができるが、必要に応じて含水ケイ酸に対して、粉体状態のまま、焼結しない程度にコントロールされた加熱処理(焼成)を加えても良い。具体的には、含水ケイ酸を、ローラーハースキルン、ロータリーキルンなどの機器を使用して、600℃〜1,000℃で1時間以上加熱処理することで凝集体を焼き固め、凝集力の強さを調整することができる。 The slurry of the present invention can be produced by using the raw material hydrous silicic acid produced above, but if necessary, the slurry is heat-treated with respect to the hydrous silicic acid in a powder state and controlled to the extent that it is not sintered. (Baking) may be added. Specifically, hydrous silicic acid is heat-treated at 600 ° C to 1,000 ° C for 1 hour or more using equipment such as a roller herskilln or rotary kiln to harden the agglomerates and adjust the strength of the cohesive force. can do.

原料含水ケイ酸は分散媒と混合し、スラリー化を行う。分散媒は水または水含有溶液である。水または水含有溶液である分散媒は前述と同義である。分散媒は、水の単独使用が最も好ましい。 The raw material hydrous silicic acid is mixed with a dispersion medium to form a slurry. The dispersion medium is water or a water-containing solution. The dispersion medium, which is water or a water-containing solution, has the same meaning as described above. The dispersion medium is most preferably water alone.

本発明の含水ケイ酸スラリー(最終製品)のスラリー濃度は、好ましくは20〜45重量%の範囲である。但し、工程(1)で調製する原料含水ケイ酸のスラリー濃度は、工程(2)で湿式粉砕が可能な範囲の粘度を有する範囲とする。原料含水ケイ酸及び分散媒の種類を考慮して、例えば、1〜25重量%の範囲とすることができる。好ましくは10〜20重量%の範囲である。但し、この範囲に限定される意図ではない。 The slurry concentration of the hydrous silicic acid slurry (final product) of the present invention is preferably in the range of 20 to 45% by weight. However, the slurry concentration of the raw material hydrous silicic acid prepared in the step (1) shall be in the range having a viscosity within the range in which the wet pulverization is possible in the step (2). Considering the types of the raw material hydrous silicic acid and the dispersion medium, the range may be, for example, 1 to 25% by weight. It is preferably in the range of 10 to 20% by weight. However, it is not intended to be limited to this range.

工程(2)
工程(1)で得られたスラリーを、レーザー回折法で測定した体積平均粒子径(D50)が0.4〜0.9μmであり、かつ粒度分布における下位からの体積積算累積値の90%の粒子径(D90)が1.0〜5.0μmになるまで湿式粉砕を行う。原料含水ケイ酸はD50が1.0μm以上であるので、これを0.4〜0.9μmになるまで湿式粉砕する。
Process (2)
The volume average particle size (D50) of the slurry obtained in step (1) measured by the laser diffraction method is 0.4 to 0.9 μm, and the particle size (D50) is 90% of the cumulative volume-accumulated value from the lower part of the particle size distribution. Wet grinding is performed until D90) reaches 1.0 to 5.0 μm. Since the raw material hydrous silicic acid has a D50 of 1.0 μm or more, it is wet-pulverized until it reaches 0.4 to 0.9 μm.

本発明の含水ケイ酸は細孔構造を有するため、濃度上昇に伴い粘度も上昇するので高濃度化が困難である。そのため、まず市販の攪拌機や分散機を用いて低濃度のスラリーを調整し、次いで湿式粉砕を繰り返しながら、粘度が低くなったら含水ケイ酸を追加投入し、高濃度化、サブミクロン化を同時に進行させると良い。湿式粉砕は、例えば湿式ジェットミル、ビーズミル、高圧ホモジナイザーなどの市販の高性能湿式粉砕機を利用することができ、目的の粒度分布になるまで循環粉砕を繰り返しながら調整を行う。この方法で、スラリー濃度を例えば、20〜45重量%の範囲まで高めて、本発明の含水ケイ酸スラリーを得ることができる。但し、スラリー濃度はこの範囲に限定される意図ではない。 Since the hydrous silicic acid of the present invention has a pore structure, the viscosity also increases as the concentration increases, so that it is difficult to increase the concentration. Therefore, first prepare a low-concentration slurry using a commercially available stirrer or disperser, and then repeat wet pulverization, and when the viscosity becomes low, add hydrous silicic acid to increase the concentration and submicron at the same time. It is good to let it. For wet pulverization, for example, a commercially available high-performance wet pulverizer such as a wet jet mill, a bead mill, or a high-pressure homogenizer can be used, and adjustment is performed by repeating circulation pulverization until a desired particle size distribution is obtained. In this method, the slurry concentration can be increased to, for example, in the range of 20 to 45% by weight to obtain the hydrous silicic acid slurry of the present invention. However, the slurry concentration is not intended to be limited to this range.

工程(3)
工程(2)で得られた含水ケイ酸スラリーには、弱酸強塩基を除く無機塩を添加することができる。工程(2)で得られたスラリー100重量部に対し、例えば、2.0〜5.0重量部になるように弱酸強塩基を除く無機塩を添加し、攪拌混合等することで弱酸強塩基を除く無機塩を含有する含水ケイ酸スラリーを調製することができる。
Process (3)
Inorganic salts other than weak acids and strong bases can be added to the hydrous silicic acid slurry obtained in step (2). To 100 parts by weight of the slurry obtained in step (2), for example, an inorganic salt excluding a weak acid strong base is added so as to be 2.0 to 5.0 parts by weight, and the mixture is stirred and mixed to remove the weak acid strong base. A hydrous silicic acid slurry containing the above can be prepared.

本発明の含水ケイ酸スラリーは、例えば、研磨剤やフィルムや樹脂等のコーティング添加剤、インキの艶消し剤等に有用な水系スラリーとしての利用が期待できる。 The hydrous silicic acid slurry of the present invention can be expected to be used as a water-based slurry useful for, for example, abrasives, coating additives such as films and resins, and ink matting agents.

以下、本発明を実施例に基づいて更に詳細に説明する。但し、実施例は本発明の例示であって、本発明は実施例に限定される意図ではない。 Hereinafter, the present invention will be described in more detail based on examples. However, the examples are examples of the present invention, and the present invention is not intended to be limited to the examples.

[評価方法]
実施例及び比較例における各種物性測定と試験は下記の方法によって行った。
[Evaluation method]
Various physical property measurements and tests in Examples and Comparative Examples were carried out by the following methods.

1)BET比表面積
含水ケイ酸を全自動比表面積測定装置(型式:Macsorb(R) HM model-1200、マウンテック社製)を用いて1点法で測定を行った。
1) BET specific surface area Hydrous silicic acid was measured by a one-point method using a fully automatic specific surface area measuring device (model: Macsorb (R) HM model-1200, manufactured by Mountech).

2)平均粒子径(D50)および90%粒子径(D90)
レーザー回折式粒度分布測定装置(型式:マイクロトラックMT-3000、マイクロトラック・ベル社製)を用いて粒度分布を測定し、粒度分布における体積積算累積値の50%の値(D50値)および下位からの体積積算累積値90%の値(D90値)を求めた。
2) Average particle size (D50) and 90% particle size (D90)
Measure the particle size distribution using a laser diffraction type particle size distribution measuring device (model: Microtrack MT-3000, manufactured by Microtrac Bell), and the value (D50 value) of 50% of the cumulative volume integration value in the particle size distribution and the lower The value (D90 value) of 90% of the cumulative volume-accumulated value was obtained from.

3)pHの測定
スラリー(有姿)のpHを、市販のガラス電極pHメーター(型式:F-53, 堀場製作所社製)を用いて測定した。
3) Measurement of pH The pH of the slurry (as is) was measured using a commercially available glass electrode pH meter (model: F-53, manufactured by HORIBA, Ltd.).

4)電気伝導度
スラリー(有姿)の電気伝導度を、市販の電気伝導度計(型式CM-30R, 東亜ディーケーケー社製)を用いて測定した(測定温度25℃)。
4) Electric conductivity The electric conductivity of the slurry (as is) was measured using a commercially available electric conductivity meter (model CM-30R, manufactured by DKK-TOA CORPORATION) (measurement temperature 25 ° C).

5)粘度測定
200mlのトールビーカーに、スラリー(有姿)を200ml入れ、直後に市販のB型粘度計(型式:TVB-10M, 東機産業社製)を用いて、No.20 ローター、60rpm×1分後の粘度を測定した。
5) Viscosity measurement
Put 200 ml of slurry (as is) in a 200 ml tall beaker, and immediately after that, use a commercially available B-type viscometer (model: TVB-10M, manufactured by Toki Sangyo Co., Ltd.), No. 20 rotor, 60 rpm x 1 minute later. The viscosity of was measured.

6)含水ケイ酸濃度
スラリー中の含水ケイ酸濃度は、製造中に水に加えた含水ケイ酸の量から算出した。また、市販の赤外線水分計(型式:K-600、ケット科学研究所製)を用いて、150℃×60分の条件で水分量の測定を行い、水分を除いた固形分濃度の値からも確認した。
6) Hydrous silicic acid concentration The hydrous silicic acid concentration in the slurry was calculated from the amount of hydrous silicic acid added to water during production. In addition, using a commercially available infrared moisture meter (model: K-600, manufactured by Kett Science Institute Headquarters), the moisture content was measured under the conditions of 150 ° C x 60 minutes, and the value of the solid content concentration excluding the moisture was also used. confirmed.

7)無機塩の量
スラリー中に添加した量から算出した。また、水分を除いた含水ケイ酸の固形分を、走 査型蛍光X線分析装置(型式:ZSX PrimusII、リガク社製)を用いて元素定性分析を行 い、無機塩量の確認も行った。
7) Amount of inorganic salt Calculated from the amount added to the slurry. In addition, the solid content of hydrous silicic acid excluding water was subjected to elemental qualitative analysis using a scanning fluorescent X-ray analyzer (model: ZSX PrimusII, manufactured by Rigaku) to confirm the amount of inorganic salts. ..

8)スラリーの沈降状態の評価
スラリー10gを20ml蓋付容器に入れ、1週間静置した。その後、振とう器(型式:V-SX、イワキ社製)にて5分間振とうさせて、沈降状態の観察試料とした。沈降状態は、蓋が底面になるように容器を反転させた際の容器底に残るハードケークの割合にて確認した。沈降状態の評価は以下のA〜Cの3段階で行い、評価Aを合格とした(沈降試験の状態[写真付き]も参照)。
8) Evaluation of sedimentation state of slurry 10 g of slurry was placed in a container with a 20 ml lid and allowed to stand for 1 week. Then, it was shaken for 5 minutes with a shaker (model: V-SX, manufactured by Iwaki Co., Ltd.) to prepare an observation sample in a sedimented state. The settling state was confirmed by the ratio of hard cake remaining on the bottom of the container when the container was inverted so that the lid was on the bottom. The sedimentation state was evaluated in the following three stages A to C, and evaluation A was passed (see also the state of the sedimentation test [with photo]).

A: 振とう・反転後、容器の底にハードケークがほとんどなく、含水ケイ酸の沈降が確認できない状態。
B: 振とう・反転後、容器の底に含水ケイ酸のわずかな沈降が確認できる(沈降しにくい)状態。
C: 振とう・反転後でも、容器の底にハードケークが形成され、含水ケイ酸の沈降がはっきりと確認できる状態。
A: After shaking and reversing, there is almost no hard cake on the bottom of the container, and sedimentation of hydrous silicic acid cannot be confirmed.
B: After shaking and reversing, a slight sedimentation of hydrous silicic acid can be confirmed (difficult to sediment) on the bottom of the container.
C: Even after shaking and reversing, a hard cake is formed on the bottom of the container, and the sedimentation of hydrous silicic acid can be clearly confirmed.

[含水ケイ酸a〜fの製造例]
(含水ケイ酸a)
以下の(i)から(v)の工程を経て含水ケイ酸を製造した。なお、下記の工程(i)から(ii)は、攪拌機を備えた容量240Lの蒸気加熱式ステンレス製の容器で、温度を90℃に保ったまま、常に攪拌をおこないながら実施した。また、記載のケイ酸ソーダ水溶液はSiO2濃度12.8wt%、Na2O濃度4.0wt%、SiO2/Na2Oモル比3.2の3号ケイ曹を、硫酸は9.0wt%の希硫酸を使用した。
[Production example of hydrous silicic acid a to f]
(Hydrophilic silicic acid a)
Hydrous silicic acid was produced through the following steps (i) to (v). The following steps (i) to (ii) were carried out in a steam-heated stainless steel container having a capacity of 240 L equipped with a stirrer while constantly stirring while keeping the temperature at 90 ° C. In addition, the sodium silicate aqueous solution described uses No. 3 silica with a SiO 2 concentration of 12.8 wt%, Na 2 O concentration of 4.0 wt%, and a SiO 2 / Na 2 O molar ratio of 3.2, and sulfuric acid uses 9.0 wt% dilute sulfuric acid. did.

(i)温水36.8kgにpHが10.5になるまでケイ酸ソーダ水溶液を加えた。
次いでケイ酸ソーダ水溶液87.27kgと硫酸をpHが10.0〜11.0を維持するように、660分かけて同時に滴下を行い、中和反応させた。
(ii)ケイ酸ソーダ水溶液の滴下を停止し、硫酸のみを滴下して、pHが3.0になった時点で硫酸の滴下も停止して、中和反応を完全に終了させ、含水ケイ酸aのスラリーを得た。
(iii)得られた含水ケイ酸スラリーを、フィルタープレスで濾過し、充分な水洗も行って含水ケイ酸ケークを得た。
(iv)含水ケイ酸ケークの乾燥は、スプレードライヤー(型式:AN-40R型 アシザワ・ニロアトマイザー社製)を用いて、含水率が6%未満になるように行った。
(v)乾燥した含水ケイ酸はジェットミル(型式:PJM-100NP 日本ニューマチック社製)で乾式の粉砕を行い、分級機(型式:クラッシールN-01型 セイシン企業社製)を用いて乾式の分級を行い、凝集した粗粒子を取り除いて、原粉となる含水ケイ酸aを得た。
含水ケイ酸aのBET比表面積は20m2/gであった。
(i) An aqueous solution of sodium silicate was added to 36.8 kg of warm water until the pH reached 10.5.
Next, 87.27 kg of an aqueous solution of sodium silicate and sulfuric acid were added dropwise simultaneously over 660 minutes so that the pH was maintained at 10.0 to 11.0, and a neutralization reaction was carried out.
(ii) Stop dropping the aqueous solution of sodium silicate, drop only sulfuric acid, and stop dropping sulfuric acid when the pH reaches 3.0 to completely complete the neutralization reaction, and the hydrous silicate a A slurry was obtained.
(iii) The obtained hydrous silicic acid slurry was filtered with a filter press and thoroughly washed with water to obtain a hydrous silicic acid cake.
(iv) The water-containing silicic acid cake was dried using a spray dryer (model: AN-40R type manufactured by Ashizawa Niro Atomizer Co., Ltd.) so that the water content was less than 6%.
(v) Dry hydrous silicic acid is crushed by a jet mill (model: PJM-100NP manufactured by Nippon Pneumatic Co., Ltd.) and dried using a classifier (model: Classy N-01 manufactured by Seishin Enterprise Co., Ltd.). The agglomerated coarse particles were removed to obtain hydrous silicic acid a as a raw powder.
The BET specific surface area of hydrous silicic acid a was 20 m 2 / g.

(含水ケイ酸b)
含水ケイ酸aの工程(i)と同量の温水とケイ酸ソーダ水溶液を加えたのち、工程(i)と同量のケイ酸ソーダ水溶液と希硫酸をpH 10.0〜11.0を維持しながら585分(時間短縮)で中和反応を行うように流量を調整しながら同時に滴下したこと以外は、含水ケイ酸aと同じ方法で、BET比表面積が25m2/gの含水ケイ酸bを得た。
(Hydrophilic silicic acid b)
After adding the same amount of warm water and sodium silicate aqueous solution as in step (i) of hydrous silicic acid a, add the same amount of sodium silicate aqueous solution and dilute sulfuric acid as in step (i) for 585 minutes while maintaining pH 10.0 to 11.0. A hydrous silicic acid b having a BET specific surface area of 25 m 2 / g was obtained by the same method as the hydrous silicic acid a, except that the aqueous solution was added dropwise at the same time while adjusting the flow rate so as to carry out the neutralization reaction in (time reduction).

(含水ケイ酸c)
含水ケイ酸aの工程(i)と同量の温水とケイ酸ソーダ水溶液を加えたのち、工程(i)と同量のケイ酸ソーダ水溶液と希硫酸をpH 10.0〜11.0を維持しながら540分(時間短縮)で中和反応を行うように流量を調整しながら同時に滴下したこと以外は含水ケイ酸aと同じ方法で、BET比表面積が30m2/gの含水ケイ酸cを得た。
(Hydrophilic silicic acid c)
After adding the same amount of warm water and sodium silicate aqueous solution as in step (i) of hydrous silicic acid a, add the same amount of sodium silicate aqueous solution and dilute sulfuric acid as in step (i) for 540 minutes while maintaining pH 10.0 to 11.0. A hydrous silicic acid c having a BET specific surface area of 30 m 2 / g was obtained by the same method as the hydrous silicic acid a except that the aqueous solution was added dropwise at the same time while adjusting the flow rate so as to carry out the neutralization reaction in (time reduction).

(含水ケイ酸d)
従来から一般的に行われている低BET含水ケイ酸の製造方法に従って含水ケイ酸の製造を行った。
すなわち、含水ケイ酸aと同じ容器、同じケイ酸ソーダ水溶液、同じ温度、同じ攪拌条件ではあるが、硫酸は95wt%の濃硫酸を用い、中和反応が短時間で終了するために、
含水ケイ酸aの工程(i)を、0.20mol/Lの硫酸ナトリウム水溶液56.6kgに、pHが10.5になるようにケイ酸ソーダ水溶液を仕込んだ後、ケイ酸ソーダ水溶液116.17kgと濃硫酸をpHが10.0〜11.0を維持するように、120分かけて同時に滴下しながら中和反応を行った。
以後、含水ケイ酸aの工程(ii)〜(v)と同じ工程を経てBET比表面積が30m2/gの含水ケイ酸dを得た。
(Hydrophilic silicic acid d)
Hydrous silicic acid was produced according to a conventional method for producing low BET hydrous silicic acid.
That is, although the same container as hydrous silicic acid a, the same aqueous solution of sodium silicate, the same temperature, and the same stirring conditions are used, 95 wt% concentrated sulfuric acid is used as sulfuric acid, and the neutralization reaction is completed in a short time.
In step (i) of hydrous silicic acid a, a sodium silicate aqueous solution was charged to 56.6 kg of a 0.20 mol / L sodium sulfate aqueous solution so that the pH became 10.5, and then 116.17 kg of the sodium silicate aqueous solution and concentrated sulfuric acid were added to the pH. The neutralization reaction was carried out while simultaneously dropping over 120 minutes so that the pH was maintained at 10.0 to 11.0.
After that, the hydrous silicic acid d having a BET specific surface area of 30 m 2 / g was obtained through the same steps as the steps (ii) to (v) of the hydrous silicic acid a.

(含水ケイ酸e)
従来から一般的に行われている低BET含水ケイ酸の製造方法に従って含水ケイ酸の製造を行った。
容器の温度を86℃とし、硫酸は含水ケイ酸dと同じく95wt%の濃硫酸を用いた以外は、含水ケイ酸aと同じ容器、同じケイ酸ソーダ水溶液、同じ攪拌条件で、中和反応が短時間で終了するために、含水ケイ酸aの工程(i)を、0.05mol/Lの硫酸ナトリウム水溶液102.1kgに、pHが10.5になるようにケイ酸ソーダ水溶液を仕込んだ後、ケイ酸ソーダ水溶液55.17kgと濃硫酸をpHが10.0〜11.0を維持するように200分かけて同時に滴下しながら中和反応を行い、以後、含水ケイ酸aの工程(ii)〜(v)と同じ工程を経てBET比表面積が50m2/gの含水ケイ酸eを得た。
(Hydrophilic silicic acid e)
Hydrous silicic acid was produced according to a conventional method for producing low BET hydrous silicic acid.
The neutralization reaction takes place in the same container as hydrous silicic acid a, the same sodium silicate aqueous solution, and the same stirring conditions, except that the temperature of the container is 86 ° C and the sulfuric acid is 95 wt% concentrated sulfuric acid, which is the same as the hydrous silicic acid d. In order to complete the process in a short time, the step (i) of hydrous silicic acid a is carried out by adding a sodium silicate aqueous solution to 102.1 kg of a 0.05 mol / L sodium sulfate aqueous solution so that the pH becomes 10.5, and then the sodium silicate aqueous solution. A neutralization reaction was carried out by simultaneously dropping 55.17 kg of an aqueous solution and concentrated sulfuric acid over 200 minutes so as to maintain a pH of 10.0 to 11.0, and thereafter, the same steps as steps (ii) to (v) of hydrous silicic acid a were performed. As a result, hydrous silicic acid e having a BET specific surface area of 50 m 2 / g was obtained.

(含水ケイ酸f)
含水ケイ酸aをマッフル炉(型式:S100G ヤマト科学社製)を用いて950℃×2時間の加熱処理し、BET比表面積の調製及び含水ケイ酸凝集体の硬さ調製を行った。
含水ケイ酸fのBET比表面積は13m2/gであった。
(Hydrophilic silicic acid f)
Hydrous silicic acid a was heat-treated at 950 ° C. for 2 hours using a muffle furnace (model: S100G manufactured by Yamato Scientific Co., Ltd.) to prepare the BET specific surface area and the hardness of the hydrous silicic acid aggregate.
The BET specific surface area of hydrous silicic acid f was 13 m 2 / g.

[実施例1〜10、比較例1〜2]
実施例、比較例で製造した含水ケイ酸スラリーの製造フローを図2に示す。ただし、本発明の含水ケイ酸スラリーの製造方法は、この方法に限定されるものではない。
また、実施例および比較例で得られた含水ケイ酸およびスラリーの物性を表1に示す。
実施例3と比較例1の湿式粉砕前後のレーザー回折法による体積粒度分布を図3, 4に示す。
沈降試験の状態表2(写真付)に示す。
[Examples 1 to 10, Comparative Examples 1 to 2]
Figure 2 shows the production flow of the hydrous silicic acid slurry produced in Examples and Comparative Examples. However, the method for producing a hydrous silicic acid slurry of the present invention is not limited to this method.
Table 1 shows the physical characteristics of the hydrous silicic acid and the slurry obtained in Examples and Comparative Examples.
Figures 3 and 4 show the volumetric particle size distributions of Example 3 and Comparative Example 1 by laser diffraction before and after wet pulverization.
State of sedimentation test Table 2 (with photo) shows.

実施例1
2Lのポリ容器に純水700gを入れ、市販の攪拌機(型式:ZZ-1200、東京理化器械社製)で攪拌しながら含水ケイ酸a 175gを加え 20wt%スラリーを最初に調製した。次いで、このスラリーを湿式ジェットミル(型式:スターバーストHJP-25005, スギノマシン社製)を用いて、噴射圧力200〜240MPaにて斜交衝突させることにより湿式粉砕を行った。0.5パス粉砕後(ここで、1,000gのスラリーを粉砕することを1パスと定義した)、スラリーの濃度を上げるために、さらに含水ケイ酸a 75gを追加投入、攪拌後再び粉砕した。0.5パス粉砕後、粘度が低下したことを確認してから、さらに含水ケイ酸a 50gを追加投入、攪拌後、30wt%スラリーとした。このスラリーをさらに10パス粉砕することで1,000gの高濃度スラリーを得た。
Example 1
700 g of pure water was placed in a 2 L plastic container, and 175 g of hydrous silicic acid a was added while stirring with a commercially available stirrer (model: ZZ-1200, manufactured by Tokyo Rika Kikai Co., Ltd.) to prepare a 20 wt% slurry first. Next, this slurry was subjected to wet pulverization by oblique collision at an injection pressure of 200 to 240 MPa using a wet jet mill (model: Starburst HJP-25005, manufactured by Sugino Machine Limited). After 0.5-pass crushing (here, crushing 1,000 g of slurry was defined as 1-pass), 75 g of hydrous silicic acid a was additionally added in order to increase the concentration of the slurry, and the mixture was pulverized again after stirring. After pulverizing for 0.5 pass, after confirming that the viscosity had decreased, 50 g of hydrous silicic acid a was further added, and after stirring, a 30 wt% slurry was prepared. This slurry was further pulverized for 10 passes to obtain a high-concentration slurry of 1,000 g.

実施例2
実施例1で得られた高濃度スラリー100gに対し、硫酸ナトリウム1gを添加し、市販の攪拌機にてよく混合し、目的とする含水ケイ酸スラリーを得た。
Example 2
To 100 g of the high-concentration slurry obtained in Example 1, 1 g of sodium sulfate was added and mixed well with a commercially available stirrer to obtain the desired hydrous silicic acid slurry.

実施例3
硫酸ナトリウムの添加量を高濃度スラリー100gに対して2gに変更した以外は実施例2と同様の方法で含水ケイ酸スラリーを製造した。
Example 3
A hydrous silicic acid slurry was produced in the same manner as in Example 2 except that the amount of sodium sulfate added was changed to 2 g with respect to 100 g of the high-concentration slurry.

実施例4
硫酸ナトリウムの添加量を高濃度スラリー100gに対して4gに変更した以外は実施例2と同様の方法で含水ケイ酸スラリーを製造した。
Example 4
A hydrous silicic acid slurry was produced in the same manner as in Example 2 except that the amount of sodium sulfate added was changed to 4 g with respect to 100 g of the high-concentration slurry.

実施例5
スラリーの濃度を20wt%にした後、含水ケイ酸aを追加投入せず、最終濃度も20wt%のスラリーにしたこと以外は、実施例1と同様の方法で湿式粉砕を行って、875gの20wt%スラリーを得た。
得られた20wt%スラリー100gに対し、硫酸ナトリウム2gを添加し、市販の攪拌機にてよく混合して含水ケイ酸スラリーを得た。
Example 5
After the slurry concentration was set to 20 wt%, wet pulverization was performed in the same manner as in Example 1 except that no additional hydrous silicic acid a was added and the final concentration was set to 20 wt%, and 875 g of 20 wt was performed. % Slurry was obtained.
To 100 g of the obtained 20 wt% slurry, 2 g of sodium sulfate was added and mixed well with a commercially available stirrer to obtain a hydrous silicic acid slurry.

実施例6
実施例1の30wt%スラリーに、さらに含水ケイ酸aを4回に分けて167g追加し、濃度を40wt%まで上昇させた後、実施例1と同様の方法で、10パスの粉砕を行って1,167gの40wt%高濃度スラリーを得た。
得られた40wt%高濃度スラリー100gに対し、硫酸ナトリウム2gを添加し、市販の攪拌機にてよく混合して含水ケイ酸スラリーを得た。
Example 6
To the 30 wt% slurry of Example 1, 167 g of hydrous silicic acid a was further added in 4 portions to increase the concentration to 40 wt%, and then pulverization was performed for 10 passes in the same manner as in Example 1. A 40 wt% high concentration slurry of 1,167 g was obtained.
To 100 g of the obtained 40 wt% high-concentration slurry, 2 g of sodium sulfate was added and mixed well with a commercially available stirrer to obtain a hydrous silicic acid slurry.

実施例7
含水ケイ酸を含水ケイ酸bに変更した以外は、実施例3と同じ方法で含水ケイ酸スラリーを製造した。
Example 7
A hydrous silicic acid slurry was produced by the same method as in Example 3 except that the hydrous silicic acid was changed to hydrous silicic acid b.

実施例8
含水ケイ酸を含水ケイ酸cに変更した以外は、実施例3と同じ方法で含水ケイ酸スラリーを製造した。
Example 8
A hydrous silicic acid slurry was produced by the same method as in Example 3 except that the hydrous silicic acid was changed to hydrous silicic acid c.

実施例9
含水ケイ酸を含水ケイ酸fに変更した以外は、実施例3と同じ方法で含水ケイ酸スラリーを製造した。
Example 9
A hydrous silicic acid slurry was produced by the same method as in Example 3 except that the hydrous silicic acid was changed to hydrous silicic acid f.

実施例10
得られた高濃度スラリー100gに対し、硫酸ナトリウムを塩化アンモニウム2gの添加に変更した以外は、実施例3と同じ方法で含水ケイ酸スラリーを製造した。
Example 10
A hydrous silicic acid slurry was produced by the same method as in Example 3 except that sodium sulfate was changed to 2 g of ammonium chloride with respect to 100 g of the obtained high-concentration slurry.

比較例1
含水ケイ酸を含水ケイ酸dに変更した以外は、実施例5と同じ方法で20wt%含水ケイ酸スラリーを得た。
Comparative example 1
A 20 wt% hydrous silicic acid slurry was obtained in the same manner as in Example 5 except that the hydrous silicic acid was changed to hydrous silicic acid d.

比較例2
含水ケイ酸を含水ケイ酸eに変更した以外は、実施例5と同じ方法で20wt%含水ケイ酸スラリーを得た。
Comparative example 2
A 20 wt% hydrous silicic acid slurry was obtained in the same manner as in Example 5 except that the hydrous silicic acid was changed to hydrous silicic acid e.

Figure 2021059462
Figure 2021059462

[実施例、比較例説明]
実施例、比較例及び表1で示したとおり、本発明では、従来とは異なる方法で含水ケイ酸を製造することにより、BET比表面積が10〜35m2/gでもレーザー回折法で測定した体積平均粒子径(D50)が0.4〜0.9μm、体積積算累積値90%(D90)が1.0〜5.0μmである含水ケイ酸スラリーを提供できる。とりわけ実施例では、比較例1, 2(従来法で製造した含水ケイ酸)と比較してBET比表面積が低いにも関わらず、より微粒子に粉砕することができる。
[Explanation of Examples and Comparative Examples]
As shown in Examples, Comparative Examples and Table 1, in the present invention, by producing hydrous silicic acid by a method different from the conventional method, the volume measured by the laser diffraction method even if the BET specific surface area is 10 to 35 m 2 / g. It is possible to provide a hydrous silicic acid slurry having an average particle size (D50) of 0.4 to 0.9 μm and a cumulative volume of 90% (D90) of 1.0 to 5.0 μm. In particular, in Examples, the BET specific surface area is lower than that of Comparative Examples 1 and 2 (hydrous silicic acid produced by the conventional method), but the particles can be further pulverized.

さらに、実施例のスラリーは、含水ケイ酸濃度が20〜40重量%であっても、含水ケイ酸100重量部に対して弱酸強塩基を除く無機塩1.0〜5.0重量部をスラリーに添加することにより、BET比表面積が35m2/g以下でも、比較例1, 2とは異なり、沈降しない、または沈澱しにくい含水ケイ酸スラリーであった。 Further, in the slurry of the example, even if the hydrous silicic acid concentration is 20 to 40% by weight, 1.0 to 5.0 parts by weight of an inorganic salt excluding a weak acid strong base is added to the slurry with respect to 100 parts by weight of the hydrous silicic acid. Therefore, even if the BET specific surface area was 35 m 2 / g or less, unlike Comparative Examples 1 and 2, the hydrous silicic acid slurry did not settle or did not easily settle.

[粒度分布(レーザー回折法体積分布)]
[粒度分布図の説明]
従来から一般的に行われている低BET比表面積の含水ケイ酸の製造方法に従って製造した含水ケイ酸(比較例1のd)では湿式粉砕を行っても粒子径が殆ど小さくならなかった[図4]が、実施例のように従来とは異なる方法で製造した含水ケイ酸(実施例1の含水ケイ酸a)では、低BET比表面積の含水ケイ酸でも小さく粉砕することができた[図3]。
[沈降試験の状態]
[Particle size distribution (laser diffraction method volume distribution)]
[Explanation of particle size distribution map]
In the hydrous silicic acid (d of Comparative Example 1) produced according to the conventional method for producing hydrous silicic acid having a low BET specific surface area, the particle size was hardly reduced even after wet pulverization [Fig. 4] However, with the hydrous silicic acid produced by a method different from the conventional method as in Example (hydrous silicic acid a in Example 1), even hydrous silicic acid having a low BET specific surface area could be pulverized into small pieces [Fig. 3].
[State of sedimentation test]

Figure 2021059462
Figure 2021059462

[沈降試験の状態の説明;塩添加量と沈降状態の比較]
実施例1の含水ケイ酸スラリーは実施例の方法で製造したため、Na2SO4(塩)を添加していないにも関わらず、ほぼ沈降していない。実施例3、6の含水ケイ酸スラリーは、実施例の方法で製造された含水ケイ酸を用い、さらにNa2SO4を2重量部添加しているので、含水ケイ酸濃度が30〜40wt%の高濃度で経時させても全く沈降しない。比較例1の含水ケイ酸スラリーは、従来の方法で製造した含水ケイ酸dを用いており、Na2SO4を2重量部添加しているにも関わらず、経時で沈降した。
[Explanation of sedimentation test state; Comparison of salt addition amount and sedimentation state]
Since the hydrous silicic acid slurry of Example 1 was produced by the method of Example, it hardly settled even though Na 2 SO 4 (salt) was not added. The hydrous silicic acid slurry of Examples 3 and 6 uses the hydrous silicic acid produced by the method of Example, and 2 parts by weight of Na 2 SO 4 is further added, so that the hydrous silicic acid concentration is 30 to 40 wt%. It does not settle at all even if it is aged at a high concentration of. The hydrous silicic acid slurry of Comparative Example 1 used hydrous silicic acid d produced by a conventional method, and although 2 parts by weight of Na 2 SO 4 was added, it settled over time.

本発明は、含水ケイ酸スラリーが関連する分野に有用である。 The present invention is useful in fields related to hydrous silicic acid slurries.

Claims (11)

BET比表面積が10〜35m2/gであり、レーザー回折法で測定した体積平均粒子径(D50)が0.4〜0.9μmであり、かつレーザー回折法で測定した粒度分布における下位からの体積積算累積値の90%の粒子径(D90)が1.0〜5.0μmである含水ケイ酸を含む、含水ケイ酸スラリー。 The BET specific surface area is 10 to 35 m 2 / g, the volume average particle size (D50) measured by the laser diffraction method is 0.4 to 0.9 μm, and the cumulative volume from the bottom in the particle size distribution measured by the laser diffraction method is cumulative. A hydrous silicic acid slurry comprising a hydrous silicic acid having a particle size (D90) of 90% of the value of 1.0 to 5.0 μm. 含水ケイ酸濃度が20〜45重量%である、請求項1に記載の含水ケイ酸スラリー。 The hydrous silicic acid slurry according to claim 1, wherein the hydrous silicic acid concentration is 20 to 45% by weight. 弱酸強塩基を除く無機塩をさらに含有する、請求項1に記載の含水ケイ酸スラリー。 The hydrous silicic acid slurry according to claim 1, further containing an inorganic salt excluding a weak acid and a strong base. 前記無機塩をスラリー100重量部に対して2.0〜5.0重量部の割合で含有する、請求項3に記載の含水ケイ酸スラリー。 The hydrous silicic acid slurry according to claim 3, wherein the inorganic salt is contained in a ratio of 2.0 to 5.0 parts by weight with respect to 100 parts by weight of the slurry. スラリーの分散媒が水または水含有溶液である、請求項1に記載の含水ケイ酸スラリー。 The hydrous silicic acid slurry according to claim 1, wherein the dispersion medium of the slurry is water or a water-containing solution. スラリーのpHが3.0〜8.0であり、電気伝導度(E.C.)が15〜100mS/cm(ミリジーメンス)である、請求項1の含水ケイ酸スラリー。 The hydrous silicic acid slurry of claim 1, wherein the slurry has a pH of 3.0 to 8.0 and an electrical conductivity (E.C.) of 15 to 100 mS / cm (millisiemens). BET比表面積が10〜35m2/gであり、かつレーザー回折法で測定した体積平均粒子径(D50)が1.0μm以上の含水ケイ酸を分散媒と混合し、スラリー化を行う工程、及び
得られたスラリーを、レーザー回折法で測定した体積平均粒子径(D50)が0.4〜0.9μmであり、かつレーザー回折法で測定した粒度分布における下位からの体積積算累積値の90%の粒子径(D90)が1.0〜5.0μmになるまで湿式粉砕を行う工程、
を含む、請求項1に記載の含水ケイ酸スラリーの製造方法。
A step of mixing a hydrous silicic acid having a BET specific surface area of 10 to 35 m 2 / g and a volume average particle diameter (D50) of 1.0 μm or more measured by a laser diffraction method with a dispersion medium to form a slurry, and obtaining a slurry. The volume average particle diameter (D50) of the obtained slurry measured by the laser diffraction method is 0.4 to 0.9 μm, and the particle diameter (D50) is 90% of the volume integrated cumulative value from the lower part in the particle size distribution measured by the laser diffraction method. A process of wet pulverization until D90) reaches 1.0 to 5.0 μm,
The method for producing a hydrous silicic acid slurry according to claim 1.
含水ケイ酸と分散媒との混合は、20〜45重量%の濃度のスラリーが得られるように行う、請求項7に記載の製造方法。 The production method according to claim 7, wherein the hydrous silicic acid and the dispersion medium are mixed so as to obtain a slurry having a concentration of 20 to 45% by weight. スラリーの分散媒が水または水含有溶液である、請求項7〜8のいずれかに記載の製造方法。 The production method according to any one of claims 7 to 8, wherein the dispersion medium of the slurry is water or a water-containing solution. 湿式粉砕工程後に得られたスラリーに対して、弱酸強塩基を除く無機塩を添加して、前記無機塩を含有する含水ケイ酸スラリーを得る、請求項7〜9のいずれかに記載の製造方法。 The production method according to any one of claims 7 to 9, wherein an inorganic salt other than a weak acid and a strong base is added to the slurry obtained after the wet pulverization step to obtain a hydrous silicic acid slurry containing the inorganic salt. .. 前記無機塩は、前記スラリー100重量部に対し2.0〜5.0重量部の割合で添加する、請求項10に記載の製造方法。 The production method according to claim 10, wherein the inorganic salt is added at a ratio of 2.0 to 5.0 parts by weight with respect to 100 parts by weight of the slurry.
JP2019183129A 2019-10-03 2019-10-03 Hydrous silicic acid slurry and method for producing the same Active JP7316177B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019183129A JP7316177B2 (en) 2019-10-03 2019-10-03 Hydrous silicic acid slurry and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019183129A JP7316177B2 (en) 2019-10-03 2019-10-03 Hydrous silicic acid slurry and method for producing the same

Publications (2)

Publication Number Publication Date
JP2021059462A true JP2021059462A (en) 2021-04-15
JP7316177B2 JP7316177B2 (en) 2023-07-27

Family

ID=75379542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019183129A Active JP7316177B2 (en) 2019-10-03 2019-10-03 Hydrous silicic acid slurry and method for producing the same

Country Status (1)

Country Link
JP (1) JP7316177B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5922794A (en) * 1982-07-30 1984-02-06 Mizusawa Ind Chem Ltd Filler for heat sensitive recording paper
JPS59133093A (en) * 1983-01-21 1984-07-31 Mizusawa Ind Chem Ltd Additive for heat-sensitive recording paper
JP2004269311A (en) * 2003-03-07 2004-09-30 Mizusawa Ind Chem Ltd Wet process amorphous silica and method of manufacturing the same
JP2005231954A (en) * 2004-02-20 2005-09-02 Tokuyama Corp Wet type silica dispersion liquid and method of manufacturing the same
JP2007524555A (en) * 2003-02-14 2007-08-30 ジェイ・エム・ヒューバー・コーポレーション Precipitated silica products, dentifrices and methods containing them

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5922794A (en) * 1982-07-30 1984-02-06 Mizusawa Ind Chem Ltd Filler for heat sensitive recording paper
JPS59133093A (en) * 1983-01-21 1984-07-31 Mizusawa Ind Chem Ltd Additive for heat-sensitive recording paper
JP2007524555A (en) * 2003-02-14 2007-08-30 ジェイ・エム・ヒューバー・コーポレーション Precipitated silica products, dentifrices and methods containing them
JP2004269311A (en) * 2003-03-07 2004-09-30 Mizusawa Ind Chem Ltd Wet process amorphous silica and method of manufacturing the same
JP2005231954A (en) * 2004-02-20 2005-09-02 Tokuyama Corp Wet type silica dispersion liquid and method of manufacturing the same

Also Published As

Publication number Publication date
JP7316177B2 (en) 2023-07-27

Similar Documents

Publication Publication Date Title
JP5101626B2 (en) Method for producing cerium oxide powder using organic solvent and CMP slurry containing this powder
EP3752565B1 (en) Stir-in titanium dioxide pigment composition
KR20010079521A (en) Dispersion of fine porous inorganic oxide particles and processes for preparing same
TWI780297B (en) Titanium dioxide aqueous dispersion and method for producing same
JP6031175B2 (en) Titanium dioxide pigment, method for producing the same, and printing ink composition
JP2003082333A (en) Cerium-based polishing material slurry and method for manufacturing the same
JP2008285406A (en) Silica spherical particle
JP2002513819A (en) Ultra high solid TiO2 slurry
JP3922758B2 (en) Method for producing silica dispersion
JPH09142827A (en) Silica dispersion and its production
JP2011506245A (en) Method for producing silicon dioxide dispersion
JP6257519B2 (en) Stable nanoparticle suspension and process for its production
TW500779B (en) Matting agents based on silicon dioxide
JP7316177B2 (en) Hydrous silicic acid slurry and method for producing the same
US2479836A (en) Finishing of pigments
JP3410522B2 (en) Method for producing granular amorphous silica
JP5748391B2 (en) Method for producing easily dispersible calcium carbonate powder and calcium carbonate powder obtained by the method
JP2003176123A (en) Silica dispersion liquid
JPH0587445B2 (en)
JP2004091313A (en) Easily dispersible precipitated silica cake and manufacturing method therefor
JP3786717B2 (en) Method for preparing calcium carbonate dispersion
JP6129025B2 (en) Silica-alumina shaped particles
CN103922397A (en) Modified zirconium oxide particle powder, modified zirconium oxide particle dispersed sol and making method thereof
WO2024161873A1 (en) Dispersion body including strontium titanate spherical fine particle powder and method for producing same
JPH11292524A (en) Non-crystalline calcium phosphate slurry, its preparation and non-crystalline calcium phosphate particle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230714

R150 Certificate of patent or registration of utility model

Ref document number: 7316177

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350