[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2021053927A - Vulcanization mold for producing tire and method for producing pneumatic tire using the same - Google Patents

Vulcanization mold for producing tire and method for producing pneumatic tire using the same Download PDF

Info

Publication number
JP2021053927A
JP2021053927A JP2019179154A JP2019179154A JP2021053927A JP 2021053927 A JP2021053927 A JP 2021053927A JP 2019179154 A JP2019179154 A JP 2019179154A JP 2019179154 A JP2019179154 A JP 2019179154A JP 2021053927 A JP2021053927 A JP 2021053927A
Authority
JP
Japan
Prior art keywords
tire
region
vulcanization
rough surface
pneumatic tire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019179154A
Other languages
Japanese (ja)
Other versions
JP7364878B2 (en
Inventor
範好 渡邉
Noriyoshi Watanabe
範好 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2019179154A priority Critical patent/JP7364878B2/en
Publication of JP2021053927A publication Critical patent/JP2021053927A/en
Application granted granted Critical
Publication of JP7364878B2 publication Critical patent/JP7364878B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)

Abstract

To provide a vulcanization mold for producing a tire capable of effectively suppressing poor appearance caused by air remaining and to provide a method for producing a pneumatic tire using the same.SOLUTION: There is provided a vulcanization mold M for producing a pneumatic tire T, which has a molding surface S for molding the outer surface of a pneumatic tire T, wherein the molding surface S includes a rough surface region X arranged at a part corresponding to an end position of a constituent member of the pneumatic tire T and a smooth region Y arranged at a part other than the rough surface region X and the rough surface region X is made rougher than the smooth region Y.SELECTED DRAWING: Figure 3

Description

本発明は、タイヤ製造用加硫金型及びそれを用いた空気入りタイヤの製造方法に関し、更に詳しくは、エア残りに起因する外観不良を効果的に抑制することを可能にしたタイヤ製造用加硫金型及びそれを用いた空気入りタイヤの製造方法に関する。 The present invention relates to a vulcanization mold for tire production and a method for producing a pneumatic tire using the vulcanization mold for tire production. More specifically, the present invention makes it possible to effectively suppress appearance defects due to air residue. The present invention relates to a vulcanization mold and a method for manufacturing a pneumatic tire using the vulcanization mold.

空気入りタイヤを製造する場合、加硫金型内に未加硫状態の空気入りタイヤを投入し、その空気入りタイヤを内側からブラダーにより加圧した状態で該空気入りタイヤの加硫を行う。このような加硫工程において、空気入りタイヤと加硫金型との間にエアが残留すると外観不良が発生し、屑タイヤが発生したり、手直しが必要になったりするという問題がある。特に、タイヤ構成部材の端部位置(例えば、カーカス層の巻き上げ端部の位置やビードフィラーの上端部の位置)にはエアが残留し易く、外観不良が生じ易い。 When manufacturing a pneumatic tire, an unvulcanized pneumatic tire is put into a vulcanization mold, and the pneumatic tire is vulcanized while the pneumatic tire is pressurized by a bladder from the inside. In such a vulcanization step, if air remains between the pneumatic tire and the vulcanization die, there is a problem that an appearance defect occurs, scrap tires are generated, and repair is required. In particular, air tends to remain at the end positions of the tire constituent members (for example, the position of the winding end portion of the carcass layer and the position of the upper end portion of the bead filler), and the appearance is likely to be poor.

その対策として、エア溜まりが発生し易い箇所にベントホールを追加することが行われているが(例えば、特許文献1〜3参照)、その場合、ベントホールによって形成されるスピューの切断工数が増加し、或いは、スピューの増加に起因して製品タイヤの見た目が悪化するという不都合がある。そのため、ベントホールを増加させることなく、エア残りに起因する外観不良を抑制することが求められている。 As a countermeasure, vent holes are added at places where air pools are likely to occur (see, for example, Patent Documents 1 to 3), but in that case, the man-hours for cutting the spew formed by the vent holes increase. However, there is an inconvenience that the appearance of the product tire is deteriorated due to the increase in spew. Therefore, it is required to suppress appearance defects caused by air residue without increasing the number of vent holes.

特開平2−88310号公報Japanese Unexamined Patent Publication No. 2-88310 特開平8−25364号公報Japanese Unexamined Patent Publication No. 8-235364 特開平8−47929号公報Japanese Unexamined Patent Publication No. 8-47929

本発明の目的は、エア残りに起因する外観不良を効果的に抑制することを可能にしたタイヤ製造用加硫金型及びそれを用いた空気入りタイヤの製造方法を提供することにある。 An object of the present invention is to provide a vulcanization die for manufacturing a tire capable of effectively suppressing an appearance defect caused by air residue, and a method for manufacturing a pneumatic tire using the vulcanization die.

上記目的を達成するための本発明のタイヤ製造用加硫金型は、空気入りタイヤを製造するための加硫金型において、前記空気入りタイヤの外表面を成形するための成形面を有し、前記成形面は前記空気入りタイヤの構成部材の端部位置に対応する部位に配置された粗面領域と該粗面領域以外の部位に配置された平滑領域とを含み、前記粗面領域を前記平滑領域よりも粗くしたことを特徴とするものである。 The vulcanization die for manufacturing a tire of the present invention for achieving the above object has a molding surface for molding the outer surface of the pneumatic tire in the vulcanization die for manufacturing a pneumatic tire. The molded surface includes a rough surface region arranged at a portion corresponding to an end position of a component member of the pneumatic tire and a smooth region arranged at a portion other than the rough surface region. It is characterized in that it is made coarser than the smooth region.

上記目的を達成するための本発明の空気入りタイヤの製造方法は、上述したタイヤ製造用加硫金型に未加硫状態の空気入りタイヤを投入し、該空気入りタイヤを内側からブラダーにより加圧した状態で該空気入りタイヤの加硫を行うことを特徴とするものである。 In the method for producing a pneumatic tire of the present invention for achieving the above object, an unvulcanized pneumatic tire is put into the above-mentioned vulcanization mold for tire production, and the pneumatic tire is added from the inside by a bladder. It is characterized in that the pneumatic tire is vulcanized in a pressurized state.

本発明に係るタイヤ製造用加硫金型では、成形面が空気入りタイヤの構成部材の端部位置に対応する部位に配置された粗面領域と該粗面領域以外の部位に配置された平滑領域とを含み、粗面領域を平滑領域よりも粗くしている。加硫時の未加硫ゴムの流動は、加硫金型の成形面が滑らかであると遅くなり、粗いと速くなる傾向がある。本発明では、この特性を利用し、外観不良が発生し易い部分(空気入りタイヤの構成部材の端部位置に対応する部位)では、加硫金型の成形面の表面粗さを局所的に粗くすることにより、当該部分のゴム流れを良化させ、エアの滞留を効果的に抑制することができる。また、表面粗さを局所的に粗くした部分では未加硫ゴムと加硫金型の成形面との間に隙間が形成され、その隙間をエアが通り易くなる。これにより、ベントホール等のエア排出部の設置数を最小限にしながら、エア残りに起因する外観不良を効果的に抑制することができる。 In the tire manufacturing vulcanization die according to the present invention, the rough surface region is arranged at a portion where the molded surface corresponds to the end position of the component member of the pneumatic tire, and the smoothing surface is arranged at a portion other than the rough surface region. The rough surface region is rougher than the smooth region, including the region. The flow of unvulcanized rubber during vulcanization tends to be slower when the molding surface of the vulcanization die is smooth, and faster when the molding surface is rough. In the present invention, by utilizing this characteristic, the surface roughness of the molded surface of the vulcanization die is locally determined in the portion where the appearance defect is likely to occur (the portion corresponding to the end position of the component member of the pneumatic tire). By making the roughness, it is possible to improve the rubber flow of the portion and effectively suppress the retention of air. Further, in the portion where the surface roughness is locally roughened, a gap is formed between the unvulcanized rubber and the molded surface of the vulcanized mold, and air can easily pass through the gap. As a result, it is possible to effectively suppress appearance defects due to air residue while minimizing the number of installed air discharge parts such as vent holes.

本発明において、粗面領域の表面粗さは平滑領域の表面粗さの1.2倍〜5.0倍であることが好ましい。これにより、エアの滞留を効果的に抑制すると共に加硫後の製品タイヤの見た目が悪化するのを回避することができる。 In the present invention, the surface roughness of the rough surface region is preferably 1.2 times to 5.0 times the surface roughness of the smooth region. As a result, it is possible to effectively suppress the retention of air and prevent the appearance of the product tire after vulcanization from being deteriorated.

粗面領域はタイヤ周方向に沿って環状に延在し、粗面領域のタイヤ径方向の幅が6mm〜10mmの範囲にあることが好ましい。これにより、エアの滞留を効果的に抑制することができる。 It is preferable that the rough surface region extends in an annular shape along the tire circumferential direction, and the width of the rough surface region in the tire radial direction is in the range of 6 mm to 10 mm. As a result, the retention of air can be effectively suppressed.

粗面領域の表面粗さは5μm〜25μmの範囲にあることが好ましい。これにより、エアの滞留を効果的に抑制すると共に加硫後の製品タイヤの見た目が悪化するのを回避することができる。 The surface roughness of the rough surface region is preferably in the range of 5 μm to 25 μm. As a result, it is possible to effectively suppress the retention of air and prevent the appearance of the product tire after vulcanization from being deteriorated.

粗面領域は平滑領域に隣接する端部から中央部に向かうに連れて表面粗さが段階的に徐々に粗くなる複数の区域を有することが好ましい。これにより、円滑なゴム流れを生じさせることができる。この場合、複数の区域の表面粗さの変化割合が中央部に近づくに連れて大きくなることが好ましい。つまり、中央部に近づくほど表面粗さが加速度的に増加するような配置とすることにより、更に円滑なゴム流れを生じさせることができる。但し、複数の区画の隣り合う区画の表面粗さの変化割合が2倍未満であることが好ましい。複数の区画の表面粗さの変化割合が過大であると、区画の境界において円滑なゴム流れが阻害される恐れがある。 The rough surface region preferably has a plurality of regions in which the surface roughness gradually becomes rough from the end portion adjacent to the smooth region toward the central portion. As a result, a smooth rubber flow can be generated. In this case, it is preferable that the rate of change in the surface roughness of the plurality of areas increases as it approaches the central portion. That is, by arranging the arrangement so that the surface roughness increases at an accelerating rate as it approaches the central portion, a smoother rubber flow can be generated. However, it is preferable that the rate of change in the surface roughness of the adjacent compartments of the plurality of compartments is less than twice. If the rate of change in surface roughness of a plurality of compartments is excessive, smooth rubber flow may be hindered at the boundaries of the compartments.

或いは、粗面領域は平滑領域に隣接する端部から中央部に向かうに連れて表面粗さが連続的に徐々に粗くなることが好ましい。これにより、円滑なゴム流れを生じさせることができる。 Alternatively, it is preferable that the surface roughness of the rough surface region is continuously and gradually roughened from the end portion adjacent to the smooth region toward the central portion. As a result, a smooth rubber flow can be generated.

本発明によれば、上述したタイヤ製造用加硫金型に未加硫状態の空気入りタイヤを投入し、該空気入りタイヤを内側からブラダーにより加圧した状態で該空気入りタイヤの加硫を行うことにより、エア残りに起因する外観不良を効果的に抑制しながら、空気入りタイヤを製造することができる。 According to the present invention, an unvulcanized pneumatic tire is put into the above-mentioned tire manufacturing vulcanization mold, and the pneumatic tire is vulcanized with the pneumatic tire pressed from the inside by a bladder. By doing so, it is possible to manufacture a pneumatic tire while effectively suppressing appearance defects caused by air residue.

本発明において、表面粗さはJIS−B0601:2013に規定される最大高さ粗さRzである。また、評価の方式及び手順並びに測定器の特性は、JIS−B0633:2001及びJIS−B0651:2001の規定に準拠する。 In the present invention, the surface roughness is the maximum height roughness Rz defined in JIS-B0601: 2013. In addition, the evaluation method and procedure and the characteristics of the measuring instrument conform to the provisions of JIS-B0633: 2001 and JIS-B0651: 2001.

本発明で使用されるタイヤ製造用加硫金型の一例を示す子午線断面図である。It is a meridian cross-sectional view which shows an example of the vulcanization die for tire manufacturing used in this invention. 本発明で製造される空気入りタイヤの一例を示す子午線半断面図である。It is a meridian semi-cross-sectional view which shows an example of the pneumatic tire manufactured by this invention. 図1のタイヤ製造用加硫金型のサイドプレートを示す平面図である。It is a top view which shows the side plate of the vulcanization die for tire manufacturing of FIG. 図3における粗面領域の具体例を示す平面図である。It is a top view which shows the specific example of the rough surface region in FIG. 図3における粗面領域の他の具体例を示す平面図である。FIG. 3 is a plan view showing another specific example of the rough surface region in FIG.

以下、本発明の構成について添付の図面を参照しながら詳細に説明する。図1は本発明で使用されるタイヤ製造用加硫金型Mを示し、図2は本発明で製造される空気入りタイヤの一例を示し、図3はタイヤ製造用加硫金型Mのサイドプレートを示し、図4及び図5はそれぞれ粗面領域の具体例を示すものである。図2において、CLはタイヤ中心線である。 Hereinafter, the configuration of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 shows a tire manufacturing vulcanization mold M used in the present invention, FIG. 2 shows an example of a pneumatic tire manufactured in the present invention, and FIG. 3 shows a side of a tire manufacturing vulcanization mold M. The plate is shown, and FIGS. 4 and 5 show specific examples of the rough surface region, respectively. In FIG. 2, CL is the tire center line.

図1に示すように、このタイヤ製造用加硫金型Mは、空気入りタイヤTのサイドウォール部を成形する一対のサイドプレート1,1と、空気入りタイヤTのビード部を成形する一対のビードリング2,2と、空気入りタイヤTのトレッド部を成形する複数のセクター3から構成されている。これら一対のサイドプレート1,1と一対のビードリング2,2と複数のセクター3とが組み合わされた状態で、タイヤ製造用加硫金型Mは、空気入りタイヤTのトレッド部、サイドウォール部及びビード部の外表面を成形するための成形面Sを形成するようになっている。 As shown in FIG. 1, in this tire manufacturing vulcanization die M, a pair of side plates 1 and 1 for forming a sidewall portion of a pneumatic tire T and a pair of pair of side plates 1 and 1 for forming a bead portion of the pneumatic tire T are formed. It is composed of bead rings 2 and 2 and a plurality of sectors 3 for forming the tread portion of the pneumatic tire T. In a state where the pair of side plates 1, 1 and the pair of bead rings 2, 2 and the plurality of sectors 3 are combined, the vulcanization die M for tire manufacturing has a tread portion and a sidewall portion of the pneumatic tire T. And a molding surface S for molding the outer surface of the bead portion is formed.

空気入りタイヤTは、図2に示すように、タイヤ周方向に延在して環状をなすトレッド部11と、該トレッド部11の両側に配置された一対のサイドウォール部12,12と、これらサイドウォール部12のタイヤ径方向内側に配置された一対のビード部13,13とを備えている。 As shown in FIG. 2, the pneumatic tire T includes a tread portion 11 extending in the tire circumferential direction to form an annular shape, a pair of sidewall portions 12 and 12 arranged on both sides of the tread portion 11, and these. It includes a pair of bead portions 13 and 13 arranged inside the sidewall portion 12 in the tire radial direction.

一対のビード部13,13間にはカーカス層14が装架されている。このカーカス層14は、タイヤ径方向に延びる複数本のカーカスコードを含み、各ビード部13に配置されたビードコア15の廻りにタイヤ内側から外側へ巻き上げられている。ビードコア15の外周上には断面三角形状のゴム組成物からなるビードフィラー16が配置されている。一方、トレッド部11におけるカーカス層14の外周側には複数層のベルト層17が埋設されている。これらベルト層17はタイヤ周方向に対して傾斜する複数本のベルトコードを含み、かつ層間でベルトコードが互いに交差するように配置されている。 A carcass layer 14 is mounted between the pair of bead portions 13, 13. The carcass layer 14 includes a plurality of carcass cords extending in the tire radial direction, and is wound around the bead core 15 arranged in each bead portion 13 from the inside to the outside of the tire. A bead filler 16 made of a rubber composition having a triangular cross section is arranged on the outer periphery of the bead core 15. On the other hand, a plurality of belt layers 17 are embedded on the outer peripheral side of the carcass layer 14 in the tread portion 11. These belt layers 17 include a plurality of belt cords that are inclined with respect to the tire circumferential direction, and are arranged so that the belt cords intersect each other between the layers.

このような構成を有する空気入りタイヤTは、加硫時において、タイヤ構成部材のタイヤ径方向の端部位置(例えば、カーカス層14の巻き上げ端部14eの位置やビードフィラー16の上端部16eの位置)にエアが残留し易く、その部位に外観不良が生じ易い。つまり、カーカス層14の巻き上げ端部14eの位置やビードフィラー16の上端部16eの位置では剛性差に起因して屈曲や皴が形成され易く、また、部材端部位置による段差が未加硫タイヤ表面にも現れ易く、その部分にエアが滞留し易いのである。なお、エアが残留し易いタイヤ構成部材の端部位置としては、ビード部補強層やサイド部補強層の端部位置やサイドウォールゴム層のスプライス位置等も挙げることができる。 In the pneumatic tire T having such a configuration, at the time of vulcanization, the position of the end portion in the tire radial direction of the tire component member (for example, the position of the winding end portion 14e of the carcass layer 14 and the upper end portion 16e of the bead filler 16). Air tends to remain in the position), and poor appearance tends to occur in that part. That is, at the position of the winding end portion 14e of the carcass layer 14 and the position of the upper end portion 16e of the bead filler 16, bending and wrinkles are likely to be formed due to the difference in rigidity, and the step due to the member end position is an unvulcanized tire. It easily appears on the surface, and air tends to stay in that part. Examples of the end position of the tire component member in which air tends to remain include the end position of the bead portion reinforcing layer and the side portion reinforcing layer, the splice position of the sidewall rubber layer, and the like.

このような状況に鑑みて、上述したタイヤ製造用加硫金型Mにおいては、図3に示すように、成形面Sにおけるタイヤ構成部材のタイヤ径方向の端部位置に対応する部位に粗面領域Xが形成されている。より具体的には、タイヤ構成部材の端部位置から成形面Sに向けた垂線が成形面Sと交差する位置をA部とした場合(図1参照)、A部を含む部位に粗面領域Xが配置されることが望ましい。図3において、粗面領域Xはカーカス層14の巻き上げ端部14eの位置に対応する部位に形成されている。このような粗面領域Xはタイヤ周方向に沿って環状に延在している。粗面領域Xはタイヤ周方向に沿って連続することが好ましいが、タイヤ周方向に沿って断続的に形成されていても良い。成形面Sにおける粗面領域X以外の部位は平滑領域Yである。そして、粗面領域Xは平滑領域Yよりも粗くなっている。 In view of such a situation, in the above-mentioned vulcanization die M for tire manufacturing, as shown in FIG. 3, a rough surface is formed on the formed surface S at a portion corresponding to the end position of the tire component member in the tire radial direction. Region X is formed. More specifically, when the position where the perpendicular line from the end position of the tire component to the molding surface S intersects the molding surface S is defined as the A portion (see FIG. 1), the rough surface region includes the A portion. It is desirable that X be placed. In FIG. 3, the rough surface region X is formed at a portion corresponding to the position of the winding end portion 14e of the carcass layer 14. Such a rough surface region X extends in an annular shape along the tire circumferential direction. The rough surface region X is preferably continuous along the tire circumferential direction, but may be formed intermittently along the tire circumferential direction. The portion of the molding surface S other than the rough surface region X is the smooth region Y. The rough surface region X is coarser than the smooth region Y.

上述したタイヤ製造用加硫金型Mでは、成形面Sにおけるタイヤ構成部材の端部位置に対応する部位に粗面領域Xが形成され、粗面領域X以外の部位に平滑領域Yが形成されると共に、粗面領域Xが平滑領域Yよりも粗くなっているので、外観不良が発生し易い部分(タイヤ構成部材の端部位置に対応する部位)におけるゴム流れを良化させ、エアの滞留を効果的に抑制することができる。また、表面粗さを局所的に粗くした粗面領域Xでは未加硫ゴムと加硫金型Mの成形面Sとの間に隙間が形成され、その隙間をエアが通り易くなる。これにより、ベントホール等のエア排出部の設置数を最小限にしながら、エア残りに起因する外観不良を効果的に抑制することができる。 In the above-mentioned vulcanization die M for manufacturing tires, a rough surface region X is formed at a portion corresponding to the end position of a tire component member on the molded surface S, and a smooth region Y is formed at a portion other than the rough surface region X. At the same time, since the rough surface region X is coarser than the smooth region Y, the rubber flow in the portion where the appearance defect is likely to occur (the portion corresponding to the end position of the tire component member) is improved, and the air stays. Can be effectively suppressed. Further, in the rough surface region X in which the surface roughness is locally roughened, a gap is formed between the unvulcanized rubber and the molding surface S of the vulcanized mold M, and air can easily pass through the gap. As a result, it is possible to effectively suppress appearance defects due to air residue while minimizing the number of installed air discharge parts such as vent holes.

上記タイヤ製造用加硫金型Mにおいて、粗面領域Xの表面粗さ(最大高さ粗さRz)は平滑領域の表面粗さ(最大高さ粗さRz)の1.2倍〜5.0倍であると良い。これにより、エアの滞留を効果的に抑制すると共に加硫後の製品タイヤの見た目が悪化するのを回避することができる。この倍率が1.2倍未満であるとゴム流れの改善効果が低下し、逆に5.0倍超であると粗面領域Xと平滑領域Yとの差が大き過ぎて製品タイヤの見た目が悪くなる。 In the tire manufacturing vulcanization die M, the surface roughness (maximum height roughness Rz) of the rough surface region X is 1.2 times to 5. times the surface roughness (maximum height roughness Rz) of the smooth region. It is good that it is 0 times. As a result, it is possible to effectively suppress the retention of air and prevent the appearance of the product tire after vulcanization from being deteriorated. If this magnification is less than 1.2 times, the effect of improving the rubber flow is reduced, and if it is more than 5.0 times, the difference between the rough surface region X and the smooth region Y is too large and the appearance of the product tire is become worse.

上記タイヤ製造用加硫金型Mにおいて、粗面領域Xはタイヤ周方向に沿って環状に延在し、粗面領域Xのタイヤ径方向の幅Wが6mm〜10mmの範囲にあると良い。これにより、エアの滞留を効果的に抑制することができる。ここで、粗面領域Xの幅Wが6mmも小さいと粗面領域Xがエアの滞留を生じ易い部分から外れることでゴム流れの改善効果が低下し、逆に10mmよりも大きいと特定部位のゴム流れを改善する効果が低下する。なお、タイヤ構成部材の端部位置から成形面Sに向けた垂線が成形面Sと交差する位置をA部とした場合、A部を中心としてタイヤ径方向に±3mmの範囲に粗面領域Xが配置されることが望ましい。 In the tire manufacturing vulcanization die M, it is preferable that the rough surface region X extends in an annular shape along the tire circumferential direction, and the width W of the rough surface region X in the tire radial direction is in the range of 6 mm to 10 mm. As a result, the retention of air can be effectively suppressed. Here, if the width W of the rough surface region X is as small as 6 mm, the rough surface region X deviates from the portion where air retention is likely to occur, so that the effect of improving the rubber flow is reduced. The effect of improving rubber flow is reduced. When the position where the perpendicular line from the end position of the tire component to the molding surface S intersects the molding surface S is defined as the A portion, the rough surface region X is within a range of ± 3 mm in the tire radial direction centering on the A portion. Is desirable to be placed.

上記タイヤ製造用加硫金型Mにおいて、粗面領域Xの表面粗さは5μm〜25μmの範囲にあると良い。これにより、エアの滞留を効果的に抑制すると共に加硫後の製品タイヤの見た目が悪化するのを回避することができる。ここで、粗面領域Xの表面粗さが5μm未満であるとゴム流れの改善効果が低下し、25μm超であると加硫後の製品タイヤの外表面が粗くなり、見た目が悪くなる。なお、平角領域Yの表面粗さは10μm以下であれば良い。 In the vulcanization die M for manufacturing tires, the surface roughness of the rough surface region X is preferably in the range of 5 μm to 25 μm. As a result, it is possible to effectively suppress the retention of air and prevent the appearance of the product tire after vulcanization from being deteriorated. Here, if the surface roughness of the rough surface region X is less than 5 μm, the effect of improving the rubber flow is lowered, and if it is more than 25 μm, the outer surface of the product tire after vulcanization becomes rough and the appearance is deteriorated. The surface roughness of the flat angle region Y may be 10 μm or less.

粗面領域Xは全域にわたって一様の表面粗さを有していても良いが、表面粗さに勾配を持たせることも可能である。図4において、粗面領域Xは平滑領域Yに隣接する端部から中央部(即ち、粗面領域Xの幅方向の中央部)に向かうに連れて表面粗さが段階的に徐々に粗くなる複数の区域X1,X2,X3を有している。この場合、円滑なゴム流れを生じさせることができる。特に、複数の区域X1〜X3の表面粗さの変化割合が中央部に近づくに連れて大きくなっていると良い。つまり、隣り合う領域間の表面粗さの変化割合が中央部に近づくに連れて大きくなっていると良い。より具体的には、例えば、平滑領域Yの表面粗さをRz(a)とし、粗面領域Xの区域X1の表面粗さをRz(b)とし、粗面領域Xの区域X2の表面粗さをRz(c)とし、粗面領域Xの区域X3の表面粗さをRz(d)としたとき、Rz(b)/Rz(a)<Rz(c)/Rz(b)<Rz(d)/Rz(c)のような関係を満足することが望ましい。このように粗面領域Xの中央部に近づくほど表面粗さが加速度的に増加するような配置とすることにより、更に円滑なゴム流れを生じさせることができる。但し、複数の区画X1〜X3の隣り合う区画の表面粗さの変化割合は2倍未満であると良い。つまり、Rz(b)/Rz(a)<Rz(c)/Rz(b)<Rz(d)/Rz(c)<2.0であると良い。複数の区画X1〜X3の表面粗さの変化割合が過大であると、区画X1〜X3の境界において円滑なゴム流れが阻害される恐れがある。 The rough surface region X may have a uniform surface roughness over the entire area, but it is also possible to give a gradient to the surface roughness. In FIG. 4, the surface roughness of the rough surface region X gradually becomes rougher from the end portion adjacent to the smooth region Y toward the central portion (that is, the central portion in the width direction of the rough surface region X). It has a plurality of areas X1, X2, X3. In this case, a smooth rubber flow can be generated. In particular, it is preferable that the rate of change in the surface roughness of the plurality of areas X1 to X3 increases as it approaches the central portion. That is, it is preferable that the rate of change in surface roughness between adjacent regions increases as it approaches the central portion. More specifically, for example, the surface roughness of the smooth region Y is Rz (a), the surface roughness of the area X1 of the rough surface region X is Rz (b), and the surface roughness of the area X2 of the rough surface region X is rough. When the surface roughness of the area X3 of the rough surface region X is Rz (d), Rz (b) / Rz (a) <Rz (c) / Rz (b) <Rz ( It is desirable to satisfy a relationship such as d) / Rz (c). By arranging the arrangement so that the surface roughness increases at an accelerating rate as it approaches the central portion of the rough surface region X in this way, a smoother rubber flow can be generated. However, it is preferable that the rate of change in the surface roughness of the adjacent compartments of the plurality of compartments X1 to X3 is less than twice. That is, it is preferable that Rz (b) / Rz (a) <Rz (c) / Rz (b) <Rz (d) / Rz (c) <2.0. If the rate of change in surface roughness of the plurality of compartments X1 to X3 is excessive, smooth rubber flow may be hindered at the boundary between the compartments X1 to X3.

図5において、粗面領域Xは平滑領域Yに隣接する端部から中央部(即ち、粗面領域Xの幅方向の中央部)に向かうに連れて表面粗さが連続的に徐々に粗くなっている。この場合も、円滑なゴム流れを生じさせることができる。 In FIG. 5, the surface roughness of the rough surface region X gradually becomes coarser continuously from the end portion adjacent to the smooth surface region Y toward the central portion (that is, the central portion in the width direction of the rough surface region X). ing. In this case as well, a smooth rubber flow can be generated.

上述のように構成されるタイヤ製造用加硫金型Mを用いて空気入りタイヤTを製造する場合、加硫金型Mに未加硫状態の空気入りタイヤTを投入する。次いで、空気入りタイヤTを内側からブラダーBにより加圧した状態で、空気入りタイヤTをその内外から加熱することにより、空気入りタイヤTの加硫を行う。その際、タイヤ製造用加硫金型Mの成形面Sの適所に粗面領域Xが配設されているので、エア残りに起因する外観不良を効果的に抑制しながら、空気入りタイヤTを製造することができる。 When the pneumatic tire T is manufactured using the tire manufacturing vulcanization die M configured as described above, the unvulcanized pneumatic tire T is charged into the vulcanization die M. Next, the pneumatic tire T is vulcanized by heating the pneumatic tire T from the inside and outside while the pneumatic tire T is pressurized by the bladder B from the inside. At that time, since the rough surface region X is arranged at an appropriate position on the molding surface S of the vulcanization die M for manufacturing the tire, the pneumatic tire T is provided while effectively suppressing the appearance defect caused by the air residue. Can be manufactured.

上述した実施形態では、セクショナルタイプのタイヤ製造用加硫金型の例を示したが、本発明は2分割タイプを含む各種のタイヤ製造用加硫金型に適用可能である。 In the above-described embodiment, an example of a sectional type vulcanization die for tire production is shown, but the present invention can be applied to various vulcanization dies for tire production including a two-piece type.

タイヤサイズ245/40R18の空気入りタイヤを製造するにあたって、タイヤ製造用加硫金型の構造を種々異ならせた(従来例1,2及び実施例1〜5)。即ち、従来例1,2及び実施例1〜5においては、ビードフィラートップ位置から成形面Sに向けた垂線が成形面Sと交差する位置をA部とし、A部を中心とする幅2mmであって成形面Sにおいてタイヤ周方向に環状に延在する帯状領域aと、その幅方向両外側に隣接する幅2mmの帯状領域bと、その幅方向両外側に隣接する幅2mmの帯状領域cとを規定したとき、これら帯状領域a〜cの表面粗さRz(a)〜Rz(c)を表1のように設定した。また、従来例2においてはビードフィラートップ位置に対応するA部に複数のベントホールを設置し、従来例1及び実施例1〜5においてはビードフィラートップ位置に対応するA部にはベントホールを設置しなかった。 In manufacturing a pneumatic tire having a tire size of 245 / 40R18, the structure of the vulcanization die for tire manufacturing was made different (Conventional Examples 1 and 2 and Examples 1 to 5). That is, in Conventional Examples 1 and 2 and Examples 1 to 5, the position where the perpendicular line from the bead filler top position toward the molding surface S intersects the molding surface S is defined as the A portion, and the width is 2 mm centered on the A portion. A strip-shaped region a extending in an annular shape in the tire circumferential direction on the molded surface S, a strip-shaped region b having a width of 2 mm adjacent to both outer sides in the width direction, and a strip-shaped region c having a width of 2 mm adjacent to both outer sides in the width direction. When the above is specified, the surface roughness Rz (a) to Rz (c) of these strip-shaped regions a to c are set as shown in Table 1. Further, in the conventional example 2, a plurality of vent holes are provided in the A portion corresponding to the bead filler top position, and in the conventional example 1 and the first to fifth embodiments, a vent hole is provided in the A portion corresponding to the bead filler top position. I didn't install it.

これら従来例1,2及び実施例1〜5のタイヤ製造用加硫金型を用いて空気入りタイヤを加硫し、以下の評価方法により、外観不良の発生率及び見た目の奇麗さを評価し、その結果を表1に併せて示した。 Pneumatic tires are vulcanized using the tire manufacturing vulcanization dies of Conventional Examples 1 and 2 and Examples 1 to 5, and the occurrence rate of appearance defects and the appearance are evaluated by the following evaluation methods. The results are also shown in Table 1.

外観不良の発生率:
各加硫金型によりそれぞれ200本のタイヤを加硫し、得られたタイヤのトレッド部にエア残りに起因する外観不良が発生した本数を計測し、外観不良の発生率を求めた。
Incidence of appearance defects:
200 tires were vulcanized by each vulcanization die, and the number of tires having poor appearance due to air residue was measured in the tread portion of the obtained tire to determine the occurrence rate of poor appearance.

見た目の奇麗さ:
得られたタイヤのトレッド部の見た目の奇麗さについて、10人のパネラーによる評価を行い、その評価点の合計値を求めた。評価結果は従来例1を100とする指数にて示した。この指数値が大きいほど見た目が奇麗であることを意味する。
Beautiful appearance:
The appearance of the tread portion of the obtained tire was evaluated by 10 panelists, and the total value of the evaluation points was calculated. The evaluation result is shown by an index with Conventional Example 1 as 100. The larger this index value is, the more beautiful the appearance is.

Figure 2021053927
Figure 2021053927

表1から判るように、実施例1〜5では、従来例1との対比において、外観不良の発生率が大幅に低減されていた。従来例2では、外観不良を抑制する効果が得られるものの、得られたタイヤの見た目の奇麗さが損なわれていた。 As can be seen from Table 1, in Examples 1 to 5, the incidence of poor appearance was significantly reduced as compared with Conventional Example 1. In Conventional Example 2, although the effect of suppressing poor appearance can be obtained, the appearance of the obtained tire is impaired.

1 サイドプレート
2 ビードリング
3 セクター
M タイヤ製造用加硫金型
S 成形面
T 空気入りタイヤ
X 粗面領域
Y 平滑領域
1 Side plate 2 Bead ring 3 Sector M Vulcanization die for tire manufacturing S Molded surface T Pneumatic tire X Rough surface area Y Smooth area

Claims (9)

空気入りタイヤを製造するための加硫金型において、前記空気入りタイヤの外表面を成形するための成形面を有し、前記成形面は前記空気入りタイヤの構成部材の端部位置に対応する部位に配置された粗面領域と該粗面領域以外の部位に配置された平滑領域とを含み、前記粗面領域を前記平滑領域よりも粗くしたことを特徴とするタイヤ製造用加硫金型。 In a vulcanization die for manufacturing a pneumatic tire, the vulcanization die has a molding surface for molding the outer surface of the pneumatic tire, and the molding surface corresponds to an end position of a component of the pneumatic tire. A vulcanization mold for tire manufacturing, which includes a rough surface region arranged in a portion and a smooth region arranged in a portion other than the rough surface region, and the rough surface region is made rougher than the smooth region. .. 前記粗面領域の表面粗さが前記平滑領域の表面粗さの1.2倍〜5.0倍であることを特徴とする請求項1に記載のタイヤ製造用加硫金型。 The vulcanization die for tire manufacturing according to claim 1, wherein the surface roughness of the rough surface region is 1.2 times to 5.0 times the surface roughness of the smooth region. 前記粗面領域がタイヤ周方向に沿って環状に延在し、前記粗面領域のタイヤ径方向の幅が6mm〜10mmの範囲にあることを特徴とする請求項1又は2に記載のタイヤ製造用加硫金型。 The tire manufacturing according to claim 1 or 2, wherein the rough surface region extends in an annular shape along the tire circumferential direction, and the width of the rough surface region in the tire radial direction is in the range of 6 mm to 10 mm. Vulcanization mold for. 前記粗面領域の表面粗さが5μm〜25μmの範囲にあることを特徴とする請求項1〜3のいずれかに記載のタイヤ製造用加硫金型。 The vulcanization die for tire production according to any one of claims 1 to 3, wherein the surface roughness of the rough surface region is in the range of 5 μm to 25 μm. 前記粗面領域は前記平滑領域に隣接する端部から中央部に向かうに連れて表面粗さが段階的に徐々に粗くなる複数の区域を有することを特徴とする請求項1〜4のいずれかに記載のタイヤ製造用加硫金型。 Any of claims 1 to 4, wherein the rough surface region has a plurality of regions in which the surface roughness gradually becomes rough from the end portion adjacent to the smooth region to the central portion. Vulcanization die for tire manufacturing described in. 前記複数の区域の表面粗さの変化割合が前記中央部に近づくに連れて大きくなることを特徴とする請求項5に記載のタイヤ製造用加硫金型。 The vulcanization die for tire manufacturing according to claim 5, wherein the rate of change in surface roughness of the plurality of areas increases as the surface roughness approaches the central portion. 前記複数の区画の隣り合う区画の表面粗さの変化割合が2倍未満であることを特徴とする請求項5又は6に記載のタイヤ製造用加硫金型。 The vulcanization die for tire manufacturing according to claim 5 or 6, wherein the rate of change in surface roughness of adjacent sections of the plurality of sections is less than twice. 前記粗面領域は前記平滑領域に隣接する端部から中央部に向かうに連れて表面粗さが連続的に徐々に粗くなることを特徴とする請求項1〜4のいずれかに記載のタイヤ製造用加硫金型。 The tire manufacturing according to any one of claims 1 to 4, wherein the rough surface region continuously and gradually becomes roughened from the end portion adjacent to the smoothing region toward the central portion. Vulcanization mold for. 請求項1〜8のいずれかに記載のタイヤ製造用加硫金型に未加硫状態の空気入りタイヤを投入し、該空気入りタイヤを内側からブラダーにより加圧した状態で該空気入りタイヤの加硫を行うことを特徴とする空気入りタイヤの製造方法。 The unvulcanized pneumatic tire is put into the tire manufacturing vulcanization mold according to any one of claims 1 to 8, and the pneumatic tire is pressed from the inside by a bladder. A method for manufacturing a pneumatic tire, which comprises performing vulcanization.
JP2019179154A 2019-09-30 2019-09-30 Vulcanization mold for tire manufacturing and method for manufacturing pneumatic tires using the same Active JP7364878B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019179154A JP7364878B2 (en) 2019-09-30 2019-09-30 Vulcanization mold for tire manufacturing and method for manufacturing pneumatic tires using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019179154A JP7364878B2 (en) 2019-09-30 2019-09-30 Vulcanization mold for tire manufacturing and method for manufacturing pneumatic tires using the same

Publications (2)

Publication Number Publication Date
JP2021053927A true JP2021053927A (en) 2021-04-08
JP7364878B2 JP7364878B2 (en) 2023-10-19

Family

ID=75269448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019179154A Active JP7364878B2 (en) 2019-09-30 2019-09-30 Vulcanization mold for tire manufacturing and method for manufacturing pneumatic tires using the same

Country Status (1)

Country Link
JP (1) JP7364878B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6416408A (en) * 1987-07-10 1989-01-19 Yokohama Rubber Co Ltd Pneumatic tyre and molding tool for the tyre
JP2007290442A (en) * 2006-04-21 2007-11-08 Bridgestone Corp Tire
JP2009160870A (en) * 2008-01-09 2009-07-23 Bridgestone Corp Tire vulcanizing method and apparatus
JP2011116277A (en) * 2009-12-04 2011-06-16 Bridgestone Corp Tire, rim assembling method of using this tire and assembly of this tire and rim
JP2011240558A (en) * 2010-05-18 2011-12-01 Toyo Tire & Rubber Co Ltd Tire mold and method of manufacturing pneumatic tire

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6416408A (en) * 1987-07-10 1989-01-19 Yokohama Rubber Co Ltd Pneumatic tyre and molding tool for the tyre
JP2007290442A (en) * 2006-04-21 2007-11-08 Bridgestone Corp Tire
JP2009160870A (en) * 2008-01-09 2009-07-23 Bridgestone Corp Tire vulcanizing method and apparatus
JP2011116277A (en) * 2009-12-04 2011-06-16 Bridgestone Corp Tire, rim assembling method of using this tire and assembly of this tire and rim
JP2011240558A (en) * 2010-05-18 2011-12-01 Toyo Tire & Rubber Co Ltd Tire mold and method of manufacturing pneumatic tire

Also Published As

Publication number Publication date
JP7364878B2 (en) 2023-10-19

Similar Documents

Publication Publication Date Title
JP5216110B2 (en) Tire vulcanization mold
JP2006062518A (en) Pneumatic tire for heavy load and its manufacturing method
JP6085940B2 (en) Rehabilitation tire
JP7081165B2 (en) Pneumatic tires and tire molds
CN101306580A (en) Method for manufacturing pneumatic tires
JP6097193B2 (en) Tire vulcanization mold and tire manufacturing method
JP5667433B2 (en) Tire vulcanization mold and method for manufacturing pneumatic tire
JP2010285113A (en) Pneumatic tire and method for manufacturing the same
JP2015107593A (en) Tire manufacturing method
JP4780796B2 (en) Pneumatic tire manufacturing method
JP2010285106A (en) Pneumatic tire and method for manufacturing the same
JP4615824B2 (en) Pneumatic tire manufacturing method and vulcanization mold used therefor
JP2016203420A (en) Pneumatic tire manufacturing method
JP5066220B2 (en) Pneumatic tire and manufacturing method thereof
JP2007261093A (en) Manufacturing method of pneumatic tire
JP2021053927A (en) Vulcanization mold for producing tire and method for producing pneumatic tire using the same
JP2021116043A (en) Pneumatic radial tire, pneumatic radial tire manufacturing method, and tire vulcanization die
JP6878906B2 (en) Tire mold
JP2021116044A (en) Pneumatic tire, pneumatic tire manufacturing method, and tire vulcanization die
JP4684019B2 (en) Heavy duty tire and manufacturing method thereof
JP7415128B2 (en) Vulcanization mold for tire manufacturing and method for manufacturing pneumatic tires using the same
JP6922257B2 (en) Tire vulcanization mold, tire manufacturing method and pneumatic tire
JP2020168788A (en) Tire mold, method for manufacturing pneumatic tire, and pneumatic tire
JP4589676B2 (en) Manufacturing method of rubber member for tire.
JP2017094853A (en) Tire and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230918

R150 Certificate of patent or registration of utility model

Ref document number: 7364878

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150