JP2021049314A - 内視鏡画像処理システム - Google Patents
内視鏡画像処理システム Download PDFInfo
- Publication number
- JP2021049314A JP2021049314A JP2019219223A JP2019219223A JP2021049314A JP 2021049314 A JP2021049314 A JP 2021049314A JP 2019219223 A JP2019219223 A JP 2019219223A JP 2019219223 A JP2019219223 A JP 2019219223A JP 2021049314 A JP2021049314 A JP 2021049314A
- Authority
- JP
- Japan
- Prior art keywords
- image
- endoscope
- model
- acquired
- data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000012545 processing Methods 0.000 title claims abstract description 147
- 238000010801 machine learning Methods 0.000 claims abstract description 16
- 210000000056 organ Anatomy 0.000 claims description 117
- 238000001514 detection method Methods 0.000 claims description 43
- 238000003384 imaging method Methods 0.000 claims description 19
- 230000001960 triggered effect Effects 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 44
- 238000013473 artificial intelligence Methods 0.000 description 87
- 210000003238 esophagus Anatomy 0.000 description 13
- 238000010586 diagram Methods 0.000 description 12
- 230000002183 duodenal effect Effects 0.000 description 12
- 210000001198 duodenum Anatomy 0.000 description 12
- 230000002496 gastric effect Effects 0.000 description 12
- 210000002784 stomach Anatomy 0.000 description 12
- 238000012549 training Methods 0.000 description 11
- 238000001839 endoscopy Methods 0.000 description 9
- 238000004422 calculation algorithm Methods 0.000 description 8
- 238000003780 insertion Methods 0.000 description 8
- 230000037431 insertion Effects 0.000 description 8
- 238000013528 artificial neural network Methods 0.000 description 7
- 238000011846 endoscopic investigation Methods 0.000 description 7
- 239000002775 capsule Substances 0.000 description 6
- 210000001519 tissue Anatomy 0.000 description 6
- 210000001835 viscera Anatomy 0.000 description 6
- 238000013527 convolutional neural network Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 210000003236 esophagogastric junction Anatomy 0.000 description 4
- 230000003902 lesion Effects 0.000 description 4
- 210000000214 mouth Anatomy 0.000 description 4
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 239000003550 marker Substances 0.000 description 3
- 230000002792 vascular Effects 0.000 description 3
- 238000001727 in vivo Methods 0.000 description 2
- 210000000867 larynx Anatomy 0.000 description 2
- 210000003928 nasal cavity Anatomy 0.000 description 2
- 230000001575 pathological effect Effects 0.000 description 2
- 210000003800 pharynx Anatomy 0.000 description 2
- 229920002379 silicone rubber Polymers 0.000 description 2
- 239000004945 silicone rubber Substances 0.000 description 2
- 210000000115 thoracic cavity Anatomy 0.000 description 2
- 210000003437 trachea Anatomy 0.000 description 2
- 238000002627 tracheal intubation Methods 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- 210000003708 urethra Anatomy 0.000 description 2
- 125000002066 L-histidyl group Chemical group [H]N1C([H])=NC(C([H])([H])[C@](C(=O)[*])([H])N([H])[H])=C1[H] 0.000 description 1
- 208000037062 Polyps Diseases 0.000 description 1
- 208000025865 Ulcer Diseases 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 210000000621 bronchi Anatomy 0.000 description 1
- 238000002052 colonoscopy Methods 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000002059 diagnostic imaging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000012277 endoscopic treatment Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 210000000232 gallbladder Anatomy 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 238000002575 gastroscopy Methods 0.000 description 1
- 210000003128 head Anatomy 0.000 description 1
- 210000002429 large intestine Anatomy 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 210000001187 pylorus Anatomy 0.000 description 1
- 238000002271 resection Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 210000003625 skull Anatomy 0.000 description 1
- 210000000813 small intestine Anatomy 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 238000009966 trimming Methods 0.000 description 1
- 231100000397 ulcer Toxicity 0.000 description 1
- 210000003932 urinary bladder Anatomy 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Endoscopes (AREA)
Abstract
Description
そこで、下記特許文献1では、各病理タイプに分類された学習用画像群を保存しておき、得られた内視鏡画像の識別対象領域の画像とその学習用画像群との特徴量マッチングによって各病理タイプを識別する内視鏡画像診断支援システムが提案されている。
しかしながら、病変が発見可能に写る内視鏡画像を撮像するには、内視鏡を適切に動作させる必要がある。
一方で、研修医が内視鏡を適切に動作させる手技を習得しようとした場合、指導医の下で訓練を受けなければならず、指導医の負担の増加などの問題が生じている。また、医師が自身で操作する内視鏡の動作の良し悪しや自身の内視鏡手技の習熟度を自己判定できないといった問題もある。
当該内視鏡画像処理システムは、一つの装置であってもよいし、複数の装置であってもよい。
また、第一の学習済みモデルは、当該内視鏡画像処理システム内に設けられていてもよいし、外部に設けられていてもよい。
また、当該内視鏡画像処理システムでの処理対象となる内視鏡画像を撮像する内視鏡は、上部消化管内視鏡、大腸内視鏡、気管支鏡、胸腔鏡、血管内視鏡、カプセル内視鏡などであり、限定されない。
内視鏡画像に写る管腔臓器は、人体模型における臓器を模した臓器モデルであってもよいし、生体の実管腔臓器であってもよい。
図1は、本実施形態に係る内視鏡手技トレーナーシステムの一部の外観を示す図である。
図2は、本実施形態に係る内視鏡手技トレーナーシステムの制御構成を概念的に示す図である。
本実施形態に係る内視鏡手技トレーナーシステム(以降、本システムと表記する)1は、主に、人体模型3、入出力パネル5、制御部10などにより構成されており、内視鏡手技の個人学習及び個人訓練を可能とする。具体的には、本システム1では、訓練を受ける人(以降、トレーニーと表記する)は、人体模型3を用いて内視鏡手技を実際に訓練しながら、入出力パネル5等に出力されるガイド情報を参照することで内視鏡手技を自主学習することができる。
このように、本システム1は、研修医のようなトレーニーに対して内視鏡手技の指導を行うことができるため、指導医の負担を軽減することができる。
以下には、主に、上部消化管内視鏡の手技に関する構成を中心に説明するものとする。但し、本システム1により自主学習及び自主訓練が可能となる医療手技は、大腸内視鏡検査、小腸内視鏡検査、胆・膵内視鏡検査、これらの内視鏡治療の手技も含まれるし、その他の挿管に関する手技も含まれ得る。
人体模型3は、訓練を受ける人(以降、トレーニーと表記する)により操作される人型モデルであり、人体外形及び内臓を模した形状を有している。本実施形態では、人体模型3は、図1に示されるように、人体全体の外形を模擬していると共に、内臓として、口腔、鼻腔、咽頭、喉頭、気管、食道、気管支、胃、及び十二指腸といった管腔臓器の形状を内部で模擬している。
人体模型3は、訓練目的の手技に対応する姿勢で台座部上に載置される。例えば、気管挿管の訓練時には、人体模型3は仰向け姿勢で台座部上に載置され、内視鏡手技の訓練時には、図1に示されるように、人体模型3は横向き姿勢で台座部上に載置される。
皮膚シートは、シリコーンゴム等の柔軟性を有する素材により形成されている。ここでの柔軟性とは、折り曲げたとしても破断、損傷などを生じ難い特性を意味し、伸縮性及び弾性のいずれか一方又は両方の特性を含んでいてもよい。
体内器官構造は、管腔臓器を模した形状を有する構成要素群であり、任意の位置及び方法で骨格ベース部に連結固定されている。体内器官構造には、体内造形部(図示せず)が含まれる。
このような体内造形部は、シリコーンゴムのような生体の管腔臓器に近い柔軟性を有する素材により形成される。また、体内造形部は、管腔臓器をリアルに再現するには、可能な限り繋ぎ目をなくすように、柔軟性材料を用いて一体成形されることが好ましい。
例えば、訓練対象とする医療手技に応じて、人体模型3は、上半身だけの人体外形を模擬していてもよいし、体内造形部として、大腸、小腸、胆嚢、胆管等の消化管や、尿管、膀胱、尿道等の尿路系などの他の管腔臓器が模擬されていてもよい。
但し、物体検出センサは、設けられなくてもよいし、本実施形態とは異なる部位に設けられてもよいし、その数も限定されない。また、物体検出センサによる物体検出原理も限定されない。
制御部10は、本システム1の制御を司る構成であり、PC(Personal Computer)のようないわゆるコンピュータであってもよいし、組込みシステムであってもよいし、制御基板であってもよい。
制御部10は、入出力パネル5やスピーカ6等と共に、人体模型3が載置される台座部を持つ機器搭載台内に収容される。
制御部10は、図2に示されるように、ハードウェア構成として、プロセッサ11、メモリ12、入出力インタフェース(I/F)ユニット13等を有している。
プロセッサ11は、一般的な一以上のCPU又はMPU(Micro Processing Unit)であってもよいし、それに替え又はそれと共に、特定用途向け集積回路(ASIC)、DSP(Digital Signal Processor)、GPU(Graphics Processing Unit)、FPGA(Field Programmable Gate Array)等であってもよい。
ここで、AIモデルとは、機械学習(Machine Learning(ML))モデル、学習済みモデルとも表記可能であり、コンピュータプログラムとパラメータとの組合せ、或いは複数の関数とパラメータとの組合せとも表記可能である。
本実施形態は、教師有り機械学習のAIモデルであれば、そのAIモデルの構造や学習アルゴリズムを限定しない。例えば、AIモデルは、入力層、中間層(隠れ層)及び出力層の各層において複数のノードがエッジで連結されている構造を持ち、各ノードの値がそのノードに接続される他のノードの値及びエッジの重み(パラ―メータ)から活性化関数で算出されるニューラルネットワーク(NN)又はディープニューラルネットワーク(DNN)と呼ばれるモデルで実現されてもよい。また、本実施形態では、AIモデルは、内視鏡画像を用いるため、畳み込みニューラルネットワーク(CNN)で実現されてもよい。
本明細書における「AIモデル」は、ニューラルネットワークで構築される場合で、かつ、入力層、中間層及び出力層を一つのニューラルネットワークの単位と捉えた場合に、一つのニューラルネットワークを指してもよいし、複数のニューラルネットワークの組合せを指してもよい。
入出力パネル5は、機器搭載台の上方に設置されており、訓練メニュー、本システム1の動作モード、実施内容、評価結果などを表示する表示装置、及び表示装置に表示された画面を操作するための入力装置を含む。図1の例では、入出力パネル5は、表示装置と入力装置とが一体化されたタッチパネルとして実現されている。入出力パネル5の表示内容等については後述する。
また、制御部10は、図2に図示されていないハードウェア要素を含んでもよく、制御部10のハードウェア構成は制限されない。
当該制御プログラムは、出荷時に予め格納されてもいてもよいし、CD(Compact Disc)、メモリカード等のような可搬型記録媒体やネットワーク上の他のコンピュータから入出力I/Fユニット13を介してインストールされ、メモリ12に格納されてもよい。
図3は、制御部10により実現されるソフトウェア構成を概念的に示すブロック図である。
プロセッサ11によりメモリ12に格納される制御プログラムが実行されることにより、制御部10は、図3に示されるようなソフトウェア構成を実現する。具体的には、制御部10は、ソフトウェア構成として、画像処理モジュール21、AI処理モジュール22、格納処理モジュール23、出力処理モジュール24等を有している。画像処理モジュール21は画像取得手段と表記することができ、AI処理モジュール22は第一、第二又は第三モデル処理手段と表記することができ、格納処理モジュール23は格納手段と表記することができ、出力処理モジュール24は出力処理手段と表記することができる。
但し、図3に示される各ソフトウェア構成要素は、説明の便宜のために概念的にそれぞれ分けて示したものであるため、制御部10で実現されるソフトウェア構成は、図3に示されるような各構成要素に明確に区分けされていなくてもよい。
ここで「内視鏡の位置及び向き」とは、具体的には、人体模型3の管腔臓器モデル(ここでは主に食道モデル、胃モデル及び十二指腸モデル)内に挿入された内視鏡8の先端部に設けられた撮像素子の位置及び撮像方向を意味する。
内視鏡8のガイドでは、その時々で内視鏡8の先端部が何をすべきかを案内又は指導する情報が出力される。トレーニーは、本システム1で出力される内視鏡8のガイド情報を参照しながら、内視鏡8を操作することで、指導医なく、内視鏡手技を独自に学習及び訓練することができる。
以下、制御部10で実行される「内視鏡の位置及び向きの推定」に係る処理、及び「内視鏡のガイド」に係る処理について詳述する。
ポジショニングAIモデル31、第一ガイドAIモデル32、及び第二ガイドAIモデル33は、教師有りの機械学習アルゴリズムで学習済みのAIモデルである。以降、ポジショニングAIモデル31は、P−AIモデル31と表記され、第一ガイドAIモデル32は、G1−AIモデル32と表記され、第二ガイドAIモデル33は、G2−AIモデル33と表記される。
制御部10の上記処理を説明する前に、まず、これら各AIモデルについて説明する。
「領域位置データ」とは、管腔臓器を長軸方向に仮想的に区分けした複数の臓器領域の中からP−AIモデル31の推論結果に基づいて特定される一以上の各臓器領域を内視鏡8の位置情報としてそれぞれ識別し得るデータであり、管腔臓器内における内視鏡8の先端部の位置を特定するためのデータである。
「領域方向データ」とは、管腔臓器を長軸方向に仮想的に区分けした各臓器領域にそれぞれ仮想的に設定される三次元直交軸で示される複数方向(本実施形態では六方向)の中からP−AIモデル31の推論結果に基づいて特定される一以上の各方向を内視鏡8の方向情報としてそれぞれ識別し得るデータであり、管腔臓器内における内視鏡8の先端部の向きを特定するためのデータである。
本実施形態では、食道、胃及び十二指腸からなる管腔臓器が、長軸方向に、口側食道部E0、胃側食道部E1、穹窿部E2、胃体部E3、胃角部E4、前庭部E5、十二指腸球部E6、十二指腸下行脚E7、及び下十二指腸角E8の各臓器領域に仮想的に区分けされる。なお、図4には、口側食道部E0及び下十二指腸角E8は図示されていない。
領域位置データは、これら複数の臓器領域の中からP−AIモデル31の推論結果に基づいて特定される一以上の各臓器領域を内視鏡8の位置情報としてそれぞれ識別し得るデータであり、例えば、E0からE8の数値或いは文字列で示される。
領域方向データは、臓器領域ごとの当該三次元直交軸で示される六方向の中からP−AIモデル31の推論結果に基づいて特定される一以上の各方向を識別し得るデータであり、例えば、D1からD6の数値或いは文字列で示される。三次元直交軸は、胃体部E3のみでなく、他の各臓器領域についてもそれぞれ仮想的に設定され、管腔臓器は直線状に延びているわけではないため、臓器領域ごとに設定される各方法はそれぞれ異なる場合もある。
また、領域方向データは、方向指定なしを示すデータを含んでもよい。
本実施形態では、人体模型3の管腔臓器モデルが用いられることで、当該教師用内視鏡画像を容易に収集することができると共に、領域位置データ及び領域方向データの正解データについても容易に特定することができる。
「第一領域指定データ」とは、G1−AIモデル32に入力される内視鏡画像内の或る画像領域を指定する(指し示す)データである。本実施形態では、第一領域指定データで指定される画像領域は、その内視鏡画像を撮像している内視鏡8が進むべきルートに対応する画像領域とされる。但し、第一領域指定データで指定される画像領域は、このような例に限定されず、内視鏡8で何かをすべき場所(ポイント)に対応する画像領域とされてもよい。例えば、観察すべきポイント(撮像記録すべき部位)に対応する画像領域、何らかの治療を施すべき或いは組織採取を行うべきポイント(部位)に対応する画像領域が第一領域指定データで指定されてもよい。
以降、内視鏡8で観察すべき或いは撮像記録すべき部位を観察ポイントと表記する場合がある。
G1−AIモデル32に入力される内視鏡画像は、予め決められたサイズ及び形状に正規化されており、図6に示されるように、予め決められた格子線で複数の単位画像領域に仮想的に区分けされる。図6の例では、縦5つ及び横5つの25個の単位画像領域に区分けされている。
第一領域指定データでは、いずれか一つの単位画像領域、又は、上下、左右若しくは斜めに隣接するいずれか二つの単位画像領域が、画像領域として指定される。第一領域指定データは、例えば、「縦,横」の座標値で示される。例えば、縦の上から3番目で横の左から4番目の単位画像領域からなる画像領域を示す第一領域指定データは、「3,4」で示され、縦の上から2番目で横の左から3番目及び4番目の二つの単位画像領域からなる画像領域を示す第一領域指定データは、「2,3−2,4」で示される。
本実施形態では、各単位画像領域は、格子線で区切られた四角形状を有しているが、単位画像領域の形状や大きさは限定されず、円形状であっても、三角形状であってもよい。
教師用内視鏡画像の収集方法については、P−AIモデル31と同様であればよい。
つまり、各画像領域の確率値は、対象となる内視鏡画像の各画像領域が進むべきルート或いは何かをすべき場所である確度を示している。
これにより、領域指定データは、G1−AIモデル32の推論結果である画像領域ごとの確率値に基づいて、所定閾値以上の確率値を持つ一以上の画像領域を指定するデータ、或いは、最大確率値を持つ画像領域を指定するデータとして取得される。
「第二領域指定データ」は、内視鏡画像内の或る画像領域を指定する(指し示す)データである点において上述の第一領域指定データと同意である。しかしながら、AIモデルのタイプが異なること、第二領域指定データにはジョブ情報が対応付けられることなどから、ここでは説明を分かり易くするために、第一領域指定データと区別して第二領域指定データと表記するものとする。第二領域指定データは、BoundingBoxと呼ばれることもある。
但し、後述の説明で「領域指定データ」と表記した場合には、第一領域指定データ又は第二領域指定データのいずれか一方又は両方を意味するものとする。
ここで第二領域指定データの「ジョブ情報」とは、第二領域指定データで指定される画像領域に対応するタグ情報であって、内視鏡8が進むべきルートを示す或いは内視鏡8で何かをすべき場所(ポイント)を示す情報である。例えば、ジョブ情報は、観察ポイントを示してもよいし、何らかの治療を施すべき或いは組織採取を行うべきポイント(部位)を示してもよい。
教師用内視鏡画像の収集方法については、P−AIモデル31やG1−AIモデル32と同様であればよい。
図7の例では、5つの画像領域B1、B2、B3、B4及びB5が検出されており、各画像領域をそれぞれ指定する5つの第二領域指定データが表されている。画像領域B1は、大弯ひだの観察ポイントを示すジョブ情報でタグ付けされており、画像領域B2は、胃角部の観察ポイントを示すジョブ情報でタグ付けされており、画像領域B4は、幽門の観察ポイントを示すジョブ情報でタグ付けされている。画像領域B5は、潰瘍の組織採取を示すジョブ情報でタグ付けされており、画像領域B3は、次に進むべきルートを示すジョブ情報でタグ付けされている。
このように学習済みのG2−AIモデル33によれば、入力された内視鏡画像から、予めタグ付けされた複数の特定局所画像のいずれかと同一又は近似する画像領域が検出され、その検出された画像領域を指定する第二領域指定データと、それに対応する特定局所画像のタグ(ジョブ情報)とが取得される。
上述のような学習済みのP−AIモデル31を用いて、制御部10は、内視鏡8の位置及び向きを推定する。以下、制御部10により実行される内視鏡8の位置及び向きの推定に係る処理について詳述する。
画像処理モジュール21は、その映像信号から得られる内視鏡映像の画像フレーム(内視鏡画像)を取得する。画像処理モジュール21は、当該内視鏡映像を所定周期で間引いて内視鏡画像を逐次取得することもできる。
画像処理モジュール21は、取得された内視鏡画像をP−AIモデル31の入力用に正規化する。例えば、画像処理モジュール21は、取得された内視鏡画像に対してトリミングやサイズ調整を行うことができる。
本実施形態では、AI処理モジュール22は、その領域位置データ及び領域方向データに関してそれぞれ算出された確率値も合わせて取得しておく。
内視鏡8の位置情報及び向き情報は、文字で表示されてもよいし、管腔臓器の模式図に対して内視鏡8の位置及び向きを把握可能な表示を付すことで表示されてもよい。
上述のような学習済みのG1−AIモデル32及びG2−AIモデル33を用いて、制御部10は、内視鏡8のガイドを行う。以下、制御部10により実行される内視鏡8のガイドに係る処理について詳述する。
内視鏡8のガイドに係る処理は、上述の内視鏡8の位置及び向きの推定に係る処理と並列に実行される。なお、画像処理モジュール21による内視鏡画像の取得方法については上述のとおりである。
G1−AIモデル32は、入力された内視鏡画像における各画像領域についての確率値をそれぞれ算出する。例えば、G1−AIモデル32は、図6の格子線で区分けされた一つずつの単位画像領域に加え、左右に隣接する二つの単位画像領域の全組合せ、上下に隣接する二つの単位画像領域の全組合せ、及び斜めに隣接する二つの単位画像領域の全組合せのそれぞれの画像領域について、確率値を出力する。
G2−AIモデル33は、入力された内視鏡画像内における、ジョブ情報で予めタグ付けされている画像領域ごとの検出結果と、検出された画像領域を指定する第二領域指定データとをそれぞれ算出する。例えば、画像領域ごとの検出結果は、所定閾値以上の存在確率値を持つか否かに基づいて、各画像領域の検出の有無を示す。
そこで、本実施形態では、G1−AIモデル32及びG2−AIモデル33の両方を並列に実行して、いずれか一方の出力を用いることで、高い推論精度を維持する。例えば、G1−AIモデル32により算出された画像領域ごとの確率値の最大値が所定閾値よりも低い場合には、G2−AIモデル33の出力を用い、当該最大値が所定閾値以上となる場合には、G1−AIモデル32の出力を用いるようにする。
本実施形態では、AI処理モジュール22は、その第一領域指定データに関して算出された確率値も合わせて取得しておく。
G2−AIモデル33の出力を用いる場合には、AI処理モジュール22は、G2−AIモデル33により出力される、当該内視鏡画像内における、ジョブ情報で予めタグ付けされている画像領域ごとの検出結果と、検出された画像領域を指定する第二領域指定データとをそれぞれ取得する。更に、AI処理モジュール22は、検出された画像領域を指定する第二領域指定データに付与されているタグ(ジョブ情報)も取得する。
本実施形態において表示されるガイド情報には、内視鏡8が進むべきルート又は方向をガイドする情報、観察や、組織採取や治療等のように内視鏡8で何かをすべき場所(ポイント)をガイドする情報等がある。
この方向表示は、明確に特定画像領域を指し示すように表示されてもよいし、上方、下方、左方、右方といった程度の方向を指し示す表示であってもよい。
例えば、ジョブ情報が内視鏡8の進むべきルートを示している場合には、第二領域指定データで示される画像領域に向かう方向表示(例えば矢印表示等)が内視鏡画像に付加される。また、ジョブ情報が観察ポイントを示している場合には、第二領域指定データで示される画像領域上にマーカ表示が付されてもよい。
図8の例では、内視鏡8の進むべきルートに対応する画像領域に向かう矢印表示G1が内視鏡画像に重畳されている。加えて、観察ポイントに対応する画像領域にマーカG2が付されると共に、より把握し易いようにそのマーカG2の周囲に環状破線G3が表示されている。
但し、本実施形態におけるガイド情報の表示は、図8の例に限定されない。
例えば、出力処理モジュール24は、当該取得された内視鏡画像内における当該取得された領域指定データで示される画像領域が、その内視鏡画像における所定位置又は所定の大きさとなったことを報知する報知表示を出力する。これは、取得された内視鏡画像に関して、観察ポイントに相当する画像領域を指定する領域指定データが取得された時点、即ち、当該内視鏡画像に観察ポイントが現れた時点で、報知表示を出力することも含む。
この報知表示は、観察ポイントに相当する画像領域が内視鏡画像内に現れた、或い内視鏡画像内で所定位置又は所定の大きさになったことを見る者が把握できれば、どのような表示内容及び表示形態であってもよい。
図9の例では、出力処理モジュール24は、AI処理モジュール22により取得された領域指定データにより指定される画像領域B10が観察ポイントに相当する場合に、次のようにガイド表示を行う。即ち、出力処理モジュール24は、照準表示F1、F2及びF3を内視鏡映像に重畳表示し、所定位置に示される照準表示F2の枠内で当該画像領域B10が所定の大きさになったタイミングでその内視鏡画像を静止画像G4とし、その静止画像G4を回転及び縮小させながらフレームアウトする演出を行う。
この表示におけるフレームアウト演出は、領域指定データで示される画像領域が内視鏡画像における所定位置又は所定の大きさとなったことを報知する報知表示に相当すると捉えることもできるし、当該表示における照準表示F1、F2及びF3の表示が、当該報知表示に相当すると捉えることもできる。後者の場合、出力処理モジュール24は、観察ポイントに対応する領域指定データがAI処理モジュール22により取得された時点で、照準F1、F2及びF3を表示させてもよいし、その領域指定データにより指定される画像領域B10が所定位置又は所定大きさとなった場合に、照準F1、F2及びF3を表示させてもよい。
但し、当該報知表示の内容及び表示形態はこのような例に限定されない。
そこで、出力処理モジュール24は、画像処理モジュール21により逐次取得される内視鏡画像に基づいて、内視鏡8が管腔臓器内で所定時間停滞していることを検出することを契機に、当該ガイド情報を付加した表示を出力するようにしてもよい。
この場合には、例えば、内視鏡画像の内容が所定時間ほとんど変わらないことを検出することで、内視鏡8が管腔臓器内で所定時間停滞していることを検出することができる。内視鏡8が或る程度の時間停滞しているということは、トレーニーが内視鏡手技に戸惑っている可能性がある。
上述のように内視鏡8が管腔臓器内で所定時間停滞していることを検出することを契機に、当該ガイド情報を付加した表示を出力することで、トレーニーが戸惑っている場合にのみ当該ガイド情報を表示することができるため、ガイド情報が邪魔になりトレーニーに不快感を与えることを防ぐことができる。
そこで、制御部10(格納処理モジュール23)は、内視鏡8で撮像記録されたと推定される臓器部位の履歴情報である撮像記録情報を保持するようにしてもよい。この場合、出力処理モジュール24は、撮像記録すべき臓器部位群の情報を用いて、撮像記録情報で示される臓器部位の履歴情報に基づいて、撮像記録すべき臓器部位群の中から撮像記録がなされていない臓器部位を特定することができる。更に、出力処理モジュール24は、撮像記録がなされていない臓器部位を特定した場合、その旨或いは特定された臓器部位を示す情報を入出力パネル5の表示装置に表示することもできる。
このようにすれば、トレーニーに対して、撮像記録漏れを指摘することができる。
内視鏡8の操作部に設けられている静止画像の記録を指示するスイッチの操作を示す信号が入出力I/Fユニット13で受信できる場合には、その信号が受信されたタイミングに対応する内視鏡画像に関して取得された領域位置データ、若しくは、第一領域指定データ、又は第二領域指定データ及びジョブ情報により、当該臓器部位の特定が可能である。
また、G2−AIモデル33の出力により観察ポイント(撮像記録すべき臓器部位)を示すジョブ情報でタグ付けされた画像領域が検出されかつその画像領域を指定する第二領域指定データが取得された場合には、その第二領域指定データで示される画像領域が内視鏡画像における所定位置又は所定大きさとなったことを検出することで、その観察ポイントに対応する臓器部位が撮像記録されたと推定することができる。
更に言えば、各観察ポイントに相当する特定臓器部位が所定位置及び所定大きさで写る内視鏡画像を教師用内視鏡画像とし、その教師用内視鏡画像に対して特定臓器部位ごとの撮像記録を示す撮像記録データでタグ付けした教師データで機械学習されているAIモデルを用いることで、内視鏡8で撮像記録されたと推定される臓器部位を特定することもできる。この場合、内視鏡画像をそのAIモデルに与えることで撮像記録データが取得された場合に、その撮像記録データに基づいて、内視鏡8で撮像記録されたと推定される臓器部位の履歴情報である撮像記録情報を保持することができる。
図10は、制御部10の動作例を示すフローチャートである。図10で示される各工程の詳しい動作内容については上述したとおりであるため、ここでは、制御部10の動作の流れを中心に説明するものとする。
制御部10は、入出力I/Fユニット13を介して接続されている内視鏡8の画像処理装置から、内視鏡の映像信号を受信しており、この映像信号から得られる内視鏡映像を入出力パネル5の表示装置に表示している。
制御部10は、当該内視鏡映像の画像フレーム(内視鏡画像)を所定周期で間引いて逐次取得し(S101)、内視鏡画像を取得する度に、図10に示される動作フローを実行する。工程(S101)では、制御部10は、その内視鏡画像を各種AIモデルの入力用に正規化することもできる。
これにより、P−AIモデル31、G1−AIモデル32及びG2−AIモデル33は、略並列に実行される。
制御部10は、内視鏡映像に加えて、(S111)で取得された領域位置データ及び領域方向データで示される内視鏡8の位置情報及び向き情報を入出力パネル5の表示装置に表示する(S112)。
制御部10は、G2−AIモデル33の出力に基づいて、ジョブ情報で予めタグ付けされている画像領域ごとの検出結果を判定し(S123)、更に、G1−AIモデル32の出力に基づいて、第一領域指定データの取得の可否を判定する(S124)及び(S131)。第一領域指定データの取得の可否は、各画像領域についての確率値の最大値が所定閾値以上か否かで判定することができる。当該最大値が所定閾値以上であれば、第一領域指定データの取得可能と判定し、そうでなければ、第一領域指定データの取得不可と判定することができる。
選択する必要があると判定された場合(S125;YES)、制御部10は、G1−AIモデル32の出力又はG2−AIモデル33の出力のいずれか一方を選択する(S126)。これにより、第一領域指定データ又は第二領域指定データのいずれか一方が選択される。例えば、第一領域指定データで指定される画像領域の確率値が所定閾値以上であれば、G1−AIモデル32の出力である第一領域指定データが取得され、そうでなければ、G2−AIモデル33の出力である第二領域指定データ及びそれに対応するジョブ情報が取得されてもよい。
また、検出された画像領域が有り、かつ第一領域指定データが取得不可である場合には(S123;YES)(S124;NO)、制御部10は、G2−AIモデル33の出力である第二領域指定データ及びそれに対応するジョブ情報を取得する(S127)。
また、検出された画像領域がなく、かつ一領域指定データが取得可能である場合には(S123;NO)(S131;YES)、制御部10は、G1−AIモデル32の出力である第一領域指定データを取得する(S132)。なお、検出された画像領域がなく、かつ第一領域指定データが取得不可である場合には(S123;NO)(S124;NO)、制御部10は、ガイド情報を表示することなく処理を終える。
上述した本システム1の内容は、あくまで一例であり、部分的に適宜変更可能である。
例えば、上述した本システム1では、内視鏡8が入出力I/Fユニット13に接続されていたが、内視鏡8は接続されていなくてもよい。例えば、内視鏡8で撮像された内視鏡映像の動画データが可搬型記憶媒体又は外部の装置(PC等)に保存された後、その可搬型記録媒体又は通信を介して制御部10のメモリ12に格納され、その動画データから得られる内視鏡画像が上述のように処理されてもよい。
例えば、制御部10は、人体模型3の体内造形部の所定部位(例えば食道入口部、胃食道接合部、及び十二指腸下降脚部)に設けられた物体検出センサの検出情報を更に用いるようにしてもよい。これによれば、当該所定部位を内視鏡8の先端部が通過したことは、正確な情報として捉えることができる。即ち、制御部10は、管腔臓器モデルの複数の所定部位に設けられた各センサからの内視鏡の存在検出情報を取得する検出情報取得手段をソフトウェア要素として備えていてもよい。
この場合、人体模型3の物体検出センサによる内視鏡8の検出情報を用いることで、P−AIモデル31の推論結果として得られる領域位置データが正しいか否かが確認可能である。そのため、AI処理モジュール22は、その検出情報に基づいてP−AIモデル31の出力から得られる領域位置データの正誤を判定し、補正することもできる。例えば、AI処理モジュール22は、検出情報と合致する位置を示し最大の確率値を持つ領域位置データを取得するようにしてもよい。
また、物体検出センサが設けられた部位間の臓器領域ごとにAIモデルを設け、制御部10は、物体検出センサの検出情報を用いて利用するAIモデルを切り替えることもできる。例えば、食道入口部から胃食道接合部までの間のAIモデル、及び胃食道接合部から十二指腸下降脚部までの間のAIモデルが設けられる。これは、P−AIモデル31のみならず、G1−AIモデル32及びG2−AIモデル33についても臓器領域ごとのAIモデルに分割されてもよい。
また、P−AIモデル31が、内視鏡画像と物体検出センサの検出情報を入力とし、臓器領域ごとの確率値及び方向ごとの確率値を出力するように形成することもできる。
このようにより正確な物体検出センサの検出情報を更に用いることで、各種AIモデルの推論精度を向上させることができる。
例えば、順次処理対象とされる時系列に隣接する3つの内視鏡画像に関するAIモデルの各出力を比較して、中間の内視鏡画像に関する出力がその前後の内視鏡画像に関する出力と著しく異なる場合に、当該中間の内視鏡画像に関する出力は誤りと判定することができる。時系列で隣接する内視鏡画像の時間間隔は1秒未満となるため、中間の内視鏡画像に関してAIモデルが或る程度の信頼度を持つ出力をしているにも関わらず、その出力が前後の内視鏡画像に関する出力と著しく異なることは、誤判定の可能性が高い。仮に高速に内視鏡8を移動させた場合、内視鏡画像はブレにより鮮明な画像とはならず、そのような内視鏡画像をAIモデルに入力した場合には推論不可能となるはずである。
このように各AIモデルは或る程度の信頼度で出力しているにも関わらず、誤りと判定された場合、制御部10は、その出力を利用しないようにすればよい。
このようなAIモデルの再学習は、本システム1がトレーニーにより利用されない時間帯に自動で実行されてもよい。
本システム1は、人体模型3の臓器モデルを備えており、その臓器モデルを用いた内視鏡手技の自主学習及び自主訓練を可能としていたが、本発明の実施形態としては、内視鏡手技の学習又は訓練を目的とするものに限らず、内視鏡8そのものであってもよい。
図11は、他の実施形態に係る内視鏡システム80(内視鏡8)の制御構成を概念的に示す図である。
内視鏡システム80は、先端部及び湾曲部を含む挿入部、先端部及び湾曲部に対して各種操作を行うための操作部、画像処理装置82、表示装置83等から構成されている。先端部には内視鏡撮像部81が設けられており、内視鏡撮像部81及び表示装置83は、ケーブル等により画像処理装置82に接続されている。
画像処理装置82は、プロセッサ85、メモリ86、入出力インタフェース(I/F)ユニット87等を有しており、メモリ86に格納されている制御プログラム及びAIモデルがプロセッサ85で実行されることで、上述の制御部10と同様の処理が実現されればよい。
画像処理装置82のソフトウェア構成は、図3に示される制御部10のソフトウェア構成と同様であればよい。画像処理装置82は、内視鏡画像処理装置或いは内視鏡画像処理システムと表記することもできる。
また、P−AIモデル31、G1−AIモデル32及びG2−AIモデル33は、上述の本システム1と同様に、人体模型3の管腔臓器モデルを撮像した教師用内視鏡画像を用いて機械学習させた上で、生体の管腔臓器を撮像した教師用内視鏡画像を用いて更に機械学習させるようにしてもよい。更に言えば、様々な形状、大きさ及び態様の管腔臓器を模した複数タイプの管腔臓器モデルを準備し、それら複数タイプの管腔臓器モデルを切り替えながら撮像した教師用内視鏡画像を用いて機械学習させることも可能である。
このようにすれば、P−AIモデル31などの各種AIモデルの推定精度を向上することができる。
また、内視鏡システム80は、表示装置83を備える必要もない。P−AIモデル31から取得される領域位置データ及び領域方向データは、対象の内視鏡画像と関連付けられて、メモリ86に格納されればよい。同様に、G1−AIモデル32及びG2−AIモデル33から取得される領域指定データについても、対象の内視鏡画像と関連付けられて、メモリ86に格納されればよい。
また、生成されたガイド情報は、内視鏡における先端部及び湾曲部を含む挿入部、又はカプセル内視鏡自体を自動で動作させるための情報として利用されてもよい。
(付記1)管腔臓器内の内視鏡により撮像された内視鏡画像を取得する画像取得手段と、
学習済みモデルに対して前記取得された内視鏡画像を与えることで、該内視鏡画像に対応する領域指定データを取得するモデル処理手段と、
前記取得された領域指定データに基づいて、前記取得された内視鏡画像内の該領域指定データで指定される画像領域に関する内視鏡のガイド情報を該内視鏡画像に付加した表示を出力する出力処理手段と、
を備え、
前記学習済みモデルは、各教師用内視鏡画像に対して領域指定データの正解をそれぞれ関連付けた複数の教師データを用いて機械学習されている、
内視鏡画像処理システム。
当該内視鏡画像処理システムは、一つの装置であってもよいし、複数の装置であってもよい。
また、学習済みモデルは、当該内視鏡画像処理システム内に設けられていてもよいし、外部に設けられていてもよい。
また、当該内視鏡画像処理システムでの処理対象となる内視鏡画像を撮像する内視鏡は、上部消化管内視鏡、大腸内視鏡、気管支鏡、胸腔鏡、血管内視鏡、カプセル内視鏡などであり、限定されない。
内視鏡画像に写る管腔臓器は、人体模型における臓器を模した臓器モデルであってもよいし、生体の実管腔臓器であってもよい。
(付記1)管腔臓器内の内視鏡により撮像された内視鏡画像を取得する画像取得手段と、
第一の学習済みモデルに対して前記取得された内視鏡画像を与えることで、該内視鏡画像を撮像した内視鏡の位置及び方向を示す位置情報及び向き情報を取得する第一モデル処理手段と、
前記取得された位置情報及び向き情報と前記取得された内視鏡画像とを関連付けて格納する格納手段と、
を備え、
前記第一の学習済みモデルは、教師用内視鏡画像を撮像した内視鏡の位置及び向きの正解を該教師用内視鏡画像に対して関連付けた複数の教師データに基づいて、機械学習されている、
内視鏡画像処理システム。
(付記2)前記複数の教師データにおける内視鏡の位置及び向きの正解は、管腔臓器を長軸方向に仮想的に区分けした複数領域の各々を位置情報として識別し得る領域位置データの正解、及び各領域にそれぞれ仮想的に設定される三次元直交軸で示される各方向を識別し得る領域方向データの正解であり、
前記第一モデル処理手段は、前記取得された内視鏡画像に対応する領域位置データ及び領域方向データを前記位置情報及び前記向き情報として取得する、
付記1に記載の内視鏡画像処理システム。
(付記3)前記画像取得手段により取得される内視鏡画像は、生体の管腔臓器内又は生体の管腔臓器を模した管腔臓器モデル内の内視鏡により撮像された画像であり、
前記複数の教師データは、前記管腔臓器モデル内で内視鏡により撮像された複数の教師用内視鏡画像を含む、
付記1又は2に記載の内視鏡画像処理システム。
(付記4)生体の管腔臓器を模した管腔臓器モデルの複数の所定部位に設けられた各センサからの内視鏡の存在検出情報を取得する検出情報取得手段、
を更に備え、
前記画像取得手段により取得される内視鏡画像は、前記管腔臓器モデル内の内視鏡により撮像された画像であり、
前記複数の教師データの教師用内視鏡画像は、前記管腔臓器モデル内で内視鏡により撮像された画像であり、
前記第一モデル処理手段は、前記取得された存在検出情報を更に用いて、前記位置情報及び前記向き情報を取得する、
付記1又は2に記載の内視鏡画像処理システム。
(付記5)第二の学習済みモデルに対して前記取得された内視鏡画像を与えることで、該内視鏡画像に対応する領域指定データを取得する第二モデル処理手段と、
前記取得された領域指定データに基づいて、前記取得された内視鏡画像内の該領域指定データで指定される画像領域に関する内視鏡のガイド情報を生成する出力処理手段と、
を更に備え、
前記第二の学習済みモデルは、各教師用内視鏡画像に対して領域指定データの正解をそれぞれ関連付けた複数の教師データを用いて機械学習されている、
付記1から4のいずれか一つに記載の内視鏡画像処理システム。
(付記6)前記第二の学習済みモデルは、各教師用内視鏡画像に対して内視鏡のジョブ情報でタグ付けされた特定画像領域を指定する第二領域指定データの正解をそれぞれ関連付けた複数の教師データを用いて機械学習されており、
前記第二モデル処理手段は、前記領域指定データと共に、前記領域指定データに対応するジョブ情報を更に取得し、
前記出力処理手段は、前記ジョブ情報を更に用いて、該ジョブ情報に対応する表示形態で、前記取得された領域指定データで指定される画像領域を示す表示を前記ガイド情報として前記取得された内視鏡画像に付加する、
付記5に記載の内視鏡画像処理システム。
(付記7)前記出力処理手段は、前記取得された内視鏡画像内における前記取得された領域指定データで示される画像領域に向かう方向表示を該内視鏡画像に重畳表示させる、
付記5又は6に記載の内視鏡画像処理システム。
(付記8)前記出力処理手段は、前記取得された内視鏡画像内における前記取得された領域指定データで示される画像領域が、該内視鏡画像における所定位置又は所定大きさとなったことを報知する報知表示を出力する、
付記5から7のいずれか一つに記載の内視鏡画像処理システム。
(付記9)前記格納手段は、前記取得された領域指定データに基づいて、内視鏡で撮像記録されたと推定される臓器部位の履歴情報である撮像記録情報を保持し、
前記出力処理手段は、前記撮像記録情報で示される臓器部位の履歴情報に基づいて、撮像記録すべき臓器部位群の中から撮像記録がなされていない臓器部位を特定する、
付記5から8のいずれか一つに記載の内視鏡画像処理システム。
(付記10)前記出力処理手段は、前記画像取得手段により逐次取得される内視鏡画像に基づいて、内視鏡が管腔臓器内で所定時間停滞していることを検出することを契機に、前記ガイド情報を付加した表示を出力する、
付記5から9のいずれか一つに記載の内視鏡画像処理システム。
(付記11)第二の学習済みモデルに対して前記取得された内視鏡画像を与えることで、該内視鏡画像に対応する第一領域指定データを取得する第二モデル処理手段と、
第三の学習済みモデルに対して前記取得された内視鏡画像を与えることで、該内視鏡画像に対応する第二領域指定データ及び該第二領域指定データに対応するジョブ情報を取得する第三モデル処理手段と、
前記第二の学習済みモデル及び前記第三の学習済みモデルの各出力に基づいて、前記取得された第一領域指定データか、前記取得された第二領域指定データ及びジョブ情報かのいずれか一方を選択し、前記取得された内視鏡画像内の該選択された該第一領域指定データ又は該第二領域指定データで指定される画像領域に関する内視鏡のガイド情報を生成する出力処理手段と、
を更に備え、
前記第二の学習済みモデルは、各教師用内視鏡画像に対して第一領域指定データの正解をそれぞれ関連付けた複数の教師データを用いて機械学習されており、
前記第三の学習済みモデルでは、各教師用内視鏡画像に対して内視鏡のジョブ情報でタグ付けされた特定画像領域を指定する第二領域指定データの正解をそれぞれ関連付けた複数の教師データを用いて機械学習されている、
付記1から4のいずれか一つに記載の内視鏡画像処理システム。
Claims (11)
- 管腔臓器内の内視鏡により撮像された内視鏡画像を取得する画像取得手段と、
第一の学習済みモデルに対して前記取得された内視鏡画像を与えることで、該内視鏡画像を撮像した内視鏡の位置及び方向を示す位置情報及び向き情報を取得する第一モデル処理手段と、
前記取得された位置情報及び向き情報と前記取得された内視鏡画像とを関連付けて格納する格納手段と、
を備え、
前記第一の学習済みモデルは、教師用内視鏡画像を撮像した内視鏡の位置及び向きの正解を該教師用内視鏡画像に対して関連付けた複数の教師データに基づいて、機械学習されている、
内視鏡画像処理システム。 - 前記複数の教師データにおける内視鏡の位置及び向きの正解は、管腔臓器を長軸方向に仮想的に区分けした複数領域の各々を位置情報として識別し得る領域位置データの正解、及び各領域にそれぞれ仮想的に設定される三次元直交軸で示される各方向を識別し得る領域方向データの正解であり、
前記第一モデル処理手段は、前記取得された内視鏡画像に対応する領域位置データ及び領域方向データを前記位置情報及び前記向き情報として取得する、
請求項1に記載の内視鏡画像処理システム。 - 前記画像取得手段により取得される内視鏡画像は、生体の管腔臓器内又は生体の管腔臓器を模した管腔臓器モデル内の内視鏡により撮像された画像であり、
前記複数の教師データは、前記管腔臓器モデル内で内視鏡により撮像された複数の教師用内視鏡画像を含む、
請求項1又は2に記載の内視鏡画像処理システム。 - 生体の管腔臓器を模した管腔臓器モデルの複数の所定部位に設けられた各センサからの内視鏡の存在検出情報を取得する検出情報取得手段、
を更に備え、
前記画像取得手段により取得される内視鏡画像は、前記管腔臓器モデル内の内視鏡により撮像された画像であり、
前記複数の教師データの教師用内視鏡画像は、前記管腔臓器モデル内で内視鏡により撮像された画像であり、
前記第一モデル処理手段は、前記取得された存在検出情報を更に用いて、前記位置情報及び前記向き情報を取得する、
請求項1又は2に記載の内視鏡画像処理システム。 - 第二の学習済みモデルに対して前記取得された内視鏡画像を与えることで、該内視鏡画像に対応する領域指定データを取得する第二モデル処理手段と、
前記取得された領域指定データに基づいて、前記取得された内視鏡画像内の該領域指定データで指定される画像領域に関する内視鏡のガイド情報を生成する出力処理手段と、
を更に備え、
前記第二の学習済みモデルは、各教師用内視鏡画像に対して領域指定データの正解をそれぞれ関連付けた複数の教師データを用いて機械学習されている、
請求項1から4のいずれか一項に記載の内視鏡画像処理システム。 - 前記第二の学習済みモデルは、各教師用内視鏡画像に対して内視鏡のジョブ情報でタグ付けされた特定画像領域を指定する第二領域指定データの正解をそれぞれ関連付けた複数の教師データを用いて機械学習されており、
前記第二モデル処理手段は、前記領域指定データと共に、前記領域指定データに対応するジョブ情報を更に取得し、
前記出力処理手段は、前記ジョブ情報を更に用いて、該ジョブ情報に対応する表示形態で、前記取得された領域指定データで指定される画像領域を示す表示を前記ガイド情報として前記取得された内視鏡画像に付加する、
請求項5に記載の内視鏡画像処理システム。 - 前記出力処理手段は、前記取得された内視鏡画像内における前記取得された領域指定データで示される画像領域に向かう方向表示を該内視鏡画像に重畳表示させる、
請求項5又は6に記載の内視鏡画像処理システム。 - 前記出力処理手段は、前記取得された内視鏡画像内における前記取得された領域指定データで示される画像領域が、該内視鏡画像における所定位置又は所定大きさとなったことを報知する報知表示を出力する、
請求項5から7のいずれか一項に記載の内視鏡画像処理システム。 - 前記格納手段は、前記取得された領域指定データに基づいて、内視鏡で撮像記録されたと推定される臓器部位の履歴情報である撮像記録情報を保持し、
前記出力処理手段は、前記撮像記録情報で示される臓器部位の履歴情報に基づいて、撮像記録すべき臓器部位群の中から撮像記録がなされていない臓器部位を特定する、
請求項5から8のいずれか一項に記載の内視鏡画像処理システム。 - 前記出力処理手段は、前記画像取得手段により逐次取得される内視鏡画像に基づいて、内視鏡が管腔臓器内で所定時間停滞していることを検出することを契機に、前記ガイド情報を付加した表示を出力する、
請求項5から9のいずれか一項に記載の内視鏡画像処理システム。 - 第二の学習済みモデルに対して前記取得された内視鏡画像を与えることで、該内視鏡画像に対応する第一領域指定データを取得する第二モデル処理手段と、
第三の学習済みモデルに対して前記取得された内視鏡画像を与えることで、該内視鏡画像に対応する第二領域指定データ及び該第二領域指定データに対応するジョブ情報を取得する第三モデル処理手段と、
前記第二の学習済みモデル及び前記第三の学習済みモデルの各出力に基づいて、前記取得された第一領域指定データか、前記取得された第二領域指定データ及びジョブ情報かのいずれか一方を選択し、前記取得された内視鏡画像内の該選択された該第一領域指定データ又は該第二領域指定データで指定される画像領域に関する内視鏡のガイド情報を生成する出力処理手段と、
を更に備え、
前記第二の学習済みモデルは、各教師用内視鏡画像に対して第一領域指定データの正解をそれぞれ関連付けた複数の教師データを用いて機械学習されており、
前記第三の学習済みモデルでは、各教師用内視鏡画像に対して内視鏡のジョブ情報でタグ付けされた特定画像領域を指定する第二領域指定データの正解をそれぞれ関連付けた複数の教師データを用いて機械学習されている、
請求項1から4のいずれか一項に記載の内視鏡画像処理システム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019219223A JP2021049314A (ja) | 2019-12-04 | 2019-12-04 | 内視鏡画像処理システム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019219223A JP2021049314A (ja) | 2019-12-04 | 2019-12-04 | 内視鏡画像処理システム |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019172325A Division JP6632020B1 (ja) | 2019-09-20 | 2019-09-20 | 内視鏡画像処理システム |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2021049314A true JP2021049314A (ja) | 2021-04-01 |
Family
ID=75156592
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019219223A Pending JP2021049314A (ja) | 2019-12-04 | 2019-12-04 | 内視鏡画像処理システム |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2021049314A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024018713A1 (ja) * | 2022-07-19 | 2024-01-25 | 富士フイルム株式会社 | 画像処理装置、表示装置、内視鏡装置、画像処理方法、画像処理プログラム、学習済みモデル、学習済みモデル生成方法、及び、学習済みモデル生成プログラム |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007282857A (ja) * | 2006-04-17 | 2007-11-01 | Olympus Medical Systems Corp | 内視鏡挿入方向検出装置及び内視鏡挿入方向検出方法 |
JP2017055954A (ja) * | 2015-09-16 | 2017-03-23 | 富士フイルム株式会社 | 内視鏡位置特定装置、方法およびプログラム |
JP2017176773A (ja) * | 2016-03-31 | 2017-10-05 | 国立大学法人浜松医科大学 | 手術支援システム、手術支援方法、手術支援プログラム |
JP2019082853A (ja) * | 2017-10-30 | 2019-05-30 | 日立造船株式会社 | 情報処理装置、情報処理方法、および情報処理プログラム |
JP2019097661A (ja) * | 2017-11-29 | 2019-06-24 | 水野 裕子 | 内視鏡ナビゲーション装置 |
-
2019
- 2019-12-04 JP JP2019219223A patent/JP2021049314A/ja active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007282857A (ja) * | 2006-04-17 | 2007-11-01 | Olympus Medical Systems Corp | 内視鏡挿入方向検出装置及び内視鏡挿入方向検出方法 |
JP2017055954A (ja) * | 2015-09-16 | 2017-03-23 | 富士フイルム株式会社 | 内視鏡位置特定装置、方法およびプログラム |
JP2017176773A (ja) * | 2016-03-31 | 2017-10-05 | 国立大学法人浜松医科大学 | 手術支援システム、手術支援方法、手術支援プログラム |
JP2019082853A (ja) * | 2017-10-30 | 2019-05-30 | 日立造船株式会社 | 情報処理装置、情報処理方法、および情報処理プログラム |
JP2019097661A (ja) * | 2017-11-29 | 2019-06-24 | 水野 裕子 | 内視鏡ナビゲーション装置 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024018713A1 (ja) * | 2022-07-19 | 2024-01-25 | 富士フイルム株式会社 | 画像処理装置、表示装置、内視鏡装置、画像処理方法、画像処理プログラム、学習済みモデル、学習済みモデル生成方法、及び、学習済みモデル生成プログラム |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021054419A1 (ja) | 内視鏡画像処理システム及び内視鏡画像処理方法 | |
US10360814B2 (en) | Motion learning support apparatus | |
AU2017202475B2 (en) | Endoscope simulator | |
US9053641B2 (en) | Real-time X-ray vision for healthcare simulation | |
SI20559A (sl) | Sistem in postopek za izvajanje simuliranega medicinskega postopka | |
JP7339679B2 (ja) | 医療シミュレータ | |
JP6521511B2 (ja) | 手術トレーニング装置 | |
JP4681242B2 (ja) | カテーテル検査シミュレーションシステム | |
WO2021176664A1 (ja) | 検査支援システム、検査支援方法、及び、プログラム | |
JP2016539767A (ja) | 内視鏡検査用装置 | |
JP6014450B2 (ja) | 動き学習支援装置 | |
JP2021049314A (ja) | 内視鏡画像処理システム | |
JP2021048928A (ja) | 内視鏡画像処理システム | |
JP7457415B2 (ja) | コンピュータプログラム、学習モデルの生成方法、及び支援装置 | |
Manfredi | Endorobotics: Design, R&D and future trends | |
WO2017126313A1 (ja) | 生体質感臓器を用いる手術トレーニング及びシミュレーションシステム | |
JP7378837B2 (ja) | 医療シミュレータ及び医療シミュレータを用いた手技評価方法 | |
Wytyczak-Partyka et al. | A novel interaction method for laparoscopic surgery training | |
López et al. | Work-in-Progress—Towards a Virtual Training Environment for Lower Gastrointestinal Endoscopy | |
Vajpeyi et al. | A Colonoscopy Training Environment with Real-Time Pressure Monitoring | |
JP7577233B1 (ja) | 処理システム、内視鏡システム及び画像処理システムの作動方法 | |
Fujii et al. | Development of Operation Recording System of Gastrointestinal Endoscopy Procedures | |
CN118471039A (zh) | 一种基于虚拟现实的消化道疾病教学培训方法及培训系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191204 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20220131 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220920 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230519 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230613 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20231205 |