[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2021043439A - トナーバインダー - Google Patents

トナーバインダー Download PDF

Info

Publication number
JP2021043439A
JP2021043439A JP2020118550A JP2020118550A JP2021043439A JP 2021043439 A JP2021043439 A JP 2021043439A JP 2020118550 A JP2020118550 A JP 2020118550A JP 2020118550 A JP2020118550 A JP 2020118550A JP 2021043439 A JP2021043439 A JP 2021043439A
Authority
JP
Japan
Prior art keywords
polyester resin
toner binder
temperature
parts
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020118550A
Other languages
English (en)
Other versions
JP7463218B2 (ja
Inventor
将 本夛
Susumu Honda
将 本夛
宙 千葉
Sora Chiba
宙 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Chemical Industries Ltd
Original Assignee
Sanyo Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Chemical Industries Ltd filed Critical Sanyo Chemical Industries Ltd
Publication of JP2021043439A publication Critical patent/JP2021043439A/ja
Application granted granted Critical
Publication of JP7463218B2 publication Critical patent/JP7463218B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Developing Agents For Electrophotography (AREA)

Abstract

【課題】低温定着性(特に定着画像搬送時の定着強度)、帯電維持率(特に高温高湿下における帯電維持率)、分散性、臭気に優れたトナーバインダーを提供することを目的とする。【解決手段】ポリエステル樹脂(A)と結晶性ビニル樹脂(B)を含有するトナーバインダーであって、前記ポリエステル樹脂(A)はポリエステル樹脂(A1)がエポキシ化合物(E)及び/又はオキサゾリン化合物(O)により架橋された樹脂であり、示差走査熱量計(DSC)により20℃から150℃まで10℃/分で昇温した後、150℃から0℃まで10℃/分で冷却し、0℃から150℃まで10℃/分で昇温する条件で測定されたトナーバインダーの第2回目の昇温過程における吸熱量が5〜35J/gであるトナーバインダー【選択図】なし

Description

本発明は、トナーバインダーに関する。
近年、電子写真システムの発展に伴い、複写機やレーザープリンター等の電子写真装置の需要は急速に増加しており、それらの性能に対するトナーへの要求も高度化している。また、トナー中の主成分であるトナーバインダーへの要求も同様に高度化している。
従来、フルカラー電子写真用においては、電子写真感光体等の潜像坦持体に色画像情報に基づく潜像を形成し、該潜像を対応する色のトナーにより現像し、次いで該トナー像を転写材上に転写するといった画像形成工程を繰り返した後、転写材上のトナー像を加熱定着して多色画像を得る方法や装置が知られている。これらのプロセスを問題なく通過するためには、トナーはまず安定した帯電量を保持することが必要であり、次に紙への定着性が良好であることが必要とされる。
また、電子写真装置の小型化、高速化、高画質化の促進とともに、定着工程における消費エネルギーを低減するという省エネルギーの観点から、トナーの低温定着性の向上が強く求められている。
最近では、表面凹凸の大きい再生紙や、表面が平滑なコート紙など多くの種類の紙が転写材として用いられる。これらの転写材の表面性状に対応するために、ソフトローラーやベルトローラーなどのニップ幅の広い定着器が好ましく用いられている。しかし、ニップ幅を広くすると、トナーと定着ローラーとの接触面積が増え、定着ローラーに溶融トナーが付着する、いわゆる高温オフセット現象が発生しやすくなるため、耐ホットオフセット性が要求されるのが前提である。
また、熱定着時に定着媒体上で溶融したトナーが、再び結晶化するまでには時間を要するため、画像表面の硬度が速やかに回復できない事がある。このため、定着後の排紙工程における排紙ローラー等によって、画像表面にローラー跡による光沢変化や傷が発生するという問題があり、未だトナーにおける高画質化、高速化、省エネルギー化の要求には十分に答えられていない。
トナーバインダーは、上述のようなトナー特性に大きな影響を与えるものであり、ポリスチレン樹脂、スチレン−アクリル樹脂、ポリエステル樹脂、エポキシ樹脂、ポリウレタン樹脂、ポリアミド樹脂等が知られているが、最近では、帯電維持率と定着性のバランスを取りやすいことから、ポリエステル樹脂が特に注目されている。
帯電維持率と定着性のバランスをさらに向上させる方法として、長鎖アルキルアクリレートを重合させて溶融粘度を下げ、かつ不飽和カルボン酸を構成成分とするポリエステル樹脂を組み合わせたトナーバインダーが提案されている(特許文献1及び2)。しかしこの方法では、不飽和カルボン酸を架橋させる際に発生する有機溶剤が残存することにより、トナーバインダーに臭いが付着してしまい印刷時に臭気が発生したり、高温高湿下における帯電維持率が不十分である。
また、このようなスチレン−アクリル樹脂とポリエステル樹脂を併用して用いた場合、トナーバインダーは海島構造を有するが、その分散性が悪いと定着性や耐久性などのトナー性能が悪化してしまう。
以上、述べたように、低温定着性(特に定着画像搬送時の定着強度)、帯電維持率(特に高温高湿下における帯電維持率)、分散性及び臭気のすべてを満足する優れたトナーバインダーは、これまでなかった。
国際公開第2018/110593号 国際公開第2019/073731号
本発明は、低温定着性(特に定着画像搬送時の定着強度)、帯電維持率(特に高温高湿下における帯電維持率)、分散性、臭気に優れたトナーに用いられるトナーバインダーを提供することを目的とする。
本発明者らは、これらの問題点を解決するべく鋭意検討した結果、本発明に到達した。
すなわち本発明は、ポリエステル樹脂(A)と結晶性ビニル樹脂(B)を含有するトナーバインダーであって、前記ポリエステル樹脂(A)はポリエステル樹脂(A1)がエポキシ化合物(E)及び/又はオキサゾリン化合物(O)により架橋された樹脂であり、示差走査熱量計(DSC)により20℃から150℃まで10℃/分で昇温した後、150℃から0℃まで10℃/分で冷却し、0℃から150℃まで10℃/分で昇温する条件で測定されたトナーバインダーの第2回目の昇温過程における吸熱量が5〜35J/gであるトナーバインダーである。
本発明により、低温定着性(特に定着画像搬送時の定着強度)、帯電維持率(特に高温高湿下における帯電維持率)、分散性、臭気に優れたトナーに用いられるトナーバインダーを提供することが可能になる。
本発明のトナーバインダーは、ポリエステル樹脂(A)と結晶性ビニル樹脂(B)を含有するトナーバインダーであって、上記ポリエステル樹脂(A)はポリエステル樹脂(A1)がエポキシ化合物(E)及び/又はオキサゾリン化合物(O)により架橋された樹脂を含有する。
なお、本発明において「結晶性」とは、示差走査熱量測定(DSC測定ともいう。)により得られる示差走査熱量曲線の昇温過程において、DSC曲線に極大があり、吸熱ピークを有することをいう。一方、「非晶性」とは、上記DSC曲線において、吸熱ピークを有しないことをいう。
本発明のポリエステル樹脂(A)は、ポリエステル樹脂(A1)がエポキシ化合物(E)及び/又はオキサゾリン化合物(O)により架橋された樹脂である。ポリエステル樹脂(A1)は、ポリオール成分(x)とポリカルボン酸成分(y)とを重縮合して得られるポリエステル樹脂であり、エポキシ化合物(E)及び/又はオキサゾリン化合物(O)と反応して架橋構造を形成するものであれば、樹脂の組成は特に限定されない。
なお、ポリエステル樹脂(A1)は、1種単独であっても、2種以上の組み合わせであっても良い。
ポリエステル樹脂(A1)は、ポリオール成分(x)とポリカルボン酸成分(y)とを重縮合して得られる樹脂である。
ポリエステル樹脂(A1)のポリオール成分(x)としては、ジオール(x1)及び3価以上のポリオール(x2)が挙げられる。これらは、1種単独であっても、2種以上の組み合わせであっても良い。
ジオール(x1)としては、炭素数2〜36のアルキレングリコール(エチレングリコール、1,2−プロパンジオール、1,3−プロパンジオール、1,4−ブタンジオール、ネオペンチルグリコール、3−メチル−1,5−ペンタンジオール、1,6−ヘキサンジオール、1,7−ヘプタンジオール、1,8−オクタンジオール、1,9−ノナンジオール、1,10−デカンジオール、1,11−ウンデカンジオール及び1,12−ドデカンジオール等)、炭素数4〜36のアルキレンエーテルグリコール(ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール及びポリテトラメチレンエーテルグリコール等)、炭素数6〜36の脂環式ジオール(1,4−シクロヘキサンジメタノール及び水素添加ビスフェノールA等)、上記脂環式ジオールの(ポリ)アルキレンオキサイド付加物(好ましくは平均付加モル数1〜30)、芳香族ジオール[単環2価フェノール(例えばハイドロキノン等)及びビスフェノール類等]及び上記芳香族ジオールのアルキレンオキサイド付加物(平均付加モル数2〜30)等が挙げられる。
上記のビスフェノール類のアルキレンオキサイド付加物は、ビスフェノール類にアルキレンオキサイド(以下、「アルキレンオキサイド」をAOと略記することがある。)を付加して得られる。
ビスフェノール類としては、下記一般式(1)で示されるもの等が挙げられる。
HO−Ar−P−Ar−OH (1)
[式中、Pは炭素数1〜3のアルキレン基、−SO−、−O−、−S−又は直接結合を表し、Arは、水素原子がハロゲン原子又は炭素数1〜30のアルキル基で置換されていてもよいフェニレン基を表す。]
ビスフェノール類の具体的としては、例えば、ビスフェノールA、ビスフェノールF、ビスフェノールB、ビスフェノールAD、ビスフェノールS、トリクロロビスフェノールA、テトラクロロビスフェノールA、ジブロモビスフェノールF、2−メチルビスフェノールA、2,6−ジメチルビスフェノールA及び2,2’−ジエチルビスフェノールF等が挙げられ、これらは2種以上を併用することもできる。
ビスフェノール類に付加するアルキレンオキサイドとしては、炭素数が2〜30のアルキレンオキサイド、例えば、エチレンオキサイド(以下、「エチレンオキサイド」をEOと略記することがある。)、プロピレンオキサイド(「プロピレンオキサイド」をPOと略記することがある。)、ブチレンオキサイド、テトラヒドロフラン、及びこれらの2種以上の併用等が挙げられる。
3価以上のポリオール(x2)としては、炭素数3〜36の3価以上の価数の脂肪族多価アルコール、糖類及びその誘導体、脂肪族多価アルコールのAO付加物(平均付加モル数は1〜30)、トリスフェノール類(トリスフェノールPA等)のAO付加物(平均付加モル数は2〜30)、ノボラック樹脂(フェノールノボラック及びクレゾールノボラック等が含まれ、平均重合度としては3〜60)のAO付加物(平均付加モル数は2〜30)等が挙げられる。
炭素数3〜36の3価以上の価数の脂肪族多価アルコールとしては、アルカンポリオール及びその分子内又は分子間脱水物が挙げられ、例えばグリセリン、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール、ソルビトール、ソルビタン、ポリグリセリン及びジペンタエリスリトール等が挙げられる。
また、糖類及びその誘導体としては、例えばショ糖及びメチルグルコシド等が挙げられる。
これらのポリオール成分(x)のうち、分散性の観点から、ジオール(x1)が好ましく、芳香族ジオールのアルキレンオキサイド付加物がより好ましく、ビスフェノール類のアルキレンオキサイド付加物(平均付加モル数は好ましくは2〜5)がさらに好ましく、ビスフェノールAのアルキレンオキサイド付加物(平均付加モル数は好ましくは2〜5)が特に好ましく、ビスフェノールAのPO付加物(平均付加モル数は好ましくは2〜3)が最も好ましい。
ポリエステル樹脂(A1)のポリオール成分(x)中におけるジオール(x1)は、80〜100モル%であることが好ましい。また、ジオール(x1)と3価以上のポリオール(x2)とを併用する場合、ジオール(x1)と3価以上のポリオール(x2)のモル比[(x1)/(x2)]は、低温定着性(特に定着画像搬送時の定着強度)及び帯電維持率(特に高温高湿下における帯電維持率)の観点から、80/20〜99/1が好ましく、85/15〜98/2がより好ましい。
また、ポリエステル樹脂(A1)のアルコール成分として、必要により上記ポリオール成分(x)に加えて、モノオール成分を含有させることもできる。モノオールとしては、炭素数1〜30の直鎖又は分岐アルキルアルコール(メタノール、エタノール、イソプロパノール、1−デカノール、ドデシルアルコール、ミリスチルアルコール、セチルアルコール、ステアリルアルコール、アラキジルアルコール、ベヘニルアルコール及びリグノセリルアルコール等)等が挙げられる。
ポリエステル樹脂(A1)のポリカルボン酸成分(y)としては、ジカルボン酸(y1)、3価以上のポリカルボン酸(y2)が挙げられる。これらは、1種単独であっても、2種以上の組み合わせであっても良い。
ジカルボン酸(y1)としては、炭素数8〜36の芳香族ジカルボン酸(フタル酸、イソフタル酸、テレフタル酸及びナフタレンジカルボン酸等)、炭素数2〜50の脂肪族ジカルボン酸(シュウ酸、マロン酸、コハク酸、アジピン酸、レパルギン酸及びセバシン酸等)、炭素数6〜40の脂環式ジカルボン酸〔ダイマー酸(2量化リノール酸)等〕、炭素数4〜36のアルケンジカルボン酸(ドデセニルコハク酸等のアルケニルコハク酸、マレイン酸、フマル酸、シトラコン酸及びメサコン酸等)及びこれらのエステル形成性誘導体等が挙げられる。ここで、エステル形成性誘導体とは、カルボン酸無水物、アルキル(炭素数1〜24のもの(メチル、エチル、ブチル、ステアリル等)、好ましくは炭素数1〜4のもの)エステル及び部分アルキルエステルを意味する。
3価以上のポリカルボン酸(y2)としては、炭素数9〜20の3価以上の芳香族ポリカルボン酸(トリメリット酸及びピロメリット酸等)、炭素数6〜36の脂肪族(脂環式を含む)トリカルボン酸(ヘキサントリカルボン酸及びデカントリカルボン酸等)及びこれらのエステル形成性誘導体等が挙げられる。
これらのポリカルボン酸成分(y)のうち、低温定着性(特に定着画像搬送時の定着強度)及び帯電維持率(特に高温高湿下における帯電維持率)の観点から、炭素数8〜36の芳香族ジカルボン酸、炭素数2〜50の脂肪族ジカルボン酸、炭素数9〜20の芳香族ポリカルボン酸が好ましく、テレフタル酸、イソフタル酸、アジピン酸、コハク酸、マレイン酸、フマル酸、トリメリット酸、ピロメリット酸がより好ましく、テレフタル酸、イソフタル酸、アジピン酸、トリメリット酸がさらに好ましい。また、これらの酸の無水物や低級アルキルエステルであってもよい。
ポリエステル樹脂(A1)のポリカルボン酸成分(y)中におけるジカルボン酸(y1)は、80〜100モル%であることが好ましい。また、ジカルボン酸(y1)と3価以上のポリカルボン酸(y2)とを併用する場合、ジカルボン酸(y1)と3価以上のポリカルボン酸(y2)のモル比[(y1)/(y2)]は、低温定着性(特に定着画像搬送時の定着強度)及び帯電維持率(特に高温高湿下における帯電維持率)の観点から、80/20〜99/1が好ましく、85/15〜98/2がより好ましい
また、ポリエステル樹脂(A1)のカルボン酸成分として、必要により上記ポリカルボン酸成分(y)に加えて、モノカルボン酸成分を含有させることもできる。モノカルボン酸としては、炭素数7〜37の芳香族モノカルボン酸(安息香酸、トルイル酸、4−エチル安息香酸、4−プロピル安息香酸等)、炭素数2〜50の脂肪族(脂環式を含む)モノカルボン酸(酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、マルガリン酸、ステアリン酸及びベヘン酸等)等が挙げられる。
本発明におけるポリエステル樹脂(A1)は、公知のポリエステル樹脂の製造法と同様にして製造することができる。例えば、ポリオール成分(x)とポリカルボン酸成分(y)とを、不活性ガス(窒素ガス等)雰囲気中で、反応温度が好ましくは150〜280℃、より好ましくは160〜250℃、さらに好ましくは170〜235℃で重縮合反応させることにより行うことができる。また反応時間は、重縮合反応を確実に行う観点から、好ましくは30分以上、より好ましくは2〜40時間である。反応末期の反応速度を向上させるために減圧することも有効である。
このとき必要に応じてエステル化触媒を使用することができる。
エステル化触媒の例には、スズ含有触媒(例えばジブチルスズオキシド等)、三酸化アンチモン、チタン含有触媒[例えばチタンアルコキシド、シュウ酸チタン酸カリウム、テレフタル酸チタン、テレフタル酸チタンアルコキシド、特開2006−243715号公報に記載の触媒{チタニウムジイソプロポキシビス(トリエタノールアミネート)、チタニウムジヒドロキシビス(トリエタノールアミネート)、チタニウムモノヒドロキシトリス(トリエタノールアミネート)、チタニルビス(トリエタノールアミネート)及びそれらの分子内重縮合物等}及び特開2007−11307号公報に記載の触媒(チタントリブトキシテレフタレート、チタントリイソプロポキシテレフタレート及びチタンジイソプロポキシジテレフタレート等)等]、ジルコニウム含有触媒(例えば酢酸ジルコニル等)及び酢酸亜鉛等が挙げられる。これらの中で好ましくはチタン含有触媒である。
また、ポリエステルの重合を安定的に進める目的で、安定剤を添加してもよい。安定剤としては、ハイドロキノン、メチルハイドロキノン、4−tert−ブチルカテコール、4−メトキシフェノール、2−tert−ブチル−4−メトキシフェノール、2,6−ジ−tert−ブチル−4−メトキシフェノール及びヒンダードフェノール化合物等が挙げられる。
重縮合反応に用いるポリオール成分(x)とポリカルボン酸成分(y)の仕込み比率は、水酸基とカルボキシル基の当量比([OH]/[COOH])として、好ましくは1/2〜1.3/1、より好ましくは1/1.5〜1.1/1、さらに好ましくは1/1.3〜1/1である。上記水酸基は、ポリオール成分(x)由来の水酸基であり、カルボキシル基は、ポリカルボン酸成分(y)由来のカルボキシル基の合計である。
ポリエステル樹脂(A1)の結晶性の有無については特に制限はないが、低温定着性(特に定着画像搬送時の定着強度)及び帯電維持率(特に高温高湿下における帯電維持率)の観点より、非晶性ポリエステル樹脂あることが好ましい。非晶性ポリエステル樹脂は、使用するポリオール成分(x)及びポリカルボン酸成分(y)として、分岐型モノマーの含有量、例えば、ビスフェノール類のアルキレンオキサイド付加物等のモノマー含有量を増やすことで得ることができる。
ポリエステル樹脂(A1)は、線状ポリエステル樹脂、架橋ポリエステル樹脂、又は線状ポリエステル樹脂と架橋ポリエステル樹脂の混合物のいずれであっても良いが、帯電維持率の観点より、架橋ポリエステル樹脂、又は線状ポリエステル樹脂及と架橋ポリエステル樹脂の混合物であることが好ましく、架橋ポリエステル樹脂であることがさらに好ましい。架橋ポリエステル樹脂は、前記ポリエステル樹脂(A1)のポリオール成分(x)及びポリカルボン酸成分(y)として、3価以上のポリオール(x2)及び/又は3価以上のポリカルボン酸(y2)を使用することで、製造することができる。
ポリエステル樹脂(A1)のガラス転移温度(TgA1)は、分散性及び帯電維持率(特に高温高湿下における帯電維持率)の観点から、−35〜60℃が好ましく、更に好ましくは−15〜58℃、特に好ましくは15〜55℃、最も好ましくは35〜55℃である。
なお、Tgは、DSCを用いて、ASTM D3418−82に規定の方法(DSC法)で測定される。
ポリエステル樹脂(A1)のピークトップ分子量(以下、Mpと略称することがある。)は、分散性及び帯電維持率(特に高温高湿下における帯電維持率)の観点から、2,000〜200,000が好ましく、更に好ましくは2,500〜100,000、特に好ましくは3,000〜60,000、最も好ましくは5,000〜30,000である。
なお、(A1)のMpはGPCを用いて以下の条件で測定される。
まず、ゲルパーミエーションクロマトグラフィー(GPC)により標準ポリスチレン試料を用いて検量線を作成する。
次に、GPCにより試料を分離し、各保持時間における分離された試料のカウント数を測定する。
次に、上記検量線の対数値と得られたカウント数とから試料の分子量分布のチャートを作成する。分子量分布のチャート中のピーク最大値がピークトップ分子量Mpである。
なお、分子量分布のチャート中の、複数のピークがある場合は、それらのピークの中の最大値をピークトップ分子量(Mp)とする。なお、GPC測定の測定条件は、以下のとおりである。
本発明において、ポリエステル樹脂(A1)のピークトップ分子量Mp、数平均分子量(以下、Mnと略称することがある。)、重量平均分子量(以下、Mwと略称することがある。)は、GPCを用いて以下の条件で測定することができる。
装置(一例) : 東ソー(株)製 HLC−8120
カラム(一例): TSK GEL GMH6 2本 [東ソー(株)製]
測定温度 : 40℃
試料溶液 : 0.25重量%のTHF溶液
溶液注入量 : 100μL
検出装置 : 屈折率検出器
基準物質 : 東ソー(株)製 標準ポリスチレン(TSKstandard POLYSTYRENE)12点(分子量 500 1,050 2,800 5,970 9,100 18,100 37,900 96,400 190,000 355,000 1,090,000 2,890,000)
分子量の測定は、0.25重量%になるように試料をテトラヒドロフラン(以下、THFと略記)に溶解し、不溶解分をグラスフィルターでろ別したものを試料溶液とする。
なお、後述する結晶性ビニル樹脂(B)及びトナーバインダーについても、上記と同様の方法でMp、Mn、Mwを求めることができる。
ポリエステル樹脂(A1)の酸価は、エポキシ化合物(E)及びオキサゾリン化合物(O)との反応性、分散性並びに帯電維持率(特に高温高湿下における帯電維持率)の観点から、5〜50mgKOH/gが好ましく、更に好ましくは8〜48mgKOH/gである。特に好ましくは14〜48mgKOH/gである。
なお、酸価は、JIS K0070に規定の方法で測定することができる。
本発明のポリエステル樹脂(A)は、ポリエステル樹脂(A1)がエポキシ化合物(E)及び/又はオキサゾリン化合物(O)により架橋された樹脂である。
エポキシ化合物(E)としては、分子内にエポキシ基を有していれば特に限定されないが、低温定着性(特に定着画像搬送時の定着強度)及び帯電維持率(特に高温高湿下における帯電維持率)の観点から、分子内に2個以上のエポキシ基を有する多官能エポキシ化合物であることが好ましい。多官能エポキシ化合物としては、芳香族系ポリエポキシ化合物、複素環式系ポリエポキシ化合物、脂環式系ポリエポキシ化合物及び脂肪族系ポリエポキシ化合物等が挙げられる。エポキシ化合物(E)は1種単独で用いても、2種以上を併用してもよい。
芳香族系ポリエポキシ化合物としては、多価フェノールのグリシジルエーテル体、多価カルボン酸のグリシジルエステル体、グリシジル芳香族ポリアミン及びその他の芳香族系ポリエポキシ化合物が挙げられる。
多価フェノールのグリシジルエーテル体としては、ビスフェノールFジグリシジルエーテル、ビスフェノールAジグリシジルエーテル、ビスフェノールBジグリシジルエーテル、ビスフェノールADジグリシジルエーテル、ビスフェノールSジグリシジルエーテル、ハロゲン化ビスフェノールAジグリシジルエーテル、テトラクロロビスフェノールAジグリシジルエーテル、カテキンジグリシジルエーテル、レゾルシノールジグリシジルエーテル、ハイドロキノンジグリシジルエーテル、ピロガロールトリグリシジルエーテル、1,5−ジヒドロキシナフタリンジグリシジルエーテル、ジヒドロキシビフェニルジグリシジルエーテル、オクタクロロ−4,4’−ジヒドロキシビフェニルジグリシジルエーテル、テトラメチルビフェニルジグリシジルエーテル、ジヒドロキシナフチルクレゾールトリグリシジルエーテル、トリス(ヒドロキシフェニル)メタントリグリシジルエーテル、ジナフチルトリオールトリグリシジルエーテル、テトラキス(4−ヒドロキシフェニル)エタンテトラグリシジルエーテル、p−グリシジルフェニルジメチルトリールビスフェノールAグリシジルエーテル、トリスメチル−t−ブチル−ブチルヒドロキシメタントリグリシジルエーテル、9,9’−ビス(4−ヒドキシフェニル)フロオレンジグリシジルエーテル、4,4’−オキシビス(1,4−フェニルエチル)テトラクレゾールグリシジルエーテル、4,4’−オキシビス(1,4−フェニルエチル)フェニルグリシジルエーテル、ビス(ジヒドロキシナフタレン)テトラグリシジルエーテル、ノボラック型エポキシ樹脂(フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、リモネンフェノールノボラック型エポキシ樹脂等)、ビスフェノールA型エポキシ樹脂、フェノールとグリオキザール、グルタールアルデヒド又はホルムアルデヒドの縮合反応によって得られるポリフェノールのポリグリシジルエーテル体、及びレゾルシンとアセトンの縮合反応によって得られるポリフェノールのポリグリシジルエーテル体等が挙げられる。
多価カルボン酸のグリシジルエステル体としては、フタル酸ジグリシジルエステル、イソフタル酸ジグリシジルエステル及びテレフタル酸ジグリシジルエステル等が挙げられる。
グリシジル芳香族ポリアミンとしては、N,N−ジグリシジルアニリン、N,N,N’,N’−テトラグリシジルキシリレンジアミン及びN,N,N’,N’−テトラグリシジルジフェニルメタンジアミン等が挙げられる。
その他の芳香族系ポリエポキシ化合物としては、p−アミノフェノールのトリグリシジルエーテル、トリレンジイソシアネート又はジフェニルメタンジイソシアネートとグリシドールの付加反応によって得られるジグリシジルウレタン化合物、前記2反応物にポリオールも反応させて得られるグリシジル基含有ポリウレタン(プレ)ポリマー及びビスフェノールAのAO付加物のジグリシジルエーテル体も含む。
複素環式系ポリエポキシ化合物としては、トリスグリシジルメラミンが挙げられる。
脂環式系ポリエポキシ化合物としては、ビニルシクロヘキセンジオキサイド、リモネンジオキサイド、ジシクロペンタジエンジオキサイド、ビス(2,3−エポキシシクロペンチル)エーテル、エチレングリコールビスエポキシジシクロペンチルエーテル、3,4−エポキシシクロヘキシルメチル−3’,4’−エポキシシクロヘキサンカルボキシレート、3,4−エポキシ−6−メチルシクロヘキシルメチル−3’,4’−エポキシ−6’−メチルシクロヘキサンカルボキシレート、ビス(3,4−エポキシ−6−メチルシクロヘキシルメチル)アジペート、ビス(3,4−エポキシ−6−メチルシクロヘキシルメチル)ブチルアミン、2,2−ビス(ヒドロキシメチル)−1−ブタノールの1,2−エポキシ−4−(2−オキシラニル)シクロヘキサン付加物及びダイマー酸ジグリシジルエステル等が挙げられる。脂環式系としては、前記芳香族系ポリエポキシ化合物の核水添化物も含む。
脂肪族系ポリエポキシ化合物としては、脂肪族多価アルコールのポリグリシジルエーテル体、脂肪族多価カルボン酸のポリグリシジルエステル体及びグリシジル脂肪族アミンが挙げられる。
脂肪族多価アルコールのポリグリシジルエーテル体としては、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、テトラメチレングリコールジグリシジルエーテル、1,6−ヘキサンジオールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ポリテトラメチレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、グリセロールポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、ソルビトールポリグリシジルエーテル及びポリグリセロールポリグリシジルエーテル等が挙げられる。
脂肪族多価カルボン酸のポリグリシジルエステル体としては、ジグリシジルオキサレート、ジグリシジルマレート、ジグリシジルスクシネート、ジグリシジルグルタレート、ジグリシジルアジペート及びジグリシジルピメレート等が挙げられる。
グリシジル脂肪族アミンとしては、N,N,N’,N’−テトラグリシジルヘキサメチレンジアミン等が挙げられる。
また、脂肪族系ポリエポキシ化合物としては、ジグリシジルエーテル及びグリシジル(メタ)アクリレートの(共)重合体も含む。
これらの多官能エポキシ化合物のうち、分散性及び帯電維持率(特に高温高湿下における帯電維持率)の観点から、好ましくは芳香族系ポリエポキシ化合物、脂環式系ポリエポキシ化合物、脂肪族系ポリエポキシ化合物であり、より好ましくは芳香族系ポリエポキシ化合物であり、さらに好ましくはノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂である。なお、上述のエポキシ化合物(E)は、1種のみ使用してもよく、複数種組み合わせて使用することもできる。
本発明におけるエポキシ化合物(E)は、エポキシ当量が150〜500(g/eq、以下同じ)の多官能エポキシ化合物であることが好ましく、更に好ましくは160〜300であり、特に好ましくは170〜250である。エポキシ当量が150以上であると分散性が良好となり、500以下であると帯電維持率(特に高温高湿下における帯電維持率)が良好となる。なお、エポキシ当量は、JIS K7236:2001に規定の方法で測定することができる。
オキサゾリン化合物(O)としては、分子内にオキサゾリン基を有していれば特に限定されないが、低温定着性(特に定着画像搬送時の定着強度)及び帯電維持率(特に高温高湿下における帯電維持率)の観点から、分子内に2個以上のオキサゾリン環を有する多官能オキサゾリン化合物であることが好ましい。なお、オキサゾリン化合物(O)は1種単独で用いてもよく、2種以上を併用してもよい。
オキサゾリン環を2個以上有する多官能オキサゾリン化合物としては、例えば、2,2’−ビス(2−オキサゾリン)、2,2’−ビス(4−メチル−2−オキサゾリン)、2,2’−ビス(5−メチル−2−オキサゾリン)、2,2’−ビス(5,5’−ジメチルオキサゾリン)、2,2’−ビス(4,4,4’,4’−テトラメチル−2−オキサゾリン)、2,2’−(1,3−フェニレン)ビス−(2−オキサゾリン)、1,2−ビス(2−オキサゾリン−2−イル)エタン、1,4−ビス(2−オキサゾリン−2−イル)ブタン、1,6−ビス(2−オキサゾリン−2−イル)ヘキサン、1,8−ビス(2−オキサゾリン−2−イル)、1,4−ビス(2−オキサゾリン−2−イル)シクロヘキサン、1,2−ビス(2−オキサゾリン−2−イル)ベンゼン、1,3−ビス(4,5−ジヒドロ−2−オキサゾリル)ベンゼン、1,3−ビス(2−オキサゾリン−2−イル)ベンゼン、1,4−ビス(2−オキサゾリン−2−イル)ベンゼン、1,2−ビス(5−メチル−2−オキサゾリン−2−イル)ベンゼン、1,3−ビス(5−メチル−2−オキサゾリン−2−イル)ベンゼン、1,4−ビス(5−メチル−2−オキサゾリン−2−イル)ベンゼン及び1,4−ビス(4,4’−ジメチル−2−オキサゾリン−2−イル)ベンゼンなどのビスオキサゾリン化合物、並びに、上記ビスオキサゾリン化合物のオキサゾリン基2モル当量と多塩基性カルボン酸(例えばマレイン酸、琥珀酸、イタコン酸、フタル酸、テトラヒドロフタル酸、ヘキサヒドロフタル酸、メチルヘキサヒドロフタル酸、クロレンド酸、トリメリット酸、ピロメリット酸及びベンゾフェノンテトラカルボン酸等)のカルボキシル基1モル当量とを反応させて得られる末端オキサゾリン基を有する化合物等が挙げられる。
また、分子内に2個以上のオキサゾリン環を有する多官能オキサゾリン化合物は、オキサゾリン環を開環させないで付加重合などの重合体から得られる1分子中に少なくとも2つ以上のオキサゾリン基を有するポリマー化した化合物でもよい。具体的に例示すると市販品では、エポクロス(日本触媒株式会社製)WS−500、WS−700、K−1010E、K−2010E、K−1020E、K−2020E、K−1030E、K−2030E、RPS−1005などが挙げられる。
本発明のオキサゾリン化合物(O)は、オキサゾリン価が100〜550(g,solid/eq、以下同じ)であることが好ましく、更に好ましくは100〜300であり、特に好ましくは108〜220である。オキサゾリン価が100以上であると分散性が良好となり、500以下であると帯電維持率(特に高温高湿下における帯電維持率)が良好となる。なお、オキサゾリン価は、オキサゾリン基1molあたりの化合物の質量(g)のことであり、核磁気共鳴スペクトル(H−NMR)の測定によって求めることができる。
具体的には、約30mgのオキサゾリン化合物を重クロロホルムに溶解させた後、直径5mmのサンプルチューブに入れたオキサゾリン化合物の重クロロホルム溶液を得る。当該溶液を、核磁気共鳴装置(Bruker AVANCE III HD 400)を用いて、測定周波数:400MHz、測定温度:25℃の条件でH−NMRスペクトルを測定することで、オキサゾリン化合物中におけるオキサゾリン価を測定できる。
本発明におけるポリエステル樹脂(A)は、上述の製造方法で得られたポリエステル樹脂(A1)とエポキシ化合物(E)及び/又はオキサゾリン化合物(O)とを混合し、架橋反応させることで得ることができる。反応は不活性ガス(窒素ガス等)雰囲気中で行うことが好ましい。また、反応温度は、反応を確実に行う観点から、好ましくは120〜220℃、更に好ましくは130〜210℃、特に好ましくは140〜200℃である。反応時間は、同様に反応を確実に行う観点から、好ましくは2分以上、更に好ましくは4分以上、特に好ましくは5〜30分である。
ポリエステル樹脂(A1)とエポキシ化合物(E)及び/又はオキサゾリン化合物(O)の反応には、公知のエポキシ反応触媒(3級アミン類、イミダゾール類、4級アンモニウム塩類など)を加えることもできる。また、反応器としては、通常のバッチ式反応器、横型反応器(プラスミル、ニーダー、押出機など)を用いることもできる。
また、本発明におけるポリエステル樹脂(A)の好適な製造方法として、後述する結晶性ビニル樹脂(B)の存在下、ポリエステル樹脂(A1)をエポキシ化合物(E)及び/又はオキサゾリン化合物(O)と反応させる方法が挙げられる。結晶性ビニル樹脂(B)の存在下でポリエステル樹脂(A1)をエポキシ化合物(E)及び/又はオキサゾリン化合物(O)により架橋させることで、低温定着性(特に定着画像搬送時の定着強度)、分散性及び帯電維持率(特に高温高湿下における帯電維持率)に優れるトナーバインダーを得ることができる。従って、本発明には、結晶性ビニル樹脂(B)の存在下、ポリエステル樹脂(A1)をエポキシ化合物(E)及び/又はオキサゾリン化合物(O)と反応させて得られるトナーバインダー及びその製造方法が含まれる。なお、本製造方法の詳細は後述する。
ポリエステル樹脂(A1)の重量に対するエポキシ化合物(E)の重量割合は、分散性及び帯電維持率(特に高温高湿下における帯電維持率)の観点より、1〜35重量%が好ましく、4〜35重量%がより好ましい。
ポリエステル樹脂(A1)の重量に対するオキサゾリン化合物(O)の重量割合は、分散性及び帯電維持率(特に高温高湿下における帯電維持率)の観点より、1〜35重量%が好ましく、4〜31重量%がより好ましい。
なお、本発明において、ポリエステル樹脂(A)はポリエステル樹脂(A1)がエポキシ化合物(E)及び/又はオキサゾリン化合物(O)により架橋された樹脂であるが、トナーバインダー中にポリエステル樹脂(A1)とエポキシ化合物(E)及び/又はオキサゾリン化合物(O)により架橋された樹脂が存在していればよく、未反応のポリエステル樹脂(A1)を一部含有していてもよい。
なお、上記の架橋反応によってネットワークを形成したポリエステル樹脂(A)はTHFに溶解することができないため、架橋反応によってネットワークが形成されたポリエステル樹脂であることは、ポリエステル樹脂をTHFに溶解してTHFに不溶な成分(THF不溶解分)を有することで確認することができる。
本発明のトナーバインダーは、結晶性ビニル樹脂(B)を含有する。
結晶性ビニル樹脂(B)は結晶性を有するビニル樹脂であれば特に制限は無いが、好ましくは単量体(a)を必須構成単量体とする重合物であり、前記単量体(a)は鎖状炭化水素基を有する炭素数21〜40の(メタ)アクリレートである。単量体(a)の炭素数が21以上であると結晶性及び帯電維持率(特に高温高湿下における帯電維持率)が良好となり、炭素数が40以下であると低温定着性(特に定着画像搬送時の定着強度)及び分散性が良好となる場合がある。
単量体(a)としては、直鎖のアルキル基(炭素数18〜36)を有する(メタ)アクリレート[オクタデシル(メタ)アクリレート、ノナデシル(メタ)アクリレート、エイコシル(メタ)アクリレート、ヘンエイコサニル(メタ)アクリレート、ベヘニル(メタ)アクリレート、リグノセリル(メタ)アクリレート、セリル(メタ)アクリレート、モンタニル(メタ)アクリレート、トリアコンタ(メタ)アクリレート及びドトリアコンタ(メタ)アクリレート等]及び分岐のアルキル基(炭素数18〜36)を有する(メタ)アクリレート[2−デシルテトラデシル(メタ)アクリレート等]が挙げられる。
これらの内、結晶性及び低温定着性(特に定着画像搬送時の定着強度)の観点から、好ましくは直鎖のアルキル基(炭素数18〜36)を有する(メタ)アクリレートであり、より好ましくは直鎖のアルキル基(炭素数18〜30)を有する(メタ)アクリレートであり、さらに好ましいのはオクタデシル(メタ)アクリレート(ステアリル(メタ)アクリレート)、エイコシル(メタ)アクリレート、ベヘニル(メタ)アクリレート、リグノセリル(メタ)アクリレート、セリル(メタ)アクリレート及びトリアコンタ(メタ)アクリレートであり、特に好ましくはオクタデシルアクリレート、エイコシルアクリレート、ベヘニルアクリレート及びリグノセリルアクリレートであり、最も好ましくはベヘニルアクリレートである。
なお、単量体(a)は、1種を単独で用いても、2種以上を併用してもよい。
結晶性ビニル樹脂(B)は、結晶性、分散性及び帯電維持率(特に高温高湿下における帯電維持率)の観点から構成単量体とし上記単量体(a)以外に、ビニル基を有する炭素数6以下の単量体(b)を構成単量体として含有してもよい。
単量体(b)としては炭素数6以下の(メタ)アクリル系モノマー[(メタ)アクリル酸、メチル(メタ)アクリレート、エチル(メタ)アクリレート、2−ヒドロキシプロピルアクリレート、2−ヒドロキシエチル(メタ)アクリレート及びエチル−2−(ヒドロキシメチル)アクリレート等]、炭素数6以下のビニルエステルモノマー[酢酸ビニル、プロピオン酸ビニル及び酢酸イソプロペニル等]、炭素数6以下の脂肪族炭化水素系ビニルモノマー[エチレン、プロピレン、ブテン、ブタジエン、イソプレン及び1,5−ヘキサジエン等]、ニトリル基を有する炭素数6以下の単量体[(メタ)アクリロニトリル等]等が挙げられる。
これらの内、好ましいのは、(メタ)アクリル酸、メチル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、酢酸ビニル、(メタ)アクリロニトリルである。
なお、単量体(b)は、1種を単独で用いても、2種以上を併用してもよい。
結晶性ビニル樹脂(B)は分散性及び帯電維持率(特に高温高湿下における帯電維持率)の観点から構成単量体として上記単量体(a)及び単量体(b)以外の単量体(d)を含有してもよく、単量体(d)としては、スチレン系モノマー(d1)、炭素数が6を超える(メタ)アクリル系モノマーのうち単量体(a)を除く(メタ)アクリル系モノマー(d2)、炭素数が6を超えるビニルエステルモノマー(d3)、並びに、ニトリル基、ウレタン基、ウレア基、アミド基、イミド基、アロファネート基及びビューレット基からなる群から選ばれる少なくとも1種の官能基とエチレン性不飽和結合とを有する炭素数が6を超える単量体(d4)等を構成単量体として有するものが好ましい。
なお、単量体(d)は、1種を単独で用いても、2種以上を併用してもよい。
スチレン系モノマー(d1)としては、スチレン、アルキル基の炭素数が1〜3のアルキルスチレン(例えばα−メチルスチレン及びp−メチルスチレン等)などが挙げられる。
(メタ)アクリル系モノマー(d2)としては、アルキル基の炭素数が4〜17のアルキル(メタ)アクリレート[ブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート及びラウリル(メタ)アクリレート等]、アルキル基の炭素数が4〜17のヒドロキシアルキル(メタ)アクリレート、アルキル基の炭素数が4〜17のアミノアルキル基含有(メタ)アクリレート[ジメチルアミノエチル(メタ)アクリレート及びジエチルアミノエチル(メタ)アクリレート等]、炭素数8〜20の不飽和カルボン酸と多価アルコールとのエステル[エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート及びポリエチレングリコールジ(メタ)アクリレート等]等が挙げられる。
ビニルエステルモノマー(d3)としては、炭素数7〜15の脂肪族ビニルエステル及び炭素数9〜15の芳香族ビニルエステル(例えばメチル−4−ビニルベンゾエート等)等が挙げられる。
ニトリル基、ウレタン基、ウレア基、アミド基、イミド基、アロファネート基及びビューレット基からなる群から選ばれる少なくとも1種の官能基とエチレン性不飽和結合とを有する炭素数が6を超える単量体(d4)としては、ニトリル基を有する単量体(d41)ウレタン基を有する単量体(d42)、ウレア基を有する単量体(d43)、アミド基を有する単量体(d44)、イミド基を有する単量体(d45)、アロファネート基を有する単量体(d46)及びビューレット基を有する単量体(d47)等が挙げられる。
ニトリル基を有する単量体(d41)としては、6−ヘプテンニトリル、8−ノネンニトリル及び9−オクタデセンニトリル等が挙げられる。
ウレタン基を有する単量体(d42)としては、エチレン性不飽和結合を有する炭素数2〜22のアルコール(メタクリル酸−2−ヒドロキシエチル、ビニルアルコール等)と炭素数1〜30のイソシアネートとを公知の方法で反応させた単量体、並びに、炭素数1〜26のアルコールとエチレン性不飽和結合を有する炭素数2〜30のイソシアネートとを公知の方法で反応させた単量体等が挙げられる。なお、本明細書中、イソシアネート基を有する化合物及び構造における炭素数にはイソシアネート(NCO)に含まれる炭素数は含まない。
炭素数1〜30のイソシアネートとしては、モノイソシアネート化合物(ベンゼンスルフォニルイソシアネート、トシルイソシアネート、フェニルイソシアネート、p−クロロフェニルイソシアネート、ブチルイソシアネート、ヘキシルイソシアネート、t−ブチルイソシアネート、シクロヘキシルイソシアネート、オクチルイソシナエート、2−エチルヘキシルイソシアネート、ドデシルイソシアネート、アダマンチルイソシアネート、2,6−ジメチルフェニルイソシアネート、3,5−ジメチルフェニルイソシアネート及び2,6−ジプロピルフェニルイソシアネート等)、脂肪族ジイソシアネート化合物(トリメチレンジイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、ペンタメチレンジイソシアネート,1,2−プロピレンジイソシアネート、1,3−ブチレンジイソシアネート、ドデカメチレンジイソシアネート及び2,4,4−トリメチルヘキサメチレンジイソシアネート等)、脂環族ジイソシアネート化合物(1,3−シクロペンテンジイソシアネート,1,3−シクロへキサンジイソシアネート、1,4−シクロヘキサンジイソシアネート、イソホロンジイソシアネート、水素添加ジフェニルメタンジイソシアネート、水素添加キシリレンジイソシアネート,水素添加トリレンジイソシアネート及び水素添加テトラメチルキシリレンジイソシアネート等)及び芳香族ジイソシアネート化合物(フェニレンジイソシアネート、2,4−トリレンジイソシアネート、2,6−トリレンジイソシアネート、2,2’一ジフェニルメタンジイソシアネート、4,4’−ジフェニルメタンジイソシアネート、4,4’−トルイジンジイソシアネート、4,4’−ジフェニルエーテルジイソシアネート、4,4’−ジフェニルジイソシアネート、1,5−ナフタレンジイソシアネート及びキシリレンジイソシアネート等)等が挙げられる。
炭素数1〜26のアルコールとしては、メタノール、エタノール、プロパノール、イソプロピルアルコール、ブタノール、t−ブチルアルコール、ペンタノール、ヘプタノール、オクタノール、2−エチルヘキサノール、ノナノール、デカノール、ウンデシルアルコール、ラウリルアルコール、ドデシルアルコール、ミリスチルアルコール、ペンタデシルアルコール、セタノール、ヘプタデカノール、ステアリルアルコール、イソステアリルアルコール、エライジルアルコール、オレイルアルコール、リノレイルアルコール、リノレニルアルコール、ノナデシルアルコール、ヘンエイコサノール、ベヘニルアルコール及びエルシルアルコール等が挙げられる。
エチレン性不飽和結合を有する炭素数2〜30のイソシアネートとしては、2−イソシアナトエチル(メタ)アクリレート、(メタ)アクリル酸2−[0−(1’−メチルプロピリデンアミノ)カルボキシアミノ]エチル、2−[(3,5−ジメチルピラゾリル)カルボニルアミノ]エチル(メタ)アクリレート及び1,1−(ビス(メタ)アクリロイルオキシメチル)エチルイソシアネート等が挙げられる。
ウレア基を有する単量体(d43)としては、炭素数3〜22のアミン[一価のものとして例えば、1級アミン(ノルマルブチルアミン、t−ブチルアミン、プロピルアミン及びイソプロピルアミン等)、2級アミン(ジエチルアミン、ジノルマルプロピルアミン及びジノルマルブチルアミン等)アニリン及びシクロヘキシルアミン等]と、エチレン性不飽和結合を有する炭素数2〜30のイソシアネートとを公知の方法で反応させた単量体等が挙げられる。
アミド基を有する単量体(d44)としては、炭素数1〜30のアミンとエチレン性不飽和結合を有する炭素数3〜30のカルボン酸(アクリル酸及びメタクリル酸等)を公知の方法で反応させた単量体等が挙げられる。
イミド基を有する単量体(d45)としては、アンモニアとエチレン性不飽和結合を有する炭素数4〜10の無水カルボン酸(無水マレイン酸及びジアクリル酸無水物等)を公知の方法で反応させた単量体、及び炭素数1〜30の1級アミンとエチレン性不飽和結合を有する炭素数4〜10の無水カルボン酸を公知の方法で反応させた単量体等が挙げられる。
アロファネート基を有する単量体(d46)としては、ウレタン基を有する単量体(d42)と炭素数1〜30のイソシアネートを公知の方法で反応させた単量体等が挙げられる。
ビューレット基を有する単量体(d47)としては、ウレア基を有する単量体(d43)と炭素数1〜30のイソシアネートを公知の方法で反応させた単量体等が挙げられる。
単量体(d4)を用いることで、ニトリル基、ウレタン基、ウレア基、アミド基、イミド基、アロファネート基及びビューレット基からなる群から選択される少なくとも1種の官能基、好ましくはウレタン基、ウレア基、アミド基、イミド基、アロファネート基及びビューレット基からなる群から選択される少なくとも1種の官能基を結晶性ビニル樹脂(B)中に導入することができる。
なお、ウレタン基、ウレア基、アミド基、イミド基、アロファネート基及びビューレット基からなる群から選択される少なくとも1種の官能基を結晶性ビニル樹脂(B)中に導入する方法としては、上記単量体(d42)〜(d47)を用いる方法のほかに、以下の方法を用いることもできる。
まず、単量体(d42)〜(d47)を得るための2つの化合物(エチレン性不飽和結合を有する化合物及び他方の化合物)のうち、エチレン性不飽和結合を有する化合物を単量体(a)と反応させる。続いて、上記エチレン性不飽和結合を有する化合物と単量体(a)との重合体に対して他方の化合物を反応させる。以上の手順によって、「エチレン性不飽和結合を有する化合物と単量体(a)との重合体」と「他方の化合物」とが結合して結晶性ビニル樹脂(B)が得られる。この反応の際に、「エチレン性不飽和結合を有する化合物と単量体(a)との重合体」と「他方の化合物」とが、ウレタン基、ウレア基、アミド基、イミド基、アロファネート基又はビューレット基により結合されるため、ウレタン基、ウレア基、アミド基、イミド基、アロファネート基及びビューレット基からなる群から選択される少なくとも1種の官能基を結晶性ビニル樹脂(B)中に導入することができる。
これらの単量体(d)の内、帯電維持率の観点から好ましいのはスチレン系モノマー(d1)、炭素数が6を超える(メタ)アクリル系モノマーのうち単量体(a)を除く(メタ)アクリル系モノマー(d2)、並びに、ニトリル基、ウレタン基、ウレア基、アミド基、イミド基、アロファネート基及びビューレット基からなる群から選ばれる少なくとも1種の官能基とエチレン性不飽和結合とを有する炭素数が6を超える単量体(d4)であり、より好ましくはスチレン、ブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、2−イソシアナトエチル(メタ)アクリレートとメタノールの反応物及び2−イソシアナトエチル(メタ)アクリレートとジノルマルブチルアミンの反応物であり、さらに好ましくはスチレン、及びブチル(メタ)アクリレートであり、特に好ましくはスチレンである。
結晶性ビニル樹脂(B)を構成する単量体中の単量体(a)の重量割合は、(B)を構成する単量体の合計重量を基準として、好ましくは30重量%以上であり、より好ましくは40重量%以上であり、更に好ましくは40重量%である。単量体(a)の重量割合が30重量%以上であると結晶性、低温定着性(特に定着画像搬送時の定着強度)及び帯電維持率(特に高温高湿下における帯電維持率)が良好となる。一方、単量体(a)の重量割合の上限については分散性の観点より、好ましくは99重量%以下、より好ましくは95重量%以下、更に好ましくは80重量%以下である。一態様において、(B)を構成する単量体の合計重量を基準として、好ましくは30〜99重量%、より好ましくは40〜95重量%、さらに好ましくは40〜80重量%である。
結晶性ビニル樹脂(B)を構成する単量体中には、帯電維持率(特に高温高湿下における帯電維持率)の観点から、単量体(b)を含むことが好ましく、より好ましくは単量体(b)と単量体(d)を含む。結晶性ビニル樹脂(B)を構成する単量体中の単量体(b)と単量体(d)の合計の重量割合は、(B)を構成する単量体の合計重量を基準として、1〜70重量%であることが好ましく、5〜60重量%であることがより好ましく、20〜60重量%であることがさらに好ましい。
結晶性ビニル樹脂(B)は、単量体(a)、必要に応じて用いる単量体(b)及び単量体(d)を含有する単量体組成物を公知の方法(特開平5−117330号公報等に記載の方法)で重合することで製造できる。例えば、上記単量体を溶媒(トルエン等)中でラジカル反応開始剤(アゾビスイソブチロニトリル等)とともに反応させる溶液重合法により合成することができる。
また、ラジカル反応開始剤は公知のラジカル反応開始剤(c)を用いてもよい。ラジカル反応開始剤(c)としては、特に制限されず、無機過酸化物(c1)、有機過酸化物(c2)及びアゾ化合物(c3)等が挙げられる。また、これらのラジカル反応開始剤を併用することもできる。
無機過酸化物(c1)としては、特に限定されないが、例えば過酸化水素、過硫酸アンモニウム、過硫酸カリウム及び過硫酸ナトリウム等が挙げられる。
有機過酸化物(c2)としては、特に制限されないが、例えば、ベンゾイルパーオキシド、ジ−t−ブチルパーオキシド、t−ブチルクミルパーオキシド、ジクミルパーオキシド、α、α−ビス(t−ブチルパーオキシ)ジイソプロピルベンゼン、2,5−ジメチル−2,5−ビス(t−ブチルパーオキシ)へキサン、ジ−t−へキシルパーオキシド、2,5−ジメチル−2,5−ジ−t−ブチルパーオキシへキシン−3、アセチルパーオキシド、イソブチリルパーオキシド、オクタニノルパーオキシド、デカノリルパーオキシド、ラウロイルパーオキシド、3,3,5−トリメチルヘキサノイルパーオキシド、m−トルイルパーオキシド、t−ブチルパーオキシイソブチレート、t−ブチルパーオキシネオデカノエート、クミルパーオキシネオデカノエート、t−ブチルパーオキシ−2−エチルヘキサノエート、t−ブチルパーオキシ−3,5,5−トリメチルヘキサノエート、t−ブチルパーオキシラウレート、t−ブチルパーオキシベンゾエート、t−ブチルパーオキシイソプロピルモノカーボネート及びt−ブチルパーオキシアセテート等が挙げられる。
アゾ化合物(c3)としては、特に制限されないが、例えば、2,2’−アゾビス−(2,4−ジメチルバレロニトリル)、2,2’−アゾビス(2−メチルブチロニトリル)、2,2’−アゾビスイソブチロニトリル、1,1’−アゾビス(シクロヘキサン−1−カルボニトリル)、2,2’−アゾビス−4−メトキシ−2,4−ジメチルバレロニトリル、2,2’−アゾビス(2−メチルブチロニトリル)及びアゾビスイソブチロニトリル等が挙げられる。
これらの中でも開始剤効率が高く、シアン化合物などの副生成物を生成しないことから、有機過酸化物(c2)が好ましい。
結晶性ビニル樹脂(B)の吸熱ピークトップ温度(Tm)は、低温定着性(特に定着画像搬送時の定着強度)及び帯電維持率(特に高温高湿下における帯電維持率)の観点から、好ましくは40〜100℃であり、より好ましくは45〜90℃である。吸熱ピークトップ温度が40℃以上の場合は帯電維持率(特に高温高湿下における帯電維持率)が良好となり、100℃以下の場合は低温定着性(特に定着画像搬送時の定着強度)が良好となる。
但し、結晶性ビニル樹脂(B)の吸熱ピークトップ温度(Tm)とは、示差走査熱量計(DSC)を用いて結晶性ビニル樹脂(B)を20℃から150℃まで10℃/分の条件で第1回目の昇温した後、150℃から0℃まで10℃/分の条件で冷却し、続いて0℃から150℃まで10℃/分の条件で昇温する第2回目の昇温過程における結晶性ビニル樹脂(B)の吸熱ピークのピークトップ温度である。
吸熱ピークトップ温度(Tm)は、示差走査熱量計を用いて、下記条件で測定される値である。示差走査熱量計としては、例えば、TA Instruments(株)製、DSC Q20等を用いることができる。
<測定条件>
(1)10℃/分で20℃から150℃まで昇温
(2)10℃/分で0℃まで冷却
(3)10℃/分で150℃まで昇温
(4)(3)の過程にて測定される示差走査熱量曲線の各吸熱ピークを解析する。
結晶性ビニル樹脂(B)の吸熱量(Q)は、低温定着性(特に定着画像搬送時の定着強度)及び帯電維持率(特に高温高湿下における帯電維持率)の観点から、好ましくは10〜50J/gであり、より好ましくは15〜45J/gである。但し、結晶性ビニル樹脂(B)の吸熱量(Q)とは、DSCにより測定される第2回目の昇温過程における吸熱量のことであり、吸熱ピークトップ温度(Tm)と同様の条件で測定される。
結晶性ビニル樹脂(B)の数平均分子量(Mn)は、分散性及び帯電維持率(特に高温高湿下における帯電維持率)の観点から、1,000〜300,000が好ましい。
結晶性ビニル樹脂(B)の重量平均分子量(Mw)は、分散性及び帯電維持率(特に高温高湿下における帯電維持率)の観点から、1,000〜300,000が好ましく、15,000〜65,000がより好ましい。
なお、結晶性ビニル樹脂(B)のMnおよびMwは前述した方法で測定できる。
結晶性ビニル樹脂(B)の酸価は、帯電維持率(特に高温高湿下における帯電維持率)の観点から、60mgKOH/g以下であることが好ましい。
結晶性ビニル樹脂(B)の酸価は、JIS K0070に規定の方法で測定することができる。
本発明のトナーバインダーは、上述したポリエステル樹脂(A)及び結晶性ビニル樹脂(B)を含有する。
本発明のトナーバインダーにおいて、示差走査熱量計(DSC)により20℃から150℃まで10℃/分で昇温した後、150℃から0℃まで10℃/分で冷却し、0℃から150℃まで10℃/分で昇温する条件で測定されたトナーバインダーの第2回目の昇温過程における吸熱量(Q)は5〜35J/gである。吸熱量(Q)はトナーバインダー中の結晶性成分の含有量を示しており、結晶性成分が吸熱ピークトップ温度(Tm)を超えて溶融した際非晶性成分と相溶し、トナー(トナーバインダー)が可塑化されることにより、低温で定着することが可能になる。吸熱量(Q)が5J/g以上であると低温定着性(特に定着画像搬送時の定着強度)が良好となり、吸熱量(Q)が35J/g以下であると帯電維持率(特に高温高湿下における帯電維持率)が良好となる。例えば、吸熱量(Q)を大きくしたい場合は、トナーバインダー中の結晶性ビニル樹脂(B)の含有量を増やすこと、結晶性ビニル樹脂(B)が構成する単量体中の鎖状炭化水素基を有する炭素数21〜40の(メタ)アクリレートの重量割合を増やすこと等の方法が挙げられる。また、吸熱量(Q)は吸熱量(Q)と同様の測定装置及び測定条件で測定される。
本発明のトナーバインダーにおいて、低温定着性(特に定着画像搬送時の定着強度)、分散性及び帯電維持率(特に高温高湿下における帯電維持率)の観点から、トナーバインダー中のポリエステル樹脂(A)の含有量はトナーバインダー重量に基づき、好ましくは20〜80重量%、より好ましくは20〜70重量%、さらに好ましくは20〜65重量%であり、特に好ましくは20〜60重量%である。また、トナーバインダー中の結晶性ビニル樹脂(B)の含有量はトナーバインダー重量に基づき、好ましくは20〜80重量%、より好ましくは30〜80重量%、さらに好ましくは35〜80重量%であり、特に好ましくは40〜80重量%である。
トナーバインダーの製造方法としては、ポリエステル樹脂(A)と結晶性ビニル樹脂(B)が均一に混合していれば特に混合方法は限定されず、公知の混合方法としては、例えば粉体混合、溶融混合及び溶剤混合等が挙げられる。また、ポリエステル樹脂(A)と結晶性ビニル樹脂(B)の混合は、トナーを製造する時に他の必要なトナー原料と共に同時に混合してもよい。
粉体混合する場合の混合装置としては、ヘンシェルミキサー、ナウターミキサー及びバンバリーミキサー等が挙げられる。好ましくはヘンシェルミキサーである。
溶融混合する場合の混合装置としては、反応槽等のバッチ式混合装置及び連続式混合装置が挙げられる。適正な温度で短時間で均一に混合するためには、連続式混合装置が好ましい。連続式混合装置としては、スタティックミキサー、エクストルーダー、コンティニアスニーダー及び3本ロール等が挙げられる。
溶剤混合の方法としては、ポリエステル樹脂(A)及び結晶性ビニル樹脂(B)を溶剤(酢酸エチル、THF及びアセトン等)に溶解し、均一化させた後、脱溶剤及び粉砕する方法や、ポリエステル樹脂(A)及び結晶性ビニル樹脂(B)を溶剤(酢酸エチル、THF及びアセトン等)に溶解し、水中に分散させた後、造粒及び脱溶剤する方法等が挙げられる。
また、本発明のさらに好適なトナーバインダーの製造方法としては、結晶性ビニル樹脂(B)の存在下、ポリエステル樹脂(A1)とエポキシ化合物(E)及び/又はオキサゾリン化合物(O)を混合後又は混合しながら架橋させ、ポリエステル樹脂(A)と結晶性ビニル(B)を含有するトナーバインダーを得ることが挙げられる。
具体的には、ポリエステル樹脂(A1)とビニル樹脂(B)との混合物を二軸押出機に一定速度で注入し、同時にエポキシ化合物(E)及び/又はオキサゾリン化合物(O)も一定速度で注入し、100〜200℃の温度で混練搬送しながら反応を行わせるなどの方法がある。このとき、二軸押出機に投入又は注入される反応原料であるポリエステル樹脂(A1)とビニル樹脂(B)は、それぞれ反応した樹脂を溶融状態から冷却することなくそのまま直接押出機に注入するようにしてもよいし、また一旦製造した樹脂を冷却、粉砕したものを二軸押出機に供給することにより行ってもよい。
また、溶融混合する方法がこれら具体的に例示された方法に限られるわけではなく、例えば反応容器中に原料を仕込み、溶融状態となる温度に加熱し、混合するような方法など適宜の方法で行うことができることはもちろんである。
また、前記結晶性ビニル樹脂(B)の存在下、ポリエステル樹脂(A1)をエポキシ化合物(E)及び/又はオキサゾリン化合物(O)と反応させ得られるトナーバインダーにおいて、前記ポリエステル樹脂(A1)と結晶性ビニル樹脂(B)の重量比[(A1):(B)]は、分散性及び帯電維持率の観点から、好ましくは8:92〜80:20であり、より好ましくは10:90〜70:30であり、さらに好ましくは20:80〜60:40である。
本発明のトナーバインダーは、分散性及び帯電維持率の観点から下記関係式(1)を満たすことが好ましい。
|SPA1−SP|≦1.0 (1)
SPA1はポリエステル樹脂(A1)の溶解度パラメータ(SP値と略記することがある)を表し、SPは結晶性ビニル樹脂(B)のSP値を表す。|SPA1−SP|は、SPA1とSPとの差の絶対値を意味する。
なお、本発明におけるSP値(cal/cm0.5は、Robert F Fedorsらの著によるPolymer engineering and science第14巻、151〜154ページに記載されている方法で計算した値である。
関係式(1)は、ポリエステル樹脂(A)の構成成分であるポリエステル樹脂(A1)と結晶性ビニル樹脂(B)の相溶性を示している。|SPA1−SP|が1.0以下であると結晶性ビニル樹脂(B)中のポリエステル樹脂(A)の分散性が良好となる。例えば、ポリエステル樹脂(A1)のポリオール成分(x)中におけるビスフェノールAのPO付加物(平均付加モル数は好ましくは2〜3)を50重量%以上とすること、ポリエステル樹脂(A1)に酸価を付与すること、結晶性ビニル樹脂(B)が構成する単量体中の鎖状炭化水素基を有する炭素数21〜40の(メタ)アクリレートの重量割合を30重量%以上とすること、結晶性ビニル樹脂(B)に酸価を付与することで上記の範囲の達成が容易となる。
また、分散性の観点から、|SPA1−SP|≦0.5を満たすことがより好ましい。
本発明のトナーバインダーの吸熱ピークトップ温度(Tm)は、低温定着性(特に定着画像搬送時の定着強度)及び帯電維持率(特に高温高湿下における帯電維持率)の観点から、好ましくは40〜100℃であり、より好ましくは45〜90℃である。吸熱ピークトップ温度が40℃以上の場合は帯電維持率(特に高温高湿下における帯電維持率)が良好となり、100℃以下の場合は低温定着性(特に定着画像搬送時の定着強度)が良好となる。
但し、トナーバインダーの吸熱ピークトップ温度(Tm)とは、示差走査熱量計(DSC)を用いてトナーバインダーを20℃から150℃まで10℃/分の条件で第1回目の昇温した後、150℃から0℃まで10℃/分の条件で冷却し、続いて0℃から150℃まで10℃/分の条件で昇温する第2回目の昇温過程におけるトナーバインダーの吸熱ピークのピークトップ温度である。なお、トナーバインダーの吸熱ピークトップ温度(Tm)は前述した結晶性ビニル樹脂(B)の吸熱ピークトップ温度(Tm)と同様の方法で測定できる。
トナーバインダーの吸熱ピークトップ温度(Tm)は、結晶性ビニル樹脂(B)を構成する単量体(a)の炭素数を調整すること、結晶性ビニル樹脂(B)を構成する単量体(a)の重量比率を調整することなどにより上記の好ましい範囲に調整することができる。一般的には単量体(a)の炭素数を増やす、単量体(a)の重量比率を増やす、結晶性ビニル樹脂(B)の重量平均分子量を増やすことにより吸熱ピークトップ温度(Tm)が上がる傾向にある。また、結晶性ビニル樹脂(B)の含有量が少ない場合は、ポリエステル樹脂(A)と結晶性ビニル樹脂(B)とのSP値の差を大きくすることで吸熱ピークトップ温度(Tm)が下がりにくくなる。
トナーバインダーのガラス転移温度(Tg)は、低温定着性(特に定着画像搬送時の定着強度)、分散性及び帯電維持率(特に高温高湿下における帯電維持率)の観点から、−35〜60℃が好ましく、更に好ましくは−15〜58℃、特に好ましくは15〜55℃、最も好ましくは35〜55℃である。
なお、Tgは、DSCを用いて、ASTM D3418−82に規定の方法(DSC法)により決定することができる。ガラス転移温度(Tg)の測定には、例えば、TA Instruments(株)製、DSC Q20等を用いることができる。ガラス転移温度(Tg)は、下記の条件で測定することができる。
<測定条件>
(1)30℃から20℃/分で150℃まで昇温
(2)150℃で10分間保持
(3)20℃/分で−35℃まで冷却
(4)−35℃で10分間保持
(5)20℃/分で150℃まで昇温
(6)(5)の過程にて測定される示差走査熱量曲線を解析する。
トナーバインダーの酸価は、分散性及び帯電維持率の観点から、0〜50mgKOH/gが好ましく、更に好ましくは1〜30mgKOH/gである。特に好ましくは1〜20mgKOH/gである。
なお、酸価は、JIS K0070に規定の方法で測定することができる。
本発明のトナーバインダー中の有機溶剤の含有量は、トナーバインダーの重量に基づいて2000ppm以下であることが好ましい。有機溶剤含有量が2000ppm以下であると臭気が良好となる。トナーバインダー中の有機溶剤の含有量は、より好ましくは1500ppm以下であり、さらに好ましくは1000ppm以下であり、特に好ましくは500ppm以下である。
有機溶剤含有量を制御する方法としては、例えば、ポリエステル樹脂(A)、結晶性ビニル樹脂(B)及びトナーバインダーを製造する際の(1)有機溶剤使用量の制御、(2)開始剤量を制御(開始剤分解物の制御)、(3)(A)、(B)及びトナーバインダーを製造する際の有機溶剤、及び開始剤分解残渣の脱溶剤による制御等が挙げられる。
(3)において、有機溶剤を脱溶剤する方法及び開始剤分解残渣を脱溶剤する方法としては、特に限定しないが、トナーバインダーを粉砕したものを二軸押出機に供給し、溶融搬送しながらベント口から減圧を行う方法が挙げられる。このとき、溶融温度や軸回転数、減圧度などを調整することで、トナーバインダー中の有機溶剤量を制御できる。また、トナーバインダーを任意の温度下で減圧操作することでも脱溶剤できる。なお、撹拌機を用いて撹拌しながら減圧してもよい。このとき、温度や減圧度、撹拌速度などを調整することで、トナーバインダー中の有機溶剤量を制御できる。脱溶剤する際の温度について好ましくは20〜200℃、より好ましくは30〜170℃、さらに好ましくは40〜160℃である。脱溶剤する際の減圧度について好ましくは0.01〜100kPa、より好ましくは0.1〜95kPa、さらに好ましくは1〜90kPaである。
一方、二軸押出機にて原料を反応させながら、同時にベント口から減圧を行うこともできる。また、反応容器中に原料を仕込んで反応させた場合、反応後にそのまま減圧操作にて脱溶剤する方法でも脱溶剤を行うことができる。このとき、上記と同様の項目を調整することで、トナーバインダー中の有機溶剤量を制御できる。
あるいは、トナーバインダーを粉砕したものを脱溶剤の対象となる有機溶剤の種類に応じて温度及び圧力(常圧ないし減圧)が調整された乾燥機に入れることで、トナーバインダー中の有機溶剤量を制御できる。
また、短時間で脱溶剤する方法が、ポリエステル樹脂(A)と結晶性ビニル樹脂(B)のエステル交換反応が起こりにくく、帯電維持率(特に高温高湿下における帯電維持率)が良好なため好ましい。
なお、有機溶剤の含有量(ppm)は、例えばガスクロマトグラフ分析やガスクロマトグラフ質量分析等の下記条件で測定することができる。
実施例及び比較例に係るトナーバインダー中の有機溶剤の含有量は、以下の条件で測定した。
[ガスクロマトグラフ分析測定条件]
ガスクロマトグラフ :Agilent 6890N
質量分析装置 :Agilent 5973 inert
カラム :ZB−WAX(液相:(14%−シアノプロピル−フェニル)メチルポリシロキサン) 0.25mm×30m df=1.0μm
カラム温度 :70℃→300℃(10℃/分)
インジェクション温度:200℃
スプリット比 :50:1
注入量 :1μL
ヘリウム流量 :1mL/分
検出器 :MSD
トナーバインダーが含有する有機溶剤としては、特に制限されないが、例えば、エタノール、ノルマルプロピルアルコール、イソプロピルアルコール、n−ブタノール、s−ブタノール、t−ブタノール、ジアセトンアルコール、2−エチルヘキサノール、アセトン、メチルエチルケトン、メチルイソブチルケトン、メチルn−ブチルケトン、アセトニトリル、ジメチルアセトアミド、ジメチルホルムアミド、N−メチルピロリドン、エチレングリコール、ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、1,4−ジオキサン、1,3−ジオキサン、1,3−オキソラン、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、エチルカルビトール、ブチルカルビトール、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、1,2−ジクロロエタン、1,2−ジクロロエチレン、1,1,2,2−テトラクロロエタン、トリクロロエチレン、テトラクロロエチレン、ヘキサン、ペンタン、ベンゼン、へプタン、トルエン、キシレン、クレゾール、クロロベンゼン、スチレン、酢酸イソブチル、酢酸イソプロピル、酢酸イソペンチル、酢酸エチル、酢酸n−プロピル、酢酸n−ブチル、酢酸n−ペンチル、酢酸メチル、シクロヘキサノール、シクロヘキサノン、メチルシクロヘキサノール、メチルシクロヘキサノン、ジクロロメタン、オルトジクロロベンゼン、ジメチルスルホキシド、無水酢酸、酢酸、ヘキサメチルフォスフォリックトリアミド、トリエチルアミン、ピリジン、アセトフェノン、t−ヘキシルアルコール、t−アミルアルコール及びt−ブトキシベンゼンなどが挙げられる。
これらのうち、臭気の観点から、好ましくは炭素数が2〜10である化合物であり、より好ましくは炭素数が3〜8である化合物であり、さらに好ましくはアセトン、イソプロピルアルコール及びt−ブタノールである。
有機溶剤含有量を制御する方法としては、従来は上述の(3)による脱溶剤する方法が一般的であるが、架橋ポリエステル樹脂の溶融物は流動性が低く、脱溶剤に長時間を要することから、架橋構造の切断などにより樹脂物性の低下が生じていた。本発明ではポリエステル樹脂(A1)をエポキシ化合物(E)及び/又はオキサゾリン化合物(O)で架橋させているため、従来のラジカル反応開始剤(c)を用いて架橋反応させる場合と比較して、ラジカル反応開始剤(c)の分解により発生し、熱安定性の低下及び臭気発生の原因となる有機溶剤等を抑制でき、さらに樹脂物性低下を生じる架橋反応後の脱溶剤も不必要なことから、耐熱保存性、帯電維持率(特に高温高湿下における帯電維持率)、ブロッキング性及び臭気が良好なトナーを得ることができる。
本発明のトナーバインダーは、トナーへ適用することが有用である。トナーは、本発明のトナーバインダーを含有する。
トナーは、本発明のトナーバインダー以外に、必要により、着色剤、離型剤、荷電制御剤及び流動化剤等から選ばれる1種以上の公知の添加剤を含有してもよい。
着色剤としては、トナー用着色剤として使用されている染料及び顔料等のすべてを使用することができる。例えば、カーボンブラック、鉄黒、スーダンブラックSM、ファーストイエローG、ベンジジンイエロー、ピグメントイエロー、インドファーストオレンジ、イルガシンレッド、パラニトロアニリンレッド、トルイジンレッド、カーミンFB、ピグメントオレンジR、レーキレッド2G、ローダミンFB、ローダミンBレーキ、メチルバイオレットBレーキ、フタロシアニンブルー、ピグメントブルー、ブリリアントグリーン、フタロシアニングリーン、オイルイエローGG、カヤセットYG、オラゾールブラウンB及びオイルピンクOP等が挙げられる。着色剤は、これらのいずれか単独であってもよく、2種以上が混合されたものであってもよい。また、必要により磁性粉(鉄、コバルト、ニッケル等の強磁性金属の粉末若しくはマグネタイト、ヘマタイト、フェライト等の化合物)を着色剤としての機能を兼ねて含有させることができる。
着色剤の含有量は、トナーバインダー100重量部に対して、好ましくは1〜40重量部、より好ましくは3〜10重量部である。なお、磁性粉を用いる場合は、トナーバインダー100重量部に対して、好ましくは20〜150重量部、より好ましくは40〜120重量部である。
離型剤としては、フローテスターによるフロー軟化点(T1/2)が50〜170℃のものが好ましく、ポリオレフィンワックス、マイクロクリスタリンワックス、パラフィンワックス、フィッシャートロプシュワックス等の脂肪族炭化水素系ワックス及びそれらの酸化物、カルナバワックス、モンタンワックス及びそれらの脱酸ワックス、エステルワックス、脂肪酸アミド類、脂肪酸類、高級アルコール類、脂肪酸金属塩等が挙げられる。
離型剤のフロー軟化点(T1/2)は以下の条件で測定される値である。
<フロー軟化点(T1/2)の測定方法>
試験力押出形細管式レオメータフローテスタ[たとえば、(株)島津製作所製、CFT−500D]を用いて、1gの測定試料を昇温速度6℃/分で加熱しながら、プランジャーにより1.96MPaの荷重を与え、直径1mm、長さ1mmのノズルから押し出して、「プランジャー降下量(流れ値)」と「温度」とのグラフを描き、プランジャーの降下量の最大値の1/2に対応する温度をグラフから読み取り、この値(測定試料の半分が流出したときの温度)をフロー軟化点(T1/2)とする。
ポリオレフィンワックスとしては、オレフィン(例えばエチレン、プロピレン、1−ブテン、イソブチレン、1−ヘキセン、1−ドデセン、1−オクタデセン及びこれらの混合物等)の(共)重合体[(共)重合により得られるもの及びそれをさらに熱減成して得られるものを含む](例えば低分子量ポリプロピレン、低分子量ポリエチレン、低分子量ポリプロピレンポリエチレン共重合体)、オレフィンの(共)重合体の酸素及び/又はオゾンによる酸化物、オレフィンの(共)重合体のマレイン酸変性物[例えばマレイン酸及びその誘導体(無水マレイン酸、マレイン酸モノメチル、マレイン酸モノブチル及びマレイン酸ジメチル等)変性物]、オレフィンと不飽和カルボン酸[(メタ)アクリル酸、イタコン酸及び無水マレイン酸等]及び/又は不飽和カルボン酸アルキルエステル[(メタ)アクリル酸アルキル(アルキルの炭素数1〜18)エステル及びマレイン酸アルキル(アルキルの炭素数1〜18)エステル等]等との共重合体等が挙げられる。
マイクロクリスタリンワックスとしては、例えば、日本精蝋(株)製のHi−Mic−2095、Hi−Mic−1090、Hi−Mic−1080、Hi−Mic−1070、Hi−Mic−2065、Hi−Mic−1045、Hi−Mic−2045等が挙げられる。
パラフィンワックスとしては、例えば、日本精蝋(株)製のParaffin WAX−155、Paraffin WAX−150、Paraffin WAX−145、Paraffin WAX−140、Paraffin WAX−135、HNP−3、HNP−5、HNP−9、HNP−10、HNP−11、HNP−12、HNP−51等が挙げられる。
フィッシャートロプシュワックスとしては、サゾール社製のSasolwax C80等が挙げられる。
カルナバワックスとしては、株式会社加藤洋行社製の精製カルナウバワックス 特製1号等が挙げられる。
エステルワックスとしては、脂肪酸エステルワックス(例えば、日油社製のニッサンエレクトールWEP−2、WEP−3、WEP−4、WEP−5及びWEP−8等)等が挙げられる。
高級アルコール類としては、炭素数30〜50の脂肪族アルコール等であり、例えばトリアコンタノールが挙げられる。脂肪酸類としては、炭素数30〜50の脂肪酸等であり、例えばトリアコンタンカルボン酸が挙げられる。
脂肪酸アミドとしては、三菱ケミカル社製のダイヤミッドY、ダイヤミッド200等が挙げられる。
荷電制御剤としては、正帯電性荷電制御剤及び負帯電性荷電制御剤のいずれを含有していてもよく、ニグロシン染料、3級アミンを側鎖として含有するトリフェニルメタン染料、4級アンモニウム塩、ポリアミン樹脂、イミダゾール誘導体、4級アンモニウム塩基含有ポリマー、含金属アゾ染料、銅フタロシアニン染料、サリチル酸金属塩、ベンジル酸のホウ素錯体、スルホン酸基含有ポリマー、含フッ素ポリマー及びハロゲン置換芳香環含有ポリマー等が挙げられる。
流動化剤としては、シリカ、チタニア、アルミナ、炭酸カルシウム、脂肪酸金属塩、シリコーン樹脂粒子及びフッ素樹脂粒子等が挙げられ、2種以上を併用してもよい。トナーの帯電性の観点からシリカが好ましい。また、シリカは、トナーの転写性の観点から疎水性シリカであることが好ましい。
トナー中のトナーバインダーの含有量はトナー重量に基づき、好ましくは30〜97重量%、より好ましくは40〜95重量%、更に好ましくは45〜92重量%である。
着色剤の含有量はトナー重量に基づき、好ましくは0.05〜60重量%、より好ましくは0.1〜55重量%、更に好ましくは0.5〜50重量%である。
離型剤の含有量はトナー重量に基づき、好ましくは0〜30重量%、より好ましくは0.5〜20重量%、更に好ましくは1〜10重量%である。
荷電制御剤の含有量はトナー重量に基づき、好ましくは0〜20重量%、より好ましくは0.1〜10重量%、更に好ましくは0.5〜7.5重量%である。
流動化剤の含有量はトナー重量に基づき、好ましくは0〜10重量%、より好ましくは0〜5重量%、更に好ましくは0.1〜4重量%である。
また、添加剤の含有量の合計量はトナー重量に基づき、好ましくは3〜70重量%、より好ましくは4〜58重量%、更に好ましくは5〜50重量%である。
トナーの組成比を上記の範囲とすることで、帯電維持率(特に高温高湿下における帯電維持率)、分散性が良好なトナーを容易に得ることができる。
トナーは、公知の混練粉砕法、乳化転相法及び重合法等のいずれの方法により得られたものであってもよい。
例えば、混練粉砕法によりトナーを得る場合、流動化剤を除くトナーを構成する成分を乾式ブレンドした後、溶融混練し、その後粗粉砕し、最終的にジェットミル粉砕機等を用いて微粒化して、さらに分級することにより、体積平均粒径(D50)が好ましくは5〜20μmの微粒とした後、流動化剤を混合して製造することができる。
なお、体積平均粒径(D50)はコールターカウンター{例えば、商品名:マルチサイザーIII[ベックマン・コールター(株)製]}を用いて測定される。
また、乳化転相法によりトナーを得る場合、流動化剤を除くトナーを構成する成分を有機溶剤に溶解又は分散後、水を添加する等によりエマルジョン化し、次いで分離、分級して製造することができる。トナーの体積平均粒径は、3〜15μmが好ましい。
トナーは、必要に応じて鉄粉、ガラスビーズ、ニッケル粉、フェライト、マグネタイト及び樹脂(アクリル樹脂、シリコーン樹脂等)により表面をコーティングしたフェライト等のキャリア粒子と混合されて電気的潜像の現像剤として用いられる。キャリア粒子を用いる場合、トナーとキャリア粒子との重量比は、1/99〜99/1が好ましい。また、キャリア粒子の代わりに帯電ブレード等の部材と摩擦し、電気的潜像を形成することもできる。
なお、トナーは、キャリア粒子を含まなくてもよい。
トナーは、複写機、プリンター等により支持体(紙、ポリエステルフィルム等)に定着して記録材料とされる。支持体に定着する方法としては、公知の熱ロール定着方法及びフラッシュ定着方法等が適用できる。
トナー及び本発明のトナーバインダーは電子写真法、静電記録法や静電印刷法等において、静電荷像又は磁気潜像の現像に用いられる。さらに詳しくは、特にフルカラー用に好適な静電荷像又は磁気潜像の現像に用いられる。
以下、実施例及び比較例により本発明をさらに説明するが、本発明はこれらに限定されるものではない。以下、特に定めない限り、「部」は重量部を示す。
<製造例1> [ポリエステル樹脂(A1−1)の製造]
冷却管、撹拌機及び窒素導入管の付いた反応槽中に、ビスフェノールA・PO2モル付加物698部、テレフタル酸102部、無水トリメリット酸53部、縮合触媒としてチタニウムジイソプロポキシビストリエタノールアミネート2.5部を入れ、230℃で窒素気流下に、生成する水を留去しながら2時間反応させた。次に、0.5〜2.5kPaの減圧下に5時間反応させ、酸価1mgKOH/g未満であることを確認した後、180℃まで降温した。アジピン酸206部を入れ2時間反応させた後、0.5〜2.5kPaの減圧下に3時間反応させ、酸価が48mgKOH/gであることを確認した後取り出し、ポリエステル樹脂(A1−1)を得た。
<製造例2> [ポリエステル樹脂(A1−2)の製造]
冷却管、撹拌機及び窒素導入管の付いた反応槽中に、ビスフェノールA・PO2モル付加物390部、ビスフェノールA・PO3モル付加物174部、ビスフェノールA・EO2モル付加物161部、テレフタル酸153部、無水トリメリット酸34部、縮合触媒としてチタニウムジイソプロポキシビストリエタノールアミネート2.5部を入れ、230℃で窒素気流下に、生成する水を留去しながら2時間反応させた。次に、0.5〜2.5kPaの減圧下に5時間反応させ、酸価1mgKOH/g未満であることを確認した後、180℃まで降温した。アジピン酸165部を入れ2時間反応させた後、0.5〜2.5kPaの減圧下に4時間反応させ、酸価が30mgKOH/gであることを確認した後取り出し、ポリエステル樹脂(A1−2)を得た。
<製造例3> [ポリエステル樹脂(A1−3)の製造]
冷却管、撹拌機及び窒素導入管の付いた反応槽中に、ビスフェノールA・PO3モル付加物739部、テレフタル酸211部、無水トリメリット酸15部、縮合触媒としてチタニウムジイソプロポキシビストリエタノールアミネート2.5部を入れ、230℃で窒素気流下に、生成する水を留去しながら2時間反応させた。次に、0.5〜2.5kPaの減圧下に5時間反応させ、酸価1mgKOH/g未満であることを確認した後、180℃まで降温した。イソフタル酸38部、アジピン酸67部を入れ2時間反応させた後、0.5〜2.5kPaの減圧下に4時間反応させ、酸価が15mgKOH/gであることを確認した後取り出し、ポリエステル樹脂(A1−3)を得た。
<製造例4> [ポリエステル樹脂(A1−4)の製造]
冷却管、撹拌機及び窒素導入管の付いた反応槽中に、ビスフェノールA・EO2モル付加物739部、テレフタル酸119部、アジピン酸121部、トリメチロールプロパン13部、縮合触媒としてチタニウムジイソプロポキシビストリエタノールアミネート2.5部を入れ、230℃で窒素気流下に、生成する水を留去しながら2時間反応させた。次に、0.5〜2.5kPaの減圧下に5時間反応させた後、180℃まで降温した。重合禁止剤として2,6−ジ−tert−ブチル−4−メチルフェノール1部を入れ、さらにフマル酸を86部入れ、0.5〜2.5kPaの減圧下に8時間反応させた後取り出し、ポリエステル樹脂(A1−4)を得た。
ポリエステル樹脂(A1−1)〜(A1−4)の組成及び物性を表1に示す。
Figure 2021043439
<製造例5> [結晶性ビニル樹脂(B−1)の製造]
オートクレーブにキシレン138部を仕込み、窒素で置換した後、撹拌下密閉状態で165℃まで昇温した。ベヘニルアクリレート[日油(株)製、以下同様]450部、スチレン[出光興産(株)製、以下同様]150部、アクリロニトリル[ナカライテスク(株)製、以下同様]150部、ジ−t−ブチルパーオキシド[パーブチルD、日油(株)製、以下同様]1.1部、及びキシレン100部の混合溶液を60℃に温調し、オートクレーブ内温度を165℃にコントロールしながら、3時間かけて滴下し重合を行った。滴下後、滴下ラインをキシレン12部で洗浄した。更に同温度で0.5時間保ち、単量体(a)の反応率を確認した。単量体(a)の反応率が95%未満であったため、さらにジ−t−ブチルパーオキシドを0.4部投入し、反応率が95%以上まで反応させた。165℃で5時間0.5〜2.5kPaの減圧下で脱溶剤を行い、結晶性ビニル樹脂(B−1)を得た。
<製造例6> [結晶性ビニル樹脂(B−2)の製造]
オートクレーブにベヘニルアクリレート335部、酢酸エチル[三協化学(株)製、以下同様]363部を仕込み、窒素で置換した後、撹拌下密閉状態で78℃まで昇温した。アクリロニトリル50部、スチレン79部、アクリル酸メチル[三菱ケミカル(株)製、以下同様]15部、メタクリル酸[三菱ケミカル(株)製、以下同様]21部、2,2’−アゾビス(2−メチルブチロニトリル)[富士フイルム和光純薬(株)製、以下同様]11.0部、酢酸エチル112部の混合溶液を、オートクレーブ内温度を78℃にコントロールしながら、2時間かけて滴下し重合を行った。滴下後、滴下ラインを酢酸エチル25部で洗浄した。同温度で5時間保った後、1時間かけてオートクレーブ内温度を92℃まで昇温した。更に同温度で2時間保った後60℃まで降温し、単量体(a)の反応率を確認した。単量体(a)の反応率が95%未満であったため、80℃まで昇温し、2,2’−アゾビス(2,4−ジメチルバレロニトリル)[富士フイルム和光純薬(株)製、以下同様]2.5部と酢酸エチル38部の混合溶液を1時間かけて滴下した。滴下後80℃で2時間保持し、反応率が95%以上まで反応させた。110℃で6時間0.5〜2.5kPaの減圧下で脱溶剤を行い、結晶性ビニル樹脂(B−2)を得た。
<製造例7> [結晶性ビニル樹脂(B−3)の製造]
オートクレーブにキシレン138部を仕込み、窒素で置換した後、撹拌下密閉状態で165℃まで昇温した。ステアリルアクリレート[日油(株)製、以下同様]600部、スチレン50部、アクリロニトリル100部、ジ−t−ブチルパーオキシド0.2部、及びキシレン100部の混合溶液を60℃に温調し、オートクレーブ内温度を165℃にコントロールしながら、3時間かけて滴下し重合を行った。滴下後、滴下ラインをキシレン12部で洗浄した。更に同温度で0.5時間保ち、単量体(a)の反応率を確認した。単量体(a)の反応率が95%未満であったため、さらにジ−t−ブチルパーオキシドを0.1部投入し、反応率が95%以上まで反応させた。165℃で5時間0.5〜2.5kPaの減圧下で脱溶剤を行い、結晶性ビニル樹脂(B−3)を得た。
<製造例8> [結晶性ビニル樹脂(B−4)の製造]
オートクレーブにベヘニルアクリレート200部、酢酸エチル363部を仕込み、窒素で置換した後、撹拌下密閉状態で78℃まで昇温した。スチレン67部、アクリル酸メチル35部、メタクリロニトリル[旭化成(株)製、以下同様]150部、メタクリル酸48部、2,2’−アゾビス(2−メチルブチロニトリル)6.5部、酢酸エチル112部の混合溶液を、オートクレーブ内温度を78℃にコントロールしながら、2時間かけて滴下し重合を行った。滴下後、滴下ラインを酢酸エチル25部で洗浄した。同温度で5時間保った後、1時間かけてオートクレーブ内温度を92℃まで昇温した。更に同温度で2時間保った後60℃まで降温し、単量体(a)の反応率を確認した。単量体(a)の反応率が95%未満であったため、80℃まで昇温し、2,2’−アゾビス(2,4−ジメチルバレロニトリル)2.0部と酢酸エチル38部の混合溶液を1時間かけて滴下した。滴下後80℃で2時間保持し、反応率が95%以上まで反応させた。110℃で6時間0.5〜2.5kPaの減圧下で脱溶剤を行い、結晶性ビニル樹脂(B−4)を得た。
<製造例9> [結晶性ビニル樹脂(B−5)の製造]
オートクレーブにベヘニルアクリレート250部、酢酸エチル363部を仕込み、窒素で置換した後、撹拌下密閉状態で78℃まで昇温した。スチレン100部、アクリル酸メチル50部、メタクリロニトリル70部、アクリル酸[三菱ケミカル(株)製、以下同様]30部、2,2’−アゾビス(2−メチルブチロニトリル)3.0部、酢酸エチル112部の混合溶液を、オートクレーブ内温度を78℃にコントロールしながら、2時間かけて滴下し重合を行った。滴下後、滴下ラインを酢酸エチル25部で洗浄した。同温度で5時間保った後、1時間かけてオートクレーブ内温度を92℃まで昇温した。更に同温度で2時間保った後60℃まで降温し、単量体(a)の反応率を確認した。単量体(a)の反応率が95%未満であったため、80℃まで昇温し、2,2’−アゾビス(2,4−ジメチルバレロニトリル)1.0部と酢酸エチル38部の混合溶液を1時間かけて滴下した。滴下後80℃で2時間保持し、反応率が95%以上まで反応させた。120℃で6時間0.5〜2.5kPaの減圧下で脱溶剤を行い、結晶性ビニル樹脂(B−5)を得た。
<製造例10> [結晶性ビニル樹脂(B−6)の製造]
オートクレーブにキシレン138部を仕込み、窒素で置換した後、撹拌下密閉状態で165℃まで昇温した。ベヘニルアクリレート300部、ステアリルアクリレート150部、アクリロニトリル125部、アクリル酸ブチル[三菱ケミカル(株)製、以下同様]75部、メタクリル酸メチル[住友化学(株)製、以下同様]100部、ジ−t−ブチルパーオキシド0.4部、及びキシレン100部の混合溶液を60℃に温調し、オートクレーブ内温度を165℃にコントロールしながら、3時間かけて滴下し重合を行った。滴下後、滴下ラインをキシレン12部で洗浄した。更に同温度で0.5時間保ち、単量体(a)の反応率を確認した。単量体(a)の反応率が95%未満であったため、さらにジ−t−ブチルパーオキシドを0.2部投入し、反応率が95%以上まで反応させた。165℃で5時間0.5〜2.5kPaの減圧下で脱溶剤を行い、結晶性ビニル樹脂(B−6)を得た。
<製造例11> [トリアコンチルアクリレートの合成]
撹拌装置、加熱冷却装置、温度計、空気導入管、減圧装置、減水装置を備えた反応容器に、1−トリアコンタノール50部、トルエン50部、アクリル酸12部、ハイドロキノン0.05部を投入し、撹拌して均一化した。その後、パラトルエンスルホン酸2部を加え、30分撹拌した後、空気を30mL/分の流量で吹き込みながら100℃で生成する水を除去しながら5時間反応させた。その後、反応容器内の圧力を300mmHgに調整し、生成する水を除去しながらさらに3時間反応させた。反応溶液を室温まで冷却後、10重量%水酸化ナトリウム水溶液30部を加えて1時間撹拌したのち静置して有機相と水相を分離させた。有機相を分液及び遠心分離操作で採取し、ハイドロキノン0.01部を投入し、空気を吹き込みながら減圧で溶媒を除去し、トリアコンチルアクリレートを得た。
<製造例12> [結晶性ビニル樹脂(B−7)の製造]
オートクレーブにキシレン138部を仕込み、窒素で置換した後、撹拌下密閉状態で165℃まで昇温した。製造例11で得たトリアコンチルアクリレート525部、スチレン75部、アクリロニトリル150部、ジ−t−ブチルパーオキシド1.7部、及びキシレン100部の混合溶液を60℃に温調し、オートクレーブ内温度を165℃にコントロールしながら、3時間かけて滴下し重合を行った。滴下後、滴下ラインをキシレン12部で洗浄した。更に同温度で0.5時間保ち、単量体(a)の反応率を確認した。単量体(a)の反応率が95%未満であったため、さらにジ−t−ブチルパーオキシドを0.5部投入し、反応率が95%以上まで反応させた。170℃で5時間0.5〜2.5kPaの減圧下で脱溶剤を行い、結晶性ビニル樹脂(B−7)を得た。
結晶性ビニル樹脂(B−1)〜(B−7)の組成及び物性を表2に示す。
Figure 2021043439
<実施例1> [トナーバインダー(C−1)の製造]
ポリエステル樹脂(A1−1)50部、結晶性ビニル樹脂(B−1)50部、jER157S70[ビスフェノールAノボラック型エポキシ樹脂、三菱ケミカル(株)製、以下同様、エポキシ当量209](E−1)3.6部及びエポキシ化触媒であるイミダゾール[富士フイルム和光純薬(株)製、以下同様]0.1部を混合し、二軸混練機[(株)栗本鐵工所、S5KRCニーダー]に80kg/時で供給し、180℃、90rpmで5分間混練押出して架橋反応を行った。混合で得られたものを冷却することにより、ポリエステル樹脂(A1−1)がエポキシ化合物により架橋されたポリエステル樹脂(A)を含有したトナーバインダー(C−1)を得た。
<実施例2> [トナーバインダー(C−2)の製造]
ポリエステル樹脂(A1−2)40部、結晶性ビニル樹脂(B−2)60部、jER157S70(E−1)6.3部及びエポキシ化触媒であるイミダゾール0.1部を混合し、二軸混練機に80kg/時で供給し、180℃、90rpmで5分間混練押出して架橋反応を行った。混合で得られたものを冷却することにより、ポリエステル樹脂(A1−2)がエポキシ化合物により架橋されたポリエステル樹脂(A)を含有したトナーバインダー(C−2)を得た。
<実施例3> [トナーバインダー(C−3)の製造]
ポリエステル樹脂(A1−2)60部、結晶性ビニル樹脂(B−3)40部、EHPE3150[2,2−ビス(ヒドロキシメチル)−1−ブタノールの1,2−エポキシ−4−(2−オキシラニル)シクロヘキサン付加物、(株)ダイセル製、以下同様、エポキシ当量175](E−2)3.4部及びエポキシ化触媒であるイミダゾール0.1部を混合し、二軸混練機に80kg/時で供給し、180℃、90rpmで5分間混練押出して架橋反応を行った。混合で得られたものを冷却することにより、ポリエステル樹脂(A1−2)がエポキシ化合物により架橋されたポリエステル樹脂(A)を含有したトナーバインダー(C−3)を得た。
<実施例4> [トナーバインダー(C−4)の製造]
ポリエステル樹脂(A1−3)50部、結晶性ビニル樹脂(B−4)50部、jER1001[ビスフェノールA型エポキシ樹脂、三菱ケミカル(株)製、以下同様、エポキシ当量470](E−3)17.3部及びエポキシ化触媒であるイミダゾール0.1部を混合し、二軸混練機に80kg/時で供給し、180℃、90rpmで5分間混練押出して架橋反応を行った。混合で得られたものを冷却することにより、ポリエステル樹脂(A1−3)がエポキシ化合物により架橋されたポリエステル樹脂(A)を含有したトナーバインダー(C−4)を得た。
<実施例5> [トナーバインダー(C−5)の製造]
ポリエステル樹脂(A1−3)60部、結晶性ビニル樹脂(B−5)40部、ペンタエリスリトールポリグリシジルエーテル[ナガセケムテックス(株)製、以下同様、エポキシ当量229](E−4)8.2部及びエポキシ化触媒であるイミダゾール0.1部を混合し、二軸混練機に80kg/時で供給し、180℃、90rpmで5分間混練押出して架橋反応を行った。混合で得られたものを冷却することにより、ポリエステル樹脂(A1−3)がエポキシ化合物により架橋されたポリエステル樹脂(A)を含有したトナーバインダー(C−5)を得た。
<実施例6> [トナーバインダー(C−6)の製造]
ポリエステル樹脂(A1−1)20部、結晶性ビニル樹脂(B−2)80部、jER157S70(E−1)4.7部及びエポキシ化触媒であるイミダゾール0.1部を混合し、二軸混練機に80kg/時で供給し、160℃、90rpmで5分間混練押出して架橋反応を行った。混合で得られたものを冷却することにより、ポリエステル樹脂(A1−1)がエポキシ化合物により架橋されたポリエステル樹脂(A)を含有したトナーバインダー(C−6)を得た。
<実施例7> [トナーバインダー(C−7)の製造]
ポリエステル樹脂(A1−2)30部、結晶性ビニル樹脂(B−6)70部、jER157S70(E−1)3.0部及びエポキシ化触媒であるイミダゾール0.1部を混合し、二軸混練機に80kg/時で供給し、160℃、90rpmで5分間混練押出して架橋反応を行った。混合で得られたものを冷却することにより、ポリエステル樹脂(A1−2)がエポキシ化合物により架橋されたポリエステル樹脂(A)を含有したトナーバインダー(C−7)を得た。
<実施例8> [トナーバインダー(C−8)の製造]
ポリエステル樹脂(A1−3)40部、結晶性ビニル樹脂(B−7)60部、jER828[ビスフェノールA型エポキシ樹脂、三菱ケミカル(株)製、以下同様、エポキシ当量190](E−5)1.6部及びエポキシ化触媒であるイミダゾール0.1部を混合し、二軸混練機に50kg/時で供給し、150℃、90rpmで7分間混練押出して架橋反応を行った。混合で得られたものを冷却することにより、ポリエステル樹脂(A1−3)がエポキシ化合物により架橋されたポリエステル樹脂(A)を含有したトナーバインダー(C−8)を得た。
<実施例9> [トナーバインダー(C−9)の製造]
ポリエステル樹脂(A1−1)50部、jER157S70(E−1)3.6部及びエポキシ化触媒であるイミダゾール0.1部を混合し、二軸混練機に80kg/時で供給し、180℃、90rpmで5分間混練押出して架橋反応を行った。得られた樹脂と結晶性ビニル樹脂(B−1)50部を二軸混練機に80kg/時で供給し、180℃、90rpmで5分間混練押出し得られたものを冷却することにより、ポリエステル樹脂(A1−1)がエポキシ化合物により架橋されたポリエステル樹脂(A)を含有したトナーバインダー(C−9)を得た。
<実施例10> [トナーバインダー(C−10)の製造]
ポリエステル樹脂(A1−1)40部、結晶性ビニル樹脂(B−1)60部、1,3−PBO[2,2’−(1,3−フェニレン)ビス−(2−オキサゾリン)、三國製薬工業(株)製、以下同様、オキサゾリン価108](O−1)1.5部を混合し、二軸混練機に80kg/時で供給し、180℃、90rpmで5分間混練押出して架橋反応を行った。混合で得られたものを冷却することにより、ポリエステル樹脂(A1−1)がオキサゾリン化合物により架橋されたポリエステル樹脂(A)を含有したトナーバインダー(C−10)を得た。
<実施例11> [トナーバインダー(C−11)の製造]
ポリエステル樹脂(A1−2)60部、結晶性ビニル樹脂(B−2)40部、1,3−PBO(O−1)3.3部を混合し、二軸混練機に50kg/時で供給し、160℃、90rpmで7分間混練押出して架橋反応を行った。混合で得られたものを冷却することにより、ポリエステル樹脂(A1−2)がオキサゾリン化合物により架橋されたポリエステル樹脂(A)を含有したトナーバインダー(C−11)を得た。
<実施例12> [トナーバインダー(C−12)の製造]
ポリエステル樹脂(A1−3)50部、結晶性ビニル樹脂(B−4)50部、エポクロスWS−500[(株)日本触媒製、オキサゾリン価220](O−2)15.4部を混合し、二軸混練機に50kg/時で供給し、150℃、90rpmで7分間混練押出して架橋反応を行った。混合で得られたものを冷却することにより、ポリエステル樹脂(A1−3)がオキサゾリン化合物により架橋されたポリエステル樹脂(A)を含有したトナーバインダー(C−12)を得た。
<実施例13> [トナーバインダー(C−13)の製造]
ポリエステル樹脂(A1−2)20部、結晶性ビニル樹脂(B−3)80部、EHPE3150(E−2)1.5部及びエポキシ化触媒であるイミダゾール0.1部を混合し、二軸混練機に80kg/時で供給し、180℃、90rpmで5分間混練押出して架橋反応を行った。混合で得られたものを冷却することにより、ポリエステル樹脂(A1−2)がエポキシ化合物により架橋されたポリエステル樹脂(A)を含有したトナーバインダー(C−13)を得た。
<実施例14> [トナーバインダー(C−14)の製造]
ポリエステル樹脂(A1−1)40部、結晶性ビニル樹脂(B−1)60部、jER157S70(E−1)2.0部、エポキシ化触媒であるイミダゾール0.1部及び1,3−PBO(O−1)1.5部を混合し、二軸混練機に80kg/時で供給し、180℃、90rpmで5分間混練押出して架橋反応を行った。混合で得られたものを冷却することにより、ポリエステル樹脂(A1−1)がエポキシ化合物及びオキサゾリン化合物により架橋されたポリエステル樹脂(A)を含有したトナーバインダー(C−14)を得た。
<比較例1> [トナーバインダー(C’−1)の製造]
ポリエステル樹脂(A1−2)70部、結晶性ビニル樹脂(B−4)30部、jER157S70(E−1)5.8部及びエポキシ化触媒であるイミダゾール0.1部を混合し、二軸混練機に80kg/時で供給し、160℃、90rpmで5分間混練押出して架橋反応を行った。混合で得られたものを冷却することにより、ポリエステル樹脂(A1−2)がエポキシ化合物により架橋されたポリエステル樹脂(A)を含有したトナーバインダー(C’−1)を得た。
<比較例2> [トナーバインダー(C’−2)の製造]
ポリエステル樹脂(A1−1)10部、結晶性ビニル樹脂(B−7)90部、jER157S70(E−1)0.7部及びエポキシ化触媒であるイミダゾール0.1部を混合し、二軸混練機に80kg/時で供給し、180℃、90rpmで5分間混練押出して架橋反応を行った。混合で得られたものを冷却することにより、ポリエステル樹脂(A1−1)がエポキシ化合物により架橋されたポリエステル樹脂(A)を含有したトナーバインダー(C’−2)を得た。
<比較例3> [トナーバインダー(C’−3)の製造]
ポリエステル樹脂(A1−4)40部、結晶性ビニル樹脂(B−1)60部を混合し、二軸混練機に52kg/時で供給し、同時にラジカル反応開始剤(c)としてt−ブチルパーオキシイソプロピルモノカーボネート1.0部を0.52kg/時で供給して160℃、90rpmで7分間混練押出して架橋反応を行い、さらにベント口から50kPaで減圧して有機溶剤の除去を行いながら混合した。混合で得られたものを冷却することにより、ポリエステル樹脂(A1−4)が炭素−炭素結合により架橋されたポリエステル樹脂を含有したトナーバインダー(C’−3)を得た。
トナーバインダー(C−1)〜(C−14)、(C’−1)〜(C’−3)の配合組成及び物性を表3に示す。
Figure 2021043439
<トナーの製造>
トナーバインダー[各実施例及び比較例で得られたトナーバインダー]88部に対して、顔料のカーボンブラック[三菱ケミカル(株)製、MA−100]7部、離型剤のカルナバワックス3部、荷電制御剤[保土谷化学工業(株)製、T−77]1部を加え下記の方法でトナー化した。
まず、ヘンシェルミキサー[日本コークス工業(株)製、FM10B]を用いて予備混合した後、二軸混練機[(株)池貝製、PCM−30]で混練した。ついで超音速ジェット粉砕機ラボジェット[(株)栗本鐵工所製、KJ−25]を用いて微粉砕した後、エルボージェット分級機[(株)マツボー製、EJ−L−3(LABO)型]で分級し、体積平均粒径D50が7μmのトナー粒子を得た。
ついで、トナー粒子100部に流動化剤としてコロイダルシリカ[日本アエロジル(株)製、アエロジルR972]1部をサンプルミルにて混合して、トナーを得た。
表4に記載した原料の配合部数で、各実施例及び比較例で得られたトナーバインダーを使用してトナーを製造した。なお、表4には、実施例1〜14のトナーバインダー(C−1)〜(C−14)を使用して得られたトナー(T−1)〜(T〜14)、及び比較例1〜3のトナーバインダー(C’−1)〜(C’−3)を使用して得られたトナー(T’−1)〜(T’−3)の組成と評価結果をそれぞれ示す。
[トナーの性能評価]
以下に、得られたトナー(T−1)〜(T−14)及び(T’−1)〜(T’−3)の低温定着性(MFT及び定着強度)、帯電維持率(低温低湿条件及び高温高湿条件)、分散性及び臭気の評価方法を、判定基準を含めて説明する。
<低温定着性(MFT及び定着強度)>
(1)MFT
トナーを紙面上に1.0mg/cmとなるよう均一に載せた。このとき粉体を紙面に載せる方法は、熱定着機を外したプリンターを用いた。この紙をソフトローラーに定着速度(加熱ローラーの周速)213mm/秒、加熱ローラーの温度90〜200℃の範囲を5℃刻みで通した。次に定着画像へのコールドオフセットの有無を目視し、コールドオフセットの発生温度(MFT)を測定した。
コールドオフセットの発生温度が低いほど、低温定着性に優れることを意味し、この評価条件では、MFTは一般には125℃以下であることが好ましい。
(2)定着強度
トナー組成物10gとフェライトキャリア[パウダーテック(株)製、F−150]400gを均一に混合し二成分現像剤を調整した。
上記二成分現像剤を、市販モノクロ複写機[AR5030、シャープ(株)製]を用いて紙全面ベタ画像で、1.0±0.1mg/cmのトナーが現像される様に調整を行なって画像を定着し、排紙ローラーによって生じた画像搬送傷を観察した。画像搬送傷が無い最低定着温度を求めた。
本温度が低いほど低温定着性に優れることを意味し、この評価条件では、定着強度は一般には130℃以下であることが好ましい。
<帯電維持率(低温低湿条件及び高温高湿条件)>
(1)トナー1gとアエロジルR8200(エボニックジャパン(株)製)0.01gをシェイカーで1時間混合する。本混合物0.5gとフェライトキャリア(パウダーテック社製、F−150)20gとを50mLのガラス瓶に入れ、これを23℃、相対湿度50%で8時間調湿した(低温低湿条件と呼ぶ)。また同様に50℃、相対湿度95%で24時間調湿した(高温高湿条件と呼ぶ)。
(2)ターブラーシェーカーミキサーにて50rpmで10分間及び60分間摩擦攪拌し、それぞれの時間での帯電量をブローオフ帯電量測定装置[京セラケミカル(株)製]を用いて測定した。
得られた値を用いて「摩擦時間60分後の帯電量/摩擦時間10分後の帯電量」を計算し、これを帯電安定性指数とした。
本帯電安定性指数が大きいほど帯電維持率に優れることを意味する。この評価条件では0.8以上であると好ましい。
<分散性>
実施例及び比較例で得られたトナーを約100μmに超薄切片化し、四酸化ルテニウムにより染色した後、透過型電子顕微鏡(TEM)により倍率3,000倍で観察し、トナー(トナーバインダー)中の結晶性ビニル樹脂(B)中に存在するポリエステル樹脂(A)の個数平均分散径を画像処理装置(株式会社キーエンス社製、VHX−700F)を用いて画像解析(任意の10個を直径計測し、平均値を算出)することにより計算し、以下の判定基準で評価した。
[判定基準]
◎:1.5μm未満
○:1.5μm以上3.0μm未満
△:3.0μm以上5.0μm未満
×:5.0μm以上
<臭気>
トナーを蓋付ガラス製試験管(φ15mm×150mm)に1.0g入れ、密閉し、210℃にて5分間加熱した。その後、蓋を取り、10人のモニターが臭気を確認し、以下の判定基準で評価した。
[判定基準]
○:0〜1人が臭うと回答
△:2〜6人が臭うと回答
×:7人以上が臭うと回答
Figure 2021043439
表4の評価結果から明らかなように、各実施例で製造したトナーバインダーを使用したトナー(T−1)〜(T−14)はいずれもすべての性能評価において優れた結果が得られた。一方、各比較例で製造したトナーバインダーを使用したトナー(T’−1)〜(T’−3)は、いくつかの性能項目が不良であった。具体的には、比較例1はトナーバインダーの吸熱量が5J/g未満であるため低温定着性が悪化した。比較例2はトナーバインダーの吸熱量が35J/gより大きいため高温高湿下での帯電維持率が悪化した。また、比較例3は炭素−炭素結合により架橋されたポリエステル樹脂を含有するが、ラジカル重合開始剤(c)を用いて架橋反応させるため有機溶剤の含有量が多く、熱安定性の低下、高温高湿下での帯電維持率の低下が生じ、さらに臭気が悪化した。
本発明のトナーバインダーは、低温定着性(特に定着画像搬送時の定着強度)、帯電維持率(特に高温高湿下における帯電維持率)、分散性、臭気に優れ、電子写真、静電記録や静電印刷等に用いる静電荷像現像用トナーとして好適に使用できる。
さらに、塗料用添加剤、接着剤用添加剤、電子ペーパー用粒子などの用途として好適である。

Claims (7)

  1. ポリエステル樹脂(A)と結晶性ビニル樹脂(B)を含有するトナーバインダーであって、前記ポリエステル樹脂(A)はポリエステル樹脂(A1)がエポキシ化合物(E)及び/又はオキサゾリン化合物(O)により架橋された樹脂であり、示差走査熱量計(DSC)により20℃から150℃まで10℃/分で昇温した後、150℃から0℃まで10℃/分で冷却し、0℃から150℃まで10℃/分で昇温する条件で測定されたトナーバインダーの第2回目の昇温過程における吸熱量が5〜35J/gであるトナーバインダー。
  2. 結晶性ビニル樹脂(B)が単量体(a)を必須構成単量体とする重合物であり、前記単量体(a)は鎖状炭化水素基を有する炭素数21〜40の(メタ)アクリレートであり、(B)を構成する単量体中の(a)の重量割合が、(B)を構成する単量体の合計重量を基準として30重量%以上である請求項1に記載のトナーバインダー。
  3. エポキシ化合物(E)がエポキシ当量150〜500の多官能エポキシ化合物である請求項1又は2に記載のトナーバインダー。
  4. ポリエステル樹脂(A1)の重量に対するエポキシ化合物(E)の重量割合が、1〜35重量%である請求項1〜3のいずれかに記載のトナーバインダー。
  5. ポリエステル樹脂(A1)の重量に対するオキサゾリン化合物(O)の重量割合が、1〜35重量%である請求項1〜4のいずれかに記載のトナーバインダー。
  6. 下記の関係式(1)を満たす請求項1〜5のいずれかに記載のトナーバインダー。
    |SPA1−SP|≦1.0 (1)
    [但し、SPA1はポリエステル樹脂(A)のSP値、SPは結晶性ビニル樹脂(B)のSP値を表す。]
  7. ポリエステル樹脂(A1)の酸価が5〜50mgKOH/gである請求項1〜6のいずれかに記載のトナーバインダー。
JP2020118550A 2019-09-06 2020-07-09 トナーバインダー Active JP7463218B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019162536 2019-09-06
JP2019162536 2019-09-06

Publications (2)

Publication Number Publication Date
JP2021043439A true JP2021043439A (ja) 2021-03-18
JP7463218B2 JP7463218B2 (ja) 2024-04-08

Family

ID=74864021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020118550A Active JP7463218B2 (ja) 2019-09-06 2020-07-09 トナーバインダー

Country Status (1)

Country Link
JP (1) JP7463218B2 (ja)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5297094B2 (ja) 2007-09-07 2013-09-25 花王株式会社 架橋樹脂粒子分散液
JP2010282154A (ja) 2009-06-08 2010-12-16 Sharp Corp トナーおよびトナーの製造方法
JP6735416B2 (ja) 2017-10-13 2020-08-05 三洋化成工業株式会社 トナーバインダー及びトナー

Also Published As

Publication number Publication date
JP7463218B2 (ja) 2024-04-08

Similar Documents

Publication Publication Date Title
US11022905B2 (en) Toner binder and toner
JP6948359B2 (ja) トナーバインダー
JP6942886B2 (ja) トナーバインダー
EP3382455B1 (en) Toner binder and toner
JP6767184B2 (ja) トナーバインダー及びトナー
JP2020187341A (ja) トナーバインダー及びトナーの製造方法
JP6829276B2 (ja) トナーバインダー
JP7295695B2 (ja) トナーバインダー
JP6983844B2 (ja) トナーバインダーの製造方法
JP7463218B2 (ja) トナーバインダー
JP6328712B2 (ja) トナーバインダーおよびトナー
JP7028995B2 (ja) トナーバインダー
JP7463210B2 (ja) トナーバインダー
US11156932B2 (en) Toner binder and toner
JP2021140153A (ja) トナーバインダーの製造方法
JP7488868B2 (ja) トナーバインダー
JP7181836B2 (ja) トナーバインダー
JP6713492B2 (ja) トナーバインダー及びトナー
JP2023115895A (ja) トナーバインダー
JP2019219655A (ja) トナーバインダー

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240327

R150 Certificate of patent or registration of utility model

Ref document number: 7463218

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150