[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2021042720A - Controller of internal combustion engine - Google Patents

Controller of internal combustion engine Download PDF

Info

Publication number
JP2021042720A
JP2021042720A JP2019165800A JP2019165800A JP2021042720A JP 2021042720 A JP2021042720 A JP 2021042720A JP 2019165800 A JP2019165800 A JP 2019165800A JP 2019165800 A JP2019165800 A JP 2019165800A JP 2021042720 A JP2021042720 A JP 2021042720A
Authority
JP
Japan
Prior art keywords
internal combustion
combustion engine
exhaust
air
cooling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019165800A
Other languages
Japanese (ja)
Inventor
内田 克己
Katsumi Uchida
克己 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2019165800A priority Critical patent/JP2021042720A/en
Publication of JP2021042720A publication Critical patent/JP2021042720A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Supercharger (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

To make an execution frequency of increase correction of a fuel injection amount for protecting members of an exhaust system appropriate or optimal, in control of an internal combustion engine equipped with a water-cooling type exhaust turbocharger.SOLUTION: A controller of an internal combustion engine is configured to: on condition that a delay time has elapsed since an operating region of the internal combustion engine transitioned to a predetermined region that may cause an excessive temperature rise of members of an exhaust system, perform correction control to increase a fuel injection amount so that an air-fuel ratio of an air-fuel mixture supplied to a cylinder becomes richer than a normal target air-fuel ratio; and adjust the delay time according to a flow rate or temperature of cooling water for cooling an exhaust turbocharger.SELECTED DRAWING: Figure 2

Description

本発明は、水冷式の排気ターボ過給機が付帯した内燃機関を制御する制御装置に関する。 The present invention relates to a control device for controlling an internal combustion engine equipped with a water-cooled exhaust turbocharger.

内燃機関の気筒から排出される排気ガスの持つエネルギを利用して排気タービン(タービンホイール)を回転させ、その回転をコンプレッサのインペラ(コンプレッサホイール)に伝達し、吸入空気を加圧圧縮(過給)して気筒へと送り込む排気ターボ過給機が公知である。 The exhaust gas (turbine wheel) is rotated by using the energy of the exhaust gas discharged from the cylinder of the internal combustion engine, and the rotation is transmitted to the compressor impeller (compressor wheel) to pressurize and compress (supercharge) the intake air. ), And an exhaust turbocharger that feeds into the cylinder is known.

排気ターボ過給機、特にタービンを内包するタービンハウジングは高温の排気ガスに曝される。それにより、過給機の構成部品を含む排気系の部材が熱害を受けるおそれがある。そこで、従来より、排気系の部材の過剰な昇温を招くことが懸念される状況下では燃料噴射量を増量補正し、燃料の気化熱(潜熱)を利用して排気の温度を低下させることで、排気系の部材の保護を図っている。 Exhaust turbochargers, especially turbine housings containing turbines, are exposed to hot exhaust gases. As a result, the exhaust system members including the components of the turbocharger may be damaged by heat. Therefore, conventionally, in a situation where there is a concern that an excessive temperature rise of the exhaust system members may occur, the fuel injection amount is increased and corrected, and the heat of vaporization (latent heat) of the fuel is used to lower the exhaust temperature. Therefore, we are trying to protect the members of the exhaust system.

加えて、近時では、タービンハウジングに冷却水ジャケットを付設して冷却水を流通させ、過給機を水冷することが検討されている(例えば、下記特許文献を参照)。 In addition, recently, it has been studied to attach a cooling water jacket to the turbine housing to distribute cooling water to cool the turbocharger with water (see, for example, the following patent documents).

特開2019−044683号公報JP-A-2019-044683 特開2019−148224号公報JP-A-2019-148224

空冷式のものに比して、水冷式の排気ターボ過給機はその温度上昇の速度が抑制される。水冷式の排気ターボ過給機を採用した内燃機関の制御に、空冷式の過給機を備える従前の内燃機関の制御をそのまま適用することは必ずしも好ましくない。従前と同等の頻度で燃料噴射量の増量補正を実行すると、排気系の部材の温度が適正範囲内に収まっているにもかかわらず不必要に燃料を噴射することになり、燃費性能の低下、及びリッチ空燃比に起因したエミッションの悪化(HCの排出増)というデメリットが大きくなる。 Compared to the air-cooled type, the water-cooled exhaust turbocharger suppresses the rate of temperature rise. It is not always preferable to directly apply the control of the conventional internal combustion engine equipped with the air-cooled supercharger to the control of the internal combustion engine adopting the water-cooled exhaust turbocharger. If the fuel injection amount is increased and corrected at the same frequency as before, fuel will be injected unnecessarily even though the temperature of the exhaust system members is within the appropriate range, resulting in a decrease in fuel efficiency. In addition, the demerit of worsening emissions (increased HC emissions) due to the rich air-fuel ratio becomes greater.

本発明は、水冷式の排気ターボ過給機が付帯する内燃機関の制御において、排気系の部材を保護するための燃料噴射量の増量補正の実行頻度を適正化ないし最適化することを所期の目的としている。 The present invention is intended to optimize or optimize the execution frequency of the fuel injection amount increase correction for protecting the exhaust system members in the control of the internal combustion engine attached to the water-cooled exhaust turbocharger. Is the purpose of.

上述した課題を解決するべく、本発明では、水冷式の排気ターボ過給機が付帯した内燃機関を制御する制御装置であって、内燃機関の運転領域が排気系の部材の過剰な昇温を招く可能性のある所定の領域に遷移してからディレイ時間が経過したことを条件として、気筒に供給される混合気の空燃比が平常の目標空燃比よりもリッチとなるように燃料噴射量を増量する補正制御を実施するものとし、前記ディレイ時間を、排気ターボ過給機を冷却する冷却水の流量及び/または温度に応じて増減調整する内燃機関の制御装置を構成した。 In order to solve the above-mentioned problems, the present invention is a control device for controlling an internal combustion engine equipped with a water-cooled exhaust turbocharger, in which the operating region of the internal combustion engine causes an excessive temperature rise of the exhaust system members. The fuel injection amount is adjusted so that the air-fuel ratio of the air-fuel mixture supplied to the cylinder becomes richer than the normal target air-fuel ratio, provided that the delay time has elapsed since the transition to the predetermined region that may be caused. An internal combustion engine control device is configured which adjusts the delay time according to the flow rate and / or temperature of the cooling water for cooling the exhaust turbocharger.

本発明によれば、水冷式の排気ターボ過給機が付帯する内燃機関の制御において、排気系の部材を保護するための燃料噴射量の増量補正の実行頻度を適正化ないし最適化できる。 According to the present invention, in the control of an internal combustion engine accompanied by a water-cooled exhaust turbocharger, it is possible to optimize or optimize the execution frequency of the fuel injection amount increase correction for protecting the members of the exhaust system.

本発明の一実施形態における車両用内燃機関及び制御装置の概略構成を示す図。The figure which shows the schematic structure of the internal combustion engine for a vehicle and the control device in one Embodiment of this invention. 同実施形態の制御装置がプログラムに従い実行する処理の手順例を示すフロー図。The flow chart which shows the procedure example of the process which the control device of the same embodiment executes according to a program. 排気ターボ過給機のタービンハウジングに流入するガスの温度、及びタービンハウジングから流出する冷却水の温度の上昇の実験的に計測した結果を示す図。The figure which shows the experimentally measured result of the temperature of the gas flowing into the turbine housing of the exhaust turbocharger, and the temperature rise of the cooling water flowing out from the turbine housing.

本発明の一実施形態を、図面を参照して説明する。図1に、本実施形態における車両用内燃機関の概要を示す。本実施形態の内燃機関は、火花点火式の4ストロークガソリンエンジンであり、複数の気筒1(図1には、そのうち一つを図示している)を包有している。各気筒1の吸気ポート近傍には、燃料を噴射するインジェクタ11を設けている。また、各気筒1の燃焼室の天井部に、点火プラグ12を取り付けてある。点火プラグ12は、点火コイルにて発生した誘導電圧の印加を受けて、中心電極と接地電極との間で火花放電を起こすものである。点火コイルは、半導体スイッチング素子であるイグナイタとともに、コイルケースに一体的に内蔵される。 An embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows an outline of an internal combustion engine for a vehicle according to the present embodiment. The internal combustion engine of the present embodiment is a spark-ignition type 4-stroke gasoline engine, and includes a plurality of cylinders 1 (one of which is illustrated in FIG. 1). An injector 11 for injecting fuel is provided in the vicinity of the intake port of each cylinder 1. Further, a spark plug 12 is attached to the ceiling of the combustion chamber of each cylinder 1. The spark plug 12 receives an induction voltage generated by the ignition coil and causes a spark discharge between the center electrode and the ground electrode. The ignition coil is integrally built in the coil case together with the igniter which is a semiconductor switching element.

吸気を供給するための吸気通路3は、外部から空気を取り入れて各気筒1の吸気ポートへと導く。吸気通路3上には、エアクリーナ31、排気ターボ過給機5のコンプレッサ51、インタクーラ35、電子スロットルバルブ32、サージタンク33、吸気マニホルド34を、上流からこの順序に配置している。 The intake passage 3 for supplying intake air takes in air from the outside and guides it to the intake port of each cylinder 1. On the intake passage 3, an air cleaner 31, a compressor 51 of an exhaust turbocharger 5, an intercooler 35, an electronic throttle valve 32, a surge tank 33, and an intake manifold 34 are arranged in this order from the upstream.

排気を排出するための排気通路4は、気筒1内で燃料を燃焼させた結果発生する排気を各気筒1の排気ポートから外部へと導く。この排気通路4上には、排気マニホルド42、排気ターボ過給機5の排気タービン52及び排気浄化用の三元触媒41を配置している。加えて、タービン52を迂回する排気バイパス通路43、及びこのバイパス通路43の入口を開閉するバイパス弁であるウェイストゲートバルブ44を設けてある。 The exhaust passage 4 for discharging the exhaust guides the exhaust generated as a result of burning the fuel in the cylinder 1 to the outside from the exhaust port of each cylinder 1. An exhaust manifold 42, an exhaust turbine 52 of an exhaust turbocharger 5, and a three-way catalyst 41 for exhaust purification are arranged on the exhaust passage 4. In addition, an exhaust bypass passage 43 that bypasses the turbine 52 and a wastegate valve 44 that is a bypass valve that opens and closes the inlet of the bypass passage 43 are provided.

排気ターボ過給機5は、排気タービン52とコンプレッサのインペラ51とをシャフト53を介して同軸で連結し連動するように構成したものである。そして、タービン52及びインペラ51を排気のエネルギを利用して回転駆動し、その回転力を以てコンプレッサにポンプ作用を営ませることにより、吸入空気を加圧圧縮(過給)して気筒1に送り込む。 The exhaust turbocharger 5 is configured so that the exhaust turbine 52 and the compressor impeller 51 are coaxially connected via a shaft 53 and interlocked with each other. Then, the turbine 52 and the impeller 51 are rotationally driven by using the energy of the exhaust gas, and the compressor is made to perform a pumping action by the rotational force, so that the intake air is pressurized and compressed (supercharged) and sent to the cylinder 1.

本実施形態における排気ターボ過給機5は、水冷式のものである。即ち、少なくともタービン52を収容するタービンハウジングに冷却水ジャケットを付設し、その冷却水ジャケットに冷却水を流通させることで、当該過給機5を冷却する。冷却水を吸込んで吐出し循環させる冷却水ポンプは、モータにより駆動される電動ポンプである。尤も、内燃機関の出力軸であるクランクシャフトからトルクの供給を受けて稼働する機械式のポンプであってもよい。機械式のポンプの回転数がエンジン回転数に比例し、同ポンプが吐出する冷却水の流量はエンジン回転数に依存するのに対して、電動ポンプの回転数はエンジン回転数に依存せず、電動ポンプが吐出する冷却水の流量はエンジン回転数とは無関係に増減させ得る。 The exhaust turbocharger 5 in this embodiment is a water-cooled type. That is, the supercharger 5 is cooled by attaching a cooling water jacket to at least the turbine housing accommodating the turbine 52 and circulating the cooling water through the cooling water jacket. The cooling water pump that sucks in, discharges, and circulates the cooling water is an electric pump driven by a motor. However, it may be a mechanical pump that operates by receiving torque from the crankshaft, which is the output shaft of the internal combustion engine. The rotation speed of the mechanical pump is proportional to the engine speed, and the flow rate of the cooling water discharged by the pump depends on the engine speed, whereas the rotation speed of the electric pump does not depend on the engine speed. The flow rate of the cooling water discharged by the electric pump can be increased or decreased regardless of the engine speed.

ウェイストゲートバルブ44は、排気通路4におけるタービン52の上流側と下流側とを接続するバイパス43を開通させることで、吸気通路3を流通する吸気の過給圧が過剰に大きくならないように抑制する役割を担う。また、ウェイストゲートバルブ44の開閉操作を通じて、過給圧を目標過給圧に追従させるフィードバック制御を実行することもあり得る。ウェイストゲートバルブ44は、例えばダイアフラム式のアクチュエータ6により駆動する。 The wastegate valve 44 opens a bypass 43 connecting the upstream side and the downstream side of the turbine 52 in the exhaust passage 4 to prevent the supercharging pressure of the intake air flowing through the intake passage 3 from becoming excessively large. Take a role. Further, it is possible to execute feedback control for making the boost pressure follow the target boost pressure through the opening / closing operation of the wastegate valve 44. The wastegate valve 44 is driven by, for example, a diaphragm type actuator 6.

アクチュエータ6は、ダイアフラム60により隔てられたダイアフラム室61及び定圧室62を有し、ダイアフラム室61と定圧室62との差圧を利用してダイアフラム60を変位させる。ダイアフラム60とウェイストゲートバルブ44とは、バルブロッド63を介して連結している。ダイアフラム室61と定圧室62との差圧が所定のセット圧を超えると、ダイアフラム60及びバルブロッド63が、スプリング64の弾性付勢力に抗して、ダイアフラム室61側から定圧室62側に向かって変位する。結果、バイパス通路43を閉鎖していたウェイストゲートバルブ44が駆動されて、バイパス通路43が開放される。これに対し、ダイアフラム室61と定圧室62との差圧がセット圧以下であるときには、スプリング64の弾性付勢力によりダイアフラム60及びバルブロッド63が元の位置に復帰し、ウェイストゲートバルブ44が完全に閉じて、バイパス通路43が閉鎖される。 The actuator 6 has a diaphragm chamber 61 and a constant pressure chamber 62 separated by a diaphragm 60, and displaces the diaphragm 60 by utilizing the differential pressure between the diaphragm chamber 61 and the constant pressure chamber 62. The diaphragm 60 and the wastegate valve 44 are connected via a valve rod 63. When the differential pressure between the diaphragm chamber 61 and the constant pressure chamber 62 exceeds a predetermined set pressure, the diaphragm 60 and the valve rod 63 move from the diaphragm chamber 61 side to the constant pressure chamber 62 side against the elastic urging force of the spring 64. Displace. As a result, the wastegate valve 44 that closed the bypass passage 43 is driven, and the bypass passage 43 is opened. On the other hand, when the differential pressure between the diaphragm chamber 61 and the constant pressure chamber 62 is equal to or less than the set pressure, the elastic urging force of the spring 64 returns the diaphragm 60 and the valve rod 63 to their original positions, and the wastegate valve 44 is completely completed. The bypass passage 43 is closed.

アクチュエータ6のダイアフラム室61には、吸気通路3におけるコンプレッサ51の下流側かつスロットルバルブ32の上流側の部位の吸気の圧力、つまりは過給圧を導入する。そのために、ダイアフラム室61と吸気通路3の当該部位とを連通させる過給圧導入流路71と、過給圧導入流路71及びダイアフラム室61を大気に開放する圧抜流路72と、圧抜流路72を開閉する調整バルブ(Vacuum Switching Valve)73とを設けている。VSV73は、制御信号lを受けてその開度を変化させるソレノイドバルブ等の既知の流量制御弁である。VSV73の開度を操作すれば、吸気通路3から過給圧導入流路71に流入する過給気の一部を圧抜流路72経由で大気に逃がし、ダイアフラム室61の圧力の大きさを制御することができる。アクチュエータ6の定圧室62には、通常、大気圧を導入する。 The intake pressure, that is, the supercharging pressure, is introduced into the diaphragm chamber 61 of the actuator 6 at a portion of the intake passage 3 on the downstream side of the compressor 51 and on the upstream side of the throttle valve 32. For that purpose, a boost pressure introduction flow path 71 that communicates the diaphragm chamber 61 with the relevant portion of the intake passage 3, a pressure relief flow path 72 that opens the boost pressure introduction flow path 71 and the diaphragm chamber 61 to the atmosphere, and pressure. An adjustment valve (Vacuum Switching Valve) 73 that opens and closes the drawing flow path 72 is provided. The VSV73 is a known flow rate control valve such as a solenoid valve that receives a control signal l and changes its opening degree. By manipulating the opening degree of the VSV 73, a part of the supercharged air flowing into the supercharging pressure introduction flow path 71 from the intake passage 3 is released to the atmosphere via the pressure relief flow path 72, and the magnitude of the pressure in the diaphragm chamber 61 is increased. Can be controlled. Atmospheric pressure is usually introduced into the constant pressure chamber 62 of the actuator 6.

排気ガス再循環(Exhaust Gas Recirculation)装置2は、いわゆる高圧ループEGRを実現するものであり、排気通路4における排気タービン52の上流側の所定箇所(排気マニホルド42であることがある)と吸気通路3におけるインタクーラ35及びスロットルバルブ32の下流側の所定箇所(サージタンク33であることがある)とを連通させる外部EGR通路21と、EGR通路21上に設けたEGRクーラ22と、EGR通路21を開閉し当該EGR通路21を流れるEGRガスの流量を制御するEGRバルブ23とを要素とする。 The exhaust gas recirculation device 2 realizes a so-called high-pressure loop EGR, and is a predetermined location (which may be an exhaust manifold 42) on the upstream side of the exhaust turbine 52 in the exhaust passage 4 and an intake passage. An external EGR passage 21 for communicating the intercooler 35 and a predetermined location (which may be a surge tank 33) on the downstream side of the throttle valve 32 in No. 3, an EGR cooler 22 provided on the EGR passage 21, and an EGR passage 21. The element is an EGR valve 23 that opens and closes and controls the flow rate of EGR gas flowing through the EGR passage 21.

内燃機関の各気筒1の吸気バルブの開閉タイミングを可変制御する可変バルブタイミング(Variable Valve Timing)機構8は、吸気バルブを開閉駆動するカムシャフトのクランクシャフトに対する回転位相を液圧(潤滑油圧)によって変化させるベーン式のものや、電動機によって変化させる電動式のもの(モータドライブVVT)である。VVT機構8は、カムシャフトをタイミングチェーンが巻き掛けられるカムスプロケットに対し相対的に回動させることを通じて、カムシャフトのクランクシャフトに対する回転位相を変化させ、以て吸気バルブの開閉タイミングを変更する。 The variable valve timing mechanism 8 that variably controls the opening / closing timing of the intake valve of each cylinder 1 of the internal combustion engine determines the rotation phase of the camshaft that opens / closes the intake valve with respect to the crankshaft by hydraulic pressure (lubricating hydraulic pressure). It is a vane type that can be changed, or an electric type (motor drive VVT) that can be changed by an electric motor. The VVT mechanism 8 changes the rotation phase of the camshaft with respect to the crankshaft by rotating the camshaft relative to the cam sprocket around which the timing chain is wound, thereby changing the opening / closing timing of the intake valve.

本実施形態の内燃機関の制御装置たるECU(Electronic Control Unit)0は、プロセッサ、メモリ、入力インタフェース、出力インタフェース等を有したマイクロコンピュータシステムである。ECU0は、複数基のECUまたはコントローラが、CAN(Controller Area Network)等の電気通信回線を介して相互に通信可能に接続されてなるものであることがある。 The ECU (Electronic Control Unit) 0, which is a control device for an internal combustion engine of the present embodiment, is a microcomputer system having a processor, a memory, an input interface, an output interface, and the like. The ECU 0 may be a plurality of ECUs or controllers connected to each other so as to be able to communicate with each other via a telecommunication line such as CAN (Control Area Network).

ECU0の入力インタフェースには、車両の実車速を検出する車速センサから出力される車速信号a、クランクシャフトの回転角度及びエンジン回転数を検出するクランク角センサから出力されるクランク角信号b、アクセルペダルの踏込量またはスロットルバルブ32の開度をアクセル開度、いわば内燃機関に対する要求負荷率として検出するセンサから出力されるアクセル開度信号c、ブレーキペダルの踏込量を検出するセンサから出力されるブレーキ踏量信号d、吸気通路3(特に、サージタンク33)内の吸気温及び吸気圧(過給圧)を検出する吸気温・吸気圧センサから出力される吸気温・吸気圧信号e、冷却水の温度を検出する水温センサから出力される冷却水温信号f、吸気カムシャフトの複数のカム角にてカム角センサから出力されるカム角信号g、外気温を検出する外気温センサから出力される外気温信号h等が入力される。 The input interface of ECU0 includes a vehicle speed signal a output from a vehicle speed sensor that detects the actual vehicle speed of the vehicle, a crank angle signal b output from a crank angle sensor that detects the rotation angle of the crankshaft and the engine rotation speed, and an accelerator pedal. Accelerator opening signal c output from a sensor that detects the amount of depression or the opening of the throttle valve 32 as the accelerator opening, so to speak, the required load factor for the internal combustion engine, and the brake output from the sensor that detects the amount of depression of the brake pedal. Stepping amount signal d, intake air temperature / intake pressure signal e output from the intake air temperature / intake pressure sensor that detects the intake air temperature and intake pressure (supercharging pressure) in the intake passage 3 (particularly, surge tank 33), cooling water. Cooling water temperature signal f output from the water temperature sensor that detects the temperature of, cam angle signal g that is output from the cam angle sensor at multiple cam angles of the intake camshaft, and output from the outside temperature sensor that detects the outside temperature. The outside temperature signal h and the like are input.

ECU0の出力インタフェースからは、点火プラグ12のイグナイタに対して点火信号i、インジェクタ11に対して燃料噴射信号j、スロットルバルブ32に対して開度操作信号k、EGRバルブ23に対して開度操作信号l、VSV73に対して開度操作信号m、VVT機構8に対して吸気バルブ及び/または排気バルブの開閉タイミングの制御信号n、冷却水ポンプに対して回転数ひいては冷却水の吐出流量を制御する制御信号o等を出力する。 From the output interface of ECU 0, the ignition signal i for the spark plug 12 igniter, the fuel injection signal j for the injector 11, the opening operation signal k for the throttle valve 32, and the opening operation for the EGR valve 23. The opening operation signal m is controlled for the signals l and VSV73, the control signal n for the opening / closing timing of the intake valve and / or the exhaust valve is controlled for the VVT mechanism 8, and the rotation speed and thus the discharge flow rate of the cooling water are controlled for the cooling water pump. Outputs the control signal o and the like.

ECU0のプロセッサは、予めメモリに格納されているプログラムを解釈、実行し、運転パラメータを演算して内燃機関の運転を制御する。ECU0は、内燃機関の運転制御に必要な各種情報a、b、c、d、e、f、g、hを入力インタフェースを介して取得し、エンジン回転数を知得するとともに気筒1に充填される吸入空気量を推算する。そして、吸入空気量に見合った(目標空燃比を実現するのに必要な)要求燃料噴射量、燃料噴射タイミング(一度の燃焼に対する燃料噴射の回数を含む)、燃料噴射圧、点火タイミング(一度の燃焼に対する点火の回数を含む)、要求EGR率(または、EGRガス量)、吸気バルブの開閉タイミング、冷却水の流量等といった各種運転パラメータを決定する。ECU0は、運転パラメータに対応した各種制御信号i、j、k、l、m、n、oを出力インタフェースを介して印加する。 The processor of ECU 0 interprets and executes a program stored in the memory in advance, calculates an operation parameter, and controls the operation of the internal combustion engine. The ECU 0 acquires various information a, b, c, d, e, f, g, h necessary for the operation control of the internal combustion engine via the input interface, obtains the engine speed, and fills the cylinder 1. Estimate the amount of intake air. Then, the required fuel injection amount (necessary to achieve the target air-fuel ratio), fuel injection timing (including the number of fuel injections per combustion), fuel injection pressure, and ignition timing (once) corresponding to the intake air amount. Various operating parameters such as the required number of ignitions for combustion), the required EGR rate (or the amount of EGR gas), the opening / closing timing of the intake valve, the flow rate of cooling water, and the like are determined. The ECU 0 applies various control signals i, j, k, l, m, n, and o corresponding to the operation parameters via the output interface.

排気ターボ過給機5、特にタービン52を内包するタービンハウジングは高温の排気ガスに曝される。それにより、過給機5の構成部品を含む排気系4の部材が熱害を受けるおそれがある。本実施形態のECU0は、排気系4の部材の過剰な昇温を招くことが懸念される状況下では燃料噴射量を平常よりも増量する補正制御を実施し、燃料の気化熱を利用して排気の温度を低下させることで、排気系4の部材の保護を図る。 The exhaust turbocharger 5, particularly the turbine housing containing the turbine 52, is exposed to high temperature exhaust gas. As a result, the members of the exhaust system 4 including the components of the turbocharger 5 may be damaged by heat. The ECU 0 of the present embodiment performs correction control to increase the fuel injection amount from the normal level in a situation where there is a concern that the temperature of the members of the exhaust system 4 may be excessively raised, and utilizes the heat of vaporization of the fuel. By lowering the temperature of the exhaust, the members of the exhaust system 4 are protected.

図2に示すように、ECU0は、内燃機関の運転領域[エンジン回転数,エンジン負荷率(または、エンジントルク、サージタンク33内吸気圧(過給圧)、吸入空気量または燃料噴射量)]が所定の領域に遷移したとき(ステップS1)、ディレイ時間を設定した上で(ステップS2)、以後経過した時間の計数を開始する(ステップS3)。ステップS1にいう所定の領域とは、排気の温度が高温化したり排気の流量が増加したりして、排気系4の部材の過剰な昇温を招き、部材が熱害を受けるおそれがある運転領域のことであり、エンジン回転数が比較的高く、またエンジン負荷率が比較的大きい領域がこれに該当する。 As shown in FIG. 2, the ECU 0 describes the operating region of the internal combustion engine [engine speed, engine load factor (or engine torque, intake pressure (supercharging pressure) in surge tank 33, intake air amount or fuel injection amount)]. After transitioning to a predetermined region (step S1), after setting a delay time (step S2), counting of the elapsed time thereafter is started (step S3). The predetermined region referred to in step S1 is an operation in which the temperature of the exhaust gas rises or the flow rate of the exhaust gas increases, which causes an excessive temperature rise of the members of the exhaust system 4 and may cause heat damage to the members. This is a region where the engine speed is relatively high and the engine load factor is relatively large.

ステップS2にいうディレイ時間とは、内燃機関が上記の所定領域に遷移した後、実際に燃料噴射量の増量補正を実行開始するまでの間の待ち時間のことである。ディレイ時間が経過する前に、エンジン回転数またはエンジン負荷率が低下して上記の所定領域を脱した場合には、燃料噴射量の増量補正を行わない。ディレイ時間は、現在の内燃機関の運転領域、並びに、排気ターボ過給機5を水冷する冷却水の流量及び/または温度に応じて増減調整する。 The delay time referred to in step S2 is a waiting time between the transition of the internal combustion engine to the predetermined region and the actual start of the fuel injection amount increase correction. If the engine speed or the engine load factor decreases before the delay time elapses and the engine speed deviates from the above-mentioned predetermined region, the fuel injection amount is not increased and corrected. The delay time is adjusted according to the current operating range of the internal combustion engine and the flow rate and / or temperature of the cooling water for cooling the exhaust turbocharger 5.

図3は、排気ターボ過給機5のタービンハウジングに高温のガスを流入させる実験を行い、タービンハウジングから流出する冷却水の温度の上昇の推移を計測した結果である。図3中、実線は冷却水の流量が比較的少ない場合を表し、破線は冷却水の流量が比較的多い場合を表している。冷却水の温度上昇は、循環する冷却水の流量が少ないほど速く、多いほど遅くなる。タービンハウジングの温度上昇もまた同様である。冷却水の循環流量が多いほど、冷却効果が高くなり、タービンハウジングやその他の排気系4の部材が高温化するまでに時間的な余裕が生じる。 FIG. 3 shows the results of conducting an experiment in which a high-temperature gas flows into the turbine housing of the exhaust turbocharger 5 and measuring the transition of the temperature rise of the cooling water flowing out from the turbine housing. In FIG. 3, the solid line represents the case where the flow rate of the cooling water is relatively small, and the broken line represents the case where the flow rate of the cooling water is relatively large. The temperature rise of the cooling water is faster as the flow rate of the circulating cooling water is smaller, and slower as the flow rate of the cooling water is larger. The same applies to the temperature rise of the turbine housing. The larger the circulation flow rate of the cooling water, the higher the cooling effect, and there is a time allowance until the temperature of the turbine housing and other members of the exhaust system 4 becomes high.

原則として、ディレイ時間は、エンジン回転数が低いほど長く(高いほど短く)、エンジン負荷率が小さいほど長く(大きいほど短く)、冷却水の流量が多いほど長く(少ないほど短く)、冷却水の温度が低いほど長く(高いほど短く)設定する。ECU0のメモリには予め、エンジン回転数、エンジン負荷率、冷却水の流量及び温度等とディレイ時間との関係を規定したマップデータが格納されている。ステップS2にて、ECU0は、現在のエンジン回転数、エンジン負荷率、冷却水の流量及び温度等をキーとして当該マップを検索し、設定するべきディレイ時間を知得する。冷却水ポンプとして電動ポンプを採用しているのであれば、当該ポンプに対して与えている制御信号o、印加電流、印加電圧または当該ポンプの回転数が、現在の冷却水の吐出流量を示唆する。機械式のポンプを採用しているのであれば、当該ポンプの回転数、換言すればエンジン回転数が、現在の冷却水の吐出流量を示唆する。 As a general rule, the delay time is longer as the engine speed is lower (higher is shorter), longer as the engine load factor is smaller (shorter as it is larger), longer as the flow rate of cooling water is higher (shorter as it is lower), and cooling water. Set longer as the temperature is lower (shorter as the temperature is higher). In the memory of the ECU 0, map data that defines the relationship between the engine speed, the engine load factor, the flow rate and temperature of the cooling water, and the delay time is stored in advance. In step S2, the ECU 0 searches the map using the current engine speed, engine load factor, cooling water flow rate, temperature, and the like as keys, and knows the delay time to be set. If an electric pump is used as the cooling water pump, the control signal o, the applied current, the applied voltage, or the rotation speed of the pump given to the pump suggests the current discharge flow rate of the cooling water. .. If a mechanical pump is used, the engine speed, in other words the engine speed, suggests the current discharge flow rate of the cooling water.

ステップS2にて設定するディレイ時間を、冷却水の流量及び温度以外の要素、例えば、現在の外気温や車速等によって増減させてもよい。外気温及び車速は、エンジンルーム(エンジンコンパートメント)内に吹き込む走行風の温度及び流量に関連する。外気温が低いほど、また車速が高いほど、内燃機関の各部が冷却されやすく、その分ディレイ時間を延長することが可能である。 The delay time set in step S2 may be increased or decreased depending on factors other than the flow rate and temperature of the cooling water, for example, the current outside air temperature and vehicle speed. The outside air temperature and vehicle speed are related to the temperature and flow rate of the running wind blown into the engine room (engine compartment). The lower the outside air temperature and the higher the vehicle speed, the easier it is for each part of the internal combustion engine to be cooled, and the delay time can be extended accordingly.

これまでの運転の履歴を、考慮に入れることもできる。継続的に燃料を燃焼させて内燃機関を運転している時間、直近の過去に実行した燃料カットから経過した時間、または直近の過去に実行したアイドルストップから経過した時間が長いほど、内燃機関の排気系4の部材の温度が上昇していると考えられるので、その分ディレイ時間を短縮することが一案である。 The history of driving so far can also be taken into account. The longer the time that the internal combustion engine is operated by continuously burning fuel, the time that has passed since the fuel cut that was executed in the latest past, or the time that has passed since the idle stop that was executed in the latest past, the more the internal combustion engine Since it is considered that the temperature of the members of the exhaust system 4 has risen, it is an idea to shorten the delay time by that amount.

内燃機関が上記の所定領域に遷移した後、設定したディレイ時間が経過したならば(ステップS4)、ECU0が燃料噴射量の増量補正の実行を開始する(ステップS6)。ステップS6の補正制御では、気筒1に供給される混合気の空燃比が平常の目標空燃比(火花点火式内燃機関では、理論空燃比またはその近傍)よりもリッチとなるように、燃料噴射量を増量する。 When the set delay time elapses after the internal combustion engine transitions to the above-mentioned predetermined region (step S4), the ECU 0 starts executing the fuel injection amount increase correction (step S6). In the correction control in step S6, the fuel injection amount is such that the air-fuel ratio of the air-fuel mixture supplied to the cylinder 1 becomes richer than the normal target air-fuel ratio (in the spark-ignition internal combustion engine, the stoichiometric air-fuel ratio or its vicinity). To increase the amount.

ディレイ時間が経過する前に、内燃機関の運転領域が上記の所定領域よりも低回転または低負荷の領域に遷移したときには(ステップS5)、燃料噴射量の増量補正を実行しない(ステップS7)。 When the operating region of the internal combustion engine transitions to a region having a lower rotation speed or a lower load than the above-mentioned predetermined region before the delay time elapses (step S5), the fuel injection amount increase correction is not executed (step S7).

本実施形態では、水冷式の排気ターボ過給機5が付帯した内燃機関を制御する制御装置0であって、内燃機関の運転領域が排気系4の部材の過剰な昇温を招く可能性のある所定の領域に遷移して(ステップS1)からディレイ時間が経過した(ステップS4)ことを条件として、気筒1に供給される混合気の空燃比が平常の目標空燃比よりもリッチとなるように燃料噴射量を増量する補正制御を実施する(ステップS6)ものとし、前記ディレイ時間を、排気ターボ過給機5を冷却する冷却水の流量及び/または温度に応じて増減調整する(ステップS2)内燃機関の制御装置0を構成した。 In the present embodiment, the control device 0 for controlling the internal combustion engine to which the water-cooled exhaust turbocharger 5 is attached, and the operating region of the internal combustion engine may cause an excessive temperature rise of the members of the exhaust system 4. The air-fuel ratio of the air-fuel mixture supplied to the cylinder 1 becomes richer than the normal target air-fuel ratio on condition that the delay time elapses (step S4) after the transition to a predetermined region (step S1). A correction control for increasing the fuel injection amount is performed (step S6), and the delay time is adjusted to increase or decrease according to the flow rate and / or temperature of the cooling water for cooling the exhaust turbocharger 5 (step S2). ) The control device 0 of the internal combustion engine was configured.

本実施形態の制御装置0は、過給機5のタービン52やタービンハウジングを含む排気系4の部材の温度に実際の影響を及ぼす要素、即ち過給機5を水冷する冷却水の流量及び/または温度、外気温、車速、運転の履歴等に基づき、燃料噴射量の増量補正を実行開始するまでのディレイ時間を延長または短縮する。本実施形態によれば、過給機5を水冷式としたメリットを最大限に活用し、排気系4の部材の保護のための燃料噴射量の増量補正を実行する頻度を適正化ないし最適化することができる。排気系4の部材がよく冷却され部材の温度上昇が緩慢な状況下では、ディレイ時間を長くとり、ステップS5の条件を成立させやすくして、不必要な燃料噴射量の増量補正をできる限り回避する。増量補正の実行頻度が低下すれば、燃料消費が削減される。並びに、空燃比のリッチ化に伴うエミッションの悪化を抑制することにも繋がる。 The control device 0 of the present embodiment is an element that actually affects the temperature of the members of the exhaust system 4 including the turbine 52 of the supercharger 5 and the turbine housing, that is, the flow rate of the cooling water for cooling the supercharger 5 and / Alternatively, the delay time until the start of execution of the fuel injection amount increase correction is extended or shortened based on the temperature, the outside temperature, the vehicle speed, the driving history, and the like. According to the present embodiment, the merit of making the supercharger 5 water-cooled is fully utilized, and the frequency of executing the fuel injection amount increase correction for protecting the members of the exhaust system 4 is optimized or optimized. can do. In a situation where the members of the exhaust system 4 are well cooled and the temperature of the members rises slowly, a long delay time is taken to make it easier to satisfy the condition of step S5, and unnecessary increase correction of the fuel injection amount is avoided as much as possible. To do. If the frequency of execution of the increase correction is reduced, the fuel consumption will be reduced. At the same time, it also leads to suppressing the deterioration of emissions due to the enrichment of the air-fuel ratio.

逆に、排気系4の部材が冷却されにくく部材の温度上昇が速くなる状況下では、ディレイ時間を短くし、ステップS4の条件を成立させやすくして、適時に燃料噴射量の増量補正を実行できるようにする。これにより、排気系4の部材の過剰な昇温を抑制し、部材が熱害を受けることを適切に防止する。 On the contrary, in a situation where the member of the exhaust system 4 is difficult to be cooled and the temperature of the member rises quickly, the delay time is shortened, the condition of step S4 is easily satisfied, and the fuel injection amount is corrected in a timely manner. It can be so. As a result, excessive temperature rise of the member of the exhaust system 4 is suppressed, and the member is appropriately prevented from being damaged by heat.

また、本実施形態によれば、排気系4の部材の温度や排気ガスの温度を直接に検出するセンサを設置する必要がなく、ハードウェアの追加によるコスト増を招かずに済む。電動の冷却水ポンプは、エンジン回転数とは無関係に冷却水の吐出流量を増減させることが可能であるので、排気系4の部材を冷却する必要性が高いときに冷却水の流量を積極的に増量して部材の保護を図るとともに、ディレイ時間を延長して燃料噴射量の増量補正の実行頻度を引き下げることができる。 Further, according to the present embodiment, it is not necessary to install a sensor that directly detects the temperature of the member of the exhaust system 4 and the temperature of the exhaust gas, and it is not necessary to increase the cost due to the addition of hardware. Since the electric cooling water pump can increase or decrease the discharge flow rate of the cooling water regardless of the engine speed, the flow rate of the cooling water is positively increased when it is highly necessary to cool the members of the exhaust system 4. The amount can be increased to protect the members, and the delay time can be extended to reduce the frequency of execution of the fuel injection amount increase correction.

なお、本発明は以上に詳述した実施形態に限られるものではない。各部の具体的な構成や処理の手順等は、本発明の趣旨を逸脱しない範囲で種々変形が可能である。 The present invention is not limited to the embodiments described in detail above. The specific configuration of each part, the processing procedure, and the like can be variously modified without departing from the spirit of the present invention.

本発明は、車両等に搭載される内燃機関の制御に適用することができる。 The present invention can be applied to the control of an internal combustion engine mounted on a vehicle or the like.

0…制御装置(ECU)
1…気筒
11…インジェクタ
4…排気系
5…排気ターボ過給機
52…タービン
a…車速信号
b…クランク角信号
c…アクセル開度信号
f…冷却水温信号
h…外気温信号
j…燃料噴射信号
o…冷却水ポンプの制御信号
0 ... Control device (ECU)
1 ... Cylinder 11 ... Injector 4 ... Exhaust system 5 ... Exhaust turbocharger 52 ... Turbine a ... Vehicle speed signal b ... Crank angle signal c ... Accelerator opening signal f ... Cooling water temperature signal h ... Outside temperature signal j ... Fuel injection signal o ... Control signal of cooling water pump

Claims (1)

水冷式の排気ターボ過給機が付帯した内燃機関を制御する制御装置であって、
内燃機関の運転領域が排気系の部材の過剰な昇温を招く可能性のある所定の領域に遷移してからディレイ時間が経過したことを条件として、気筒に供給される混合気の空燃比が平常の目標空燃比よりもリッチとなるように燃料噴射量を増量する補正制御を実施するものとし、
前記ディレイ時間を、排気ターボ過給機を冷却する冷却水の流量または温度に応じて増減調整する内燃機関の制御装置。
A control device that controls an internal combustion engine with a water-cooled exhaust turbocharger.
The air-fuel ratio of the air-fuel mixture supplied to the cylinder is such that the delay time has elapsed since the operating region of the internal combustion engine transitioned to a predetermined region that may cause excessive temperature rise of the exhaust system members. Correction control shall be implemented to increase the fuel injection amount so that it becomes richer than the normal target air-fuel ratio.
An internal combustion engine control device that adjusts the delay time according to the flow rate or temperature of the cooling water that cools the exhaust turbocharger.
JP2019165800A 2019-09-12 2019-09-12 Controller of internal combustion engine Pending JP2021042720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019165800A JP2021042720A (en) 2019-09-12 2019-09-12 Controller of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019165800A JP2021042720A (en) 2019-09-12 2019-09-12 Controller of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2021042720A true JP2021042720A (en) 2021-03-18

Family

ID=74862937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019165800A Pending JP2021042720A (en) 2019-09-12 2019-09-12 Controller of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2021042720A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5828567A (en) * 1981-07-31 1983-02-19 Toyota Motor Corp Method of controlling air fuel ratio of engine
JPS6153431A (en) * 1984-08-23 1986-03-17 Toyota Motor Corp Control device for increase of fuel in internal-combustion engine
JPH04353233A (en) * 1991-05-30 1992-12-08 Toyota Motor Corp Programmed fuel injection device for internal combustion engine
JP2009103055A (en) * 2007-10-23 2009-05-14 Toyota Motor Corp Control device for internal combustion engine
JP2018155217A (en) * 2017-03-21 2018-10-04 日立オートモティブシステムズ株式会社 Controller and control method for internal combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5828567A (en) * 1981-07-31 1983-02-19 Toyota Motor Corp Method of controlling air fuel ratio of engine
JPS6153431A (en) * 1984-08-23 1986-03-17 Toyota Motor Corp Control device for increase of fuel in internal-combustion engine
JPH04353233A (en) * 1991-05-30 1992-12-08 Toyota Motor Corp Programmed fuel injection device for internal combustion engine
JP2009103055A (en) * 2007-10-23 2009-05-14 Toyota Motor Corp Control device for internal combustion engine
JP2018155217A (en) * 2017-03-21 2018-10-04 日立オートモティブシステムズ株式会社 Controller and control method for internal combustion engine

Similar Documents

Publication Publication Date Title
RU2705489C2 (en) Optimization method of engine turbocharger operation (embodiments)
KR100879486B1 (en) Engine
JP2007315230A (en) Apparatus for recirculating exhaust gas of internal combustion engine
US9879617B2 (en) Control apparatus of engine
JP2009191745A (en) Control device for internal combustion engine
RU2728546C2 (en) Method and system for providing torque assistance, as well as engine comprising such system
JPH0726994A (en) Intake device of engine provided with supercharger
US11067008B2 (en) Internal combustion engine control method and internal combustion engine control device
JP2013130121A (en) Exhaust gas recirculation system for spark-ignition-type internal combustion engine
JP2009191660A (en) Control device of internal combustion engine
JP5163515B2 (en) Control device for internal combustion engine
JP2009299506A (en) Intake air control device for internal combustion engine
JP2021042720A (en) Controller of internal combustion engine
JP6914591B2 (en) Internal combustion engine control device
JP2018193899A (en) Intake/exhaust structure of compressed natural gas engine
JP6641405B2 (en) Engine control device
JP5018810B2 (en) Control device for internal combustion engine
JP7486904B2 (en) Control device for internal combustion engine
JP2014088779A (en) Control device for internal combustion engine
EP3015686B1 (en) Engine control device
JP2006299892A (en) Internal combustion engine with supercharger
JP2014074338A (en) Control device of internal combustion engine
JP5769506B2 (en) Control device for internal combustion engine
JP2012255385A (en) Control device of internal combustion engine
JP2023012247A (en) Controller for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231114

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240507