[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2021042590A - Hybrid structure - Google Patents

Hybrid structure Download PDF

Info

Publication number
JP2021042590A
JP2021042590A JP2019165773A JP2019165773A JP2021042590A JP 2021042590 A JP2021042590 A JP 2021042590A JP 2019165773 A JP2019165773 A JP 2019165773A JP 2019165773 A JP2019165773 A JP 2019165773A JP 2021042590 A JP2021042590 A JP 2021042590A
Authority
JP
Japan
Prior art keywords
cylinder
end side
bearing member
lower cylinder
joint portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019165773A
Other languages
Japanese (ja)
Inventor
麻里子 森
Mariko Mori
麻里子 森
裕和 山口
Hirokazu Yamaguchi
裕和 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2019165773A priority Critical patent/JP2021042590A/en
Publication of JP2021042590A publication Critical patent/JP2021042590A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/728Onshore wind turbines

Landscapes

  • Foundations (AREA)
  • Joining Of Building Structures In Genera (AREA)

Abstract

To provide a hybrid structure capable of connecting an upper cylindrical body made of steel with a lower cylindrical body made of concrete with a simple configuration.SOLUTION: A hybrid structure is provided with: a lower cylindrical body 12 made of concrete to be erected upward; an upper cylindrical body 20 made of steel to be erected upward from the upper end side of the lower cylindrical body 12, of which a lower end side is inserted in an upper end side cylinder of the lower cylindrical body 12 and a side surface of the lower end side faces a side surface of the upper end side of the lower cylindrical body with a space apart; and a connection part 30 connecting and supporting the lower end side of the upper cylindrical body 20 to the upper end side of the lower cylindrical body 12, wherein the connection part 30 comprises an inner side bearing member 31 projecting in the space from the side surface of the lower end side of the upper cylindrical body 20, an outer side bearing member 35 projecting in the space from the side surface of the upper end side of the lower cylindrical body 12, and a grout layer configured to inject grout material 38 in the space.SELECTED DRAWING: Figure 2

Description

本開示は、ハイブリッド構造体に関し、特に、塔状構造物の構築に好適なハイブリッド構造体に関するものである。 The present disclosure relates to a hybrid structure, and more particularly to a hybrid structure suitable for constructing a tower structure.

塔状構造物としては、鉄塔や橋脚等の種々のものがあり、その一例として、モノポール形式の風力発電タワーが知られている(例えば、特許文献1参照)。モノポール形式は、陸上の輸送条件等からタワーを構成する鋼管の径に制約があり、タワーのハブ高さに限界がある。 There are various types of tower-like structures such as steel towers and piers, and a monopole type wind power generation tower is known as an example (see, for example, Patent Document 1). In the monopole type, there are restrictions on the diameter of the steel pipes that make up the tower due to land transportation conditions, etc., and there is a limit to the height of the tower hub.

一方、コンクリート製の基礎に鋼管を接合する従来技術として、アンカーボルト方式が知られている。アンカーボルト方式は、コンクリートを充填した基礎(フーチング)に複数本のアンカーボルトを埋設し、該アンカーボルトに鋼管のベースプレートをナット締結することにより構築するのが一般的である(例えば、特許文献2参照)。 On the other hand, an anchor bolt method is known as a conventional technique for joining a steel pipe to a concrete foundation. The anchor bolt method is generally constructed by burying a plurality of anchor bolts in a concrete-filled foundation (footing) and fastening a steel pipe base plate to the anchor bolts (for example, Patent Document 2). reference).

特開2012−177326号公報Japanese Unexamined Patent Publication No. 2012-177326 特開平09−003917号公報Japanese Unexamined Patent Publication No. 09-003917

ところで、上記アンカーボルト方式では、コンクリート製の基礎に複数本のアンカーボルトを埋設するため、構造が煩雑となり、また、ボルトの設置精度やナット締結を要することから、施工に手間が掛かるといった課題がある。また、アンカーボルト方式を風力発電タワーに適用すると、基礎がコンクリートで充填されるため、電気ケーブルやエレベータ等、風力発電機の運転管理に必要な設備類をタワー下部に収容できなくなるといった課題もある。 By the way, in the above-mentioned anchor bolt method, since a plurality of anchor bolts are embedded in a concrete foundation, the structure becomes complicated, and the bolt installation accuracy and nut fastening are required, which causes a problem that construction is troublesome. is there. In addition, if the anchor bolt method is applied to a wind power generation tower, the foundation will be filled with concrete, so there is also the problem that equipment necessary for operation management of the wind power generator, such as electric cables and elevators, cannot be accommodated in the lower part of the tower. ..

本開示の技術は、上記事情に鑑みてなされたものであり、簡素な構成で、コンクリート製の下部筒体に鋼製の上部筒体を効果的に接合することができるハイブリッド構造体を提供することを目的とする。 The technique of the present disclosure has been made in view of the above circumstances, and provides a hybrid structure capable of effectively joining a steel upper cylinder to a concrete lower cylinder with a simple configuration. The purpose is.

本開示のハイブリッド構造体は、上方に向けて立設されるコンクリート製の下部筒体と、その下端側を前記下部筒体の上端側筒内に挿入又は、その下端側筒内に前記下部筒体の上端側を挿入させて、下端側の側面を前記下部筒体の上端側の側面と空間を隔てて対向させると共に、前記下部筒体の上端側から上方に向けて立設される鋼製の上部筒体と、前記上部筒体の下端側を前記下部筒体の上端側に接合支持する接合部と、を備え、前記接合部は、前記上部筒体の前記下端側の側面から前記空間内に突出する第1支圧部材と、前記下部筒体の前記上端側の側面から前記空間内に突出する第2支圧部材と、前記空間内にグラウト材を充填して形成されるグラウト層と、を有することを特徴とする。 In the hybrid structure of the present disclosure, a concrete lower cylinder erected upward and the lower end side thereof are inserted into the upper end side cylinder of the lower cylinder, or the lower cylinder is inserted into the lower end side cylinder thereof. A steel body that is erected upward from the upper end side of the lower cylinder while inserting the upper end side of the body so that the side surface on the lower end side faces the side surface on the upper end side of the lower cylinder with a space. The upper cylinder is provided with a joint portion for joining and supporting the lower end side of the upper cylinder to the upper end side of the lower cylinder, and the joint portion is the space from the side surface of the upper cylinder on the lower end side. A first bearing member projecting inward, a second bearing member projecting into the space from the upper end side side surface of the lower cylinder, and a grout layer formed by filling the space with a grout material. And, characterized by having.

また、前記第1支圧部材及び、前記第2支圧部材が、前記接合部の少なくとも上下方向の中間部に設けられていることが好ましい。 Further, it is preferable that the first bearing member and the second bearing member are provided at least in the intermediate portion in the vertical direction of the joint portion.

また、前記第1支圧部材及び、前記第2支圧部材を複数有すると共に、該複数の前記第1支圧部材及び、前記第2支圧部材が上下方向に互い違いに配置されていることが好ましい。 Further, the first bearing member and the second bearing member are provided, and the plurality of the first bearing member and the second bearing member are arranged alternately in the vertical direction. preferable.

また、前記第1支圧部材及び、前記第2支圧部材の少なくとも一方が周方向に間欠的に設けられていることが好ましい。 Further, it is preferable that at least one of the first bearing member and the second bearing member is intermittently provided in the circumferential direction.

また、前記下部筒体の前記上部筒体と対向する側面に、複数の側板部材が周方向に所定間隔毎に埋設されると共に、該複数の側板部材に前記第2支圧部材がそれぞれ設けられており、前記側板部材と前記第2支圧部材とにより前記接合部の一部なす治具を構成してもよい。 Further, a plurality of side plate members are embedded in the side surface of the lower cylinder facing the upper cylinder at predetermined intervals in the circumferential direction, and the second bearing member is provided in each of the plurality of side plate members. The side plate member and the second bearing member may form a jig that is part of the joint.

また、前記下部筒体が、地盤から上方に向けて立設されており、前記上部筒体が、前記下部筒体よりも小径に形成されると共に、その下端側を前記下部筒体の上端側筒内に挿入されており、前記上部筒体の上端部に風力発電機が搭載されてもよい。 Further, the lower cylinder is erected upward from the ground, the upper cylinder is formed to have a smaller diameter than the lower cylinder, and the lower end side thereof is the upper end side of the lower cylinder. A wind power generator may be mounted on the upper end of the upper cylinder, which is inserted in the cylinder.

本開示の技術によれば、簡素な構成で、コンクリート製の下部筒体に鋼製の上部筒体を効果的に接合することができる。 According to the technique of the present disclosure, a steel upper cylinder can be effectively joined to a concrete lower cylinder with a simple structure.

本実施形態に係るハイブリッド構造体を示す模式的な全体構成図である。It is a schematic overall block diagram which shows the hybrid structure which concerns on this embodiment. 本実施形態に係る下部支持体、上部筒体及び、接合部を示す模式的な縦断面図である。It is a schematic vertical sectional view which shows the lower support body, the upper cylinder body, and the joint part which concerns on this embodiment. 本実施形態に係る下部筒体、上部筒体及び、接合部を示す模式的な横断面図である。It is a schematic cross-sectional view which shows the lower cylinder body, the upper cylinder body, and the joint part which concerns on this embodiment. 本実施形態に係る上部筒体に作用する曲げモーメント及び、又は水平力により接合部に伝達される接触圧の分布を模式的に示す図である。It is a figure which shows typically the distribution of the bending moment acting on the upper cylinder which concerns on this embodiment, and the contact pressure transmitted to a joint part by a horizontal force. 他の実施形態に係る下部筒体、上部筒体及び、接合部を示す模式的な横断面図である。It is a schematic cross-sectional view which shows the lower cylinder body, the upper cylinder body, and the joint part which concerns on another embodiment. 他の実施形態に係る下部筒体、上部筒体及び、接合部を示す模式的な横断面図である。It is a schematic cross-sectional view which shows the lower cylinder body, the upper cylinder body, and the joint part which concerns on another embodiment. 他の実施形態に係る下部支持体、上部筒体及び、接合部を示す模式的な縦断面図である。It is a schematic vertical sectional view which shows the lower support body, the upper cylinder body, and the joint part which concerns on another embodiment. 他の実施形態に係る下部筒体、上部筒体及び、接合部を示す模式的な縦断面図である。It is a schematic vertical sectional view which shows the lower cylinder body, the upper cylinder body, and the joint part which concerns on another embodiment. 他の実施形態に係る下部支持体、上部筒体及び、接合部を示す模式的な縦断面図である。It is a schematic vertical sectional view which shows the lower support body, the upper cylinder body, and the joint part which concerns on another embodiment.

以下、添付図面に基づいて、本実施形態に係るハイブリッド構造体について説明する。同一の部品には同一の符号を付してあり、それらの名称および機能も同じである。したがって、それらについての詳細な説明は繰返さない。 Hereinafter, the hybrid structure according to the present embodiment will be described with reference to the accompanying drawings. The same parts have the same reference numerals, and their names and functions are also the same. Therefore, detailed explanations about them will not be repeated.

[全体構成]
図1は、本実施形態に係るハイブリッド構造体1を示す模式的な全体構成図である。
[overall structure]
FIG. 1 is a schematic overall configuration diagram showing a hybrid structure 1 according to the present embodiment.

図1に示すように、ハイブリッド構造体1は、例えば、タワー頂部に風力発電機100を搭載した風力発電タワーに適用されている。風力発電機100は、複数枚のブレード101と、不図示の発電機や減速機等を収容したナセル102と、ブレード101の付け根部をロータ軸104に固定するハブ103とを備えている。 As shown in FIG. 1, the hybrid structure 1 is applied to, for example, a wind power generation tower in which a wind power generator 100 is mounted on the top of the tower. The wind power generator 100 includes a plurality of blades 101, a nacelle 102 that houses a generator, a speed reducer, and the like (not shown), and a hub 103 that fixes the base of the blades 101 to the rotor shaft 104.

ハイブリッド構造体1は、鉄筋コンクリート(RC)又はプレストレストコンクリート(PC)等で構築された下部支持体10と、鋼管で形成された上部筒体20とを備えている。下部支持体10は、地盤Gから鉛直方向に立設され、上部筒体20は、下部支持体10の上端部に接合されて鉛直方向に立設されている。上部筒体20の上端部には、風力発電機100のナセル102が固定支持されている。 The hybrid structure 1 includes a lower support 10 constructed of reinforced concrete (RC), prestressed concrete (PC), or the like, and an upper cylinder 20 formed of a steel pipe. The lower support 10 is erected vertically from the ground G, and the upper cylinder 20 is joined to the upper end of the lower support 10 and erected vertically. The nacelle 102 of the wind power generator 100 is fixedly supported at the upper end of the upper cylinder 20.

下部支持体10の地表からの突出高さ(H1)は、約50mとされている。また、上部筒体20の下部支持体10からの突出高さ(H2)は、約100mとされ、上部筒体20の管径は、陸上の輸送条件に適合する約4.5mとされている。 The protruding height (H1) of the lower support 10 from the ground surface is about 50 m. The protrusion height (H2) of the upper cylinder 20 from the lower support 10 is about 100 m, and the pipe diameter of the upper cylinder 20 is about 4.5 m, which is suitable for land transportation conditions. ..

すなわち、風力発電タワーを、コンクリート製の下部支持体10と、下部支持体10の上端部に接合される鋼管の上部筒体20とを備えるハイブリッド構体1とすることにより、タワー部を主として鋼管で構築するモノポール形式に比べ、ハブ高さを下部支持体10の突出高さ(H1)分だけ高くできるように構成されている。これにより、ハブ高さが100mを超える風力発電タワーを容易に構築することができ、さらには、風車の大型化にも適応できるようになり、高効率な風力発電を実現することが可能になる。 That is, by making the wind power generation tower a hybrid structure 1 including a concrete lower support 10 and an upper cylinder 20 of a steel pipe joined to the upper end of the lower support 10, the tower portion is mainly made of steel pipe. Compared to the monopole type to be constructed, the height of the hub can be increased by the protruding height (H1) of the lower support 10. As a result, a wind power generation tower with a hub height of more than 100 m can be easily constructed, and further, it becomes possible to adapt to an increase in the size of a wind turbine, and it becomes possible to realize highly efficient wind power generation. ..

上部筒体20は、その下端側を下部支持体10に接合部30を介して接合支持されている。以下、これら下部支持体10、上部筒体20及び、接合部30の詳細について説明する。 The lower end side of the upper cylinder 20 is joined and supported by the lower support 10 via a joint portion 30. Hereinafter, the details of the lower support 10, the upper cylinder 20, and the joint 30 will be described.

[下部支持体、上部筒体、接合部]
図2は、本実施形態に係る下部支持体10、上部筒体20及び、接合部30を示す模式的な縦断面図である。
[Lower support, upper cylinder, joint]
FIG. 2 is a schematic vertical sectional view showing a lower support 10, an upper cylinder 20, and a joint portion 30 according to the present embodiment.

図2に示すように、コンクリート製の下部支持体10は、地盤Gに埋設される基礎部11と、基礎部11から鉛直方向上方に延設されて地盤Gから突出する下部筒体12とを備えている。 As shown in FIG. 2, the concrete lower support 10 includes a foundation portion 11 embedded in the ground G and a lower cylinder 12 extending vertically upward from the foundation portion 11 and projecting from the ground G. I have.

基礎部11は、下部筒体12よりも大径の略円錐台形状に形成されている。下部筒体12は、上端が開口する略円筒状に形成されており、その内部は上端から下端に亘って空洞とされている。すなわち、下部筒体12の内部に、風力発電機100(図1参照)の運転管理に必要な電気ケーブルやエレベータ等の設備類を効果的に収容できるように構成されている。 The base portion 11 is formed in a substantially truncated cone shape having a diameter larger than that of the lower tubular body 12. The lower cylinder 12 is formed in a substantially cylindrical shape in which the upper end opens, and the inside thereof is hollow from the upper end to the lower end. That is, the lower cylinder 12 is configured to effectively accommodate equipment such as electric cables and elevators necessary for operation management of the wind power generator 100 (see FIG. 1).

下部筒体12の外径は、好ましくは約10mとされ、下部筒体12の内径は、上部筒体20を挿入可能な約4.7mとされている。下部筒体12の上端側内周には、接合部30の一部を構成する複数の治具33が埋設されている。治具33の詳細は後述する。 The outer diameter of the lower cylinder 12 is preferably about 10 m, and the inner diameter of the lower cylinder 12 is about 4.7 m into which the upper cylinder 20 can be inserted. A plurality of jigs 33 forming a part of the joint portion 30 are embedded in the inner circumference of the lower cylinder 12 on the upper end side. Details of the jig 33 will be described later.

上部筒体20は、下部筒体12の内径よりも小径の略円筒状の鋼管である。上部筒体20は、下部筒体12と同軸上に設けられており、その下端側を下部筒体12の上端側筒内に挿入配置されている。すなわち、上部筒体20の下端側と、下部筒体12の上端側とにより、外側をコンクリート製の下部筒体12、内側を鋼製の上部筒体20とした二重筒状の接合部30が構成される。 The upper cylinder 20 is a substantially cylindrical steel pipe having a diameter smaller than the inner diameter of the lower cylinder 12. The upper cylinder 20 is provided coaxially with the lower cylinder 12, and the lower end side thereof is inserted and arranged in the upper end side cylinder of the lower cylinder 12. That is, the double tubular joint portion 30 having the lower end side of the upper cylinder 20 and the upper end side of the lower cylinder 12 with the lower cylinder 12 made of concrete on the outside and the upper cylinder 20 made of steel on the inside. Is configured.

本実施形態において、上部筒体20の下部筒体12への挿入量、言い換えれば、接合部30の軸方向の長さ(高さ)は、好ましくは約10mとされている。なお、接合部30の軸方向長さは、約7mに限定されず、下部筒体12や上部筒体20の径、上部筒体20の軸方向長さ等、具体的な寸法に応じて、接合部30の強度を十分に確保できる範囲で適宜に設定することができる。 In the present embodiment, the amount of the upper cylinder 20 inserted into the lower cylinder 12, in other words, the axial length (height) of the joint portion 30 is preferably about 10 m. The axial length of the joint portion 30 is not limited to about 7 m, and may vary depending on specific dimensions such as the diameter of the lower cylinder 12 and the upper cylinder 20 and the axial length of the upper cylinder 20. It can be appropriately set within a range in which the strength of the joint portion 30 can be sufficiently secured.

上部筒体20の外周面と下部筒体12の内周面との間には、約0.09〜0.1mの対向空間(隙間)が確保されている。これら上部筒体20と下部筒体12との対向空間内には、グラウト材38が充填される。上部筒体20の下端側外周面には、接合部30の一部を構成する複数の内側支圧部材31(本開示の第1支圧部材)が設けられている。 A facing space (gap) of about 0.09 to 0.1 m is secured between the outer peripheral surface of the upper cylinder 20 and the inner peripheral surface of the lower cylinder 12. The grout material 38 is filled in the space facing the upper cylinder 20 and the lower cylinder 12. A plurality of inner bearing members 31 (first bearing members of the present disclosure) forming a part of the joint portion 30 are provided on the outer peripheral surface on the lower end side of the upper cylinder 20.

接合部30は、内側支圧部材31と、複数の治具33と、グラウト材38を充填して形成されたグラウト層とを備えている。なお、以下の説明において、接合部30を軸方向(高さ方向)に4等分した下側4分の1の部分を下側接合部30Bといい、上側4分の1の部分を上側接合部30Uといい、これら下側接合部30Bと上側接合部30Uとの間の残こり2分の1の部分を中間接合部30Mという。 The joint portion 30 includes an inner bearing member 31, a plurality of jigs 33, and a grout layer formed by filling the grout material 38. In the following description, the lower quarter portion obtained by dividing the joint portion 30 into four equal parts in the axial direction (height direction) is referred to as a lower joint portion 30B, and the upper quarter portion is referred to as an upper joint portion. The portion 30U is referred to, and the remaining half portion between the lower joint portion 30B and the upper joint portion 30U is referred to as an intermediate joint portion 30M.

グラウト材38は、例えば、圧縮強度や引張強度、流動性や充填性に優れた超高強度繊維補強コンクリート(UFC:Ultra high strength Fiber reinforced Concrete)であって、上部筒体20と下部筒体12との対向空間内に、下側接合部30Bから上側接合部30Uに亘って充填される。超高強度繊維補強コンクリートとしては、例えば、スリムクリート(登録商標)を用いることができる。なお、グラウト材38は、超高強度繊維補強コンクリート以外のコンクリート、或いは繊維補強モルタル等であってもよい。グラウト材38を充填する際は、対向空間の下端開口を閉塞する板材を設けてグラウト材38の流逸を防止し、グラウト材38が固化したならば、当該板材を撤去するようにすればよい。 The grout material 38 is, for example, an ultra high strength fiber reinforced concrete (UFC) having excellent compressive strength, tensile strength, fluidity and filling property, and is an upper cylinder 20 and a lower cylinder 12. The space facing the surface is filled from the lower joint portion 30B to the upper joint portion 30U. As the ultra-high strength fiber reinforced concrete, for example, Slim Cleat (registered trademark) can be used. The grout material 38 may be concrete other than ultra-high-strength fiber-reinforced concrete, fiber-reinforced mortar, or the like. When filling the grout material 38, a plate material that closes the lower end opening of the facing space may be provided to prevent the grout material 38 from flowing out, and when the grout material 38 is solidified, the plate material may be removed. ..

内側支圧部材31は、上部筒体20の外周面から径方向外側に向けて略水平方向(径方向)に突出する凸部又は凸条のシアキーであって、鋼製の帯板材等を上部筒体20の外周面に周方向に溶接等で接合することにより形成されている。内側支圧部材31は、好ましくは、複数設けられており、上部筒体20の外周面に軸方向に所定間隔(好ましくは、等間隔)毎に配置されている。これら複数の内側支圧部材31は、上部筒体20の外周面のうち、下側接合部30B及び、上側接合部30Uを除いた中間接合部30Mに対応する部分に設けられている。 The inner bearing member 31 is a convex or convex shear key that protrudes substantially horizontally (diameterally) from the outer peripheral surface of the upper cylinder 20 toward the outside in the radial direction, and has a steel strip or the like as an upper portion. It is formed by joining to the outer peripheral surface of the tubular body 20 by welding or the like in the circumferential direction. A plurality of inner bearing members 31 are preferably provided, and are arranged on the outer peripheral surface of the upper cylinder 20 at predetermined intervals (preferably at equal intervals) in the axial direction. These plurality of inner pressure members 31 are provided on the outer peripheral surface of the upper cylinder 20 corresponding to the intermediate joint portion 30M excluding the lower joint portion 30B and the upper joint portion 30U.

内側支圧部材31の上部筒体20からの突出量は、対向空間の半分以下の約0.03mとされ、内側支圧部材31の幅(軸方向長さ)は、約0.05mとされている。なお、内側支圧部材31は、上部筒体20の外周面に、周方向に所定間隔毎に間欠的に設けられてもよい。内側支圧部材31を間欠的に設ければ、グラウト材38の充填時にグラウト材38の流動性を効果的に確保することが可能になる。 The amount of protrusion of the inner bearing member 31 from the upper cylinder 20 is about 0.03 m, which is less than half of the facing space, and the width (axial length) of the inner bearing member 31 is about 0.05 m. ing. The inner bearing member 31 may be provided intermittently on the outer peripheral surface of the upper cylinder 20 at predetermined intervals in the circumferential direction. If the inner bearing member 31 is provided intermittently, the fluidity of the grout material 38 can be effectively ensured when the grout material 38 is filled.

複数の治具33は、下部筒体12に埋設される側板部材34と、側板部材34から突出する複数の外側支圧部材35(本開示の第2支圧部材)とを備えている。 The plurality of jigs 33 include a side plate member 34 embedded in the lower cylinder 12 and a plurality of outer bearing members 35 (second bearing members of the present disclosure) protruding from the side plate members 34.

側板部材34は、例えば、鋼製の円弧板材等で形成されている。側板部材34の円弧外周面には、コンクリート製の下部筒体12内に埋設される複数のスタッドジベル36が設けられている。側板部材34は、その円弧内周面が下部筒体12の内周面と同一面となるように、下部筒体12内に埋設されている。 The side plate member 34 is formed of, for example, a steel arc plate member or the like. A plurality of stud gibber 36s embedded in the concrete lower cylinder 12 are provided on the outer peripheral surface of the arc of the side plate member 34. The side plate member 34 is embedded in the lower cylinder 12 so that its arc inner peripheral surface is flush with the inner peripheral surface of the lower cylinder 12.

外側支圧部材35は、側板部材34の円弧内周面から径方向内側に向けて略水平方向に突出する凸部又は凸条のシアキーであって、鋼製の帯板材等を側板部材34の円弧内周面に周方向に溶接等で接合することにより形成されている。外側支圧部材35は、好ましくは、複数設けられており、側板部材34の円弧内周面に軸方向に所定間隔(好ましくは、等間隔)毎に配置されている。外側支圧部材35の側板部材34からの突出量は、対向空間の半分以下の約0.03mとされ、外側支圧部材35の幅(軸方向長さ)は、約0.05mとされている。 The outer bearing member 35 is a convex or convex shear key that protrudes substantially horizontally in the radial direction from the inner peripheral surface of the arc of the side plate member 34, and is made of a steel strip or the like of the side plate member 34. It is formed by joining to the inner peripheral surface of an arc by welding or the like in the circumferential direction. A plurality of outer bearing members 35 are preferably provided, and are arranged at predetermined intervals (preferably equal intervals) in the axial direction on the inner peripheral surface of the arc of the side plate member 34. The amount of protrusion of the outer bearing member 35 from the side plate member 34 is about 0.03 m, which is less than half of the facing space, and the width (axial length) of the outer bearing member 35 is about 0.05 m. There is.

側板部材34及び、外側支圧部材35は、下部筒体12の内周面のうち、下側接合部30B及び、上側接合部30Uを除いた中間接合部30Mに対応する部分に設けられている。外側支圧部材35は、内側支圧部材31に対して軸方向に所定量オフセットして設けられており、中間接合部30Mに複数の外側支圧部材35及び、内側支圧部材31が軸方向に互い違いとなるように配置されている。外側支圧部材35は、好ましくは、内側支圧部材31よりも1個多い個数で設けられている。なお、本開示は、側板部材34及び、外側支圧部材35が、下側接合部30B及び上側接合部30Uの何れか一方又は両方に設けられることを排除しない。 The side plate member 34 and the outer bearing member 35 are provided on the inner peripheral surface of the lower cylinder 12 corresponding to the intermediate joint portion 30B excluding the lower joint portion 30B and the upper joint portion 30U. .. The outer bearing member 35 is provided so as to be offset by a predetermined amount in the axial direction with respect to the inner bearing member 31, and a plurality of outer bearing members 35 and the inner bearing member 31 are axially provided at the intermediate joint portion 30M. They are arranged so as to be staggered. The number of outer bearing members 35 is preferably one more than that of the inner bearing member 31. The present disclosure does not exclude that the side plate member 34 and the outer bearing member 35 are provided on either one or both of the lower joint portion 30B and the upper joint portion 30U.

すなわち、内側支圧部材31を外側支圧部材35によって上下に挟み込むように配置することで、これら内側支圧部材31と外側支圧部材35との間のグラウト層に、各支圧部材31,35の角部を結ぶ斜め方向のストラットが形成される。これにより、接合部30に作用する軸力に効果的に対抗できるようになる。また、内側支圧部材31及び、外側支圧部材35が、互いに径方向に対向しないため、これら支圧部材31,35間にグラウト材38を流動させる十分な隙間を確保することも可能になる。 That is, by arranging the inner bearing member 31 so as to be sandwiched vertically by the outer bearing member 35, each bearing member 31 can be placed on the grout layer between the inner bearing member 31 and the outer bearing member 35. Diagonal struts connecting the corners of 35 are formed. This makes it possible to effectively counter the axial force acting on the joint portion 30. Further, since the inner bearing member 31 and the outer bearing member 35 do not face each other in the radial direction, it is possible to secure a sufficient gap for flowing the grout material 38 between the bearing members 31 and 35. ..

図3は、本実施形態に係る下部筒体12、上部筒体20及び、接合部30を示す模式的な横断面図である。 FIG. 3 is a schematic cross-sectional view showing the lower cylinder body 12, the upper cylinder body 20, and the joint portion 30 according to the present embodiment.

図3に示すように、複数(図示例では4個)の治具33は、下部筒体12の内周面に沿って設けられており、側板部材34の円弧内周面と下部筒体12の内周面とにより上部筒体20の外周面を囲う円周面を形成する。具体的には、複数の治具33は、下部筒体12の内周面に沿って周方向に所定間隔(好ましくは、等間隔)毎に配置されており、側板部材34の円弧内周面が下部筒体12の内周面と同一面となるように、下部筒体12内に埋設されている。すなわち、複数の治具33を周方向に所定間隔毎に配置することにより、周方向に隣接する外側支圧部材35間に隙間37が確保されるように構成されている。 As shown in FIG. 3, a plurality of jigs 33 (4 in the illustrated example) are provided along the inner peripheral surface of the lower cylinder 12, and the arc inner peripheral surface of the side plate member 34 and the lower cylinder 12 A circumferential surface surrounding the outer peripheral surface of the upper cylinder 20 is formed by the inner peripheral surface of the upper cylinder 20. Specifically, the plurality of jigs 33 are arranged at predetermined intervals (preferably at equal intervals) in the circumferential direction along the inner peripheral surface of the lower cylinder 12, and the arc inner peripheral surface of the side plate member 34. Is embedded in the lower cylinder 12 so that is flush with the inner peripheral surface of the lower cylinder 12. That is, by arranging the plurality of jigs 33 at predetermined intervals in the circumferential direction, a gap 37 is secured between the outer bearing members 35 adjacent to each other in the circumferential direction.

このように、外側支圧部材35を周方向に間欠的に設けて、隣接する外側支圧部材35間にグラウト材38を流動させる隙間37を確保することにより、上部筒体20と下部筒体12との対向空間内にグラウト材38を容易に充填することができるようになる。また、グラウト材38の流動性が向上することにより、グラウト材38の充填時間を確実に短縮しつつ、グラウト材38の局所的な未充填も効果的に防止することができるようになる。なお、治具33の個数は、図示例の4個に限定されず、2個、3個或いは、5個以上であってもよい。 In this way, the outer bearing member 35 is provided intermittently in the circumferential direction to secure a gap 37 for flowing the grout material 38 between the adjacent outer bearing members 35, whereby the upper cylinder 20 and the lower cylinder 20 and the lower cylinder are secured. The grout material 38 can be easily filled in the space facing the twelve. Further, by improving the fluidity of the grout material 38, the filling time of the grout material 38 can be surely shortened, and the local unfilling of the grout material 38 can be effectively prevented. The number of jigs 33 is not limited to 4 in the illustrated example, and may be 2, 3, or 5 or more.

次に、図4に基づいて、本実施形態に係るハイブリッド構造体1の接合部30による作用効果を説明する。 Next, based on FIG. 4, the action and effect of the joint portion 30 of the hybrid structure 1 according to the present embodiment will be described.

図4は、上部筒体20に作用する曲げモーメントM及び、又は水平力Yにより接合部30に伝達される接触圧Pの分布を模式的に示す図である。 FIG. 4 is a diagram schematically showing the distribution of the bending moment M acting on the upper cylinder 20 and the contact pressure P transmitted to the joint portion 30 by the horizontal force Y.

接触圧Pの分布は、接合部30の上下方向の中心位置C側から上端側に向かうほど大きくなり、また、接合部30の上下方向の中心位置C側から下端側に向かうほど大きくなる。さらに、下部筒体12が開口する上端側は、上部筒体20との剛性の差が大きく変化するため、上部筒体20に作用する曲げモーメントMや水平力Yを受けやすくなり、接合部30の上端側には接触圧Pの局所的な増大(応力集中)が生じる。一方、接合部30の下端側は、その外側を囲うコンクリート製の下部筒体12によって剛性が確保されるため、接触圧Pの局所的な増大は抑えられる。また、上部筒体20を下部筒体12に接合支持する接合部30には、上部筒体20を下方に押し込む方向及び、上方に引き抜く方向の軸力Zが伝達される。 The distribution of the contact pressure P increases from the vertical center position C side of the joint portion 30 toward the upper end side, and increases from the vertical center position C side of the joint portion 30 toward the lower end side. Further, since the difference in rigidity from the upper cylinder 20 greatly changes on the upper end side where the lower cylinder 12 opens, the bending moment M and the horizontal force Y acting on the upper cylinder 20 are easily received, and the joint portion 30 A local increase in contact pressure P (stress concentration) occurs on the upper end side of the. On the other hand, since the rigidity of the lower end side of the joint portion 30 is ensured by the concrete lower cylinder 12 surrounding the outer end side thereof, the local increase in the contact pressure P is suppressed. Further, the axial force Z in the direction of pushing the upper cylinder 20 downward and the direction of pulling it upward is transmitted to the joint portion 30 that joins and supports the upper cylinder 20 to the lower cylinder 12.

本実施形態において、軸力Zを負担する内側支圧部材31及び外側支圧部材35は、接触圧Pの分布が上側接合部30U及び、下側接合部30Bよりも小さい中間接合部30Mに設けられている。すなわち、接触圧Pの分布が比較的小さい中間接合部Mのグラウト層に、各支圧部材31,35の角部を結ぶ斜め方向のストラットSを形成できるように構成されている。これにより、接触圧Pの影響が少ない安定したグラウト層にストラットSを形成し、軸力Zに効果的に対抗できるようになり、上部筒体20と下部筒体12との軸方向の接合強度を確実に向上することが可能になる。 In the present embodiment, the inner bearing member 31 and the outer bearing member 35 that bear the axial force Z are provided in the upper joint portion 30U and the intermediate joint portion 30M in which the distribution of the contact pressure P is smaller than that of the lower joint portion 30B. Has been done. That is, the grout layer of the intermediate joint portion M in which the distribution of the contact pressure P is relatively small is configured so that the diagonal struts S connecting the corner portions of the bearing members 31 and 35 can be formed. As a result, struts S are formed in a stable grout layer that is less affected by the contact pressure P, and can effectively counter the axial force Z, and the axial joint strength between the upper cylinder 20 and the lower cylinder 12 becomes stronger. Can be definitely improved.

また、内側支圧部材31及び、外側支圧部材35を軸方向に互い違いとなるように配置することで、これら支圧部材31,35を径方向に対向させる構造に比べ、中間接合部Mに形成されるグラウト層が薄くなることを防止できるようになり、グラウト層の亀裂発生や破壊も効果的に防止することが可能になる。 Further, by arranging the inner bearing members 31 and the outer bearing members 35 so as to be staggered in the axial direction, the intermediate joint portion M has a structure in which the bearing members 31 and 35 face each other in the radial direction. It becomes possible to prevent the formed grout layer from becoming thin, and it becomes possible to effectively prevent the occurrence and destruction of cracks in the grout layer.

また、接触圧Pの分布が大きい上側接合部30U及び、下側接合部30Bは、軸力Zを負担する支圧部材31,35を設けることなく、グラウト材38を充填することにより、これら上側接合部30U及び、下側接合部30Bに、径方向に厚いグラウト層を形成するように構成されている。これにより、上部筒体20に作用する水平力Yや曲げモーメントMに対して、厚みのあるグラウト層で効果的に対抗できるようになり、当該部位のグラウト層の破壊や上部筒体20の座屈変形等を抑止することが可能になる。 Further, the upper joint portion 30U and the lower joint portion 30B having a large distribution of the contact pressure P are filled with the grout material 38 without providing the bearing members 31 and 35 that bear the axial force Z, thereby forming the upper joint portion 30U and the lower joint portion 30B. The joint portion 30U and the lower joint portion 30B are configured to form a thick grout layer in the radial direction. As a result, the horizontal force Y and the bending moment M acting on the upper cylinder 20 can be effectively countered by the thick grout layer, and the grout layer at the relevant portion is destroyed or the seat of the upper cylinder 20 is seated. It is possible to suppress bending deformation and the like.

以上詳述した本実施形態を総括すると、風力発電タワーを、地盤Gから突出するコンクリート製の下部筒体12と、下部筒体12の上端側に接合されて上方に立設される鋼管の上部筒体20とを有するハイブリッド構体1とすることにより、風力発電タワーをモノポール形式で構築する場合に比べ、タワーのハブ高さを下部筒体12の突出高さ分だけ高くできるように構成されている。 Summarizing the present embodiment described in detail above, the wind power generation tower is joined to the concrete lower cylinder 12 protruding from the ground G and the upper portion of the steel pipe erected above the upper end side of the lower cylinder 12. By adopting the hybrid structure 1 having the cylinder body 20, the hub height of the tower can be increased by the protruding height of the lower cylinder body 12 as compared with the case where the wind power generation tower is constructed in a monopole format. ing.

具体的には、上部筒体20に、管軸方向長さが約100m、管径が陸上の輸送条件に適合する約4.5mの鋼管を用いると共に、該鋼管を地盤Gから約50mの高さで突出するコンクリート製の下部筒体12に接合することにより、ハブ高さが100mを超える風力発電タワーを容易に構築することが可能になる。これにより、タワー全体を鋼管で構築するモノポール形式に比べ、風車の大型化に効果的に適応できるようになり、高効率な風力発電を実現することが可能になる。 Specifically, for the upper cylinder 20, a steel pipe having a pipe axial length of about 100 m and a pipe diameter of about 4.5 m suitable for land transportation conditions is used, and the steel pipe is about 50 m above the ground G. By joining to the concrete lower cylinder 12 protruding from the ridge, it becomes possible to easily construct a wind power generation tower having a hub height of more than 100 m. As a result, compared to the monopole type in which the entire tower is constructed of steel pipes, it becomes possible to effectively adapt to the increase in size of the wind turbine, and it becomes possible to realize highly efficient wind power generation.

また、コンクリート製の下部筒体12は円筒状とされており、接合部30及び上部筒体20を含め、タワー内部が下端側から上端側に亘って空洞とされるため、電気ケーブルやエレベータ等、風力発電機100の運転管理に必要な設備類をタワー内部に効果的に収容することも可能になる。 Further, the concrete lower cylinder 12 has a cylindrical shape, and the inside of the tower including the joint portion 30 and the upper cylinder 20 is hollow from the lower end side to the upper end side, so that an electric cable, an elevator, etc. It is also possible to effectively accommodate the equipment necessary for the operation management of the wind power generator 100 inside the tower.

また、接合部30の軸心側及び、その近傍にコンクリートを充填する必要がなく、コンクリート製の下部筒体12は円筒状とされるため、コンクリートの使用量を効果的に減らすことができ、施工コストを確実に削減しつつ、工期の短縮を図ることも可能になる。 Further, it is not necessary to fill the axial side of the joint portion 30 and its vicinity with concrete, and the concrete lower cylinder 12 has a cylindrical shape, so that the amount of concrete used can be effectively reduced. It is also possible to shorten the construction period while surely reducing the construction cost.

[その他]
なお、本開示は、上述の実施形態に限定されるものではなく、本開示の趣旨を逸脱しない範囲で、適宜に変形して実施することが可能である。
[Other]
The present disclosure is not limited to the above-described embodiment, and can be appropriately modified and implemented without departing from the spirit of the present disclosure.

例えば、複数の治具33は、下部筒体12の内周面に沿って周方向に所定間隔毎に配置されるものとして説明したが、図5に示すように、複数の治具33を下部筒体12の内周面に沿って周方向に連結的に設けてもよい。或いは、図6に示すように、側板部材34を円筒状とし、1個の治具33としてもよい。 For example, the plurality of jigs 33 have been described as being arranged at predetermined intervals in the circumferential direction along the inner peripheral surface of the lower cylinder 12, but as shown in FIG. 5, the plurality of jigs 33 are arranged at lower portions. It may be provided in a circumferential direction along the inner peripheral surface of the tubular body 12. Alternatively, as shown in FIG. 6, the side plate member 34 may be formed into a cylindrical shape to form one jig 33.

また、図7に示すように、上部筒体20の上側接合部30Uに対応する外周面のうち、上端側から所定範囲に亘って、上部筒体20とグラウト層との間の摩擦抵抗を低減させる摩擦低減処理F(例えば、低摩擦塗料の塗布や、低摩擦材の貼り付け等)を施してもよい。このように、接触圧Pに局所的な増大が生じる上側接合部30Uの摩擦抵抗を、中間接合30Mや下側接合部30B等よりも低くすれば、上部筒体20に大きな水平力や曲げモーメントが作用した際に、上部筒体20と上側接合部30Uとの間に作用する摩擦力、さらには、グラウト層やコンクリート製の下部筒体12の応力を効果的に低減できるようになり、上部筒体20の座屈変形等を効果的に抑止することが可能になる。なお、摩擦低減処理Fは、図示例の上部筒体20の外周面のみならず、下部筒体12の内周面、或は、これら上部筒体20の外周面及び、下部筒体12の内周面の両方に施すことも可能である。 Further, as shown in FIG. 7, the frictional resistance between the upper cylinder 20 and the grout layer is reduced over a predetermined range from the upper end side of the outer peripheral surface corresponding to the upper joint portion 30U of the upper cylinder 20. Friction reduction treatment F (for example, application of low friction paint, attachment of low friction material, etc.) may be applied. In this way, if the frictional resistance of the upper joint 30U where the contact pressure P locally increases is made lower than that of the intermediate joint 30M, the lower joint 30B, etc., a large horizontal force and bending moment are applied to the upper cylinder 20. The frictional force acting between the upper cylinder 20 and the upper joint 30U, and the stress of the grout layer and the concrete lower cylinder 12 can be effectively reduced when It is possible to effectively suppress buckling deformation of the tubular body 20 and the like. The friction reduction process F is performed not only on the outer peripheral surface of the upper cylinder 20 in the illustrated example, but also on the inner peripheral surface of the lower cylinder 12, the outer peripheral surface of the upper cylinder 20, and the inner surface of the lower cylinder 12. It can also be applied to both peripheral surfaces.

また、コンクリート製の下部筒体12は、地盤Gから突出するものとして説明したが、図8に示すように、下部筒体12を地盤Gの深層部に埋設し、上部筒体20を地盤Gから突出するように構成してもよい。 Further, although the concrete lower cylinder 12 has been described as protruding from the ground G, as shown in FIG. 8, the lower cylinder 12 is embedded in the deep part of the ground G and the upper cylinder 20 is the ground G. It may be configured to protrude from.

また、図9に示すように、下部筒体12を上部筒体20よりも小径に形成し、下部筒体12の上端側を上部筒体20の下端側筒内に挿入するように構成してもよい。この場合は、上部筒体20の内周面に第1支圧部材31を外側支圧部材として設けると共に、治具33を下部筒体12の外周面に埋設し、第2支圧部材35を側板部材34の円弧外周面に内側支圧部材として設ければよい。 Further, as shown in FIG. 9, the lower cylinder 12 is formed to have a smaller diameter than the upper cylinder 20, and the upper end side of the lower cylinder 12 is inserted into the lower end cylinder of the upper cylinder 20. May be good. In this case, the first bearing member 31 is provided as the outer bearing member on the inner peripheral surface of the upper cylinder 20, the jig 33 is embedded in the outer peripheral surface of the lower cylinder 12, and the second bearing member 35 is provided. It may be provided as an inner bearing member on the outer peripheral surface of the arc of the side plate member 34.

また、上部筒体20や下部筒体12の形状は図示例の円筒状に限定されず、矩形筒状等、他の筒形状であってもよい。また、本開示の適用は、風力発電タワーの構築に限定されず、鉄塔や橋脚等の他の塔状構造物の構築にも広く適用することが可能である。 Further, the shape of the upper cylinder 20 and the lower cylinder 12 is not limited to the cylindrical shape shown in the illustrated example, and may be another cylindrical shape such as a rectangular tubular shape. Further, the application of the present disclosure is not limited to the construction of a wind power generation tower, and can be widely applied to the construction of other tower-like structures such as steel towers and piers.

10 下部支持体
11 基礎部
12 下部筒体
20 上部筒体
30 接合部
30U 上側接合部
30B 下側接合部
30M 中間接合部
31 内側支圧部材(第1支圧部材)
33 治具
34 側板部材
35 外側支圧部材(第2支圧部材)
38 グラウト材
100 風力発電機
101 ブレード
102 ナセル
103 ハブ
10 Lower support 11 Base 12 Lower cylinder 20 Upper cylinder 30 Joint 30U Upper joint 30B Lower joint 30M Intermediate joint 31 Inner bearing member (first bearing member)
33 Jig 34 Side plate member 35 Outer bearing member (second bearing member)
38 Grout 100 Wind Turbine 101 Blade 102 Nacelle 103 Hub

Claims (6)

上方に向けて立設されるコンクリート製の下部筒体と、
その下端側を前記下部筒体の上端側筒内に挿入又は、その下端側筒内に前記下部筒体の上端側を挿入させて、下端側の側面を前記下部筒体の上端側の側面と空間を隔てて対向させると共に、前記下部筒体の上端側から上方に向けて立設される鋼製の上部筒体と、
前記上部筒体の下端側を前記下部筒体の上端側に接合支持する接合部と、を備え、
前記接合部は、
前記上部筒体の前記下端側の側面から前記空間内に突出する第1支圧部材と、
前記下部筒体の前記上端側の側面から前記空間内に突出する第2支圧部材と、
前記空間内にグラウト材を充填して形成されるグラウト層と、を有する
ことを特徴とするハイブリッド構造体。
The concrete lower cylinder that stands upward and
The lower end side is inserted into the upper end side cylinder of the lower cylinder, or the upper end side of the lower cylinder is inserted into the lower end side cylinder, and the lower end side surface is regarded as the upper end side side surface of the lower cylinder body. A steel upper cylinder that is erected upward from the upper end side of the lower cylinder while facing each other across a space.
A joint portion for joining and supporting the lower end side of the upper cylinder to the upper end side of the lower cylinder is provided.
The joint
A first bearing member protruding into the space from the side surface on the lower end side of the upper cylinder, and
A second bearing member projecting into the space from the side surface of the lower cylinder on the upper end side,
A hybrid structure characterized by having a grout layer formed by filling the space with a grout material.
前記第1支圧部材及び、前記第2支圧部材が、前記接合部の少なくとも上下方向の中間部に設けられている
請求項1に記載のハイブリッド構造体。
The hybrid structure according to claim 1, wherein the first bearing member and the second bearing member are provided at least in an intermediate portion in the vertical direction of the joint portion.
前記第1支圧部材及び、前記第2支圧部材を複数有すると共に、該複数の前記第1支圧部材及び、前記第2支圧部材が上下方向に互い違いに配置されている
請求項1又は2に記載のハイブリッド構造体。
Claim 1 or claim 1, which has a plurality of the first bearing member and the second bearing member, and the plurality of the first bearing member and the second bearing member are arranged alternately in the vertical direction. 2. The hybrid structure according to 2.
前記第1支圧部材及び、前記第2支圧部材の少なくとも一方が周方向に間欠的に設けられている
請求項1から3の何れか一項に記載のハイブリッド構造体。
The hybrid structure according to any one of claims 1 to 3, wherein at least one of the first bearing member and the second bearing member is intermittently provided in the circumferential direction.
前記下部筒体の前記上部筒体と対向する側面に、複数の側板部材が周方向に所定間隔毎に埋設されると共に、該複数の側板部材に前記第2支圧部材がそれぞれ設けられており、前記側板部材と前記第2支圧部材とにより前記接合部の一部なす治具を構成する
請求項1から4の何れか一項に記載のハイブリッド構造体。
A plurality of side plate members are embedded in the side surface of the lower cylinder facing the upper cylinder at predetermined intervals in the circumferential direction, and the second bearing member is provided in each of the plurality of side plate members. The hybrid structure according to any one of claims 1 to 4, wherein the side plate member and the second bearing member constitute a jig forming a part of the joint portion.
前記下部筒体が、地盤から上方に向けて立設されており、前記上部筒体が、前記下部筒体よりも小径に形成されると共に、その下端側を前記下部筒体の上端側筒内に挿入されており、前記上部筒体の上端部に風力発電機が搭載される
請求項1から5の何れか一項に記載のハイブリッド構造体。
The lower cylinder is erected upward from the ground, the upper cylinder is formed to have a smaller diameter than the lower cylinder, and the lower end side thereof is inside the upper end side cylinder of the lower cylinder. The hybrid structure according to any one of claims 1 to 5, wherein the wind power generator is mounted on the upper end portion of the upper cylinder.
JP2019165773A 2019-09-11 2019-09-11 Hybrid structure Pending JP2021042590A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019165773A JP2021042590A (en) 2019-09-11 2019-09-11 Hybrid structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019165773A JP2021042590A (en) 2019-09-11 2019-09-11 Hybrid structure

Publications (1)

Publication Number Publication Date
JP2021042590A true JP2021042590A (en) 2021-03-18

Family

ID=74863775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019165773A Pending JP2021042590A (en) 2019-09-11 2019-09-11 Hybrid structure

Country Status (1)

Country Link
JP (1) JP2021042590A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113774896A (en) * 2021-10-11 2021-12-10 水利部交通运输部国家能源局南京水利科学研究院 Top precession type grouting anti-scouring device and method for offshore wind power barrel type foundation
CN115094942A (en) * 2022-06-30 2022-09-23 中国交通建设股份有限公司 Large-diameter combined cylinder, deep water foundation, wind power foundation and static force sinking construction method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113774896A (en) * 2021-10-11 2021-12-10 水利部交通运输部国家能源局南京水利科学研究院 Top precession type grouting anti-scouring device and method for offshore wind power barrel type foundation
CN113774896B (en) * 2021-10-11 2022-04-19 水利部交通运输部国家能源局南京水利科学研究院 Top precession type grouting anti-scouring device and method for offshore wind power barrel type foundation
CN115094942A (en) * 2022-06-30 2022-09-23 中国交通建设股份有限公司 Large-diameter combined cylinder, deep water foundation, wind power foundation and static force sinking construction method

Similar Documents

Publication Publication Date Title
EP1947328B1 (en) Joining device for hybrid wind turbine towers
JP4874152B2 (en) Tower structure with variable cross section by precast method
CN210621742U (en) Tower drum supporting seat
LU102092B1 (en) Newly-built or expanded wind power foundation structure on soft ground and construction method thereof
US12085057B2 (en) Support structure for wind power generation device and wind power generation device
JP2008101363A (en) Columnar structure, its construction method, and concrete panel
CN215367377U (en) Fully-assembled wind generating set foundation and wind generating set
TWI807091B (en) Pile foundation and construction method of pile foundation
JP2021042590A (en) Hybrid structure
JP2008223303A (en) Foundation structure of tower-like structure
US20160265514A1 (en) Support device and methods for improving and constructing a support device
US11028551B2 (en) Foundation for a tower of a wind-turbine
CN111594390B (en) Method for connecting a tower to a foundation
JP4494282B2 (en) Tower structure with variable cross section by precast method
GB2505192A (en) A pile sleeve connection for a monopole foundation
CN106545471B (en) The construction construction method of tower
CN216407048U (en) Wind-solar integrated power generation fan tower drum structure
CN211645953U (en) Structure for flexibly connecting H-shaped steel-PHC combined pile with bridge abutment
KR20200057954A (en) Wind turbine structure for retrofitting spread footing in partial repowering , and construction method for the same
JP7012981B1 (en) Supports for wind power generation equipment consisting of concrete columns and steel pipe columns
KR101613844B1 (en) Transition pieces of offshore wind turbines and whole structure of wind turbines having it
TW202221198A (en) Wind power plant foundation structure
CN216041288U (en) Spiral anchor foundation
JP2020186522A (en) Foundation structure of tower-like structure
CN111021231A (en) Structure for flexibly connecting H-shaped steel-PHC combined pile with bridge abutment and construction method thereof

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210322