[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2021042406A - Plasma spraying device - Google Patents

Plasma spraying device Download PDF

Info

Publication number
JP2021042406A
JP2021042406A JP2019163038A JP2019163038A JP2021042406A JP 2021042406 A JP2021042406 A JP 2021042406A JP 2019163038 A JP2019163038 A JP 2019163038A JP 2019163038 A JP2019163038 A JP 2019163038A JP 2021042406 A JP2021042406 A JP 2021042406A
Authority
JP
Japan
Prior art keywords
base material
nozzle
plasma
cooling
thermal spray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019163038A
Other languages
Japanese (ja)
Other versions
JP7298403B2 (en
Inventor
田中 巧
Takumi Tanaka
巧 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2019163038A priority Critical patent/JP7298403B2/en
Publication of JP2021042406A publication Critical patent/JP2021042406A/en
Application granted granted Critical
Publication of JP7298403B2 publication Critical patent/JP7298403B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Nozzles (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

To provide a plasma spraying device capable of processing a coating in a short time on a substrate outer surface with a sufficient film thickness by suppressing crack of the ceramic substrate.SOLUTION: A ceramic substrate 21 is held and rotated by a jig 22. During rotation of the substrate 21, a plasma jet 20 containing a thermal spray material 19 is jetted out from a spray coating nozzle 14 toward the substrate 21. The spray coating nozzle 14 forms a coating 23 on the outer surface comprising a conical surface of the substrate 21. Two cooling nozzles 24 are arranged symmetrically with respect to an axis 141 of the spray coating nozzle 14. The cooling nozzles 24 jet out air 26 from the periphery of the plasma jet 20 toward the substrate 21 during rotation of the substrate 21.SELECTED DRAWING: Figure 1

Description

本発明は、セラミック製の基材に皮膜を形成するプラズマ溶射装置に関する。 The present invention relates to a plasma spraying device that forms a film on a ceramic substrate.

セラミック基材への皮膜加工には、従来からプラズマ溶射装置が広く使用されている。プラズマ溶射装置は、溶射ノズルへの供給電力を増加させることで、プラズマの発熱量を高めて、皮膜の加工時間を短縮することができる。しかし、回転中のセラミック基材に皮膜を加工する場合、プラズマジェットによる加熱部位が基材の回転に伴って変化するため、熱膨張差によって基材に割れが発生しやすいという課題があった。 Conventionally, a plasma spraying device has been widely used for film processing on a ceramic base material. By increasing the power supplied to the thermal spray nozzle, the plasma spraying device can increase the amount of heat generated by the plasma and shorten the film processing time. However, when processing a film on a rotating ceramic base material, there is a problem that the base material is liable to crack due to the difference in thermal expansion because the heating portion by the plasma jet changes with the rotation of the base material.

熱対策として、特許文献1には、溶射ブース内の溶射材料を含むガスを外部に排出することで、溶射ブース内の温度を低下させる技術が提案されている。また、特許文献2には、プラズマジェットの周囲に冷却ノズルを配置し、冷却ノズルから冷却ガスを加工領域外側の基材に向けて吹き付け、板状の基材を高温から保護する技術が開示されている。 As a measure against heat, Patent Document 1 proposes a technique for lowering the temperature inside the thermal spraying booth by discharging the gas containing the thermal spraying material in the thermal spraying booth to the outside. Further, Patent Document 2 discloses a technique in which a cooling nozzle is arranged around a plasma jet, and a cooling gas is sprayed from the cooling nozzle toward a base material outside the processing region to protect the plate-shaped base material from high temperature. ing.

特開2017−75353号公報JP-A-2017-75353 特開平6−122956号公報Japanese Unexamined Patent Publication No. 6-122956

ところが、特許文献1の熱対策によると、溶射材料を含むガスを溶射ブース外に排出するため、皮膜の膜厚が減少し、所要の膜厚を得るために加工時間が長くかかった。また、特許文献2の熱対策によると、冷却ガスを皮膜加工領域の外側に向けて吹き付けているので、溶射材料の一部が冷却ガスの噴流に誘引されて加工領域の外側に流失し、膜厚が不十分になり、高速加工に適さないという課題があった。 However, according to the heat countermeasure of Patent Document 1, since the gas containing the thermal spraying material is discharged to the outside of the thermal spraying booth, the film thickness of the film is reduced, and it takes a long time to obtain the required film thickness. Further, according to the heat countermeasure of Patent Document 2, since the cooling gas is sprayed toward the outside of the film processing area, a part of the sprayed material is attracted by the jet of the cooling gas and flows out to the outside of the processing area, and the film is formed. There was a problem that the thickness became insufficient and it was not suitable for high-speed machining.

本発明は、上記課題に鑑みてなされたものであり、その目的は、セラミック基材の割れを抑えて、皮膜を十分な膜厚で短時間に加工可能なプラズマ溶射装置を提供することにある。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a plasma spraying apparatus capable of processing a film with a sufficient film thickness in a short time by suppressing cracking of a ceramic base material. ..

上記課題を解決するために、本発明のプラズマ溶射装置(10)は、セラミック製の基材(21)を回転可能に保持する治具(22)と、基材の回転中に溶射材料(19)を含むプラズマジェット(20)を基材に向けて噴射し、基材の外面に皮膜(23)を形成する溶射ノズル(14)と、基材の回転中に冷却ガス(26)をプラズマジェットの周囲から基材に向けて噴射する冷却ノズル(24)と、を備える。 In order to solve the above problems, the plasma spraying apparatus (10) of the present invention includes a jig (22) that rotatably holds a ceramic base material (21) and a thermal spray material (19) during the rotation of the base material. A thermal spray nozzle (14) that injects a plasma jet (20) containing () toward the base material to form a film (23) on the outer surface of the base material, and a plasma jet of cooling gas (26) while the base material is rotating. It is provided with a cooling nozzle (24) for spraying from the periphery of the substrate toward the base material.

上記構成によれば、基材の回転中に溶射材料によって皮膜が形成され、同時にその皮膜が冷却ガスにより冷却される。このため、セラミック基材を各部均一な温度で発熱させ、基材の割れを抑えることができる。また、冷却ガスがプラズマジェットの周囲から基材に向けて噴射されるため、冷却ガスの噴流に乗せて溶射材料を基材外面に寄せ集め、皮膜を十分な膜厚で短時間に加工することも可能である。 According to the above configuration, a film is formed by the thermal spray material during the rotation of the base material, and at the same time, the film is cooled by the cooling gas. Therefore, the ceramic base material can be heated at a uniform temperature in each part, and cracking of the base material can be suppressed. In addition, since the cooling gas is injected from the periphery of the plasma jet toward the base material, the sprayed material is gathered on the outer surface of the base material on the jet of the cooling gas, and the film is processed with a sufficient film thickness in a short time. Is also possible.

本発明の好ましい実施形態では、複数の冷却ノズルが溶射ノズルの軸線(141)に関して対称状に配置される。複数の冷却ノズルの軸線(242)は、基材よりも溶射ノズルに近い位置で互いに斜めに交差する。基材は、その外面が円筒面または円錐面を含む。溶射ノズルは、基材との相対位置が可変に設けられる。冷却ノズルは、基材の回転軸線方向に延びるスリット状のガス吹出口(241)を備える。 In a preferred embodiment of the present invention, the plurality of cooling nozzles are arranged symmetrically with respect to the axis (141) of the thermal spray nozzles. The axes (242) of the plurality of cooling nozzles intersect each other diagonally at a position closer to the thermal spray nozzle than the base material. The outer surface of the base material includes a cylindrical surface or a conical surface. The thermal spray nozzle is provided with a variable position relative to the base material. The cooling nozzle includes a slit-shaped gas outlet (241) extending in the direction of the rotation axis of the base material.

本発明の一実施形態を示すプラズマ溶射装置の立面図である。It is an elevation view of the plasma spraying apparatus which shows one Embodiment of this invention. 図1のプラズマ溶射装置の平面図である。It is a top view of the plasma spraying apparatus of FIG. 基材の一例を示す(a)正面図,(b)横断面図である。It is (a) front view and (b) cross-sectional view which shows an example of a base material. 基材の割れおよび皮膜の膜厚を評価するための試験条件を示す(a)ノズル配置図、(b)寸法表である。It is (a) nozzle arrangement drawing and (b) dimension table which show the test condition for evaluating the cracking of a base material and the film thickness of a film. (a)割れの評価結果を示す表、(b)膜厚の評価結果を示す表である。(A) A table showing the evaluation results of cracks, and (b) a table showing the evaluation results of the film thickness. 評価結果の補足説明図である。It is a supplementary explanatory diagram of the evaluation result.

(一実施形態)
以下、本発明の一実施形態を図面に基づいて説明する。図1、図2に示すように、この実施形態のプラズマ溶射装置10では、溶射ブース11の内側にフレーム12が設置され、フレーム12にブラケット13を介して溶射ノズル14が上下方向に移動可能に取り付けられている。溶射ノズル14は、ボディ142およびノズルヘッド143を備え、ボディ142に、アルゴン、窒素等の不活性ガスからなるプラズマ作動ガス15を導入するガス入口16と、金属、セラミック等の粉末溶射材料19を導入する材料入口17とが設けられている。
(One Embodiment)
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. As shown in FIGS. 1 and 2, in the plasma spraying apparatus 10 of this embodiment, the frame 12 is installed inside the thermal spray booth 11, and the thermal spray nozzle 14 can move vertically via the bracket 13 on the frame 12. It is attached. The thermal spraying nozzle 14 includes a body 142 and a nozzle head 143, and has a gas inlet 16 for introducing a plasma working gas 15 made of an inert gas such as argon or nitrogen into the body 142, and a powder spraying material 19 such as metal or ceramic. A material inlet 17 to be introduced is provided.

ノズルヘッド143は、内部でアーク放電によりプラズマを発生させ、プラズマの熱で粉末溶射材料19を溶かし、この溶射材料19を含むプラズマジェット20をセラミック製の基材21に向けて噴射する。基材21は、例えば、排ガス中の酸素量を測定するO2センサであって、治具22によって垂直な軸線213の周りで回転可能に保持されている。図3(a)に示すように、基材21の基部211は治具22に把持され、本体部212の外面が基材21の回転軸線213に沿って延びる緩やかな円錐面または円筒面となっている。そして、図3(b)に示すように、基材21の回転中に、溶射ノズル14が基材21に対する位置を上下に変化させつつ、プラズマジェット20中の溶射材料19を本体部212の外面に吹き付けて皮膜23を積層状に形成する。 The nozzle head 143 internally generates plasma by arc discharge, melts the powder spraying material 19 with the heat of the plasma, and injects a plasma jet 20 containing the spraying material 19 toward the ceramic base material 21. The base material 21 is, for example, an O 2 sensor that measures the amount of oxygen in the exhaust gas, and is rotatably held around a vertical axis 213 by a jig 22. As shown in FIG. 3A, the base portion 211 of the base material 21 is gripped by the jig 22, and the outer surface of the main body portion 212 becomes a gentle conical surface or a cylindrical surface extending along the rotation axis 213 of the base material 21. ing. Then, as shown in FIG. 3B, while the base material 21 is rotating, the thermal spray nozzle 14 changes the position with respect to the base material 21 up and down, and the thermal spray material 19 in the plasma jet 20 is moved to the outer surface of the main body 212. The film 23 is formed in a laminated manner by spraying on.

図1に示すように、治具22はモータ222により駆動され、モータ222が溶射ブース11の底壁111の上に設置されている。同じく底壁111には、左右に2本の冷却ノズル24が支持部材25によって支持されている。図2に示すように、2本の冷却ノズル24は、ノズルヘッド143の近傍で溶射ノズル14の軸線141に関して対称に配置されている。冷却ノズル24の先端には、ガス吹出口241が基材21の回転軸線方向に延びるスリット状に形成され(図1参照)、基材21の回転中に、冷却ガスとしてのエア26をプラズマジェット20の周囲からセラミック基材21に向けて噴射する。 As shown in FIG. 1, the jig 22 is driven by a motor 222, and the motor 222 is installed on the bottom wall 111 of the thermal spray booth 11. Similarly, on the bottom wall 111, two cooling nozzles 24 on the left and right are supported by the support member 25. As shown in FIG. 2, the two cooling nozzles 24 are arranged symmetrically with respect to the axis 141 of the thermal spray nozzle 14 in the vicinity of the nozzle head 143. At the tip of the cooling nozzle 24, a gas outlet 241 is formed in a slit shape extending in the direction of the rotation axis of the base material 21 (see FIG. 1), and air 26 as a cooling gas is plasma jetted during the rotation of the base material 21. It is sprayed from the periphery of 20 toward the ceramic base material 21.

また、冷却ノズル24は、エア26の噴流に乗せてプラズマジェット20中の溶射材料19を基材21に寄せ集める。この実施形態では、図4(a)に示すように、2本の冷却ノズル24の軸線242が基材21よりも溶射ノズル14に近い位置(交点P)で互いに斜めに交差する。溶射ノズル14の軸線141と冷却ノズル24の軸線242とがなす角度θは、35°〜60°であるのが好ましい。角度θが35°未満になると、エア26がプラズマジェット20の流れを乱し、膜厚を減少させる原因となる。また、角度θが60°を超過すると、基材21に到達するエア量が減少し、冷却効果が低下し、割れの原因となる。 Further, the cooling nozzle 24 gathers the thermal spray material 19 in the plasma jet 20 on the base material 21 on the jet stream of the air 26. In this embodiment, as shown in FIG. 4A, the axes 242 of the two cooling nozzles 24 intersect each other diagonally at a position (intersection point P) closer to the thermal spray nozzle 14 than the base material 21. The angle θ formed by the axis 141 of the thermal spray nozzle 14 and the axis 242 of the cooling nozzle 24 is preferably 35 ° to 60 °. If the angle θ is less than 35 °, the air 26 disturbs the flow of the plasma jet 20 and causes the film thickness to decrease. Further, when the angle θ exceeds 60 °, the amount of air reaching the base material 21 decreases, the cooling effect decreases, and it causes cracking.

図4(b)は、冷却ノズル24の配置と基材21の割れおよび皮膜23の膜厚との関係を評価するための試験条件を示す。この試験では、基材21の中心から交点Pまでの距離A、交点Pから冷却ノズル24のガス吹出口241までの距離B、および角度θを変え、4つの条件「い」〜「に」を設定した。そして、図5(a),(b)に示すように、各条件においてエア量を変え、基材21の割れおよび皮膜23の膜厚を評価した。その結果、エア量が20L/min以上であると、すべての条件で基材21に割れが発生しなかった。条件「い」は、エア量が25L/minで割れを発生せず、膜厚も十分であることから、皮膜23の高速加工に適していると云える。条件「ろ」は、条件「い」と比較して距離Bが短いため、図6に示すように、エア26の噴流によって溶射材料19が遮られ、エア量の多寡に関わりなく膜厚が不足する。 FIG. 4B shows the test conditions for evaluating the relationship between the arrangement of the cooling nozzles 24, the cracks in the base material 21, and the film thickness of the film 23. In this test, the distance A from the center of the base material 21 to the intersection P, the distance B from the intersection P to the gas outlet 241 of the cooling nozzle 24, and the angle θ are changed, and four conditions “i” to “ni” are satisfied. I set it. Then, as shown in FIGS. 5A and 5B, the amount of air was changed under each condition, and the cracking of the base material 21 and the film thickness of the film 23 were evaluated. As a result, when the amount of air was 20 L / min or more, the base material 21 did not crack under all conditions. The condition "I" can be said to be suitable for high-speed processing of the film 23 because the air amount is 25 L / min, cracks do not occur, and the film thickness is sufficient. Since the distance B of the condition "ro" is shorter than that of the condition "i", as shown in FIG. 6, the sprayed material 19 is blocked by the jet of the air 26, and the film thickness is insufficient regardless of the amount of air. To do.

以上詳述したように、この実施形態のプラズマ溶射装置10によれば、図3(b)に示すように、基材21の回転に伴って溶射材料19によって皮膜23が形成されると同時に、その皮膜23がエア26によって冷却される。このため、基材21を各部均一な温度で発熱させ、熱膨張差を少なくして、セラミック基材21の割れを抑えることができる。また、エア26がプラズマジェット20の両側から基材21に向けて斜めに噴射されるので、エア26の噴流に乗せて溶射材料19を基材21側に寄せ集め、皮膜23を十分な膜厚で短時間に加工することができる。なお、プラズマ作動ガス15および冷却エア26を含むガス類は、溶射ブース11内に回収されたのち、排気ダクト27(図2参照)を通して外部に排出される。 As described in detail above, according to the plasma spraying apparatus 10 of this embodiment, as shown in FIG. 3B, the film 23 is formed by the thermal spraying material 19 as the base material 21 rotates, and at the same time, the film 23 is formed at the same time. The film 23 is cooled by the air 26. Therefore, the base material 21 can be heated at a uniform temperature in each part, the difference in thermal expansion can be reduced, and cracking of the ceramic base material 21 can be suppressed. Further, since the air 26 is obliquely ejected from both sides of the plasma jet 20 toward the base material 21, the thermal spray material 19 is gathered toward the base material 21 on the jet flow of the air 26, and the film 23 has a sufficient film thickness. Can be processed in a short time. The gases including the plasma working gas 15 and the cooling air 26 are collected in the thermal spraying booth 11 and then discharged to the outside through the exhaust duct 27 (see FIG. 2).

(その他の実施形態)
本発明は、上記実施形態に限定されるものではなく、以下に例示するように、発明の趣旨を逸脱しない範囲で各部の形状や構成を適宜に変更して実施することも可能である。
(1)セラミック基材21として、センサ部品以外の各種部品、製品または物品を用いること。
(2)皮膜23を六角柱、八角柱、それ以上の多角柱の外面に形成すること。
(Other embodiments)
The present invention is not limited to the above-described embodiment, and as illustrated below, it is possible to appropriately change the shape and configuration of each part within a range that does not deviate from the gist of the invention.
(1) As the ceramic base material 21, various parts, products or articles other than sensor parts are used.
(2) The coating 23 is formed on the outer surface of a hexagonal prism, an octagonal prism, or more polygonal prisms.

(3)上記実施形態では、垂直に保持された基材21に向けて溶射ノズル14が横方向からプラズマジェット20を噴射しているが、水平に保持された基材21に向けて溶射ノズル14が上または下からプラズマジェット20を噴射してもよい。
(4)冷却ノズル24は2本に限定されず、溶射ノズル14の周囲に3本、4本またはそれ以上を配置してもよい。
(3) In the above embodiment, the thermal spray nozzle 14 injects the plasma jet 20 from the lateral direction toward the vertically held base material 21, but the thermal spray nozzle 14 is directed toward the horizontally held base material 21. May inject the plasma jet 20 from above or below.
(4) The number of cooling nozzles 24 is not limited to two, and three, four or more may be arranged around the thermal spray nozzle 14.

(5)複数の冷却ノズル24を溶射ノズル14の軸線141に関して上下対称に配置すること。
(6)溶射ノズル14の軸線141に関して対称形状の1つの幅広の冷却ノズルを使用し、その幅方向両端部から相対的に大量のエアを、幅方向中央部から相対的に少量のエアをセラミック基材21に吹き付けること。
(5) A plurality of cooling nozzles 24 are arranged vertically symmetrically with respect to the axis 141 of the thermal spray nozzle 14.
(6) Using one wide cooling nozzle having a symmetrical shape with respect to the axis 141 of the thermal spray nozzle 14, a relatively large amount of air is applied from both ends in the width direction, and a relatively small amount of air is applied from the center in the width direction. Spray on the substrate 21.

10・・・プラズマ溶射装置、14・・・溶射ノズル、19・・・溶射材料、
20・・・プラズマジェット、21・・・基材、22・・・治具、23・・・皮膜、
24・・・冷却ノズル、26・・・エア。
10 ... Plasma spraying device, 14 ... Thermal spraying nozzle, 19 ... Thermal spraying material,
20 ... Plasma jet, 21 ... Base material, 22 ... Jig, 23 ... Film,
24 ... Cooling nozzle, 26 ... Air.

Claims (6)

セラミック製の基材(21)を回転可能に保持する治具(22)と、
前記基材の回転中に、溶射材料(19)を含むプラズマジェット(20)を前記基材に向けて噴射し、前記基材の外面に皮膜(23)を形成する溶射ノズル(14)と、
前記基材の回転中に、冷却ガス(26)を前記プラズマジェットの周囲から前記基材に向けて噴射する冷却ノズル(24)と、
を備えたプラズマ溶射装置(10)。
A jig (22) that rotatably holds the ceramic base material (21) and
During the rotation of the base material, a plasma jet (20) containing the thermal spray material (19) is jetted toward the base material to form a film (23) on the outer surface of the base material, and a thermal spray nozzle (14).
A cooling nozzle (24) that injects a cooling gas (26) from the periphery of the plasma jet toward the base material during rotation of the base material.
A plasma spraying device (10).
複数の前記冷却ノズルは、前記溶射ノズルの軸線(141)に関して対称に配置される請求項1に記載のプラズマ溶射装置。 The plasma spraying device according to claim 1, wherein the plurality of cooling nozzles are arranged symmetrically with respect to the axis (141) of the thermal spray nozzle. 前記複数の冷却ノズルの軸線(242)は、前記基材よりも前記溶射ノズルに近い位置で互いに斜めに交差する請求項2に記載のプラズマ溶射装置。 The plasma spraying apparatus according to claim 2, wherein the axes (242) of the plurality of cooling nozzles intersect each other diagonally at a position closer to the spraying nozzle than the base material. 前記基材は、その外面が円筒面または円錐面を含む請求項1〜3の何れか一項に記載のプラズマ溶射装置。 The plasma spraying device according to any one of claims 1 to 3, wherein the base material includes a cylindrical surface or a conical surface. 前記溶射ノズルは、前記基材との相対位置が可変に設けられる請求項1〜4の何れか一項に記載のプラズマ溶射装置。 The plasma spraying apparatus according to any one of claims 1 to 4, wherein the thermal spray nozzle is provided with a variable relative position with respect to the base material. 前記冷却ノズルは、前記基材の回転軸線方向に延びるスリット状のガス吹出口(241)を備える請求項1〜5の何れか一項に記載のプラズマ溶射装置。 The plasma spraying device according to any one of claims 1 to 5, wherein the cooling nozzle includes a slit-shaped gas outlet (241) extending in the direction of the rotation axis of the base material.
JP2019163038A 2019-09-06 2019-09-06 Plasma spray equipment Active JP7298403B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019163038A JP7298403B2 (en) 2019-09-06 2019-09-06 Plasma spray equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019163038A JP7298403B2 (en) 2019-09-06 2019-09-06 Plasma spray equipment

Publications (2)

Publication Number Publication Date
JP2021042406A true JP2021042406A (en) 2021-03-18
JP7298403B2 JP7298403B2 (en) 2023-06-27

Family

ID=74863067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019163038A Active JP7298403B2 (en) 2019-09-06 2019-09-06 Plasma spray equipment

Country Status (1)

Country Link
JP (1) JP7298403B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5588927A (en) * 1978-12-27 1980-07-05 Matsushita Electric Ind Co Ltd Pipe and its manufacture
JPS58204884A (en) * 1982-05-20 1983-11-29 九州耐火煉瓦株式会社 Ceramic roll
JPH02277761A (en) * 1989-04-19 1990-11-14 Matsushita Electric Ind Co Ltd Plasma spraying device
JPH0374657U (en) * 1989-11-17 1991-07-26
JPH06103990A (en) * 1992-09-18 1994-04-15 Ngk Insulators Ltd Solid electrolytic type fuel cell and manufacture thereof
JPH06122956A (en) * 1992-10-13 1994-05-06 Matsushita Electric Ind Co Ltd Plasma spraying method and film forming device
JPH06287737A (en) * 1993-04-02 1994-10-11 Fujikura Ltd Thermally spraying equipment
JP2004359975A (en) * 2003-06-02 2004-12-24 Aisan Ind Co Ltd Method for producing composite material in which hard grains are dispersed in matrix metal
JP2008043869A (en) * 2006-08-14 2008-02-28 Nakayama Steel Works Ltd Flame spray device for forming supercooled liquid phase metal film
JP2013221167A (en) * 2012-04-13 2013-10-28 Nakayama Steel Works Ltd Method and device for plastic-working amorphous alloy

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5588927A (en) * 1978-12-27 1980-07-05 Matsushita Electric Ind Co Ltd Pipe and its manufacture
JPS58204884A (en) * 1982-05-20 1983-11-29 九州耐火煉瓦株式会社 Ceramic roll
JPH02277761A (en) * 1989-04-19 1990-11-14 Matsushita Electric Ind Co Ltd Plasma spraying device
JPH0374657U (en) * 1989-11-17 1991-07-26
JPH06103990A (en) * 1992-09-18 1994-04-15 Ngk Insulators Ltd Solid electrolytic type fuel cell and manufacture thereof
JPH06122956A (en) * 1992-10-13 1994-05-06 Matsushita Electric Ind Co Ltd Plasma spraying method and film forming device
JPH06287737A (en) * 1993-04-02 1994-10-11 Fujikura Ltd Thermally spraying equipment
JP2004359975A (en) * 2003-06-02 2004-12-24 Aisan Ind Co Ltd Method for producing composite material in which hard grains are dispersed in matrix metal
JP2008043869A (en) * 2006-08-14 2008-02-28 Nakayama Steel Works Ltd Flame spray device for forming supercooled liquid phase metal film
JP2013221167A (en) * 2012-04-13 2013-10-28 Nakayama Steel Works Ltd Method and device for plastic-working amorphous alloy

Also Published As

Publication number Publication date
JP7298403B2 (en) 2023-06-27

Similar Documents

Publication Publication Date Title
JP5231767B2 (en) Masking system for masking the crank chamber of an internal combustion engine
JP5851136B2 (en) Cooling device and cooling method for metal tube after heating
US11167353B2 (en) Homogeneous suction during additive manufacturing
US3900639A (en) Method for coating surfaces of a workpiece by spraying on a coating substance
JP2018532877A (en) Method and apparatus for uniform non-contact cooling of high temperature non-endless surfaces
JP2009233784A (en) Method of reducing waterjet injection sound
TW201446666A (en) Apparatus and method for molten glass flow control along an isopipe weir
TW202113110A (en) Coating device and method for metal-coating of workpieces
JP2017045713A (en) Arc type atmospheric pressure plasma apparatus
JP2017183472A (en) Chamber cleaning device and chamber cleaning method
JP5609500B2 (en) Laser welding equipment
JP4556618B2 (en) Laser processing equipment
JP7298403B2 (en) Plasma spray equipment
TW201811478A (en) Laser treatment device and laser scrap removal device
JPH11216589A (en) Method and device for preventing contamination and breakage of optical system member in laser processing machine
JP2008514394A (en) CO2 snow / crystal nozzle
KR20160083715A (en) Semiconductor processing apparatus having a gas spray unit
KR102141068B1 (en) Thermal treatment furnace
CN108247052B (en) Method for temperature control of metal additive manufacturing process
KR20090050707A (en) Aerosol cleaning apparatus and method of nano-sized particle using supersonic speed nozzle
JP6749741B6 (en) Gas ejector
TW201600175A (en) Device for focusing a viscous medium discharged from a discharge opening of a discharge device of a jet device, jet system, and production plant
TW201313373A (en) Laser head
JP6360045B2 (en) Plasma processing equipment
JP4751895B2 (en) Curtain coating method and apparatus using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230529

R151 Written notification of patent or utility model registration

Ref document number: 7298403

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151