JP2021042464A - Control method of continuous heat treatment facility - Google Patents
Control method of continuous heat treatment facility Download PDFInfo
- Publication number
- JP2021042464A JP2021042464A JP2020082681A JP2020082681A JP2021042464A JP 2021042464 A JP2021042464 A JP 2021042464A JP 2020082681 A JP2020082681 A JP 2020082681A JP 2020082681 A JP2020082681 A JP 2020082681A JP 2021042464 A JP2021042464 A JP 2021042464A
- Authority
- JP
- Japan
- Prior art keywords
- heating unit
- output power
- heating
- unit
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000010438 heat treatment Methods 0.000 title claims abstract description 403
- 238000000034 method Methods 0.000 title claims abstract description 31
- 239000002184 metal Substances 0.000 claims abstract description 114
- 230000006698 induction Effects 0.000 claims abstract description 40
- 238000005259 measurement Methods 0.000 claims abstract description 9
- 239000000463 material Substances 0.000 claims description 6
- 230000007423 decrease Effects 0.000 description 5
- 229910000831 Steel Inorganic materials 0.000 description 4
- 230000035699 permeability Effects 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 238000000137 annealing Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000035515 penetration Effects 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 230000005856 abnormality Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 235000021438 curry Nutrition 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000005674 electromagnetic induction Effects 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 239000000498 cooling water Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Landscapes
- Control Of Resistance Heating (AREA)
- General Induction Heating (AREA)
- Control Of Heat Treatment Processes (AREA)
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
Abstract
Description
この発明は、金属部材を連続的に熱処理する連続熱処理設備の制御方法に関する。 The present invention relates to a method for controlling a continuous heat treatment facility that continuously heat-treats a metal member.
電磁誘導加熱は、誘導電流によって金属部材を自己発熱させるため、急速な昇温とリアルタイムでの温度調節とを可能にする。電磁誘導加熱は、ソレノイド式およびトランスバース式に大別される。ソレノイド式は、金属部材の周囲にソレノイド状に巻回した加熱コイルを配置し、加熱コイルに交番電流を流して、金属部材の表面に誘導電流を発生させることにより、金属部材を加熱する。トランスバース式は、金属部材を挟むように金属部材の厚み方向に一対の加熱コイルを離間して対向配置して、加熱コイルから発生した交番磁界が金属部材の厚み方向に貫通するようにしたものである。 Electromagnetic induction heating self-heats a metal member by an induced current, which enables rapid temperature rise and real-time temperature control. Electromagnetic induction heating is roughly classified into a solenoid type and a transverse type. In the solenoid type, a heating coil wound in a solenoid shape is arranged around the metal member, and an alternating current is passed through the heating coil to generate an induced current on the surface of the metal member to heat the metal member. In the transverse type, a pair of heating coils are arranged so as to sandwich the metal member so as to be separated from each other in the thickness direction of the metal member so that the alternating magnetic field generated from the heating coils penetrates in the thickness direction of the metal member. Is.
特許文献1は、圧延時のロール冷却水などに起因する幅方向における温度不均一性に対して温度補償を行うトランスバース式誘導加熱部と、長手方向における温度不均一性に対して温度補償を行うソレノイド式誘導加熱部とを有する加熱装置を開示する。
特許文献2は、連続焼鈍設備の予熱帯に配設されるトランスバース式およびソレノイド式の各誘導加熱部によって、予熱温度(薄鋼板のキュリー温度Tc未満)よりも200℃以上低い温度に、および、予熱温度に、それぞれ、薄鋼板を予熱することを開示する。そして、特許文献2は、予熱帯の下流側において、加熱帯および均熱帯を設けることを開示する。 Patent Document 2 describes that the temperature is 200 ° C. or more lower than the preheating temperature (less than the Curie temperature Tc of a thin steel sheet) by each of the transverse type and solenoid type induction heating portions arranged in the pretropical zone of the continuous annealing facility. Discloses that the thin steel sheet is preheated to the preheating temperature, respectively. Then, Patent Document 2 discloses that a heating zone and an even tropics are provided on the downstream side of the pre-tropics.
ソレノイド式は、金属部材の幅方向の温度均一性が優れているが、金属部材の温度が上昇して金属部材のキュリー温度に近づくと、金属部材の比透磁率が大きく低下するので、誘導電流の浸透深さが深くなる。その結果、厚みが薄い金属部材では、金属部材のおもて面を流れる誘導電流と裏面を流れる誘導電流とが相互に打ち消し合うようになり、加熱効率が大幅に低下する。これに対して、トランスバース式では、金属部材の厚みの影響を受けにくいが、誘導電流が金属部材の幅方向の端部に集中することによって端部が過加熱されるため、金属部材の幅方向の温度均一性がソレノイド式よりも劣る。 The solenoid type has excellent temperature uniformity in the width direction of the metal member, but when the temperature of the metal member rises and approaches the Curie temperature of the metal member, the relative magnetic permeability of the metal member drops significantly, so that the induced current Penetration depth becomes deeper. As a result, in a thin metal member, the induced current flowing on the front surface and the induced current flowing on the back surface of the metal member cancel each other out, and the heating efficiency is significantly reduced. On the other hand, in the solenoid type, the thickness of the metal member is not easily affected, but the width of the metal member is overheated because the induced current is concentrated on the end in the width direction of the metal member. The temperature uniformity in the direction is inferior to that of the solenoid type.
特許文献1では、トランスバース式誘導加熱部およびソレノイド式誘導加熱部によって、温度不均一性に対して温度補償を行おうとしているが、厚みが薄い金属部材に対して十分な温度均一性が得られているとは言い難い。
In
特許文献2は、ソレノイド式誘導加熱部によってキュリー温度近傍まで薄鋼板を急速加熱することを開示するだけであり、幅方向の温度均一性を、連続焼鈍設備においてトータルで良好にするための制御を開示するものではない。 Patent Document 2 only discloses that a thin steel sheet is rapidly heated to near the Curie temperature by a solenoid type induction heating unit, and controls for improving the temperature uniformity in the width direction in total in a continuous annealing facility. It is not disclosed.
そこで、この発明の課題は、金属部材の搬送方向に直交する幅方向における温度均一性をトータルで良好にできる連続熱処理設備の制御方法を提供することにある。 Therefore, an object of the present invention is to provide a control method for a continuous heat treatment facility capable of improving the temperature uniformity in the width direction orthogonal to the transport direction of the metal member in total.
上記課題を解決するため、この発明の一態様に係る連続熱処理設備の制御方法は、
金属部材の搬送方向に沿って順に連続的に配設される、第1加熱部、第2加熱部および第3加熱部と、
前記第1加熱部、前記第2加熱部および前記第3加熱部のそれぞれに出力される第1出力電力、第2出力電力および第3出力電力をそれぞれ制御する制御部と、
前記第1加熱部における第1電圧および第1電流を測定する第1測定部とを備え、
前記第1加熱部、前記第2加熱部および前記第3加熱部が、それぞれ、ソレノイド式誘導加熱部、トランスバース式誘導加熱部および抵抗加熱部である連続熱処理設備において、
前記制御部は、前記第1測定部によって測定された前記第1電圧および前記第1電流に基づいて並列共振回路における等価インピーダンスを算出し、算出された前記等価インピーダンスが閾値よりも大きくなったとき、前記第1出力電力が減少するように前記第1出力電力を制御することを特徴とする。
In order to solve the above problems, the control method of the continuous heat treatment equipment according to one aspect of the present invention is
The first heating portion, the second heating portion, and the third heating portion, which are continuously arranged in order along the transport direction of the metal member,
A control unit that controls the first output power, the second output power, and the third output power output to the first heating unit, the second heating unit, and the third heating unit, respectively.
A first measuring unit for measuring a first voltage and a first current in the first heating unit is provided.
In a continuous heat treatment facility in which the first heating unit, the second heating unit, and the third heating unit are a solenoid type induction heating unit, a transverse type induction heating unit, and a resistance heating unit, respectively.
The control unit calculates the equivalent impedance in the parallel resonant circuit based on the first voltage and the first current measured by the first measuring unit, and when the calculated equivalent impedance becomes larger than the threshold value. The first output power is controlled so that the first output power is reduced.
この発明によれば、第1加熱部すなわちソレノイド式誘導加熱部の並列共振回路における等価インピーダンスが閾値よりも大きくなったとき、第1出力電力を減少させている。言い換えると、第1加熱部によって加熱される金属部材の温度が金属部材のキュリー温度になる手前において、第1出力電力を減少させている。これにより、金属部材の温度が金属部材のキュリー温度よりも低い状態で、搬送方向に直交する幅方向における温度均一性が優れているソレノイド式誘導加熱部による加熱が維持されるので、幅方向における温度均一性をトータルで良好にできる。 According to the present invention, the first output power is reduced when the equivalent impedance in the parallel resonant circuit of the first heating unit, that is, the solenoid type induction heating unit becomes larger than the threshold value. In other words, the first output power is reduced before the temperature of the metal member heated by the first heating unit reaches the Curie temperature of the metal member. As a result, in a state where the temperature of the metal member is lower than the Curie temperature of the metal member, heating by the solenoid type induction heating unit having excellent temperature uniformity in the width direction orthogonal to the transport direction is maintained, so that heating in the width direction is maintained. The temperature uniformity can be improved in total.
以下、図面を参照しながら、この発明に係る連続熱処理設備1の制御方法の実施の形態を説明する。
Hereinafter, embodiments of the control method for the continuous
〔実施形態〕
図1から図4を参照しながら、一実施形態に係る連続熱処理設備1の制御方法を説明する。図1は、一実施形態に係る連続熱処理設備1を模式的に説明する斜視図である。図2は、図1に示した連続熱処理設備1のブロック図である。図3は、連続熱処理設備1における最適設定値を決めるときのフローチャートである。図4は、連続熱処理設備1を運転するときのフローチャートである。
[Embodiment]
The control method of the continuous
〔連続熱処理設備の全体構成〕
図1に示すように、連続熱処理設備1は、金属部材3の搬送方向Fに沿って、上流側から下流側に向けて順に連続的に配設された、第1加熱部10と、第2加熱部20と、第3加熱部30とを備える。連続熱処理設備1は、搬送ローラー(図示しない)を介して、金属部材3を搬送方向Fに搬送しながら連続的な熱処理(例えば、連続焼鈍処理)を行う。ワークとしての金属部材3は、例えば、厚みが薄い金属片(例えば、鋼片)や、金属片を圧延させて得られた長尺状の金属ストリップである。金属部材3の厚みは、例えば0.1mm〜5mmである。
[Overall configuration of continuous heat treatment equipment]
As shown in FIG. 1, the continuous
第1加熱部10の搬送方向Fの下流側(第1加熱部10の出側)には、第1温度センサ16が配設されている。第1温度センサ16は、金属部材3の幅方向Wにおける中央部の出側温度すなわち第1出側温度をスポット的に測定する放射温度計である。第2加熱部20の搬送方向Fの下流側(第2加熱部20の出側)には、第2温度センサ26が配設されている。第2温度センサ26は、搬送方向Fに直交する幅方向Wにおける金属部材3の出側温度すなわち第2出側温度をスキャンしながら測定する。第2温度センサ26は、例えばスキャニングパイロメーターである。第3加熱部30の搬送方向Fの下流側(第3加熱部30の出側)には、第3温度センサ36が配設されている。第3温度センサ36は、搬送方向Fに直交する幅方向Wにおける金属部材3の出側温度すなわち第3出側温度をスキャンしながら測定する。第3温度センサ36は、例えばスキャニングパイロメーターである。
A
図2に示すように、連続熱処理設備1は、第1加熱部10と、第2加熱部20と、第3加熱部30と、第1温度センサ16と、第2温度センサ26と、第3温度センサ36と、制御部5とを備える。
As shown in FIG. 2, the continuous
第1加熱部10は、ソレノイド式誘導加熱部であり、第1加熱コイル12と、第1電源13と、第1出力電力制御部14と、第1測定部18とを備える。第1加熱コイル12は、金属部材3の周囲を巻回するコイルである。第1電源13は、高周波の交流の第1出力電力を第1加熱コイル12に出力する。第1出力電力制御部14は、第1電源13によって第1加熱コイル12に出力される第1出力電力を制御する。第1加熱コイル12によって金属部材3の長手方向断面を貫通するように発生した交番磁界によって、金属部材3のおもて面、裏面および側面に誘導電流が発生する。そして、誘導電流と金属部材3の電気抵抗とに基づくジュール熱によって、金属部材3が加熱される。第1測定部18は、第1加熱コイル12に出力される第1出力電力の第1電圧および第1電流を測定する。制御部5は、測定された第1電圧および第1電流の各測定値を取得して、記憶部7が各測定値を記憶するように制御する。
The
第2加熱部20は、トランスバース式誘導加熱部であり、第2加熱コイル22と、第2電源23と、第2出力電力制御部24とを備える。第2加熱コイル22は、金属部材3を挟むように金属部材3の厚み方向に離間して対向配置された一対の加熱コイルである。第2電源23は、高周波の交流の第2出力電力を第2加熱コイル22に出力する。第2出力電力制御部24は、第2電源23によって第2加熱コイル22に出力される第2出力電力を制御する。第2加熱コイル22から発生した交番磁界は、金属部材3の厚み方向に貫通する。この交番磁界によって誘導電流が金属部材3の表面に発生して、誘導電流と金属部材3の電気抵抗とに基づくジュール熱によって、金属部材3が加熱される。
The
第3加熱部30は、抵抗加熱部であり、加熱ヒータ32と、第3電源33と、第3出力電力制御部34とを備える。加熱ヒータ32は、抵抗発熱体である。第3電源33は、交流の第3出力電力を加熱ヒータ32に出力する。第3出力電力制御部34は、第3電源33によって加熱ヒータ32に出力される第3出力電力を制御する。第3加熱部30では、加熱ヒータ32に通電することで発生した熱エネルギーを金属部材3に伝達する間接抵抗加熱によって、金属部材3が加熱される。
The
制御部5は、連続熱処理設備1の各加熱部を制御し、詳細には、第1加熱部10、第2加熱部20および第3加熱部30のそれぞれを制御する。制御部5は、例えばコンピュータであり、演算部(CPU:中央演算装置)6と、記憶部(ROMやRAMなどのメモリ)7とを含む。
The
記憶部7は、例えば次のような記憶動作を行う。すなわち、記憶部7は、第1加熱部10、第2加熱部20および第3加熱部30のそれぞれにおける熱処理を実行するための各種プログラムを記憶する。記憶部7は、熱処理対象物である各種の金属部材3に関するデータ(例えば、キュリー温度や含熱量や比抵抗や幅や厚みや熱処理条件)や、第1加熱部10の第1定格出力電力、第2加熱部20の第2定格出力電力および第3加熱部30の第3定格出力電力を記憶する。記憶部7は、第1温度センサ16、第2温度センサ26および第3温度センサ36のそれぞれによって測定された温度データ(第1出側温度、第2出側温度および第3出側温度)を記憶する。記憶部7は、第1加熱部10における昇温幅(第1出側温度−第1入側温度)から、第1加熱部10の幅方向Wにおける第1温度ムラを算出するための第1算出式を記憶する。記憶部7は、第2加熱部20における昇温幅(第2出側温度−第2入側温度)から、第2加熱部20の幅方向Wにおける第2温度ムラを算出するための第2算出式を記憶する。記憶部7は、金属部材3の熱処理条件、第3定格出力電力、算出された誘導加熱による累積温度ムラなどに基づいて、第3加熱部30から搬出される金属部材3の幅方向における最終温度ムラ(以下、第3温度ムラという)の大きさTを算出するための第3算出式を記憶する。
The storage unit 7 performs the following storage operation, for example. That is, the storage unit 7 stores various programs for executing the heat treatment in each of the
演算部6は、例えば次のような演算動作を行う。すなわち、演算部6は、第1加熱部10に出力される第1出力電力、第2加熱部20に出力される第2出力電力および第3加熱部30に出力される第3出力電力をそれぞれ算出する。演算部6は、金属部材3のキュリー温度および熱処理条件に基づいて、第3温度ムラの大きさTが、許容値よりも小さくなる最適設定値を算出する。最適設定値は、具体的には、第1出側温度、第2出側温度、第1出力電力、第2出力電力および第3出力電力に関するものである。演算部6は、第1測定部18によって測定される第1電圧および第1電流に基づいて、等価インピーダンスを算出する。演算部6は、金属部材3の材質と、金属部材3の搬送方向Fに直交する幅方向Wにおける幅寸法とに基づいて、閾値を算出する。これにより、閾値が、金属部材3の材質および幅寸法に応じて最適化される。
The
第1加熱部10としてのソレノイド式誘導加熱部は、金属部材3の幅方向Wにおける温度均一性が優れているが、金属部材3の厚みが薄い場合、金属部材3の温度がそのキュリー温度に近づくと、加熱効率が大幅に低下するという問題を有する。すなわち、誘導電流の浸透深さは、金属部材3の固有抵抗の平方根に比例し、金属部材3の比透磁率の平方根に反比例するという関係にある。金属部材3の温度が上昇して金属部材3のキュリー温度に近づくと、金属部材3の比透磁率が大きく低下するので、誘導電流の浸透深さが深くなる。その結果、金属部材3の厚みが薄い場合、金属部材3のおもて面を流れる誘導電流と裏面を流れる誘導電流とが相互に打ち消し合うようになり、加熱効率が大幅に低下する。
The solenoid type induction heating unit as the
第2加熱部20としてのトランスバース式誘導加熱部は、金属部材3の厚みが薄くなっても加熱効率が低下しないが、誘導電流が金属部材3の幅方向Wの端部に集中して端部が過加熱されるため、幅方向Wにおける温度均一性がソレノイド式よりも劣るという問題を有する。
In the solenoid type induction heating unit as the
第3加熱部30としての抵抗加熱部は、金属部材3の幅方向Wにおける温度均一性が優れているとともに、金属部材3の厚みが薄くなっても加熱効率が低下しないが、急激な昇降温動作が困難である。
The resistance heating unit as the
このように、ソレノイド式誘導加熱部10、トランスバース式誘導加熱部20および抵抗加熱部30には、一長一短がある中で、金属部材3の幅方向Wにおける温度均一性をトータルで良好にするための制御を、図3および図4を参照しながら説明する。
As described above, the solenoid type
〔連続熱処理設備の制御方法〕
図3は、連続熱処理設備1における最適設定値を決めるときのフローチャートである。図4は、連続熱処理設備1を運転するときのフローチャートである。
[Control method for continuous heat treatment equipment]
FIG. 3 is a flowchart when determining the optimum set value in the continuous
図3において、連続熱処理設備1を運転することに先だって、或る材質の金属部材3を連続熱処理設備1で熱処理するための最適設定値を決めるためのステップが開始する(ステップS1)。ステップS2では、制御部5は、記憶部7に記憶されている金属部材3のキュリー温度に基づいて、第1加熱部10の第1出側温度を何℃にするべきかを算出する。ステップS3では、制御部5は、記憶部7に記憶されている金属部材3の幅や厚みと熱処理条件(含熱量差を含む)とに基づいて、第1加熱部10に出力されるべき第1出力電力を算出する。ステップS4では、制御部5は、記憶部7に記憶されている熱処理条件と第3加熱部30の第3定格出力電力とに基づいて、第2加熱部20の第2出側温度(言い換えると、第3加熱部30に搬入される金属部材3の温度に近似した温度)を算出する。
In FIG. 3, prior to operating the continuous
ステップS5では、制御部5は、記憶部7に記憶されている金属部材3の幅や厚みと熱処理条件(含熱量差を含む)とに基づいて、第2加熱部20に出力されるべき第2出力電力を算出する。ステップS6では、制御部5は、記憶部7に記憶されている第1算出式と第2算出式とから、それぞれ、第1加熱部10の第1温度ムラと第2加熱部20の第2温度ムラとを算出する。そして、制御部5は、算出された第1温度ムラおよび第2温度ムラの二乗和平方根を算出して、算出された二乗和平方根の値を誘導加熱による累積温度ムラとして、記憶部7が記憶するように制御する。
In step S5, the
ステップS7では、制御部5は、記憶部7に記憶されている金属部材3の幅や厚みと熱処理条件(含熱量差を含む)とに基づいて、第3加熱部30に出力されるべき第3出力電力を算出し、また、同じく記憶部7に記憶されている第3算出式から、第3温度ムラの大きさTを算出する。
In step S7, the
ステップS8では、制御部5は、第3温度ムラの大きさTが許容値よりも小さいか否かを判断する。
In step S8, the
ステップS8において第3温度ムラの大きさTが許容値以上である場合、ステップS9に進み、制御部5は、第3加熱部30の第3出力電力が、上限にすなわち第3定格出力電力に達しているか否かを判断する。ステップS9において第3加熱部30の第3出力電力が上限に達していない場合、制御部5は、第3加熱部30の第3出力電力が高くなるように設定する(ステップS10)。そして、ステップS4に戻って、制御部5は、第3加熱部30に搬入される金属部材3の温度を算出する。
If the magnitude T of the third temperature unevenness is equal to or greater than the permissible value in step S8, the process proceeds to step S9, and the
ステップS9において第3加熱部30の第3出力電力が上限に達している場合、ステップS13に進み、制御部5は、第1加熱部10の第1出側温度が限界温度になっているか否かを判断する。ステップS13において第1加熱部10の第1出側温度が限界温度になっている場合、制御部5は、設定エラーを報知して設定フローを終了する(ステップS16)。なお、限界温度は、金属部材3の比透磁率が1になるキュリー温度よりも低い温度であって、加熱効率が大幅に低下するときの温度である。
If the third output power of the
ステップS13において第1加熱部10の第1出側温度が限界温度になっていない場合、制御部5は、第1加熱部10の第1出側温度が高くなるように設定するとともに、第1加熱部10の第1出側温度を用いて上記段落番号[0029]に準じて第1出力電力を算出する(ステップS14)。ステップS15では、制御部5は、第1加熱部10の第1出力電力が、上限にすなわち第1定格出力電力に達するか否かを判断する。
When the first output side temperature of the
ステップS15において第1加熱部10の第1出力電力が上限に達していない場合、ステップS3に戻って、制御部5は、第1加熱部10の出力電力を算出する。ステップS15において第1加熱部10の第1出力電力が上限に達している場合、ステップS16に進み、制御部5は、設定エラーを報知して設定フローを終了する。
If the first output power of the
ステップS8において第3温度ムラの大きさTが許容値よりも小さい場合、制御部5は、算出された第1出側温度および第2出側温度と、第1出力電力、第2出力電力および第3出力電力との各最適設定値を記憶部7に保存する(ステップS11)。すなわち、制御部5は、第3温度ムラの大きさTが許容値よりも小さくなるように、金属部材3のキュリー温度および熱処理条件に基づいて、第1出側温度、第2出側温度、第1出力電力、第2出力電力および第3出力電力に関する各最適設定値を予め算出して、各最適設定値を記憶部7に保存する。これにより、連続熱処理設備1を運転するときの初期値として、予め算出された最適設定値を用いることにより、第3温度ムラの大きさTを許容値よりも小さくできるようになる。
When the magnitude T of the third temperature unevenness is smaller than the permissible value in step S8, the
そして、ステップS12では、連続熱処理設備1における最適設定値を決めるフローが終了する。
Then, in step S12, the flow for determining the optimum set value in the continuous
図4は、第1加熱コイル12および図示しないコンデンサが、並列共振回路を構成する場合のフローチャートを示している。
FIG. 4 shows a flowchart in which the
図4において、連続熱処理設備1を運転するためのステップが開始する(ステップS21)。ステップS22では、制御部5は、記憶部7に記憶されている各最適設定値(すなわち、第1加熱部10に対する第1出側温度および第1出力電力、第2加熱部20に対する第2出側温度および第2出力電力、第3加熱部30に対する第3出力電力)と、第3加熱部30の目標出側温度とを設定する。ステップS23では、制御部5は、第1測定部18を介して、第1加熱コイル12に出力される第1電圧および第1電流の各測定値を取得する。ステップS24では、制御部5は、ステップS23で測定された第1電圧および第1電流の各測定値に基づいて、等価インピーダンスを算出する。
In FIG. 4, a step for operating the continuous
ステップS25では、制御部5は、算出された等価インピーダンスが閾値よりも大きいか否かを判断する。ステップS24において算出された等価インピーダンスが閾値よりも大きい場合、制御部5は、第1加熱部10の第1出側温度が低くなるように設定する(ステップS26)。ステップS27では、制御部5は、ステップS26で設定された第1加熱部10での第1出側温度に基づいて、第1加熱部10の第1出力電力および第2加熱部20の第2出力電力をそれぞれ算出する。したがって、ステップS26およびステップ27では、算出された等価インピーダンスが閾値よりも大きい場合、制御部5は、第1加熱部10の第1出力電力が減少するように第1出力電力を制御する。そして、ステップS23に戻って、制御部5は、第1測定部18を介して、第1加熱コイル12に出力される第1電圧および第1電流の各測定値を取得する。
In step S25, the
ステップS25において算出された等価インピーダンスが閾値以下である場合、制御部5は、第3温度センサ36を介して、第3加熱部30から搬出される金属部材3の幅方向における最終温度ムラすなわち第3温度ムラの大きさTを測定する(ステップS28)。ステップS29では、制御部5は、第3温度ムラの大きさTが、許容値よりも小さいか否かを判断する。
When the equivalent impedance calculated in step S25 is equal to or less than the threshold value, the
ステップS29において第3温度ムラの大きさTが許容値よりも小さい場合、ステップS23に戻って、制御部5は、第1測定部18を介して、第1加熱コイル12に出力される第1電圧および第1電流の各測定値を取得する。
When the magnitude T of the third temperature unevenness is smaller than the permissible value in step S29, returning to step S23, the
ステップS29において第3温度ムラの大きさTが許容値以上である場合、ステップS30に進み、制御部5は、第3加熱部30の第3出力電力が、上限にすなわち第3定格出力電力に達しているか否かを判断する。ステップS30において第3加熱部30の第3出力電力が上限に達していない場合、制御部5は、第3加熱部30の第3出力電力が高くなるように設定する(ステップS31)。これにより、温度均一性が優れている第3加熱部30すなわち抵抗加熱部の分担割合が大きくなるので、幅方向Wにおける温度均一性が向上する。
If the magnitude T of the third temperature unevenness is equal to or greater than the permissible value in step S29, the process proceeds to step S30, and the
ステップS32では、制御部5は、第3加熱部30に搬入される金属部材3の温度を算出する。ステップS34では、制御部5は、ステップS32で算出された第2加熱部20での第2出側温度(すなわち、第3加熱部30に搬入される金属部材3の温度に近似している)に基づいて、第1加熱部10の第1出力電力および第2加熱部20の第2出力電力をそれぞれ算出する。そして、ステップS23に戻って、制御部5は、第1測定部18を介して、第1加熱コイル12に出力される第1電圧および第1電流の各測定値を取得する。
In step S32, the
ステップS30において第3加熱部30の第3出力電力が上限に達している場合、ステップS35に進み、制御部5は、第1加熱部10の第1出側温度が限界温度になっているか否かを判断する。ステップS35において第1加熱部10の第1出側温度が限界温度になっている場合、制御部5は、搬送速度を遅くすることを報知する(ステップS37)。そして、ステップS34に戻って、制御部5は、第1加熱部10の第1出力電力および第2加熱部20の第2出力電力をそれぞれ算出する。
When the third output power of the
ステップS35において第1加熱部10の第1出側温度が限界温度になっていない場合、制御部5は、第1加熱部10の第1出側温度が高くなるように設定する(ステップS36)。これにより、幅方向Wの温度均一性が優れている第1加熱部10すなわちソレノイド式誘導加熱部の分担割合が大きくなるので、幅方向Wにおける温度均一性が向上する。そして、ステップS34に戻って、制御部5は、第1加熱部10の第1出力電力および第2加熱部20の第2出力電力をそれぞれ算出する。
When the first output side temperature of the
計算エラーのような何らかの異常が発生した場合を除き、図4のフローチャートに従って、連続熱処理設備1の運転が連続的に行われる。
Unless some abnormality such as a calculation error occurs, the continuous
〔変形例〕
図5を参照しながら、変形例に係る連続熱処理設備1の制御方法を説明する。図5は、連続熱処理設備1を運転するときの変形例に係るフローチャートである。
[Modification example]
The control method of the continuous
図5は、第1加熱コイル12および図示しないコンデンサが、直列共振回路を構成する場合のフローチャートを示している。
FIG. 5 shows a flowchart in which the
図5において、連続熱処理設備1を運転するためのステップが開始する(ステップS41)。ステップS42では、制御部5は、記憶部7に記憶されている各最適設定値(すなわち、第1加熱部10に対する第1出側温度および第1出力電力、第2加熱部20に対する第2出側温度および第2出力電力、第3加熱部30に対する第3出力電力)と、第3加熱部30の目標出側温度とを設定する。ステップS43では、制御部5は、第1測定部18を介して、第1加熱コイル12に出力される第1電圧および第1電流の各測定値を取得する。ステップS44では、制御部5は、ステップS43で測定された第1電圧および第1電流の各測定値に基づいて、等価インピーダンスを算出する。
In FIG. 5, the step for operating the continuous
ステップS45では、制御部5は、算出された等価インピーダンスが閾値よりも小さいか否かを判断する。ステップS44において算出された等価インピーダンスが閾値よりも小さい場合、制御部5は、第1加熱部10の第1出側温度が低くなるように設定する(ステップS46)。ステップS47では、制御部5は、ステップS46で設定された第1加熱部10での第1出側温度に基づいて、第1加熱部10の第1出力電力および第2加熱部20の第2出力電力をそれぞれ算出する。したがって、ステップS46およびステップ47では、算出された等価インピーダンスが閾値よりも大きい場合、制御部5は、第1加熱部10の第1出力電力が減少するように第1出力電力を制御する。そして、ステップS43に戻って、制御部5は、第1測定部18を介して、第1加熱コイル12に出力される第1電圧および第1電流の各測定値を取得する。
In step S45, the
ステップS45において算出された等価インピーダンスが閾値以上である場合、制御部5は、第3温度センサ36を介して、第3加熱部30から搬出される金属部材3の幅方向における最終温度ムラすなわち第3温度ムラの大きさTを測定する(ステップS48)。ステップS49では、制御部5は、第3温度ムラの大きさTが許容値よりも小さいか否かを判断する。
When the equivalent impedance calculated in step S45 is equal to or greater than the threshold value, the
ステップS49において第3温度ムラの大きさTが許容値よりも小さい場合、ステップS43に戻って、制御部5は、第1測定部18を介して、第1加熱コイル12に出力される第1電圧および第1電流の各測定値を取得する。
When the magnitude T of the third temperature unevenness is smaller than the permissible value in step S49, returning to step S43, the
ステップS49において第3温度ムラの大きさTが許容値以上である場合、ステップS50に進み、制御部5は、第3加熱部30の第3出力電力が、上限にすなわち第3定格出力電力に達しているか否かを判断する。ステップS50において第3加熱部30の第3出力電力が上限に達していない場合、制御部5は、第3加熱部30の第3出力電力が高くなるように設定する(ステップS51)。これにより、温度均一性が優れている第3加熱部30すなわち抵抗加熱部の分担割合が大きくなるので、幅方向Wにおける温度均一性が向上する。
If the magnitude T of the third temperature unevenness is equal to or greater than the permissible value in step S49, the process proceeds to step S50, and the
ステップS52では、制御部5は、第3加熱部30に搬入される金属部材3の温度を算出する。ステップS54では、制御部5は、ステップS52で算出された第2加熱部20での第2出側温度(すなわち、第3加熱部30に搬入される金属部材3の温度に近似している)に基づいて、第1加熱部10の第1出力電力および第2加熱部20の第2出力電力をそれぞれ算出する。そして、ステップS43に戻って、制御部5は、第1測定部18を介して、第1加熱コイル12に出力される第1電圧および第1電流の各測定値を取得する。
In step S52, the
ステップS50において第3加熱部30の第3出力電力が上限に達している場合、ステップS55に進み、制御部5は、第1加熱部10の第1出側温度が限界温度になっているか否かを判断する。ステップS55において第1加熱部10の第1出側温度が限界温度になっている場合、制御部5は、搬送速度を遅くすることを報知する(ステップS57)。そして、ステップS54に戻って、制御部5は、第1加熱部10の第1出力電力および第2加熱部20の第2出力電力をそれぞれ算出する。
When the third output power of the
ステップS55において第1加熱部10の第1出側温度が限界温度になっていない場合、制御部5は、第1加熱部10の第1出側温度が高くなるように設定する(ステップS56)。これにより、幅方向Wの温度均一性が優れている第1加熱部10すなわちソレノイド式誘導加熱部の分担割合が大きくなるので、幅方向Wにおける温度均一性が向上する。そして、ステップS54に戻って、制御部5は、第1加熱部10の第1出力電力および第2加熱部20の第2出力電力をそれぞれ算出する。
When the first output side temperature of the
計算エラーのような何らかの異常が発生した場合を除き、図5のフローチャートに従って、連続熱処理設備1の運転が連続的に行われる。
Unless some abnormality such as a calculation error occurs, the continuous
この発明の具体的な実施の形態や数値について説明したが、この発明は、上記実施形態に限定されるものではなく、この発明の範囲内で種々変更して実施することができる。 Although specific embodiments and numerical values of the present invention have been described, the present invention is not limited to the above embodiments, and various modifications can be made within the scope of the present invention.
第1加熱部10は、必ずしも単一の加熱ゾーンから構成されている必要は無く、複数の加熱ゾーンに分割して複数の加熱ゾーンが搬送方向Fに直列に配設される構成にすることもできる。第2加熱部20および第3加熱部30のそれぞれも、第1加熱部10と同様に、複数の加熱ゾーンが搬送方向Fに直列に配設される構成にすることもできる。
The
この発明および実施形態をまとめると、次のようになる。 The present invention and embodiments can be summarized as follows.
この発明の一態様に係る連続熱処理設備1の制御方法は、
金属部材3の搬送方向Fに沿って順に連続的に配設される、第1加熱部10、第2加熱部20および第3加熱部30と、
前記第1加熱部10、前記第2加熱部20および前記第3加熱部30のそれぞれに出力される第1出力電力、第2出力電力および第3出力電力をそれぞれ制御する制御部5と、
前記第1加熱部10における第1電圧および第1電流を測定する第1測定部18とを備え、
前記第1加熱部10、前記第2加熱部20および前記第3加熱部30が、それぞれ、ソレノイド式誘導加熱部、トランスバース式誘導加熱部および抵抗加熱部である連続熱処理設備1において、
前記制御部5は、前記第1測定部18によって測定された前記第1電圧および前記第1電流に基づいて並列共振回路における等価インピーダンスを算出し、算出された前記等価インピーダンスが閾値よりも大きくなったとき、前記第1出力電力が減少するように前記第1出力電力を制御することを特徴とする。
The control method of the continuous
The
A
A
In the continuous
The
上記制御方法によれば、第1加熱部10すなわちソレノイド式誘導加熱部の並列共振回路における等価インピーダンスが閾値よりも大きくなったとき、第1出力電力を減少させている。言い換えると、第1加熱部10によって加熱される金属部材3の温度が金属部材3のキュリー温度になる手前において、第1出力電力を減少させている。これにより、金属部材3の温度が金属部材3のキュリー温度よりも低い状態で、搬送方向Fに直交する幅方向Wの温度均一性が優れているソレノイド式誘導加熱部による加熱が維持されるので、幅方向Wにおける温度均一性をトータルで良好にできる。なお、金属部材3の温度がキュリー温度付近に達すると加熱効率が大幅に低下するので、等価インピーダンスの閾値は、キュリー温度に達する手前の値が選ばれる。
According to the above control method, the first output power is reduced when the equivalent impedance in the parallel resonance circuit of the
この発明の別の局面に係る連続熱処理設備1の制御方法は、
金属部材3の搬送方向Fに沿って順に連続的に配設される、第1加熱部10、第2加熱部20および第3加熱部30と、
前記第1加熱部10、前記第2加熱部20および前記第3加熱部30のそれぞれに出力される第1出力電力、第2出力電力および第3出力電力をそれぞれ制御する制御部5と、
前記第1加熱部10における第1電圧および第1電流を測定する第1測定部18とを備え、
前記第1加熱部10、前記第2加熱部20および前記第3加熱部30が、それぞれ、ソレノイド式誘導加熱部、トランスバース式誘導加熱部および抵抗加熱部である連続熱処理設備1において、
前記制御部5は、前記第1測定部18によって測定された前記第1電圧および前記第1電流に基づいて直列共振回路における等価インピーダンスを算出し、算出された前記等価インピーダンスが閾値よりも小さくなったとき、前記第1出力電力が減少するように前記第1出力電力を制御することを特徴とする。
The control method of the continuous
The
A
A
In the continuous
The
上記制御方法によれば、第1加熱部10すなわちソレノイド式誘導加熱部の直列共振回路における等価インピーダンスが閾値よりも小さくなったとき、第1出力電力を減少させている。言い換えると、第1加熱部10によって加熱される金属部材3の温度が金属部材3のキュリー温度になる手前において、第1出力電力を減少させている。これにより、金属部材3の温度が金属部材3のキュリー温度よりも低い状態で、搬送方向Fに直交する幅方向Wの温度均一性が優れているソレノイド式誘導加熱部による加熱が維持されるので、幅方向Wにおける温度均一性をトータルで良好にできる。
According to the above control method, the first output power is reduced when the equivalent impedance in the series resonance circuit of the
また、一実施形態の連続熱処理設備1の制御方法では、
前記閾値は、前記金属部材3の材質と、前記金属部材3の搬送方向Fに直交する幅方向Wにおける幅寸法とに基づいて算出される。
Further, in the control method of the continuous
The threshold value is calculated based on the material of the metal member 3 and the width dimension in the width direction W orthogonal to the transport direction F of the metal member 3.
上記実施形態によれば、閾値が、金属部材3の材質および幅寸法に応じて最適化される。 According to the above embodiment, the threshold value is optimized according to the material and width dimension of the metal member 3.
また、一実施形態の連続熱処理設備1の制御方法では、
前記第3加熱部30から搬出される前記金属部材3の、前記搬送方向Fに直交する幅方向Wにおける第3温度ムラを測定する第3温度センサ36を備え、
前記制御部5は、前記第3温度ムラの大きさTが許容値以上であるか否かを判断し、前記第3温度ムラの前記大きさTが前記許容値以上であるとき、前記第3出力電力が増加するように前記第3出力電力を制御する。
Further, in the control method of the continuous
A
The
上記実施形態によれば、温度均一性が優れている第3加熱部30すなわち抵抗加熱部の分担割合が大きくなるので、幅方向Wにおける温度均一性が向上する。
According to the above embodiment, the
また、一実施形態の連続熱処理設備1の制御方法では、
前記制御部5は、前記第3出力電力が、前記第3加熱部30の第3定格出力電力になっているか否かを判断し、前記第3出力電力が前記第3定格出力電力になっているとき、前記第1加熱部10の出側温度が高くなるように前記第1出力電力を制御する。
Further, in the control method of the continuous
The
上記実施形態によれば、幅方向Wの温度均一性が優れている第1加熱部10すなわちソレノイド式誘導加熱部の分担割合が大きくなるので、幅方向Wにおける温度均一性が向上する。
According to the above embodiment, the share ratio of the
この発明のさらに別の局面に係る連続熱処理設備1の制御方法は、
金属部材3の搬送方向Fに沿って順に連続的に配設される、第1加熱部10、第2加熱部20および第3加熱部30と、
前記第1加熱部10、前記第2加熱部20および前記第3加熱部30のそれぞれに出力される第1出力電力、第2出力電力および第3出力電力をそれぞれ制御する制御部5と、
前記第3加熱部30から搬出される前記金属部材3の、前記搬送方向Fに直交する幅方向Wにおける第3温度ムラを測定する第3温度センサ36とを備え、
前記第1加熱部10、前記第2加熱部20および前記第3加熱部30が、それぞれ、ソレノイド式誘導加熱部、トランスバース式誘導加熱部および抵抗加熱部である連続熱処理設備1において、
前記制御部5は、前記第3温度ムラの大きさTが許容値よりも小さくなるように、前記金属部材3のキュリー温度および熱処理条件に基づいて、前記第1加熱部10の第1出側温度、前記第2加熱部20の第2出側温度、前記第1出力電力、前記第2出力電力および前記第3出力電力に関する最適設定値を予め算出することを特徴とする。
The control method of the continuous
The
A
A
In the continuous
The
上記制御方法によれば、連続熱処理設備1を運転するときの初期値として、予め算出された最適設定値を用いることにより、第3加熱部30から搬出される金属部材3の第3温度ムラの大きさTを許容値よりも小さくできるようになる。
According to the above control method, by using the optimum set value calculated in advance as the initial value when the continuous
1…連続熱処理設備
3…金属部材
5…制御部
6…演算部
7…記憶部
10…第1加熱部(ソレノイド式誘導加熱部)
12…第1加熱コイル
13…第1電源
14…第1出力電力制御部
16…第1温度センサ
18…第1測定部
20…第2加熱部(トランスバース式誘導加熱部)
22…第2加熱コイル
23…第2電源
24…第2出力電力制御部
26…第2温度センサ
30…第3加熱部(抵抗加熱部)
32…加熱ヒータ
33…第3電源
34…第3出力電力制御部
36…第3温度センサ
F…搬送方向
T…第3温度ムラ(第3加熱部から搬出される金属部材の幅方向における最終温度ムラ)の大きさ
W…幅方向
1 ... Continuous heat treatment equipment 3 ...
12 ...
22 ...
32 ...
Claims (6)
前記第1加熱部、前記第2加熱部および前記第3加熱部のそれぞれに出力される第1出力電力、第2出力電力および第3出力電力をそれぞれ制御する制御部と、
前記第1加熱部における第1電圧および第1電流を測定する第1測定部とを備え、
前記第1加熱部、前記第2加熱部および前記第3加熱部が、それぞれ、ソレノイド式誘導加熱部、トランスバース式誘導加熱部および抵抗加熱部である連続熱処理設備において、
前記制御部は、前記第1測定部によって測定された前記第1電圧および前記第1電流に基づいて並列共振回路における等価インピーダンスを算出し、算出された前記等価インピーダンスが閾値よりも大きくなったとき、前記第1出力電力が減少するように前記第1出力電力を制御する、連続熱処理設備の制御方法。 The first heating portion, the second heating portion, and the third heating portion, which are continuously arranged in order along the transport direction of the metal member,
A control unit that controls the first output power, the second output power, and the third output power output to the first heating unit, the second heating unit, and the third heating unit, respectively.
A first measuring unit for measuring a first voltage and a first current in the first heating unit is provided.
In a continuous heat treatment facility in which the first heating unit, the second heating unit, and the third heating unit are a solenoid type induction heating unit, a transverse type induction heating unit, and a resistance heating unit, respectively.
The control unit calculates the equivalent impedance in the parallel resonant circuit based on the first voltage and the first current measured by the first measuring unit, and when the calculated equivalent impedance becomes larger than the threshold value. , A method for controlling a continuous heat treatment facility, which controls the first output power so that the first output power is reduced.
前記第1加熱部、前記第2加熱部および前記第3加熱部のそれぞれに出力される第1出力電力、第2出力電力および第3出力電力をそれぞれ制御する制御部と、
前記第1加熱部における第1電圧および第1電流を測定する第1測定部とを備え、
前記第1加熱部、前記第2加熱部および前記第3加熱部が、それぞれ、ソレノイド式誘導加熱部、トランスバース式誘導加熱部および抵抗加熱部である連続熱処理設備において、
前記制御部は、前記第1測定部によって測定された前記第1電圧および前記第1電流に基づいて直列共振回路における等価インピーダンスを算出し、算出された前記等価インピーダンスが閾値よりも小さくなったとき、前記第1出力電力が減少するように前記第1出力電力を制御する、連続熱処理設備の制御方法。 The first heating portion, the second heating portion, and the third heating portion, which are continuously arranged in order along the transport direction of the metal member,
A control unit that controls the first output power, the second output power, and the third output power output to the first heating unit, the second heating unit, and the third heating unit, respectively.
A first measuring unit for measuring a first voltage and a first current in the first heating unit is provided.
In a continuous heat treatment facility in which the first heating unit, the second heating unit, and the third heating unit are a solenoid type induction heating unit, a transverse type induction heating unit, and a resistance heating unit, respectively.
The control unit calculates the equivalent impedance in the series resonance circuit based on the first voltage and the first current measured by the first measurement unit, and when the calculated equivalent impedance becomes smaller than the threshold value. , A method for controlling a continuous heat treatment facility, which controls the first output power so that the first output power is reduced.
前記制御部は、前記第3温度ムラの大きさが許容値以上であるか否かを判断し、前記第3温度ムラの前記大きさが前記許容値以上であるとき、前記第3出力電力が増加するように前記第3出力電力を制御する、請求項1から請求項3のいずれか1項に記載の制御方法。 A third temperature sensor for measuring the third temperature unevenness in the width direction orthogonal to the transport direction of the metal member carried out from the third heating unit is provided.
The control unit determines whether or not the magnitude of the third temperature unevenness is equal to or greater than the permissible value, and when the magnitude of the third temperature unevenness is equal to or greater than the permissible value, the third output power is generated. The control method according to any one of claims 1 to 3, wherein the third output power is controlled so as to increase.
前記第1加熱部、前記第2加熱部および前記第3加熱部のそれぞれに出力される第1出力電力、第2出力電力および第3出力電力をそれぞれ制御する制御部と、
前記第3加熱部から搬出される前記金属部材の、前記搬送方向に直交する幅方向における第3温度ムラを測定する第3温度センサとを備え、
前記第1加熱部、前記第2加熱部および前記第3加熱部が、それぞれ、ソレノイド式誘導加熱部、トランスバース式誘導加熱部および抵抗加熱部である連続熱処理設備において、
前記制御部は、前記第3温度ムラの大きさが許容値よりも小さくなるように、前記金属部材のキュリー温度および熱処理条件に基づいて、前記第1加熱部の第1出側温度、前記第2加熱部の第2出側温度、前記第1出力電力、前記第2出力電力および前記第3出力電力に関する最適設定値を予め算出する、連続熱処理設備の制御方法。 The first heating portion, the second heating portion, and the third heating portion, which are continuously arranged in order along the transport direction of the metal member,
A control unit that controls the first output power, the second output power, and the third output power output to the first heating unit, the second heating unit, and the third heating unit, respectively.
A third temperature sensor for measuring the third temperature unevenness in the width direction orthogonal to the transport direction of the metal member carried out from the third heating unit is provided.
In a continuous heat treatment facility in which the first heating unit, the second heating unit, and the third heating unit are a solenoid type induction heating unit, a transverse type induction heating unit, and a resistance heating unit, respectively.
Based on the Curie temperature of the metal member and the heat treatment conditions, the control unit sets the first outlet temperature of the first heating unit and the first temperature of the first heating unit so that the magnitude of the third temperature unevenness becomes smaller than the allowable value. (2) A control method for a continuous heat treatment facility, in which optimum set values for the second output side temperature of the heating unit, the first output power, the second output power, and the third output power are calculated in advance.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020082681A JP6849843B2 (en) | 2020-05-08 | 2020-05-08 | Control method of continuous heat treatment equipment |
PCT/JP2021/016209 WO2021225078A1 (en) | 2020-05-08 | 2021-04-21 | Method for controlling continuous heat treatment equipment |
KR1020227032724A KR102724287B1 (en) | 2020-05-08 | 2021-04-21 | Control method for continuous heat treatment equipment |
CN202180033652.3A CN115516119B (en) | 2020-05-08 | 2021-04-21 | Control method of continuous heat treatment equipment |
TW110116426A TW202146131A (en) | 2020-05-08 | 2021-05-06 | Control method for continuous heat treatment equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020082681A JP6849843B2 (en) | 2020-05-08 | 2020-05-08 | Control method of continuous heat treatment equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021042464A true JP2021042464A (en) | 2021-03-18 |
JP6849843B2 JP6849843B2 (en) | 2021-03-31 |
Family
ID=74861573
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020082681A Active JP6849843B2 (en) | 2020-05-08 | 2020-05-08 | Control method of continuous heat treatment equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6849843B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113215381A (en) * | 2021-05-18 | 2021-08-06 | 燕山大学 | Method and device for reciprocating type precise heating of chain wheel |
CN117604236A (en) * | 2023-11-30 | 2024-02-27 | 保定三正电气设备有限公司 | Strip steel magnetic induction heating device |
JP7511075B1 (en) | 2023-12-12 | 2024-07-04 | 中外炉工業株式会社 | Pretreatment device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07197135A (en) * | 1994-01-07 | 1995-08-01 | Nippon Steel Corp | Temperature controller |
JPH11172402A (en) * | 1997-12-05 | 1999-06-29 | Mitsubishi Heavy Ind Ltd | Alloying device for high-grade galvanized steel sheet and heating controller |
JP2003290812A (en) * | 2002-01-31 | 2003-10-14 | Toshiba Ge Automation Systems Corp | Induction heating device and hot rolling equipment |
JP2007144475A (en) * | 2005-11-29 | 2007-06-14 | Mitsui Eng & Shipbuild Co Ltd | Method for heating steel and induction heating device |
JP2018048387A (en) * | 2016-09-23 | 2018-03-29 | 新日鐵住金株式会社 | Continuous molten zinc plating method, and continuous molten zinc plating apparatus |
-
2020
- 2020-05-08 JP JP2020082681A patent/JP6849843B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07197135A (en) * | 1994-01-07 | 1995-08-01 | Nippon Steel Corp | Temperature controller |
JPH11172402A (en) * | 1997-12-05 | 1999-06-29 | Mitsubishi Heavy Ind Ltd | Alloying device for high-grade galvanized steel sheet and heating controller |
JP2003290812A (en) * | 2002-01-31 | 2003-10-14 | Toshiba Ge Automation Systems Corp | Induction heating device and hot rolling equipment |
JP2007144475A (en) * | 2005-11-29 | 2007-06-14 | Mitsui Eng & Shipbuild Co Ltd | Method for heating steel and induction heating device |
JP2018048387A (en) * | 2016-09-23 | 2018-03-29 | 新日鐵住金株式会社 | Continuous molten zinc plating method, and continuous molten zinc plating apparatus |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113215381A (en) * | 2021-05-18 | 2021-08-06 | 燕山大学 | Method and device for reciprocating type precise heating of chain wheel |
CN113215381B (en) * | 2021-05-18 | 2022-03-25 | 燕山大学 | Method and device for reciprocating type precise heating of chain wheel |
CN117604236A (en) * | 2023-11-30 | 2024-02-27 | 保定三正电气设备有限公司 | Strip steel magnetic induction heating device |
CN117604236B (en) * | 2023-11-30 | 2024-06-11 | 保定三正电气设备有限公司 | Strip steel magnetic induction heating device |
JP7511075B1 (en) | 2023-12-12 | 2024-07-04 | 中外炉工業株式会社 | Pretreatment device |
Also Published As
Publication number | Publication date |
---|---|
JP6849843B2 (en) | 2021-03-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6849843B2 (en) | Control method of continuous heat treatment equipment | |
US4307276A (en) | Induction heating method for metal products | |
JP5306338B2 (en) | Induction heating treatment of workpiece | |
TWI224144B (en) | Heat treating device, heat treating method, recording medium recording heat treating program and steel product | |
CN101848785A (en) | Apparatus for heating the welded portion of steel pipe material, and method for the apparatus | |
JP5004842B2 (en) | Induction heating device | |
JP4964737B2 (en) | Induction heating method and apparatus for metal material | |
WO2021225078A1 (en) | Method for controlling continuous heat treatment equipment | |
JP6164181B2 (en) | Induction heating apparatus and induction heating method | |
JP2014175082A (en) | Induction heating apparatus and induction heating method | |
JP2006294396A (en) | Induction heating device | |
JP6332852B2 (en) | Induction heating device | |
JP2020002466A (en) | Heat treatment apparatus | |
JP4923390B2 (en) | Heat treatment apparatus and steel material manufacturing method | |
JP4631247B2 (en) | Steel material heat treatment method and program thereof | |
JP2005310645A (en) | High-frequency induction hardening device | |
WO2016143048A1 (en) | Rolling facility | |
JP6365189B2 (en) | Steel heat treatment apparatus and heat treatment method thereof | |
CN204747076U (en) | Cold rolled steel strip plate -type optimal control device | |
JP4178976B2 (en) | Steel material heat treatment method and program thereof | |
JP6880980B2 (en) | Induction heating device and induction heating method | |
KR100460662B1 (en) | Method for controling inductive heater | |
CN111049397B (en) | Control method of multi-group parallel roller variable-frequency heating power supply system | |
JP2004006106A (en) | Sheet bar edge heating method, and device for the same | |
CN102220475A (en) | Thin steel wire secondary heating treatment method and device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200508 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20200508 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20200610 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200811 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201007 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20201110 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201228 |
|
C60 | Trial request (containing other claim documents, opposition documents) |
Free format text: JAPANESE INTERMEDIATE CODE: C60 Effective date: 20201228 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20210107 |
|
C21 | Notice of transfer of a case for reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C21 Effective date: 20210112 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210302 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210304 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6849843 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |