[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2021042397A - Method of micronizing crystal grains in plating film - Google Patents

Method of micronizing crystal grains in plating film Download PDF

Info

Publication number
JP2021042397A
JP2021042397A JP2017240928A JP2017240928A JP2021042397A JP 2021042397 A JP2021042397 A JP 2021042397A JP 2017240928 A JP2017240928 A JP 2017240928A JP 2017240928 A JP2017240928 A JP 2017240928A JP 2021042397 A JP2021042397 A JP 2021042397A
Authority
JP
Japan
Prior art keywords
plating
plating film
nanocarbon
crystal grains
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017240928A
Other languages
Japanese (ja)
Inventor
幹晴 高木
Mikiharu Takagi
幹晴 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takagi Mikiharu
Original Assignee
Takagi Mikiharu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takagi Mikiharu filed Critical Takagi Mikiharu
Priority to JP2017240928A priority Critical patent/JP2021042397A/en
Priority to PCT/JP2018/046031 priority patent/WO2019117279A1/en
Priority to CN201880080829.3A priority patent/CN111511964A/en
Priority to US16/954,182 priority patent/US20210156044A1/en
Priority to EP18887864.9A priority patent/EP3725921A4/en
Publication of JP2021042397A publication Critical patent/JP2021042397A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/615Microstructure of the layers, e.g. mixed structure
    • C25D5/617Crystalline layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D15/00Electrolytic or electrophoretic production of coatings containing embedded materials, e.g. particles, whiskers, wires
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/30Electroplating: Baths therefor from solutions of tin
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/46Electroplating: Baths therefor from solutions of silver
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/48Electroplating: Baths therefor from solutions of gold

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Abstract

To provide a method of micronizing crystal grains in a plating film, capable of modifying the surface of a plating film, hardly taking nanocarbon into the plating film.SOLUTION: A representative constitution of the method of micronizing crystal grains in a plating film according to the present invention, is to perform electroplating using a plating solution 104 which is in a state of being blended with an ion of plating metal 112, nanocarbon 114, and an anionic surfactant as a dispersant 116 for dispersing the nanocarbon.SELECTED DRAWING: Figure 1

Description

本発明は、めっき皮膜の結晶粒を微細化する方法に関する。 The present invention relates to a method for refining crystal grains of a plating film.

従来から、めっき金属の皮膜中に微粒子を共析させた複合めっきが知られている。例えば特許文献1には、亜鉛−ナノカーボン複合めっき物が記載されている。この複合めっき物は、ナノカーボンと、ナノカーボンの分散剤としてポリアクリルアミドとが添加された亜鉛めっき液を用いて、被めっき物上に亜鉛めっき皮膜を形成したものである。 Conventionally, composite plating in which fine particles are co-deposited in a plating metal film has been known. For example, Patent Document 1 describes a zinc-nanocarbon composite plated product. In this composite plated product, a galvanized film is formed on the object to be plated by using a galvanized liquid to which nanocarbon and polyacrylamide as a dispersant for nanocarbon are added.

また特許文献1には、亜鉛めっき皮膜中には、ナノカーボンが混入していること、亜鉛めっき液に添加するナノカーボンの添加量が0.5〜5.0g/Lが好ましいことが記載されている。さらに特許文献1では、ナノカーボンの一部が亜鉛めっき皮膜から露出していることから、摺動特性に優れた亜鉛めっき皮膜とすることができる、としている。 Further, Patent Document 1 describes that nanocarbon is mixed in the galvanized film and that the amount of nanocarbon added to the galvanized solution is preferably 0.5 to 5.0 g / L. ing. Further, Patent Document 1 states that since a part of nanocarbon is exposed from the galvanized film, it is possible to obtain a galvanized film having excellent sliding characteristics.

特開2008−214667号公報Japanese Unexamined Patent Publication No. 2008-2146667

一般的には、特許文献1に記載の技術のように、めっき皮膜にナノカーボンを取り込むことで、めっき皮膜の表面を改質できる、と考えられている。一例として、めっき皮膜中にナノカーボンを取り込むと、めっき皮膜が硬くなり、摺動時の耐摩耗性が向上するとされている。 Generally, it is considered that the surface of the plating film can be modified by incorporating nanocarbon into the plating film as in the technique described in Patent Document 1. As an example, it is said that when nanocarbon is incorporated into the plating film, the plating film becomes hard and the wear resistance during sliding is improved.

しかし実際には、めっき皮膜が硬くなっているのではなく、表層のナノカーボン粒子が硬いのである。そして、めっき皮膜の耐摩耗性は、めっき皮膜の硬さにのみ依存するような単純な性質ではなく、めっきの表面祖度(滑り性)、潤滑性、めっき金属の靱性、結晶粒の大きさなど各要素から複合的な影響を受ける。 However, in reality, the plating film is not hard, but the nanocarbon particles on the surface layer are hard. The wear resistance of the plating film is not a simple property that depends only on the hardness of the plating film, but the surface roughness (slipperiness) of the plating, the lubricity, the toughness of the plated metal, and the size of the crystal grains. It is affected by multiple factors such as.

具体的には、硬度が高く滑り性の良いめっき金属(結晶粒が微細なめっき金属)であっても、めっき表面が硬いために、摺動によりめっき表面(接触面)にかじり等による欠け(傷)が一旦発生すると、その傷が原因でめっき表面の摩擦係数が急上昇する。その結果、めっき表面には、さらなる破損が発生して摩耗が急激に進行してしまう。このような現象は、硬度が高くても靱性の低いめっき金属(粒界が脆く結合力の弱いめっき金属)に生じ易い。一方、硬度が比較的低いめっき金属では、欠けが生じないものの、硬度が低いことにより、削れ速度が速くなり高い耐摩耗性は得られない。 Specifically, even if the plating metal has high hardness and good slipperiness (plating metal with fine crystal grains), the plating surface is hard, so that the plating surface (contact surface) is chipped due to galling due to sliding (contact surface). Once a scratch) occurs, the friction coefficient of the plating surface rises sharply due to the scratch. As a result, the plated surface is further damaged and wear progresses rapidly. Such a phenomenon is likely to occur in a plating metal having a high hardness but a low toughness (a plating metal having a brittle grain boundary and a weak bonding force). On the other hand, in the case of a plated metal having a relatively low hardness, chipping does not occur, but due to the low hardness, the scraping speed becomes high and high wear resistance cannot be obtained.

したがって、めっき皮膜にナノカーボンを取り込むことで、めっき皮膜の表面が改質されるとは一概には言えない。しかも、めっき皮膜にナノカーボンを取り込む場合、めっき皮膜中にナノカーボンを均一に分散させたり、めっき皮膜中のナノカーボンの含有量を精密に管理したりすることは、非常に困難である。さらに、ナノカーボンは不導体であるため、ナノカーボンを取り込んだめっき皮膜を電気接点に使用した場合、電気接触抵抗は不安定になり大きく上昇してしまう。 Therefore, it cannot be said unconditionally that the surface of the plating film is modified by incorporating nanocarbon into the plating film. Moreover, when nanocarbon is incorporated into the plating film, it is very difficult to uniformly disperse the nanocarbon in the plating film and precisely control the content of nanocarbon in the plating film. Further, since nanocarbon is a non-conductor, when a plating film incorporating nanocarbon is used for electrical contacts, the electrical contact resistance becomes unstable and greatly increases.

本発明は、このような課題に鑑み、めっき皮膜にナノカーボンをほとんど取り込むことなく、めっき皮膜の表面を改質できる、めっき皮膜の結晶粒の微細化方法を提供することを目的としている。 In view of such a problem, an object of the present invention is to provide a method for refining crystal grains of a plating film, which can modify the surface of the plating film without incorporating nanocarbon into the plating film.

本願発明者は、上記課題を解決するために鋭意検討した結果、めっき皮膜中にナノカーボンをあえて取り込まず、ナノカーボンをあたかも触媒のように機能させることで、めっき皮膜の結晶粒を微細化できることを見出し、本発明を完成するに至った。すなわち、上記課題を解決するために本発明にかかるめっき皮膜の結晶粒の微細化方法の代表的な構成は、めっき液に、めっき金属のイオンと、ナノカーボンと、該ナノカーボンを分散させる分散剤としてアニオン系界面活性剤とを混入した状態で電気めっきを行うことを特徴する。 As a result of diligent studies to solve the above problems, the inventor of the present application can make the crystal grains of the plating film finer by making the nanocarbon function as if it were a catalyst without intentionally incorporating nanocarbon into the plating film. The present invention has been completed. That is, in order to solve the above problems, a typical configuration of the method for refining the crystal grains of the plating film according to the present invention is to disperse the ions of the plating metal, the nanocarbons, and the nanocarbons in the plating solution. It is characterized in that electroplating is performed in a state where an anionic surfactant is mixed as an agent.

上記構成によれば、めっき液に分散剤を混入しているため、ナノカーボンは、分散剤の分子が吸着した状態でめっき液中に分散する。そして分散剤としてアニオン系界面活性剤を用いているため、めっき液中に分散したナノカーボンは、陰極に接続された被めっき部品の表面に取り込まれ難い。また被めっき部品の表面では、めっき金属のエピキャピタル成長が進行して結晶粒が形成される。これに対してナノカーボンは、めっき金属のエピキャピタル成長に影響を及ぼして、めっき皮膜の結晶粒を微細化する。このときの挙動については明確にはわかっていないが、ナノカーボンは、めっき液中でのブラウン運動に起因して、結晶粒に接触しこれに力を加えるという挙動により、結晶粒を微細化すると推察される。このように本発明では、めっき皮膜にナノカーボンをほとんど取り込むことなく、めっき皮膜の結晶粒を微細化することで、めっき皮膜の表面の改質を実現している。 According to the above configuration, since the dispersant is mixed in the plating solution, the nanocarbons are dispersed in the plating solution in a state where the molecules of the dispersant are adsorbed. Since an anionic surfactant is used as the dispersant, the nanocarbon dispersed in the plating solution is difficult to be incorporated into the surface of the component to be plated connected to the cathode. Further, on the surface of the part to be plated, epicapital growth of the plated metal proceeds to form crystal grains. On the other hand, nanocarbon affects the epicapital growth of the plating metal and makes the crystal grains of the plating film finer. Although the behavior at this time is not clearly known, nanocarbons are said to be miniaturized by the behavior of contacting the crystal grains and applying force to them due to the Brownian motion in the plating solution. Inferred. As described above, in the present invention, the surface of the plating film is modified by refining the crystal grains of the plating film without incorporating nanocarbon into the plating film.

上記のナノカーボンは、前記めっき液に混入された状態で正に帯電しているとよい。このように、ナノカーボンは、めっき液中で正に帯電しているので、ナノカーボンにアニオン系界面活性剤の分子が吸着した状態であっても、陰極に接続された被めっき部品の表面に引き寄せられると推察される。そしてナノカーボンは、被めっき部品の表面に引き寄せられることから、結晶粒に確実に接触しこれに力を加えることが可能となり、めっき皮膜の結晶粒を確実に微細化できる。 It is preferable that the nanocarbon is positively charged in a state of being mixed with the plating solution. In this way, since the nanocarbon is positively charged in the plating solution, even when the molecules of the anionic surfactant are adsorbed on the nanocarbon, the surface of the part to be plated connected to the cathode is exposed. It is presumed to be attracted. Since the nanocarbon is attracted to the surface of the part to be plated, it is possible to reliably contact the crystal grains and apply a force to them, and the crystal grains of the plating film can be reliably refined.

上記のナノカーボンの粒径は、2.6±0.5nmであるとよい。このように、ナノカーボンの粒径を上記の範囲とすれば、めっき液中のナノカーボンがブラウン運動を確実に行い、結晶粒に接触した際、結晶粒を微細化できる適切な力を結晶粒に加えることができる。なお上記の範囲より粒径が大きいと微細化が不十分になるのは、ブラウン運動が十分ではなく、適切な力を結晶粒に加えられないためと推察される。また、上記の範囲より粒径が小さいと微細化が不十分になるのは、ブラウン運動は生じるものの、質量が小さいため結晶粒を微細化できるほどの力を結晶粒に加えることができないためと推察される。 The particle size of the above nanocarbon is preferably 2.6 ± 0.5 nm. In this way, if the particle size of the nanocarbons is within the above range, the nanocarbons in the plating solution will surely perform Brownian motion, and when they come into contact with the crystal grains, they will exert an appropriate force to make the crystal grains finer. Can be added to. If the particle size is larger than the above range, the miniaturization is insufficient because the Brownian motion is not sufficient and an appropriate force cannot be applied to the crystal grains. Further, if the particle size is smaller than the above range, the miniaturization becomes insufficient because the Brownian motion occurs, but the mass is so small that it is not possible to apply enough force to the crystal grains to make the crystal grains finer. Inferred.

上記のナノカーボンは、前記めっき液に添加する添加量が0.2g/L以下であるとよい。このようにナノカーボンの添加量を、0.2g/L以下という少ない量とすることで、ナノカーボンがめっき皮膜にほとんど取り込まれないようにできる。 The amount of the above-mentioned nanocarbon added to the plating solution is preferably 0.2 g / L or less. By setting the amount of nanocarbon added to a small amount of 0.2 g / L or less in this way, it is possible to prevent nanocarbon from being incorporated into the plating film.

上記のめっき金属は、Ag、Ni、Sn、またはAuであるとよい。このため、めっき液としては中性あるいは弱酸性のものを用いてよい。 The plated metal may be Ag, Ni, Sn, or Au. Therefore, a neutral or weakly acidic plating solution may be used.

本発明によれば、めっき皮膜にナノカーボンをほとんど取り込むことなく、めっき皮膜の表面を改質できる、めっき皮膜の結晶粒の微細化方法を提供することができる。 According to the present invention, it is possible to provide a method for refining crystal grains of a plating film, which can modify the surface of the plating film with almost no incorporation of nanocarbon into the plating film.

本実施形態におけるめっき皮膜の結晶粒の微細化方法の概略について説明する図である。It is a figure explaining the outline of the method of miniaturizing the crystal grain of a plating film in this embodiment. 図1および比較例のめっき皮膜をそれぞれ示す顕微鏡写真である。It is a micrograph which shows the plating film of FIG. 1 and a comparative example, respectively. 図2のめっき皮膜にそれぞれ対応する模式図である。It is a schematic diagram corresponding to each of the plating films of FIG. 図2のめっき皮膜の耐久性および接触抵抗をそれぞれ示すグラフである。It is a graph which shows the durability and contact resistance of the plating film of FIG. 2, respectively. 他の実施形態および比較例のめっき皮膜をそれぞれ示す顕微鏡写真である。It is a micrograph which shows the plating film of another embodiment and comparative example respectively.

以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。かかる実施形態に示す寸法、材料、その他具体的な数値などは、発明の理解を容易とするための例示に過ぎず、特に断る場合を除き、本発明を限定するものではない。なお、本明細書および図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本発明に直接関係のない要素は図示を省略する。 Preferred embodiments of the present invention will be described in detail below with reference to the accompanying drawings. The dimensions, materials, and other specific numerical values shown in such an embodiment are merely examples for facilitating the understanding of the invention, and do not limit the present invention unless otherwise specified. In the present specification and drawings, elements having substantially the same function and configuration are designated by the same reference numerals to omit duplicate description, and elements not directly related to the present invention are not shown. To do.

図1は、本実施形態におけるめっき皮膜の結晶粒の微細化方法の概略について説明する図である。本実施形態における微細化方法は、例えばめっき装置100を用いて実施される。めっき装置100は、電気めっきを行う装置であって、容器102と、容器102内のめっき液104と、めっき液104に浸漬された陰極106および陽極108と、両電極間に電圧を印加する電源110とを備える。 FIG. 1 is a diagram illustrating an outline of a method for miniaturizing crystal grains of a plating film in the present embodiment. The miniaturization method in this embodiment is carried out using, for example, a plating apparatus 100. The plating device 100 is a device that performs electroplating, and is a power source that applies a voltage between the container 102, the plating solution 104 in the container 102, the cathode 106 and the anode 108 immersed in the plating solution 104, and both electrodes. It is equipped with 110.

めっき液104には、めっき金属112のイオンと、ナノカーボン114と、分散剤116とが混入した状態となっている。めっき金属112は、ここではAgの1価の陽イオンである。 The plating solution 104 is in a state in which the ions of the plating metal 112, the nanocarbon 114, and the dispersant 116 are mixed. The plated metal 112 is here a monovalent cation of Ag.

分散剤116としては、アニオン系界面活性剤を用いている。図示のように、ナノカーボン114に界面活性剤の分子が吸着するとき、親水基118aが外側に配置され、親油基118bがナノカーボン114に吸着する。このため、ナノカーボン114は、分散剤116によってめっき液104の中で凝集することなく分散する。 An anionic surfactant is used as the dispersant 116. As shown, when the surfactant molecule is adsorbed on the nanocarbon 114, the hydrophilic group 118a is arranged on the outside and the lipophilic group 118b is adsorbed on the nanocarbon 114. Therefore, the nanocarbon 114 is dispersed in the plating solution 104 by the dispersant 116 without agglomeration.

ナノカーボン114は、一例として、めっき液104に添加する添加量を0.2g/Lとし、粒径を2.6±0.5nmとした。さらにナノカーボン114は、めっき液104に混入された状態で正に帯電している。なおめっき液104は、めっき金属112としてAgを用いていることから中性となっている。 As an example, the amount of nanocarbon 114 added to the plating solution 104 was 0.2 g / L, and the particle size was 2.6 ± 0.5 nm. Further, the nanocarbon 114 is positively charged in a state of being mixed with the plating solution 104. The plating solution 104 is neutral because Ag is used as the plating metal 112.

めっき装置100において、陰極106と陽極108との間に電源110により電圧を印加し、めっき処理を開始すると、陰極106に接続された被めっき部品120の表面には、めっき金属112のエピキャピタル成長が進行して結晶粒が形成される。その結果、被めっき部品120の表面には、図中ハッチングで示すめっき皮膜122が形成される。 In the plating apparatus 100, when a voltage is applied between the cathode 106 and the anode 108 by the power supply 110 and the plating process is started, epicapital growth of the plated metal 112 is performed on the surface of the component 120 to be plated connected to the cathode 106. Progresses to form crystal grains. As a result, the plating film 122 shown by hatching in the figure is formed on the surface of the component 120 to be plated.

図2は、図1および比較例のめっき皮膜122、122Aをそれぞれ示す顕微鏡写真である。図2(a)に示すめっき皮膜122は、めっき液104にナノカーボン114を添加した本実施形態の微細化方法により得られたものである。図2(b)に示す比較例のめっき皮膜122Aは、めっき液104にナノカーボン114を添加せずに得られたものである。 FIG. 2 is a photomicrograph showing the plating films 122 and 122A of FIG. 1 and the comparative example, respectively. The plating film 122 shown in FIG. 2A is obtained by the miniaturization method of the present embodiment in which nanocarbon 114 is added to the plating solution 104. The plating film 122A of the comparative example shown in FIG. 2B was obtained without adding nanocarbon 114 to the plating solution 104.

めっき皮膜122、122Aの顕微鏡写真を観察すると、めっき皮膜122の結晶粒は、めっき皮膜122Aの結晶粒よりも明らかに小さい。このため、本実施形態の微細化方法により、めっき皮膜122の結晶粒を微細化(ナノクリスタル化)できることが明らかである。さらに以下の表1は、めっき皮膜122、122Aの炭素含有量を比較したものである。 When observing the micrographs of the plating films 122 and 122A, the crystal grains of the plating film 122 are clearly smaller than the crystal grains of the plating film 122A. Therefore, it is clear that the crystal grains of the plating film 122 can be miniaturized (nanocrystallized) by the miniaturization method of the present embodiment. Further, Table 1 below compares the carbon contents of the plating films 122 and 122A.

Figure 2021042397
Figure 2021042397

表1に示すように、ナノカーボン114が添加された本実施形態のめっき皮膜122の炭素含有量は、ナノカーボン114が添加されていない比較例のめっき皮膜122Aの炭素含有量とほぼ同じである。したがって、本実施形態の微細化方法により形成されためっき皮膜122には、ナノカーボン114がほとんど取り込まれていないことが明らかである。 As shown in Table 1, the carbon content of the plating film 122 of the present embodiment to which the nanocarbon 114 is added is substantially the same as the carbon content of the plating film 122A of the comparative example to which the nanocarbon 114 is not added. .. Therefore, it is clear that the nanocarbon 114 is hardly incorporated in the plating film 122 formed by the miniaturization method of the present embodiment.

このように、本実施形態の微細化方法では、めっき皮膜122にナノカーボン114をほとんど取り込むことなく、ナノカーボン114をあたかも触媒のように機能させることで、めっき皮膜122の結晶粒を微細化している。以下、この現象について考察する。 As described above, in the miniaturization method of the present embodiment, the crystal grains of the plating film 122 are miniaturized by making the nanocarbon 114 function as if it were a catalyst without incorporating the nanocarbon 114 into the plating film 122. There is. This phenomenon will be considered below.

まず、めっき液104中に分散したナノカーボン114は、分散剤116としてアニオン系界面活性剤を用いているため、陰極106に接続された被めっき部品120の表面のめっき皮膜122に取り込まれ難い。それに加え、ナノカーボン114は、添加量を0.2g/Lという少ない量としているため、めっき皮膜122にそもそも取り込まれ難い。このような条件の下、めっき皮膜122には、ナノカーボン114が実際にほとんど取り込まれなかった。 First, since the nanocarbon 114 dispersed in the plating solution 104 uses an anionic surfactant as the dispersant 116, it is difficult to be incorporated into the plating film 122 on the surface of the component 120 to be plated connected to the cathode 106. In addition, since the amount of nanocarbon 114 added is as small as 0.2 g / L, it is difficult to be incorporated into the plating film 122 in the first place. Under such conditions, the nanocarbon 114 was actually hardly incorporated into the plating film 122.

つぎに、ナノカーボン114は、めっき液104中で正に帯電しているので、ナノカーボン114にアニオン系界面活性剤の分子が吸着した状態であっても、陰極106に接続された被めっき部品120の表面に引き寄せられ、めっき金属112のエピキャピタル成長に影響を及ぼすと推察される。 Next, since the nanocarbon 114 is positively charged in the plating solution 104, the parts to be plated connected to the cathode 106 even when the molecules of the anionic surfactant are adsorbed on the nanocarbon 114. It is presumed that it is attracted to the surface of 120 and affects the epicapital growth of the plated metal 112.

このときのナノカーボン114の挙動については明確にはわかっていないが、ナノカーボン114は、めっき液104中でのブラウン運動に起因して、結晶粒に接触しこれに力を加えるという挙動により、結晶粒を微細化すると推察される。すなわち、めっき液104中で正に帯電したナノカーボン114は、被めっき部品120の表面に引き寄せられて、結晶粒に確実に接触しこれに力を加えることが可能となり、めっき皮膜の結晶粒を確実に微細化できると推察される。 Although the behavior of the nanocarbon 114 at this time is not clearly known, the nanocarbon 114 comes into contact with the crystal grains due to the Brownian motion in the plating solution 104 and applies a force to the crystal grains. It is presumed that the crystal grains will be refined. That is, the nanocarbon 114 positively charged in the plating solution 104 is attracted to the surface of the component 120 to be plated, and can be reliably contacted with the crystal grains to apply a force to the crystal grains of the plating film. It is presumed that it can be reliably refined.

さらにナノカーボン114の粒径を2.6±0.5nmの範囲としたので、めっき液104中のナノカーボン114がブラウン運動を確実に行い、結晶粒に接触した際、結晶粒を微細化できる適切な力を結晶粒に加えることができると推察される。これに対してナノカーボン114の粒径が上記範囲より大きいと微細化が不十分になるのは、ブラウン運動が十分ではなく、適切な力を結晶粒に加えられないためと推察される。一方、ナノカーボン114の粒径が上記範囲より小さいと微細化が不十分になるのは、ブラウン運動は生じるものの、質量が小さいため結晶粒を微細化できるほどの力を結晶粒に加えることができないためと推察される。 Further, since the particle size of the nanocarbon 114 is set in the range of 2.6 ± 0.5 nm, the nanocarbon 114 in the plating solution 104 surely performs a brown motion, and when it comes into contact with the crystal grains, the crystal grains can be refined. It is presumed that an appropriate force can be applied to the crystal grains. On the other hand, if the particle size of the nanocarbon 114 is larger than the above range, the miniaturization becomes insufficient because the Brownian motion is not sufficient and an appropriate force cannot be applied to the crystal grains. On the other hand, if the particle size of the nanocarbon 114 is smaller than the above range, the miniaturization becomes insufficient because Brownian motion occurs, but the mass is small, so that a force sufficient to miniaturize the crystal grains can be applied to the crystal grains. It is presumed that it cannot be done.

ところで、めっき皮膜122が形成された被めっき部品120は、電気接点として用いられる。このため、めっき皮膜122には、電気抵抗率(接触抵抗)が低いこと、さらにはソケットなどに繰り返し挿抜されることから耐久性(すなわち摺動時の耐摩耗性)が高いことなどが要求される。 By the way, the component 120 to be plated on which the plating film 122 is formed is used as an electrical contact. Therefore, the plating film 122 is required to have a low electrical resistivity (contact resistance) and to have high durability (that is, wear resistance during sliding) because it is repeatedly inserted and removed from a socket or the like. To.

ここで図3を参照して金属の結晶構造について説明する。図3は、図2のめっき皮膜122、122Aにそれぞれ対応する模式図である。 Here, the crystal structure of the metal will be described with reference to FIG. FIG. 3 is a schematic view corresponding to the plating films 122 and 122A of FIG. 2, respectively.

金属は、結晶粒と、結晶粒を囲む粒界(結晶の欠陥部あるいは不純物)とを含み、結晶粒同士が粒界で結合した結晶粒の集合体として捉えることができる。金属の摺動による摩耗は、結晶粒そのものが粒内破壊する場合と、粒界が破壊され結晶粒というブロック単位で欠けて削れ落ちる場合がある。本実施形態では、結晶粒単位で欠け落ちる粒界破壊を抑え耐久性を高めることを目的の一つとしている。金属では、粒界破壊により大きな結晶粒が削れ落ちると、欠損した体積すなわち削れ量が大きくなり、小さな結晶粒が削れ落ちても削れ量は小さいことになる。さらに金属は、結晶粒同士が粒界で結合しているため、粒界の強度、結合力が強いほど削れ難くなると推察される。したがって、耐久性の高いめっき皮膜を実現するために必要な金属の結晶構造としては、結晶粒が小さいこと、結晶粒同士を結合する粒界の結合力が強いことが挙げられる。 The metal contains crystal grains and grain boundaries (crystal defects or impurities) surrounding the crystal grains, and can be regarded as an aggregate of crystal grains in which the crystal grains are bonded at the grain boundaries. The wear caused by the sliding of the metal may be that the crystal grains themselves are broken in the grains, or that the grain boundaries are broken and the crystal grains are chipped and scraped off in block units. One of the purposes of the present embodiment is to suppress the breakage of grain boundaries that are chipped off in crystal grain units and to improve durability. In a metal, when large crystal grains are scraped off due to grain boundary fracture, the lost volume, that is, the amount of scraping is large, and even if small crystal grains are scraped off, the scraping amount is small. Furthermore, since crystal grains of metal are bonded to each other at grain boundaries, it is presumed that the stronger the grain boundaries and the stronger the bonding force, the more difficult it is to scrape. Therefore, the crystal structure of the metal required to realize a highly durable plating film includes that the crystal grains are small and that the grain boundaries that bond the crystal grains are strong.

図3(a)に示すめっき皮膜122は、図3(b)に示すめっき皮膜122Aの結晶粒124Aおよび粒界126Aに比べて、結晶粒124が小さく、結晶粒124同士を結合する粒界126が多くなっている。したがって、めっき被覆122は、めっき被覆122Aに比べて、摺動により削れ難く耐久性が高い。 The plating film 122 shown in FIG. 3A has smaller crystal grains 124 than the crystal grains 124A and grain boundaries 126A of the plating film 122A shown in FIG. 3B, and the grain boundaries 126 that bond the crystal grains 124 to each other. Is increasing. Therefore, the plating coating 122 is less likely to be scraped due to sliding and has higher durability than the plating coating 122A.

さらに金属は、一般的には結晶粒が微細化すると硬くなるとされている。この点に関し、結晶粒124Aが微細化されていない比較例のめっき皮膜122Aは、ビッカース硬さが90〜110Hvとなった。一方、結晶粒124が微細化された本実施形態のめっき皮膜122は、ビッカース硬さが100〜110Hvとなり、結晶粒124を微細化しても硬くならないことが明らかになった。その結果、めっき金属112であるAg特有の接触面のなじみ性(潤滑性)を維持できるため、めっき皮膜122の表面(摺動時の接触面)は、滑らかとなり、摺動を繰返しても摩擦係数に大きな変化がなく、耐久性を高めることができる。 Furthermore, it is generally said that metals become harder as the crystal grains become finer. In this regard, the plating film 122A of the comparative example in which the crystal grains 124A were not miniaturized had a Vickers hardness of 90 to 110 Hv. On the other hand, it was clarified that the plating film 122 of the present embodiment in which the crystal grains 124 were miniaturized had a Vickers hardness of 100 to 110 Hv and did not become hard even when the crystal grains 124 were miniaturized. As a result, the familiarity (lubricity) of the contact surface peculiar to Ag, which is the plated metal 112, can be maintained, so that the surface of the plating film 122 (contact surface during sliding) becomes smooth and friction even if sliding is repeated. There is no big change in the coefficient, and durability can be improved.

つぎに、めっき皮膜122の接触抵抗について説明する。金属は、一般的には結晶粒が微細化すると、粒界が多くなるため、接触抵抗が高くなるとされている。しかし本実施形態のめっき皮膜122は、結晶粒124が小さいにもかかわらず、接触抵抗が3〜3.5×10−6Ωcm程度となり高くならない。なお結晶粒の粒径が同程度の超硬質銀めっきの接触抵抗は、8×10−6Ωcm以上となり高くなる。この理由としては、めっき皮膜122では、結晶粒124の微細化にSbのような異種金属との合金化を行わないことや、皮膜中に吸着する有機系光沢剤を使用していないことから、粒界126に不純物が少ないためと推察される。 Next, the contact resistance of the plating film 122 will be described. It is generally said that the contact resistance of a metal increases because the grain boundaries increase as the crystal grains become finer. However, the plating film 122 of the present embodiment has a contact resistance of about 3 to 3.5 × 10-6 Ωcm and does not increase even though the crystal grains 124 are small. The contact resistance of ultra-hard silver plating having the same grain size is 8 × 10-6 Ωcm or more, which is high. The reason for this is that the plating film 122 does not alloy with dissimilar metals such as Sb to refine the crystal grains 124, and does not use an organic brightener that adsorbs in the film. It is presumed that there are few impurities at the grain boundaries 126.

図4は、図2のめっき皮膜122、122Aの耐久性および接触抵抗をそれぞれ示すグラフである。各グラフは、横軸を往復回数(摺動回数)、縦軸をそれぞれ摩擦力(N)、抵抗値(mΩ)としている。なお摩擦力が高いと、摩擦係数が大きいことから、摩耗が進行し易く耐摩耗性すなわち耐久性が低いとされる。 FIG. 4 is a graph showing the durability and contact resistance of the plating films 122 and 122A of FIG. 2, respectively. In each graph, the horizontal axis represents the number of round trips (number of slides), and the vertical axis represents the frictional force (N) and the resistance value (mΩ), respectively. When the frictional force is high, the friction coefficient is large, so that the wear is likely to proceed and the wear resistance, that is, the durability is low.

図4(a)に示すめっき皮膜122は、図4(b)に示すめっき皮膜122Aに比べて全体的に摩擦力が小さいため、耐摩耗性が高く、往復回数1000回でも破壊されていない。一方、めっき皮膜122Aは、耐摩耗性が低いため、図4(b)に示すように往復回数600回程度で破壊されている。まためっき皮膜122は、めっき皮膜122Aに比べて抵抗値が低い値で安定している。一方、めっき皮膜122Aは、全体として抵抗値が不安定であり、さらに往復回数600回程度での破壊に伴い抵抗値が急上昇している。 Since the plating film 122 shown in FIG. 4A has a smaller frictional force as a whole than the plating film 122A shown in FIG. 4B, it has high wear resistance and is not broken even after 1000 round trips. On the other hand, since the plating film 122A has low wear resistance, it is broken after about 600 round trips as shown in FIG. 4 (b). Further, the plating film 122 is stable at a lower resistance value than the plating film 122A. On the other hand, the resistance value of the plating film 122A is unstable as a whole, and the resistance value rapidly increases as the plating film 122A breaks after about 600 round trips.

このように、本実施形態の微細化方法により形成されためっき皮膜122は、めっき液104にナノカーボン114を添加していない比較例のめっき皮膜122Aに比べて、接触抵抗が低く、耐久性が高いことが明らかとなった。つまり、本実施形態の微細化方法では、めっき液104にナノカーボン114を添加しながらも、めっき皮膜122にナノカーボン114をほとんど取り込むことなく、めっき皮膜122の結晶粒を微細化することで、めっき皮膜122の表面の改質を実現している。 As described above, the plating film 122 formed by the miniaturization method of the present embodiment has lower contact resistance and durability as compared with the plating film 122A of the comparative example in which nanocarbon 114 is not added to the plating solution 104. It turned out to be expensive. That is, in the miniaturization method of the present embodiment, the crystal grains of the plating film 122 are miniaturized by adding the nanocarbon 114 to the plating solution 104 and hardly incorporating the nanocarbon 114 into the plating film 122. The surface of the plating film 122 is modified.

以下にナノカーボン114の添加量を変えた場合の実施例と比較例について説明する。表2は、実施例と比較例を説明する図である。実施例1、2はナノカーボン114の添加量を0.1g/L、0.2g/Lとした例であり、比較例1はナノカーボン114の添加量が0であり、ナノカーボン114を添加していない例である。比較例2は、ナノカーボン114の添加量を0.3g/Lとした例である。 Examples and comparative examples when the amount of nanocarbon 114 added is changed will be described below. Table 2 is a diagram illustrating Examples and Comparative Examples. Examples 1 and 2 are examples in which the addition amount of nanocarbon 114 is 0.1 g / L and 0.2 g / L, and in Comparative Example 1, the addition amount of nanocarbon 114 is 0 and nanocarbon 114 is added. This is an example of not doing so. Comparative Example 2 is an example in which the amount of nanocarbon 114 added is 0.3 g / L.

Figure 2021042397
Figure 2021042397

表2に示すように、まず、めっき液104にナノカーボン114を添加していない比較例1では、結晶粒の大きさが「大」、耐摩耗性(耐久性)が「NG」、体積抵抗(電気抵抗)が「低」となった。つぎに、ナノカーボン114の添加量が0.3g/L以上である比較例2は、結晶粒の大きさが「中」、耐摩耗性が「OK」、体積抵抗が「高」となった。これに対して実施例1、2では、ナノカーボン114の添加量が0.2g/L以下であり、結晶粒の大きさがいずれも「微小」、耐摩耗性がいずれも「OK」、体積抵抗がいずれも「低」となった。したがって、ナノカーボン114の添加量が0.2g/L以下であれば、めっき皮膜122の結晶粒の大きさを微小にすることができ、耐摩耗性も高くでき、さらには、結晶粒の大きさが微小にもかかわらず、体積抵抗が上がらず低いままであることが明らかとなった。 As shown in Table 2, first, in Comparative Example 1 in which nanocarbon 114 was not added to the plating solution 104, the crystal grain size was “large”, the wear resistance (durability) was “NG”, and the volume resistance. (Electrical resistance) became "low". Next, in Comparative Example 2 in which the amount of nanocarbon 114 added was 0.3 g / L or more, the crystal grain size was “medium”, the wear resistance was “OK”, and the volume resistance was “high”. .. On the other hand, in Examples 1 and 2, the amount of nanocarbon 114 added was 0.2 g / L or less, the size of the crystal grains was "fine", the wear resistance was "OK", and the volume. All resistances were "low". Therefore, when the amount of nanocarbon 114 added is 0.2 g / L or less, the size of the crystal grains of the plating film 122 can be made minute, the wear resistance can be increased, and the size of the crystal grains can be further increased. It was revealed that the volume resistance did not increase and remained low despite the minute size.

図5は、他の実施形態および比較例のめっき皮膜128、128Aをそれぞれ示す顕微鏡写真である。図5(a)に示す他の実施形態のめっき皮膜128は、めっき金属112をAgに代えてNiとした点でめっき皮膜122と異なる。図5(b)に示す比較例のめっき皮膜128Aは、めっき金属112をAgに代えてNiとし、さらにめっき液104にナノカーボン114を添加せずに得られたものである。なおめっき液104は、めっき金属としてNiを用いていることから弱酸性となっている。 FIG. 5 is a photomicrograph showing plating films 128 and 128A of other embodiments and comparative examples, respectively. The plating film 128 of the other embodiment shown in FIG. 5A differs from the plating film 122 in that the plating metal 112 is replaced with Ni instead of Ag. The plating film 128A of the comparative example shown in FIG. 5B was obtained by replacing the plating metal 112 with Ag with Ni and further, without adding nanocarbon 114 to the plating solution 104. Since Ni is used as the plating metal, the plating solution 104 is weakly acidic.

めっき皮膜128、128Aの顕微鏡写真を観察すると、めっき皮膜128の結晶粒は、めっき皮膜128Aの結晶粒よりも明らかに小さい。したがって、他の実施形態の微細化方法により、めっき皮膜128の結晶粒を微細化できることが明らかである。さらに以下の表3は、めっき皮膜128、128Aの摺動試験の結果を示したものである。 When observing the micrographs of the plating films 128 and 128A, the crystal grains of the plating film 128 are clearly smaller than the crystal grains of the plating film 128A. Therefore, it is clear that the crystal grains of the plating film 128 can be miniaturized by the miniaturization method of another embodiment. Further, Table 3 below shows the results of the sliding test of the plating films 128 and 128A.

Figure 2021042397
Figure 2021042397

比較例のめっき皮膜128Aは、めっき液104としてスルファミン酸ニッケルを混入し、ナノカーボン114を添加せずに形成されたものである。表3に示すように、めっき皮膜128Aは、荷重50gの摺動を繰り返したところ、平均して摺動回数425.4回で破壊された。 The plating film 128A of the comparative example was formed by mixing nickel sulfamate as the plating solution 104 and without adding nanocarbon 114. As shown in Table 3, when the plating film 128A was repeatedly slid with a load of 50 g, it was destroyed with an average of 425.4 sliding times.

これに対して、他の実施形態のめっき皮膜128は、めっき液104としてスルファミン酸ニッケルを混入し、さらにナノカーボン114を添加して形成されたものである。表3に示すように、めっき皮膜128は、平均して摺動回数523.2回で破壊され、比較例のめっき皮膜128Aよりも、耐久性が高いことが明らかとなった。 On the other hand, the plating film 128 of the other embodiment is formed by mixing nickel sulfamate as the plating solution 104 and further adding nanocarbon 114. As shown in Table 3, the plating film 128 was broken after 523.2 sliding times on average, and it was revealed that the plating film 128 had higher durability than the plating film 128A of the comparative example.

したがって本実施形態の微細化方法によれば、めっき皮膜122、128にナノカーボン114をほとんど取り込むことなく、めっき皮膜122、128の結晶粒を微細化することで、めっき皮膜122、128の表面の改質を実現できる。 Therefore, according to the miniaturization method of the present embodiment, the crystal grains of the plating films 122 and 128 are miniaturized without incorporating nanocarbon 114 into the plating films 122 and 128, so that the surface of the plating films 122 and 128 can be refined. Modification can be realized.

なお上記実施形態では、めっき金属112としてAg、Niである場合を例示したが、これに限られず、めっき金属112をSnまたはAuとしてもよい。このような場合であっても、めっき皮膜中にナノカーボン114をあえて取り込まず、ナノカーボン114をあたかも触媒のように機能させることで、めっき皮膜の結晶粒を微細化し、めっき皮膜の表面を改質できると推察される。 In the above embodiment, the case where the plating metal 112 is Ag or Ni is illustrated, but the present invention is not limited to this, and the plating metal 112 may be Sn or Au. Even in such a case, the nanocarbon 114 is not intentionally incorporated into the plating film, and the nanocarbon 114 functions as if it were a catalyst, so that the crystal grains of the plating film are refined and the surface of the plating film is modified. It is presumed that the quality can be achieved.

以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。 Although preferred embodiments of the present invention have been described above with reference to the accompanying drawings, it goes without saying that the present invention is not limited to such examples. It is clear that a person skilled in the art can come up with various modifications or modifications within the scope of the claims, which naturally belong to the technical scope of the present invention. Understood.

本発明は、めっき皮膜の結晶粒を微細化する方法として利用することができる。 The present invention can be used as a method for refining the crystal grains of the plating film.

100…めっき装置、102…容器、104…めっき液、106…陰極、108…陽極、110…電源、112…めっき金属、114…ナノカーボン、116…分散剤、118a…親水基、118b…親油基、120…被めっき部品、122、122A、128、128A…めっき皮膜、124、124A…結晶粒、126、126A…粒界 100 ... Plating device, 102 ... Container, 104 ... Plating solution, 106 ... Cathode, 108 ... Anode, 110 ... Power supply, 112 ... Plating metal, 114 ... Nanocarbon, 116 ... Dispersant, 118a ... Hydrophilic group, 118b ... Parent oil Group, 120 ... Parts to be plated, 122, 122A, 128, 128A ... Plating film, 124, 124A ... Crystal grains, 126, 126A ... Grain boundaries

Claims (3)

めっき皮膜の結晶粒の微細化方法であって、
めっき液に、めっき金属のイオンと、ナノカーボンと、該ナノカーボンを分散させる分散剤としてアニオン系界面活性剤とを混入した状態で電気めっきを行うことを特徴するめっき皮膜の結晶粒の微細化方法。
This is a method for refining the crystal grains of the plating film.
Fine graining of the crystal grains of the plating film, which is characterized by performing electroplating in a state where ions of the plating metal, nanocarbon, and an anionic surfactant as a dispersant for dispersing the nanocarbon are mixed in the plating solution. Method.
前記ナノカーボンは、前記めっき液に混入された状態で正に帯電していることを特徴とする請求項1に記載のめっき皮膜の結晶粒の微細化方法。 The method for refining crystal grains of a plating film according to claim 1, wherein the nanocarbon is positively charged in a state of being mixed with the plating solution. 前記めっき金属は、Ag、Ni、Sn、またはAuであることを特徴とする請求項1または2に記載のめっき皮膜の結晶粒の微細化方法。 The method for refining crystal grains of a plating film according to claim 1 or 2, wherein the plating metal is Ag, Ni, Sn, or Au.
JP2017240928A 2017-12-15 2017-12-15 Method of micronizing crystal grains in plating film Pending JP2021042397A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017240928A JP2021042397A (en) 2017-12-15 2017-12-15 Method of micronizing crystal grains in plating film
PCT/JP2018/046031 WO2019117279A1 (en) 2017-12-15 2018-12-14 Method for refining crystal grains in plating film
CN201880080829.3A CN111511964A (en) 2017-12-15 2018-12-14 Method for refining crystal grains of plating film
US16/954,182 US20210156044A1 (en) 2017-12-15 2018-12-14 Crystal grain size reduction method for plating film
EP18887864.9A EP3725921A4 (en) 2017-12-15 2018-12-14 Method for refining crystal grains in plating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017240928A JP2021042397A (en) 2017-12-15 2017-12-15 Method of micronizing crystal grains in plating film

Publications (1)

Publication Number Publication Date
JP2021042397A true JP2021042397A (en) 2021-03-18

Family

ID=66820367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017240928A Pending JP2021042397A (en) 2017-12-15 2017-12-15 Method of micronizing crystal grains in plating film

Country Status (5)

Country Link
US (1) US20210156044A1 (en)
EP (1) EP3725921A4 (en)
JP (1) JP2021042397A (en)
CN (1) CN111511964A (en)
WO (1) WO2019117279A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230175160A1 (en) * 2020-06-23 2023-06-08 Dowa Metaltech Co., Ltd. Composite material, method for producing composite material, and terminal
JP6916971B1 (en) * 2020-09-15 2021-08-11 Dowaメタルテック株式会社 Silver plating material and its manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004018909A (en) * 2002-06-13 2004-01-22 Tadamasa Fujimura Metallic thin film layer in which hyperfine diamond particles are dispersed, metallic material having the thin film layer and method for producing them
WO2005056885A1 (en) * 2003-12-08 2005-06-23 Toyo Kohan Co., Ltd. Metal-plated steel sheet for battery case, battery case using the plated steel sheet for battery case and battery using the battery case
WO2005106989A1 (en) * 2004-04-30 2005-11-10 Toyo Kohan Co., Ltd. Plated steel plate for battery container, battery container using the plated steel plate for battery container, and battery using the battery container
JP2013185185A (en) * 2012-03-07 2013-09-19 Shinshu Univ Ni-W ALLOY/CNT COMPOSITE PLATING METHOD AND Ni-W ALLOY/CNT COMPOSITE PLATING LIQUID
JP2017101301A (en) * 2015-12-03 2017-06-08 トヨタ自動車株式会社 Method for forming copper film

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3371020A (en) * 1964-12-14 1968-02-27 Union Carbide Corp Process for the electrodeposition of metals
US7320832B2 (en) * 2004-12-17 2008-01-22 Integran Technologies Inc. Fine-grained metallic coatings having the coefficient of thermal expansion matched to the one of the substrate
JP2008214667A (en) 2007-02-28 2008-09-18 Shinshu Univ Zinc-nano carbon compound-plated object and method for manufacturing the same
JP5435477B2 (en) * 2010-01-22 2014-03-05 アイテック株式会社 Composite plating solution in which fine diamond particles are dispersed and method for producing the same
CN102703943B (en) * 2012-05-23 2016-04-13 江苏仪征金派内燃机配件有限公司 A kind of production method of nanocomposite surface piston ring
CN103469264B (en) * 2013-09-16 2015-10-21 中国电子科技集团公司第三十八研究所 Electroplating deposition prepares the method for nanocrystalline structure gold-tin alloy coating

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004018909A (en) * 2002-06-13 2004-01-22 Tadamasa Fujimura Metallic thin film layer in which hyperfine diamond particles are dispersed, metallic material having the thin film layer and method for producing them
WO2005056885A1 (en) * 2003-12-08 2005-06-23 Toyo Kohan Co., Ltd. Metal-plated steel sheet for battery case, battery case using the plated steel sheet for battery case and battery using the battery case
WO2005106989A1 (en) * 2004-04-30 2005-11-10 Toyo Kohan Co., Ltd. Plated steel plate for battery container, battery container using the plated steel plate for battery container, and battery using the battery container
JP2013185185A (en) * 2012-03-07 2013-09-19 Shinshu Univ Ni-W ALLOY/CNT COMPOSITE PLATING METHOD AND Ni-W ALLOY/CNT COMPOSITE PLATING LIQUID
JP2017101301A (en) * 2015-12-03 2017-06-08 トヨタ自動車株式会社 Method for forming copper film

Also Published As

Publication number Publication date
WO2019117279A1 (en) 2019-06-20
EP3725921A4 (en) 2021-01-27
CN111511964A (en) 2020-08-07
EP3725921A1 (en) 2020-10-21
US20210156044A1 (en) 2021-05-27

Similar Documents

Publication Publication Date Title
JP6360973B2 (en) Self-lubricating composite coating
JP6838839B2 (en) A method for manufacturing a silver plating solution, a silver plating material, an electric / electronic component, and a silver plating material.
Luo et al. Characterization of microstructure and properties of electroless duplex Ni-WP/Ni-P nano-ZrO2 composite coating
US5141702A (en) Method of making coated electrical connectors
JP5872492B2 (en) Coatings and methods
WO1991013754A1 (en) Composite coating for electrical connectors
JP2021042397A (en) Method of micronizing crystal grains in plating film
KR100528362B1 (en) Multi-layered material for sliding elements and manufacturing method thereof
DE10245343A1 (en) Electric contact
EP2294656A1 (en) Component with a layer into which cnt (carbon nanotubes) are incorporated and a method for the manufacture of said component
EP3797184B1 (en) Silver electrolyte for depositing dispersion silver layers and contact surfaces with dispersion silver layers
Wang Effect of surfactant BAS on MoS2 codeposition behaviour
Roy et al. Pulse current co-deposition of Ni-WS2 nano-composite film for solid lubrication
DE102009037262A1 (en) Method for producing a sliding layer on a sliding bearing component and associated sliding bearing component
JP5857279B2 (en) Self-lubricating coating and method for producing self-lubricating coating
JP2003156045A (en) Sliding member
JP4617327B2 (en) Preparation method of molybdenum disulfide composite plating solution, molybdenum disulfide composite plating method and nickel-molybdenum disulfide composite plating film
JP4993157B2 (en) Granular material and method for producing granular material
JP5243467B2 (en) Sliding member
Bukat et al. SAC solder paste with carbon nanotubes. Part II: carbon nanotubes’ effect on solder joints’ mechanical properties and microstructure
RU2769371C1 (en) Electric contact element
CN110268103A (en) The forming method of coating
WO2015159842A1 (en) Sliding member and sliding bearing
JP2021102793A (en) Composite plating, metal substrate with plating, and terminal for electric contact
JP2016079432A (en) Copper alloy for sliding shaft bearing

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20171227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180206

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180718

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210615

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210816

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211207