[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2021040374A - Vibration type actuator, optical apparatus and electronic apparatus - Google Patents

Vibration type actuator, optical apparatus and electronic apparatus Download PDF

Info

Publication number
JP2021040374A
JP2021040374A JP2019158972A JP2019158972A JP2021040374A JP 2021040374 A JP2021040374 A JP 2021040374A JP 2019158972 A JP2019158972 A JP 2019158972A JP 2019158972 A JP2019158972 A JP 2019158972A JP 2021040374 A JP2021040374 A JP 2021040374A
Authority
JP
Japan
Prior art keywords
vibrating
actuator according
contact
vibrating actuator
vibrating body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019158972A
Other languages
Japanese (ja)
Other versions
JP7362366B2 (en
Inventor
亮 島田
Akira Shimada
亮 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2019158972A priority Critical patent/JP7362366B2/en
Priority to US17/002,119 priority patent/US11606046B2/en
Publication of JP2021040374A publication Critical patent/JP2021040374A/en
Application granted granted Critical
Publication of JP7362366B2 publication Critical patent/JP7362366B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/08Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted to co-operate with a remote control mechanism
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • H02N2/06Drive circuits; Control arrangements or methods
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/09Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted for automatic focusing or varying magnification
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/32Means for focusing
    • G03B13/34Power focusing
    • G03B13/36Autofocus systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B3/00Focusing arrangements of general interest for cameras, projectors or printers
    • G03B3/10Power-operated focusing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/0005Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing non-specific motion; Details common to machines covered by H02N2/02 - H02N2/16
    • H02N2/001Driving devices, e.g. vibrators
    • H02N2/0015Driving devices, e.g. vibrators using only bending modes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/0005Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing non-specific motion; Details common to machines covered by H02N2/02 - H02N2/16
    • H02N2/0075Electrical details, e.g. drive or control circuits or methods
    • H02N2/0085Leads; Wiring arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • H02N2/026Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors by pressing one or more vibrators against the driven body
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • H02N2/04Constructional details
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/103Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors by pressing one or more vibrators against the rotor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0053Driving means for the movement of one or more optical element
    • G03B2205/0061Driving means for the movement of one or more optical element using piezoelectric actuators

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

To provide a vibration type actuator which is improved in performance and structured to simply and stably hold a vibrator.SOLUTION: A vibration type actuator comprises: a vibrator including an elastic body and an electric/mechanical energy conversion element; a contact body in contact with the vibrator; a flexible printed circuit board which supplies power to the electric/mechanical energy conversion element and includes a recess on a surface at an opposite side from the electric/mechanical energy conversion element; and a hold member including a projection which is engaged with the recess.SELECTED DRAWING: Figure 9

Description

本発明は、振動型アクチュエータ、光学機器および電子機器に関する。 The present invention relates to vibrating actuators, optical instruments and electronic devices.

圧電素子などの電気−機械エネルギー変換素子を用いた振動型アクチュエータには種々の構成のものが知られている。例えば、平板状の弾性体の表面に2つの突起が設けられると共に弾性体の裏面に圧電素子が接合された振動体と、その振動体に接する被駆動体(接触体)と、2つの突起と被駆動体とを加圧接触させるための加圧手段を有する振動型アクチュエータが知られている。この振動型アクチュエータでは、電気−機械エネルギー変換素子に所定の交流電圧を印加することによって、2つの突起を結ぶ方向と突起の突出方向とを含む面内で2つの突起の先端に楕円運動もしくは円運動を生じさせる。これにより、被駆動体が2つの突起から摩擦駆動力を受けることで、2つの突起を結ぶ方向に振動体と被駆動体とを相対的に移動させることができる。 Various types of vibration type actuators using an electric-mechanical energy conversion element such as a piezoelectric element are known. For example, a vibrating body in which two protrusions are provided on the surface of a flat plate-shaped elastic body and a piezoelectric element is bonded to the back surface of the elastic body, a driven body (contact body) in contact with the vibrating body, and two protrusions. A vibrating actuator having a pressurizing means for pressurizing contact with a driven body is known. In this vibration type actuator, by applying a predetermined AC voltage to the electric-mechanical energy conversion element, an elliptical motion or a circle is formed at the tips of the two protrusions in a plane including the direction connecting the two protrusions and the protrusion direction of the protrusions. Cause exercise. As a result, the driven body receives the frictional driving force from the two protrusions, so that the vibrating body and the driven body can be relatively moved in the direction connecting the two protrusions.

振動体に励起される振動振幅ができる限り減衰されることのないように、振動体を安定して保持する機構を採用することは、振動型アクチュエータの駆動特性を安定させると共に高い性能を得る観点から重要となる。そこで、振動体の保持部材に関する種々の提案がなされている。 Adopting a mechanism that stably holds the vibrating body so that the vibration amplitude excited by the vibrating body is not attenuated as much as possible is from the viewpoint of stabilizing the driving characteristics of the vibrating actuator and obtaining high performance. It becomes important from. Therefore, various proposals have been made regarding the holding member of the vibrating body.

特許文献1には、圧電素子の表面に穴部が設けられ、この穴部に保持部材に設けられた突起部が係合して設置されている振動波駆動装置が記載されている。加圧ばねがこの保持部材に付勢することにより、被駆動体と振動体との間に所望の加圧力を付与するとともに、保持部材と振動体との間で、ガタ等に起因する位置ズレを抑制することができる。 Patent Document 1 describes a vibration wave driving device in which a hole is provided on the surface of the piezoelectric element, and a protrusion provided on the holding member is engaged with the hole. By urging the holding member with the pressure spring, a desired pressing force is applied between the driven body and the vibrating body, and the position shift between the holding member and the vibrating body due to play or the like is performed. Can be suppressed.

しかしながら、特許文献1に開示された技術では、量産性が低くなるという問題があった。 However, the technique disclosed in Patent Document 1 has a problem that mass productivity is lowered.

一般に圧電素子はセラミックスで構成されるため、金属よりも硬く、脆いために加工難度が高く、例え加工ができたとしても圧電素子に穴部を設けると、その分体積が減ることになり、モータ出力が低下する。本願発明者は圧電子表面に微小なV溝を設けただけでも、最大速度が低下することを確認している。 Generally, since the piezoelectric element is made of ceramics, it is harder and more brittle than metal, so it is difficult to process. Even if processing is possible, if a hole is provided in the piezoelectric element, the volume will be reduced by that amount, and the motor. Output is reduced. The inventor of the present application has confirmed that the maximum velocity is reduced even if a minute V-groove is provided on the surface of the pressure electron.

特開2010−158127号公報Japanese Unexamined Patent Publication No. 2010-158127

本発明はこのような課題に鑑みてなされたものであって、性能を大きく損なうことなく振動体を簡素かつ安定して保持する構造を備えた振動型アクチュエータを提供することを目的とする。 The present invention has been made in view of such a problem, and an object of the present invention is to provide a vibrating actuator having a structure for simply and stably holding a vibrating body without significantly impairing its performance.

上記課題を解決する振動型アクチュエータは、弾性体および電気−機械エネルギー変換素子を有する振動体と、
振動体に接する接触体と、
前記電気−機械エネルギー変換素子に給電し、前記電気−機械エネルギー変換素子と接触する表面の反対側の表面に凹部を備えたフレキシブルプリント基板と、
前記凹部に係合する突起部が設けられた保持部材を備えていることを特徴とする。
The vibrating actuator that solves the above problems includes a vibrating body having an elastic body and an electric-mechanical energy conversion element, and a vibrating body.
The contact body in contact with the vibrating body and
A flexible printed circuit board that supplies power to the electric-mechanical energy conversion element and has a recess on the surface opposite to the surface that comes into contact with the electric-mechanical energy conversion element.
It is characterized by including a holding member provided with a protrusion that engages with the recess.

性能が良好で、振動体を簡素かつ安定して保持する構造を備えた振動型アクチュエータを提供することができる。 It is possible to provide a vibrating actuator having good performance and a structure for simply and stably holding the vibrating body.

本発明の実施例1における振動型アクチュエータの分解斜視図である。It is an exploded perspective view of the vibration type actuator in Example 1 of this invention. 本発明の実施例1における振動型アクチュエータの組立斜視図である。It is an assembly perspective view of the vibration type actuator in Example 1 of this invention. 本発明の実施例1における振動モード図である。It is a vibration mode diagram in Example 1 of this invention. 本発明の実施例1における振動体保持機構の分解斜視図である。It is an exploded perspective view of the vibrating body holding mechanism in Example 1 of this invention. 本発明の実施例1における振動体保持機構の組立斜視図である。It is an assembly perspective view of the vibrating body holding mechanism in Example 1 of this invention. 本発明の実施例1における振動型アクチュエータの節位置を表す図である。It is a figure which shows the node position of the vibration type actuator in Example 1 of this invention. 本発明の実施例1における振動体の分解斜視図である。It is an exploded perspective view of the vibrating body in Example 1 of this invention. 本発明の実施例1における保持部の断面図である。It is sectional drawing of the holding part in Example 1 of this invention. 本発明の実施例2における保持部の断面図である。It is sectional drawing of the holding part in Example 2 of this invention. 本発明の実施例3における振動型アクチュエータの分解斜視図である。It is an exploded perspective view of the vibration type actuator in Example 3 of this invention. 本発明の実施例3における振動型アクチュエータの断面図である。It is sectional drawing of the vibration type actuator in Example 3 of this invention. 本発明の実施例3における振動体及びリング基台の斜視図である。It is a perspective view of the vibrating body and the ring base in Example 3 of this invention. 本発明の実施例4における振動型アクチュエータの分解斜視図である。It is an exploded perspective view of the vibration type actuator in Example 4 of this invention. 本発明の実施例4における振動型アクチュエータの組立斜視図である。It is an assembly perspective view of the vibration type actuator in Example 4 of this invention. 本発明の実施例5における振動型アクチュエータを用いた撮像装置の概略構成を示す上面図とブロック図である。It is a top view and a block diagram which show the schematic structure of the image pickup apparatus using the vibration type actuator in Example 5 of this invention.

本実施形態では、
弾性体および電気−機械エネルギー変換素子を有する振動体と、
振動体に接する接触体と、
前記電気−機械エネルギー変換素子に給電し、前記電気−機械エネルギー変換素子の反対側の表面に凹部を備えたフレキシブルプリント基板と、
前記凹部に係合する突起部が設けられた保持部材を備えた振動型アクチュエータを提供するものである。
In this embodiment,
An elastic body and a vibrating body having an electric-mechanical energy conversion element,
The contact body in contact with the vibrating body and
A flexible printed circuit board that supplies power to the electric-mechanical energy conversion element and has a recess on the surface opposite to the electric-mechanical energy conversion element.
Provided is a vibrating actuator provided with a holding member provided with a protrusion that engages with the recess.

以下に図面を交えて詳細に説明する。 The details will be described below with reference to the drawings.

なお「接触体」とは、振動体と接触し、振動体に発生した振動によって、振動体に対して相対移動する部材のことをいう。接触体と振動体の接触は、接触体と振動体の間に他の部材が介在しない直接接触に限られない。接触体と振動体の接触は、振動体に発生した振動によって、接触体が振動体に対して相対移動するならば、接触体と振動体の間に他の部材が介在する間接接触であってもよい。「他の部材」は、接触体及び振動体とは独立した部材(例えば焼結体よりなる高摩擦材)に限られない。「他の部材」は、接触体又は振動体に、メッキや窒化処理などによって形成された表面処理部分であってもよい。 The "contact body" refers to a member that comes into contact with the vibrating body and moves relative to the vibrating body due to the vibration generated in the vibrating body. The contact between the contact body and the vibrating body is not limited to the direct contact in which no other member is interposed between the contact body and the vibrating body. The contact between the contact body and the vibrating body is an indirect contact in which another member intervenes between the contact body and the vibrating body if the contact body moves relative to the vibrating body due to the vibration generated in the vibrating body. May be good. The "other member" is not limited to a member independent of the contact body and the vibrating body (for example, a high friction material made of a sintered body). The "other member" may be a surface-treated portion formed on the contact body or the vibrating body by plating, nitriding treatment, or the like.

本実施例は、リニア型振動型アクチュエータに本発明を適用した例であり、その詳細を図1〜図8を用いて説明する。まず図1は本発明の実施例1における振動型アクチュエータ1の分解斜視図であり、図2は組立斜視図である。ここで接触体であるスライダ9の移動方向をX、加圧方向をZ、X方向及びZ方向に垂直な方向をYと定義する。 This embodiment is an example in which the present invention is applied to a linear vibration type actuator, and the details thereof will be described with reference to FIGS. 1 to 8. First, FIG. 1 is an exploded perspective view of the vibration type actuator 1 according to the first embodiment of the present invention, and FIG. 2 is an assembled perspective view. Here, the moving direction of the slider 9 which is a contact body is defined as X, the pressurizing direction is defined as Z, and the directions perpendicular to the X and Z directions are defined as Y.

弾性体3には電気−機械エネルギー変換素子である圧電素子4が接着剤等で固定され、さらに弾性体3との反対面の圧電素子4にフレキシブルプリント基板5が固定され、これらで振動体2を構成している。圧電素子4とフレキシブルプリント基板5の固定方法はZ方向のみへの通電を可能にする異方性導電ペーストや異方性導電フィルムで行われる。 A piezoelectric element 4 which is an electric-mechanical energy conversion element is fixed to the elastic body 3 with an adhesive or the like, and a flexible printed substrate 5 is fixed to the piezoelectric element 4 on the opposite surface to the elastic body 3, and the vibrating body 2 is formed by these. Consists of. The method of fixing the piezoelectric element 4 and the flexible printed circuit board 5 is performed with an anisotropic conductive paste or an anisotropic conductive film that enables energization only in the Z direction.

弾性体3は金属やセラミックスなど振動の減衰が小さい材料が好ましい。弾性体3の製造に関しては、プレス成型や切削などで突起部31を一体で設けてもよいし、突起部31を別に製造して、後から溶接や接着などで固定することも可能である。また突起部31は本実施例の図4に例示されるように複数設けてもよいし、1つでもよい。 The elastic body 3 is preferably a material having a small vibration damping such as metal or ceramics. Regarding the production of the elastic body 3, the protrusion 31 may be integrally provided by press molding or cutting, or the protrusion 31 may be manufactured separately and fixed later by welding or adhesion. Further, a plurality of protrusions 31 may be provided as illustrated in FIG. 4 of this embodiment, or one protrusion 31 may be provided.

圧電素子4はチタン酸ジルコン酸鉛を用いる。またチタン酸バリウムや、チタン酸ビスマスナトリウムなどの鉛を含有しない圧電材料を主成分としたものでもよい。鉛を含有しない圧電材料とは鉛の含有量が1000ppm以下の圧電材料を備えた圧電素子のことである。 The piezoelectric element 4 uses lead zirconate titanate. Further, a material containing a lead-free piezoelectric material such as barium titanate or bismuth sodium titanate as a main component may be used. The lead-free piezoelectric material is a piezoelectric element provided with a piezoelectric material having a lead content of 1000 ppm or less.

圧電素子4の両面には不図示の電極パターンが形成されており、フレキシブルプリント基板5からの給電が行われる。 An electrode pattern (not shown) is formed on both sides of the piezoelectric element 4, and power is supplied from the flexible printed circuit board 5.

振動体2の下方には振動体2を加圧及び支持する加圧部材6が設けられている。加圧部材は加圧バネ7によってZ方向に加圧力が付与され、その反力を加圧受け部材である基台8で受けている。加圧ばね7は振動型アクチュエータ1をZ方向に小型化するために円錐コイルばねを採用している。なお、コイル形状は簡略化して図示している。 A pressure member 6 for pressurizing and supporting the vibrating body 2 is provided below the vibrating body 2. A pressing force is applied to the pressurizing member in the Z direction by the pressurizing spring 7, and the reaction force is received by the base 8 which is the pressurizing receiving member. The pressure spring 7 employs a conical coil spring in order to reduce the size of the vibrating actuator 1 in the Z direction. The coil shape is shown in a simplified manner.

振動体2の上方にはスライダ9が設けられ、弾性体3の突起部31と加圧接触している。スライダ9はスライダホルダ10に固定され、一体となってX方向に駆動される。なおスライダ9とスライダホルダ10の間に振動減衰のためのゴムを設けてもよい。スライダ9は耐摩耗性の高い金属やセラミック、樹脂、またはその複合材で構成される。特にSUS420J2などのステンレスを窒化した材料が耐摩耗性や量産性の観点から好ましい。 A slider 9 is provided above the vibrating body 2 and is in pressure contact with the protrusion 31 of the elastic body 3. The slider 9 is fixed to the slider holder 10 and is integrally driven in the X direction. A rubber for vibration damping may be provided between the slider 9 and the slider holder 10. The slider 9 is made of a metal, ceramic, resin, or a composite material thereof having high wear resistance. In particular, a stainless steel nitrided material such as SUS420J2 is preferable from the viewpoint of wear resistance and mass productivity.

スライダホルダ10及びボールレール12に設けられた上下3対のレールで3つのボール11を挟み込み、ボールレール12を基台8に固定することで、スライダ9とスライダホルダ10がその他の部品に対してX方向に移動できるようにしている。スライダホルダ10に所望の形状の出力伝達部を取り付けることによって、外部に出力を伝達する。本実施例では振動体2を固定し、スライダ9が移動する例を示しているが、逆にスライダ9を固定し、振動体2を移動させることも可能である。 By sandwiching the three balls 11 between the upper and lower three pairs of rails provided on the slider holder 10 and the ball rail 12 and fixing the ball rail 12 to the base 8, the slider 9 and the slider holder 10 can be attached to other parts. It is possible to move in the X direction. The output is transmitted to the outside by attaching an output transmission unit having a desired shape to the slider holder 10. In this embodiment, an example in which the vibrating body 2 is fixed and the slider 9 is moved is shown, but conversely, the slider 9 can be fixed and the vibrating body 2 can be moved.

次に、図3を用いて振動体2に励起される振動モードについて説明する。本実施例では圧電素子3にフレキシブルプリント基板5を通じて交流電圧を印加して、振動体2に2つの異なる面外曲げ振動を励振し、これらの振動を合成した振動を生じさせる。 Next, the vibration mode excited by the vibrating body 2 will be described with reference to FIG. In this embodiment, an AC voltage is applied to the piezoelectric element 3 through the flexible printed substrate 5 to excite two different out-of-plane bending vibrations to the vibrating body 2 to generate a vibration in which these vibrations are combined.

第1の振動モードであるモードAは、振動体2の長手方向であるX方向に平行に2つの節が現れる一次の面外曲げ振動モードである。モードAの振動により、2か所の突起部31−1、31−2が加圧方向であるZ方向に変位する。第2の振動モードであるモードBは、振動体2の短手方向であるY方向におおよそ平行な3つの節が現れる二次の面外曲げ振動モードである。モードBの振動によって、2か所の突起部31−1、31−2がX方向に変位する。 Mode A, which is the first vibration mode, is a primary out-of-plane bending vibration mode in which two nodes appear in parallel with the X direction, which is the longitudinal direction of the vibrating body 2. Due to the vibration of mode A, the two protrusions 31-1 and 31-2 are displaced in the Z direction, which is the pressurizing direction. The second vibration mode, mode B, is a secondary out-of-plane bending vibration mode in which three nodes substantially parallel to the Y direction, which is the lateral direction of the vibrating body 2, appear. Due to the vibration of mode B, the two protrusions 31-1 and 31-2 are displaced in the X direction.

これらのモードA,Bの振動を合成することによって、2か所の突起部31−1、31−2がZX面内で楕円運動あるいは円運動を行う。この突起部31−1、31−2にスライダ9を加圧接触させることによって、X方向に摩擦力が発生し、振動体2とスライダ9とを相対的に移動させる駆動力(推力)が発生する。本実施例では、振動体2が後述の手法で保持されているため、接触体であるスライダ9がX方向に移動する。なお、接触体の位置を固定部材などで固定し、振動体2がX方向に移動するよう構成することもできる。 By synthesizing the vibrations of these modes A and B, the two protrusions 31-1 and 31-2 perform elliptical motion or circular motion in the ZX plane. By bringing the slider 9 into pressure contact with the protrusions 31-1 and 31-2, a frictional force is generated in the X direction, and a driving force (thrust) that relatively moves the vibrating body 2 and the slider 9 is generated. To do. In this embodiment, since the vibrating body 2 is held by the method described later, the slider 9 which is a contact body moves in the X direction. It is also possible to fix the position of the contact body with a fixing member or the like so that the vibrating body 2 moves in the X direction.

振動型アクチュエータ1を効率よく駆動するためには、振動体2に励振させる2つの振動モードの振動(変位)を阻害することなく振動体2を支持することが必要となり、このためには、これら2つの振動モードの節の近傍を支持することが望ましい。このような理由から、振動体2に励振される2つの振動モードの共通の節を加圧・保持するために、図4に示すように加圧部材6に2つの凸部61−1、61−2を設けている。図6にその接触位置と各振動モードにおける節位置を示す。なお簡略化のために、フレキシブルプリント基板5は省略している。 In order to drive the vibrating actuator 1 efficiently, it is necessary to support the vibrating body 2 without hindering the vibration (displacement) of the two vibration modes that excite the vibrating body 2. It is desirable to support the vicinity of the nodes of the two vibration modes. For this reason, in order to pressurize and hold the common node of the two vibration modes excited by the vibrating body 2, the pressurizing member 6 has two convex portions 61-1 and 61 as shown in FIG. -2 is provided. FIG. 6 shows the contact position and the node position in each vibration mode. For the sake of simplicity, the flexible printed circuit board 5 is omitted.

図6において、黒色に塗りつぶされた部分は節近傍を示している。具体的には各振動モードの最大変位の35%以下の変位の個所を黒く表示している。ここではこの最大変位の35%以下の変位の個所を節近傍と定義する。モードA、Bを重ね合わせると黒い部分が重なる場所、つまり共通の節近傍が6個出現(丸印4か所と星印2か所)する。このうち星印で表す2か所が、振動体2をより効率的に支持する以下2つの観点で好ましい。 In FIG. 6, the portion painted in black indicates the vicinity of the node. Specifically, the displacement of 35% or less of the maximum displacement of each vibration mode is displayed in black. Here, the location of the displacement of 35% or less of this maximum displacement is defined as the vicinity of the node. When modes A and B are overlapped, the black parts overlap, that is, six common node neighborhoods appear (4 circles and 2 stars). Of these, the two locations represented by the stars are preferable from the following two viewpoints that support the vibrating body 2 more efficiently.

まず他4か所よりも変位がより小さいこと、次にZX断面で見るとX方向には1点で加圧されているために突起部31−1、31−2とスライダ9とのY軸回りのイコライズ機能をもたせ、接触を均一化させることが可能だからである。このような理由から、図6の星印部を、凸部61−1、61−2を接触させることで、より効率的に振動体2を加圧している。 First, the displacement is smaller than the other four locations, and then when viewed in the ZX cross section, the pressure is applied at one point in the X direction, so the Y-axis of the protrusions 31-1 and 31-2 and the slider 9 This is because it is possible to have an equalizing function around it and make the contact uniform. For this reason, the vibrating body 2 is pressurized more efficiently by bringing the convex portions 61-1 and 61-2 into contact with the star-marked portion of FIG.

星印部は、弾性体は矩形状であり、弾性体の長手方向に沿って2つの節線が現れる一次の面外曲げ振動モードAと、弾性体の短手方向に沿って3つの節線が現れる二次の面外曲げ振動モードBと、が交差する点のうち、3つの節線における中の節線上の2点を指す。 In the asterisk part, the elastic body has a rectangular shape, and the primary out-of-plane bending vibration mode A in which two nodes appear along the longitudinal direction of the elastic body and three nodes along the lateral direction of the elastic body. Refers to two points on the middle node of the three nodes among the points where the secondary out-of-plane bending vibration mode B in which appears appears.

この凸部61と、振動体2の加圧接触部の構成について、図7及び図8を用いて詳細に説明する。図7は振動体2の分解斜視図である。フレキシブルプリント基板5には2つの穴部51が形成されている。このフレキシブルプリント基板5を圧電素子4に、穴部51を2つの振動モードの共通の節(図6の☆印部)の位置と一致するように接着する。または穴部がない状態のフレキシブルプリント基板5を圧電素子4に接着後、レーザー加工等で穴部51を形成してもよい。外形と同時に穴部51もプレスで打ち抜く工程が、従来のフレキシブルプリント基板と比較してもコストアップがなく、量産性が高い。 The configuration of the convex portion 61 and the pressurized contact portion of the vibrating body 2 will be described in detail with reference to FIGS. 7 and 8. FIG. 7 is an exploded perspective view of the vibrating body 2. Two holes 51 are formed in the flexible printed circuit board 5. The flexible printed circuit board 5 is bonded to the piezoelectric element 4, and the hole 51 is bonded so as to coincide with the position of a common node (marked with a star in FIG. 6) in the two vibration modes. Alternatively, the flexible printed circuit board 5 having no holes may be adhered to the piezoelectric element 4 and then the holes 51 may be formed by laser processing or the like. The process of punching the hole 51 at the same time as the outer shape by pressing does not increase the cost as compared with the conventional flexible printed circuit board, and the mass productivity is high.

図8は振動体2と加圧部材の接触部付近の断面図であるが、弾性体3の図示を省略している。vは樹脂フィルムにて構成されたベースフィルム52、配線パターン53、カバーフィルム54の3層構造となっているが、加圧接触部付近は圧電素子4との導通をとるためにカバーフィルム54は配置されていない。凸部61が穴部51入るように配置し、Z方向に加圧することで、振動体2と加圧部材6が係合する。これによって、スライダ9を駆動した際、反力を受けた場合でも、振動体2が加圧部材6に対して移動することはない。 FIG. 8 is a cross-sectional view of the vicinity of the contact portion between the vibrating body 2 and the pressurizing member, but the elastic body 3 is not shown. v has a three-layer structure of a base film 52 made of a resin film, a wiring pattern 53, and a cover film 54. The cover film 54 has a three-layer structure in the vicinity of the pressure contact portion in order to establish continuity with the piezoelectric element 4. Not placed. The vibrating body 2 and the pressurizing member 6 are engaged with each other by arranging the convex portion 61 so as to enter the hole portion 51 and applying pressure in the Z direction. As a result, when the slider 9 is driven, the vibrating body 2 does not move with respect to the pressurizing member 6 even when a reaction force is applied.

すなわちフレキシブルプリント基板は配線パターン53と配線パターンが形成されていない非配線部を備え、非配線部と非配線部の両側に設けられた配線パターンによって凹部が構成されている点に特徴がある。凹部は図7、図8に例示した穴部51のように空隙であってもよいし、後述するように、非配線部及び非配線部の両側に設けられた配線パターンを、樹脂フィルムが被覆する構造であっても良い。 That is, the flexible printed circuit board is characterized in that it includes a wiring pattern 53 and a non-wiring portion in which a wiring pattern is not formed, and a recess is formed by wiring patterns provided on both sides of the non-wiring portion and the non-wiring portion. The recesses may be voids as in the holes 51 illustrated in FIGS. 7 and 8, and as will be described later, the resin film covers the non-wiring portions and the wiring patterns provided on both sides of the non-wiring portions. It may be a structure that does.

一方、加圧部材6には4つの遊嵌部62(62−1、62−2、62−3、62−4)が設けられており、振動体2の外周面に対して、がたを有した状態で支持(遊嵌)している。この遊嵌部62は振動体2の組立時の位置決めとしての機能を果たす。 On the other hand, the pressurizing member 6 is provided with four loose fitting portions 62 (62-1, 62-2, 62-3, 62-4), and rattles the outer peripheral surface of the vibrating body 2. It is supported (floating) while being held. The loose fitting portion 62 functions as a positioning at the time of assembling the vibrating body 2.

すなわち、弾性体は矩形状であり、矩形部および互いに独立した少なくとも2つの延出部が設けられており、支持部材に設けられた別の突起部が矩形部および延出部に接している振動型アクチュエータを構成する。具体的には複数の前記別の突起部により前記弾性体の前記矩形部の四隅を遊嵌して支持する。 That is, the elastic body has a rectangular shape, and a rectangular portion and at least two extending portions independent of each other are provided, and another protrusion provided on the support member is in contact with the rectangular portion and the extending portion. Construct a type actuator. Specifically, the four corners of the rectangular portion of the elastic body are loosely fitted and supported by the plurality of other protrusions.

これまで述べてきたとおり、本実施例では、加圧部材6の凸部61とフレキシブルプリント基板5の穴部51を係合させることで、振動体2を保持している。これにより、従来よりも簡素な振動体の保持方法でありながらも、量産性が高く、性能を損なうことのない振動型アクチュエータを提供することが可能となる。 As described above, in the present embodiment, the vibrating body 2 is held by engaging the convex portion 61 of the pressurizing member 6 with the hole portion 51 of the flexible printed circuit board 5. This makes it possible to provide a vibrating actuator that is highly mass-producible and does not impair performance, even though it is a simpler method of holding a vibrating body than before.

なお、本発明のリニア型の振動型アクチュエータにおいて、接触面に楕円運動または円運動を生成する方法は上記方法に限られない。例えば、上記とは異なる曲げ振動モードの振動同士を組み合わせてもよいし、弾性体を長手方向に伸縮させる縦の振動モードの振動と曲げ振動モードの振動とを組み合わせてもよい。 In the linear vibration type actuator of the present invention, the method of generating an elliptical motion or a circular motion on the contact surface is not limited to the above method. For example, vibrations in bending vibration modes different from the above may be combined, or vibrations in a vertical vibration mode for expanding and contracting an elastic body in the longitudinal direction and vibrations in a bending vibration mode may be combined.

接触面を被駆動体の移動方向に変位させる振動モードと、接触面を加圧方向に変位させる振動モードとの組み合わせにより、接触面に楕円運動と円運動を生成する方式であり、加圧及び保持のための共通の節を有していれば、どのような駆動方式を用いても良い。 By combining a vibration mode that displaces the contact surface in the moving direction of the driven body and a vibration mode that displaces the contact surface in the pressurizing direction, elliptical motion and circular motion are generated on the contact surface. Any drive system may be used as long as it has a common node for holding.

上述の構成を有することで振動型アクチュエータを駆動した際に振動体と保持部材の位置が実質的に維持される様に構成された振動型アクチュエータを提供できる。 By having the above-described configuration, it is possible to provide a vibrating actuator configured so that the positions of the vibrating body and the holding member are substantially maintained when the vibrating actuator is driven.

図9(a)は実施例2における振動体2と加圧部材の接触部付近の断面図である。実施例1と同様に弾性体2の図示を省いている。図9(b)は実施例2におけるフレキシブルプリント基板5であり、説明のためにカバーフィルム54の図示を省略している。2つの定在波の共通の節とX方向で一致する位置付近に、配線パターン53で覆われた空間55が形成されている。ベースフィルム52及び配線パターン53の表面には異方性導電フィルムまたは異方性導電シートが配置されている。振動体2の製造工程において、圧電素子4に加熱しながら加圧して接着するときに、空間55へと押しつぶされながら接着されることで、U字型の凹部56が形成される。この凹部56に保持部材6の凸部61を加圧接触させることで、振動体2を保持することが可能となる。 FIG. 9A is a cross-sectional view of the vicinity of the contact portion between the vibrating body 2 and the pressurizing member in the second embodiment. The illustration of the elastic body 2 is omitted as in the first embodiment. FIG. 9B shows the flexible printed circuit board 5 in the second embodiment, and the cover film 54 is not shown for the sake of explanation. A space 55 covered with a wiring pattern 53 is formed near a position that coincides with a common node of two standing waves in the X direction. An anisotropic conductive film or an anisotropic conductive sheet is arranged on the surfaces of the base film 52 and the wiring pattern 53. In the manufacturing process of the vibrating body 2, when the piezoelectric element 4 is pressed and adhered while being heated, the U-shaped recess 56 is formed by being crushed and adhered to the space 55. The vibrating body 2 can be held by bringing the convex portion 61 of the holding member 6 into pressure contact with the concave portion 56.

ここで凸部61は振動体2の振動を阻害させないため、できるだけ小さい接触面積のほうが好ましい。しかしながら、実施例1において特にコストも最も安いプレス加工で凹部を形成する場合、プレス型の制約から凹部の幅には限界がある。一方で本実施ならば配線パターン53はエッチングで作るため、プレス加工と比較して、より細い溝幅が実現可能である。よって凸部61の接触面積も小さくすることができ、より効率よく振動体2を保持することが可能となる。 Here, since the convex portion 61 does not hinder the vibration of the vibrating body 2, it is preferable that the contact area is as small as possible. However, when the recess is formed by the press working at the lowest cost in the first embodiment, the width of the recess is limited due to the limitation of the press mold. On the other hand, in this implementation, since the wiring pattern 53 is made by etching, a narrower groove width can be realized as compared with press working. Therefore, the contact area of the convex portion 61 can be reduced, and the vibrating body 2 can be held more efficiently.

本実施例について、図10〜12を用いて説明する。本実施例は円環状の前記接触体に対して複数の前記振動体が配された振動型アクチュエータに関するものである。 This embodiment will be described with reference to FIGS. 10-12. The present embodiment relates to a vibrating actuator in which a plurality of the vibrating bodies are arranged with respect to the annular contact body.

まず図10は本発明の実施例2における振動型アクチュエータの分解斜視図であり、径方向をX,回転方向をθ、加圧方向をZで定義する。また図11は本発明の実施例2における振動型アクチュエータのZX断面図である。 First, FIG. 10 is an exploded perspective view of the vibration type actuator according to the second embodiment of the present invention, in which the radial direction is defined by X, the rotation direction by θ, and the pressurization direction by Z. Further, FIG. 11 is a ZX cross-sectional view of the vibration type actuator according to the second embodiment of the present invention.

本実施例の特徴は、3つの振動体202(202−1、202−2、202−3)がリング基台206に保持されていることである。振動体202の構成及び駆動原理については実施例1と同様のため、説明を省略する。 The feature of this embodiment is that three vibrating bodies 202 (202-1, 202-2, 202-3) are held by the ring base 206. Since the configuration and driving principle of the vibrating body 202 are the same as those in the first embodiment, the description thereof will be omitted.

リング基台206上には実施例1と同様の機能を果たす凸部及び遊嵌部が3セット、120度おきに設けられており、それぞれ振動体202を保持、遊嵌している。振動体202のフレキシブルプリント基板は、不図示の連結フレキシブルプリント基板によって連結され、同じ駆動電圧が圧電素子に与えられる。 On the ring base 206, three sets of convex portions and loose fitting portions that perform the same functions as in the first embodiment are provided at intervals of 120 degrees, and the vibrating body 202 is held and loosely fitted, respectively. The flexible printed circuit board of the vibrating body 202 is connected by a connected flexible printed circuit board (not shown), and the same driving voltage is applied to the piezoelectric element.

振動体202の突起部に被駆動体であるロータ211を当接させ、接線方向に発生する駆動力によってロータ211が回転する。ロータ211上部には防振ゴム212が配置され、それぞれ、出力伝達部材216と一体的に回転可能な状態で保持されている。 The rotor 211, which is a driven body, is brought into contact with the protrusion of the vibrating body 202, and the rotor 211 is rotated by the driving force generated in the tangential direction. Anti-vibration rubber 212 is arranged on the upper part of the rotor 211, and each is held in a state in which it can rotate integrally with the output transmission member 216.

一方、リング基台206は、不図示の部位で内筒217と組み合わされて、中心軸方向及び径方向での移動と中心軸回りの回転が規制されている。 On the other hand, the ring base 206 is combined with the inner cylinder 217 at a portion (not shown) to regulate movement in the central axis direction and radial direction and rotation around the central axis.

リング基台206の下部には所定の剛性を有する加圧補助部材207が設けられ、加圧部材であるウェーブワッシャー208による加圧力を均一化している。ウェーブワッシャー208の下部には加圧受け部材209が配置させている。 A pressurizing auxiliary member 207 having a predetermined rigidity is provided in the lower portion of the ring base 206, and the pressurizing force by the wave washer 208, which is a pressurizing member, is made uniform. A pressure receiving member 209 is arranged below the wave washer 208.

この加圧受け部材209は、その内径側で、内筒217に対してネジ又はバヨネット構造で係合している。振動型アクチュエータ201は、加圧受け部材209を回転させて中心軸方向に移動させることでウェーブワッシャー208が圧縮される。また、リング基台206から出力伝達部材216までが、外筒213及び内筒217と、加圧受け部材209とによって加圧挟持された構造となっている。外筒213及び内筒217と、出力伝達部材216との間にはボール214及びリテーナ215が設けられ、加圧を受けながら、出力伝達部216を回転可能に支持している。外筒213及び内筒217は蓋210をそれぞれビス止めすることによって連結さている。 The pressure receiving member 209 is engaged with the inner cylinder 217 by a screw or a bayonet structure on the inner diameter side thereof. In the vibration type actuator 201, the wave washer 208 is compressed by rotating the pressure receiving member 209 and moving it in the central axis direction. Further, the ring base 206 to the output transmission member 216 have a structure in which the outer cylinder 213 and the inner cylinder 217 and the pressure receiving member 209 press and hold the ring base 206 to the output transmission member 216. A ball 214 and a retainer 215 are provided between the outer cylinder 213 and the inner cylinder 217 and the output transmission member 216, and rotatably support the output transmission unit 216 while receiving pressure. The outer cylinder 213 and the inner cylinder 217 are connected by screwing the lid 210, respectively.

本実施例では振動体202が3つの場合について説明したが、これに限られることはなく、リング基台6に配置可能で1つ以上ならば、何個でも構わない。 In this embodiment, the case where the number of vibrating bodies 202 is three has been described, but the present invention is not limited to this, and any number of vibrating bodies 202 may be used as long as they can be arranged on the ring base 6 and one or more.

本実施例では、被駆動体である摩擦板303を2つの振動体302で挟み込む場合について説明する。本実施例は接触体に対して一対の前記振動体で挟み込んだ構成を備える振動型アクチュエータに関するものである。 In this embodiment, a case where the friction plate 303, which is the driven body, is sandwiched between the two vibrating bodies 302 will be described. The present embodiment relates to a vibrating actuator having a configuration in which the contact body is sandwiched between the pair of vibrating bodies.

振動体302の移動方向をX,加圧方向をZ,X方向及びZ方向に垂直な方向をYと定義する。振動体302の構成及び駆動原理については実施例1と同様のため、説明を省略する。図13は実施例4における振動型アクチュエータの分解斜視図であり、図14は組立斜視図である。 The moving direction of the vibrating body 302 is defined as X, the pressurizing direction is defined as Z, and the directions perpendicular to the X and Z directions are defined as Y. Since the configuration and driving principle of the vibrating body 302 are the same as those in the first embodiment, the description thereof will be omitted. FIG. 13 is an exploded perspective view of the vibration type actuator according to the fourth embodiment, and FIG. 14 is an assembled perspective view.

振動体302−1は上加圧部材305によって、紙面下方向に加圧されており、振動体302−2は下加圧部材306によって紙面上方向に加圧されており、振動体302−1、302−2はそれぞれ摩擦板303に接触している。摩擦板303は防振ゴム304を介して摩擦板ホルダ311に固定されている。上加圧部材305と下加圧部材306は互いにX軸周りに回転可能に係合しており、引張ばね308(308−1、308−2)によって加圧力を付与されている。上加圧部材305と下加圧部材306は互いの加圧反力を受け、加圧受け部材の機能も有している。なお引張ばね308は図を簡略化するためコイル部の図示を省いている。 The vibrating body 302-1 is pressurized downward on the paper surface by the upper pressurizing member 305, and the vibrating body 302-2 is pressurized downward on the paper surface by the lower pressurizing member 306. , 302-2 are in contact with the friction plate 303, respectively. The friction plate 303 is fixed to the friction plate holder 311 via the anti-vibration rubber 304. The upper pressurizing member 305 and the lower pressurizing member 306 are rotatably engaged with each other around the X axis, and a pressing force is applied by a tension spring 308 (308-1, 308-2). The upper pressurizing member 305 and the lower pressurizing member 306 receive each other's pressurizing reaction force, and also have a function of a pressurizing receiving member. The coil portion of the tension spring 308 is omitted for simplification of the drawing.

下加圧部材306にはガイドバー307が係合しており、Z及びY方向の移動を規制しつつ、X方向にはスライド可能に支持している。ガイドバー307は摩擦板ホルダ311と固定部材310に挟み込まれて固定されている。 A guide bar 307 is engaged with the lower pressurizing member 306, and is slidably supported in the X direction while restricting movement in the Z and Y directions. The guide bar 307 is sandwiched and fixed between the friction plate holder 311 and the fixing member 310.

振動体302−1、302−2のフレキシブルプリント基板は、不図示の連結フレキシブルプリント基板によって連結され、同じ駆動電圧が圧電素子に入力される。振動体302の突起部に発生する楕円運動もしくは円運動によってX方向の推力が発生し、振動体302及び、上加圧部材305、下加圧部材306、引張ばね308が一体となってX方向に移動する。 The flexible printed circuit boards of the vibrating bodies 302-1 and 302-2 are connected by a connected flexible printed circuit board (not shown), and the same drive voltage is input to the piezoelectric element. Thrust in the X direction is generated by the elliptical motion or circular motion generated in the protrusion of the vibrating body 302, and the vibrating body 302, the upper pressurizing member 305, the lower pressurizing member 306, and the tension spring 308 are integrated in the X direction. Move to.

振動型アクチュエータは、例えば、撮像装置(光学機器)のレンズ駆動用途等に用いることができる。そこで、一例として、レンズ鏡筒に配置されたレンズの駆動に振動型アクチュエータを用いた撮像装置について説明する。 The vibrating actuator can be used, for example, in a lens driving application of an imaging device (optical device). Therefore, as an example, an image pickup device using a vibration type actuator for driving the lens arranged in the lens barrel will be described.

すなわち本実施例は、レンズと、撮像素子と、前述した振動型アクチュエータを備え、振動型アクチュエータの駆動により前記レンズと前記撮像素子との相対位置が変化するよう構成された光学機器に関するものである。 That is, the present embodiment relates to an optical device including a lens, an image pickup device, and the above-mentioned vibration type actuator, and configured so that the relative position between the lens and the image pickup element is changed by driving the vibration type actuator. ..

図15(a)は、撮像装置700の概略構成を示す上面図である。撮像装置700は、撮像素子710及び電源ボタン720を搭載したカメラ本体730を備える。また、撮像装置700は、第1レンズ群(不図示)、第2レンズ群320、第3レンズ群(不図示)、第4レンズ群340、振動型駆動装置620,640を有するレンズ鏡筒740を備える。レンズ鏡筒740は、交換レンズとして取り換え可能であり、撮影対象に合わせて適したレンズ鏡筒740をカメラ本体730に取り付けることができる。撮像装置700では、2つの振動型駆動装置620,640によってそれぞれ、第2レンズ群320,第4レンズ群340の駆動が行われる。 FIG. 15A is a top view showing a schematic configuration of the image pickup apparatus 700. The image pickup device 700 includes a camera body 730 equipped with an image pickup element 710 and a power button 720. Further, the image pickup apparatus 700 includes a first lens group (not shown), a second lens group 320, a third lens group (not shown), a fourth lens group 340, and a lens barrel 740 having vibration type drive devices 620 and 640. To be equipped with. The lens barrel 740 can be replaced as an interchangeable lens, and a lens barrel 740 suitable for the subject to be photographed can be attached to the camera body 730. In the image pickup apparatus 700, the second lens group 320 and the fourth lens group 340 are driven by the two vibration type drive devices 620 and 640, respectively.

振動型駆動装置620の詳細な構成は不図示であるが、振動型駆動装置620は、振動型アクチュエータと、振動型アクチュエータの駆動回路を有する。ロータ211は、ラジアル方向が光軸と略直交するように、レンズ鏡筒740内に配置される。振動型駆動装置620では、ロータ211を光軸回りに回転させ、不図示のギア等を介して被駆動体の回転出力を光軸方向での直進運動に変換することによって、第2レンズ群320を光軸方向に移動させる。振動型駆動装置640は、振動型駆動装置620と同様の構成を有することにより、第4レンズ群340を光軸方向に移動させる。 Although the detailed configuration of the vibration type drive device 620 is not shown, the vibration type drive device 620 includes a vibration type actuator and a drive circuit of the vibration type actuator. The rotor 211 is arranged in the lens barrel 740 so that the radial direction is substantially orthogonal to the optical axis. In the vibration type drive device 620, the rotor 211 is rotated around the optical axis, and the rotational output of the driven body is converted into a linear motion in the optical axis direction via a gear (not shown) or the like, so that the second lens group 320 Is moved in the direction of the optical axis. The vibration type drive device 640 has the same configuration as the vibration type drive device 620, so that the fourth lens group 340 is moved in the optical axis direction.

図15(b)は、撮像装置700の概略構成を示すブロック図である。第1レンズ群310、第2レンズ群320、第3レンズ群330、第4レンズ群340及び光量調節ユニット350が、レンズ鏡筒740内部の光軸上の所定位置に配置される。第1レンズ群310〜第4レンズ群340と光量調節ユニット350とを通過した光は、撮像素子710に結像する。撮像素子710は、光学像を電気信号に変換して出力し、その出力は、カメラ処理回路750へ送られる。 FIG. 15B is a block diagram showing a schematic configuration of the image pickup apparatus 700. The first lens group 310, the second lens group 320, the third lens group 330, the fourth lens group 340, and the light amount adjusting unit 350 are arranged at predetermined positions on the optical axis inside the lens barrel 740. The light that has passed through the first lens group 310 to the fourth lens group 340 and the light amount adjusting unit 350 is imaged on the image sensor 710. The image sensor 710 converts an optical image into an electric signal and outputs it, and the output is sent to the camera processing circuit 750.

カメラ処理回路750は、撮像素子710からの出力信号に対して増幅やガンマ補正等を施す。カメラ処理回路750は、AEゲート755を介してCPU790に接続されると共に、AFゲート760とAF信号処理回路765とを介してCPU790に接続されている。カメラ処理回路750において所定の処理が施された映像信号は、AEゲート755と、AFゲート760及びAF信号処理回路765を通じてCPU790へ送られる。なお、AF信号処理回路765は、映像信号の高周波成分を抽出して、オートフォーカス(AF)のための評価値信号を生成し、生成した評価値をCPU790へ供給する。 The camera processing circuit 750 amplifies, gamma-corrects, and the like the output signal from the image sensor 710. The camera processing circuit 750 is connected to the CPU 790 via the AE gate 755, and is connected to the CPU 790 via the AF gate 760 and the AF signal processing circuit 765. The video signal subjected to the predetermined processing in the camera processing circuit 750 is sent to the CPU 790 through the AE gate 755, the AF gate 760, and the AF signal processing circuit 765. The AF signal processing circuit 765 extracts a high frequency component of the video signal, generates an evaluation value signal for autofocus (AF), and supplies the generated evaluation value to the CPU 790.

CPU790は、撮像装置700の全体的な動作を制御する制御回路であり、取得した映像信号から、露出決定やピント合わせのための制御信号を生成する。CPU790は、決定した露出と適切なフォーカス状態が得られるように、振動型駆動装置620,640及びメータ630の駆動を制御することによって、第2レンズ群320、第4レンズ群340及び光量調節ユニット350の光軸方向位置を調整する。CPU790による制御下において、振動型駆動装置620は第2レンズ群320を光軸方向に移動させ、振動型駆動装置640は第4レンズ群340を光軸方向に移動させ、光量調節ユニット350はメータ630により駆動制御される。 The CPU 790 is a control circuit that controls the overall operation of the image pickup apparatus 700, and generates a control signal for exposure determination and focusing from the acquired video signal. The CPU 790 controls the drive of the vibration type drive devices 620, 640 and the meter 630 so that the determined exposure and the appropriate focus state can be obtained, so that the second lens group 320, the fourth lens group 340, and the light amount adjusting unit can be obtained. Adjust the position of 350 in the optical axis direction. Under the control of the CPU 790, the vibration type drive device 620 moves the second lens group 320 in the optical axis direction, the vibration type drive device 640 moves the fourth lens group 340 in the optical axis direction, and the light amount adjusting unit 350 is a meter. It is driven and controlled by 630.

振動型駆動装置620により駆動される第2レンズ群320の光軸方向位置は第1リニアエンコーダ770により検出され、検出結果がCPU790に通知されることで、振動型駆動装置620の駆動にフィードバックされる。同様に、振動型駆動装置640により駆動される第4レンズ群340の光軸方向位置は第2リニアエンコーダ775により検出され、検出結果がCPU790に通知されることで、振動型駆動装置640の駆動にフィードバックされる。光量調節ユニット350の光軸方向位置は、絞りエンコーダ780により検出され、検出結果がCPU790へ通知されることで、メータ630の駆動にフィードバックされる。 The position in the optical axis direction of the second lens group 320 driven by the vibration type drive device 620 is detected by the first linear encoder 770, and the detection result is notified to the CPU 790, so that the position is fed back to the drive of the vibration type drive device 620. To. Similarly, the position in the optical axis direction of the fourth lens group 340 driven by the vibration type drive device 640 is detected by the second linear encoder 775, and the detection result is notified to the CPU 790 to drive the vibration type drive device 640. Will be fed back to. The position of the light amount adjusting unit 350 in the optical axis direction is detected by the aperture encoder 780, and the detection result is notified to the CPU 790, so that the position is fed back to the drive of the meter 630.

前述の構成の他、本発明は様々な電子機器に適用可能である。 In addition to the above configurations, the present invention is applicable to various electronic devices.

すなわち部材と、前記部材の位置を駆動する上述の振動型アクチュエータを、備えた電子機器を提供することができる。 That is, it is possible to provide an electronic device provided with a member and the above-mentioned vibration type actuator that drives the position of the member.

本願発明は駆動用のアクチュエータに好適である。 The present invention is suitable for a drive actuator.

1 振動型アクチュエータ
2 振動体
3 弾性体
31 突起部
32 延出部
4 圧電素子
5 フレキシブルプリント基板
51 穴部
52 ベースフィルム
53 配線パターン
54 カバーフィルム
55 空間
56 凹部
6 加圧部材
61 凸部
62 遊嵌部
7 加圧バネ
8 基台
9 スライダ
10 スライダホルダ
11 ボール
12 レール
206 リング基台
208 ウェーブワッシャー
209 加圧受け部材
211 ロータ
212 防振ゴム
303 摩擦板
304 防振ゴム
305 上加圧部材
306 下加圧部材
307 ガイドバー
1 Vibrating actuator 2 Vibrating body 3 Elastic body 31 Protruding part 32 Extension part 4 Piezoelectric element 5 Flexible printed board 51 Hole part 52 Base film 53 Wiring pattern 54 Cover film 55 Space 56 Recessed part 6 Pressurizing member 61 Convex part 62 Free fitting Part 7 Pressurized spring 8 Base 9 Slider 10 Slider holder 11 Ball 12 Rail 206 Ring base 208 Wave washer 209 Pressurized receiving member 211 Rotor 212 Anti-vibration rubber 303 Friction plate 304 Anti-vibration rubber 305 Upper pressurizing member 306 Lower Pressure member 307 Guide bar

Claims (15)

弾性体および電気−機械エネルギー変換素子を有する振動体と、
振動体に接する接触体と、
前記電気−機械エネルギー変換素子に給電し、前記電気−機械エネルギー変換素子と接触する表面の反対側の表面に凹部を備えたフレキシブルプリント基板と、
前記凹部に係合する突起部が設けられた保持部材を備えた振動型アクチュエータ。
An elastic body and a vibrating body having an electric-mechanical energy conversion element,
The contact body in contact with the vibrating body and
A flexible printed circuit board that supplies power to the electric-mechanical energy conversion element and has a recess on the surface opposite to the surface that comes into contact with the electric-mechanical energy conversion element.
A vibrating actuator including a holding member provided with a protrusion that engages with the recess.
前記凹部は前記振動体に生じる振動波における異なる二つの節線が交差する点の近傍に設けられている請求項1に記載の振動型アクチュエータ。 The vibrating actuator according to claim 1, wherein the recess is provided in the vicinity of a point where two different nodes of the vibrating wave generated in the vibrating body intersect. 前記フレキシブルプリント基板は配線パターンと前記配線パターンが形成されていない非配線部を備え、前記非配線部と前記非配線部の両側に設けられた前記配線パターンによって前記凹部が構成された請求項1または2に記載の振動型アクチュエータ。 The flexible printed board includes a wiring pattern and a non-wiring portion in which the wiring pattern is not formed, and the recess is formed by the wiring pattern provided on both sides of the non-wiring portion and the non-wiring portion. Alternatively, the vibration type actuator according to 2. 前記フレキシブルプリント基板は、樹脂フィルムが前記非配線部と前記非配線部の両側に設けられた前記配線パターンを被覆している請求項3に記載の振動型アクチュエータ。 The vibrating actuator according to claim 3, wherein the flexible printed circuit board has a resin film covering the non-wiring portion and the wiring pattern provided on both sides of the non-wiring portion. 前記振動型アクチュエータを駆動した際に前記振動体と前記保持部材の位置が維持される様に構成された請求項1乃至4のいずれか1項に記載の振動型アクチュエータ。 The vibrating actuator according to any one of claims 1 to 4, wherein the positions of the vibrating body and the holding member are maintained when the vibrating actuator is driven. 前記弾性体は矩形状であり、
前記弾性体の長手方向に沿って2つの節線が現れる一次の面外曲げ振動モードAと、
前記弾性体の短手方向に沿って3つの節線が現れる二次の面外曲げ振動モードBと、
が交差する点のうち、前記3つの節線における中の節線上の2点に設けられている請求項1または2に記載の振動型アクチュエータ。
The elastic body has a rectangular shape and has a rectangular shape.
A primary out-of-plane bending vibration mode A in which two nodes appear along the longitudinal direction of the elastic body, and
Secondary out-of-plane bending vibration mode B in which three nodes appear along the lateral direction of the elastic body, and
The vibrating actuator according to claim 1 or 2, which is provided at two points on the middle node of the three node lines.
前記弾性体は矩形状であり、矩形部および互いに独立した少なくとも2つの延出部が設けられており、前記支持部材に設けられた別の突起部が前記矩形部および前記延出部に接している請求項1乃至6のいずれか1項に記載の振動型アクチュエータ。 The elastic body has a rectangular shape, is provided with a rectangular portion and at least two extending portions independent of each other, and another protrusion provided on the supporting member is in contact with the rectangular portion and the extending portion. The vibrating actuator according to any one of claims 1 to 6. 複数の前記別の突起部により前記弾性体の前記矩形部の四隅を遊嵌して支持する請求項7に記載の振動型アクチュエータ。 The vibrating actuator according to claim 7, wherein the four corners of the rectangular portion of the elastic body are loosely fitted and supported by a plurality of the other protrusions. 前記電気−機械エネルギー変換素子は、鉛の含有量が1000ppm以下の圧電材料を備えた圧電素子であることを特徴とする請求項1乃至8のいずれか1項に記載の振動型アクチュエータ。 The vibrating actuator according to any one of claims 1 to 8, wherein the electric-mechanical energy conversion element is a piezoelectric element provided with a piezoelectric material having a lead content of 1000 ppm or less. 円環状の前記接触体に対して複数の前記振動体が配された請求項1乃至9のいずれか1項に記載の振動型アクチュエータ。 The vibrating actuator according to any one of claims 1 to 9, wherein a plurality of the vibrating bodies are arranged with respect to the annular contact body. 前記接触体に対して一対の前記振動体で挟み込んだ構成を備える請求項1乃至9のいずれか1項に記載の振動型アクチュエータ。 The vibrating actuator according to any one of claims 1 to 9, further comprising a configuration in which the contact body is sandwiched between the pair of vibrating bodies. レンズと、
撮像素子と、
請求項1乃至11のいずれか1項に記載の振動型アクチュエータを備え、
前記振動型アクチュエータの駆動により前記レンズと前記撮像素子との相対位置が変化するよう構成された光学機器。
With the lens
With the image sensor
The vibrating actuator according to any one of claims 1 to 11 is provided.
An optical device configured to change the relative position of the lens and the image sensor by driving the vibrating actuator.
前記振動型アクチュエータの駆動により前記レンズの位置が変化するよう構成された請求項12に記載の光学機器。 The optical device according to claim 12, wherein the position of the lens is changed by driving the vibrating actuator. 前記振動型アクチュエータの駆動により前記撮像素子の位置が変化するよう構成された請求項12に記載の光学機器。 The optical device according to claim 12, wherein the position of the image pickup element is changed by driving the vibration type actuator. 部材と、
前記部材の位置を駆動する請求項1乃至11のいずれか1項に記載の振動型アクチュエータを、
備えた電子機器。
Members and
The vibrating actuator according to any one of claims 1 to 11 that drives the position of the member.
Equipped with electronic equipment.
JP2019158972A 2019-08-30 2019-08-30 Vibratory actuators, optical and electronic equipment Active JP7362366B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019158972A JP7362366B2 (en) 2019-08-30 2019-08-30 Vibratory actuators, optical and electronic equipment
US17/002,119 US11606046B2 (en) 2019-08-30 2020-08-25 Vibration type actuator, optical apparatus, and electronic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019158972A JP7362366B2 (en) 2019-08-30 2019-08-30 Vibratory actuators, optical and electronic equipment

Publications (2)

Publication Number Publication Date
JP2021040374A true JP2021040374A (en) 2021-03-11
JP7362366B2 JP7362366B2 (en) 2023-10-17

Family

ID=74679186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019158972A Active JP7362366B2 (en) 2019-08-30 2019-08-30 Vibratory actuators, optical and electronic equipment

Country Status (2)

Country Link
US (1) US11606046B2 (en)
JP (1) JP7362366B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022230712A1 (en) * 2021-04-27 2022-11-03 キヤノン株式会社 Vibration actuator, optical device, and electronic device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115225780B (en) * 2021-04-19 2024-09-10 宁波舜宇光电信息有限公司 Variable-focus camera module
CN117203583A (en) * 2021-04-09 2023-12-08 宁波舜宇光电信息有限公司 Periscope type camera shooting module and variable-focus camera shooting module
CN115494684A (en) * 2021-06-02 2022-12-20 宁波舜宇光电信息有限公司 Zoom camera module

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09233868A (en) * 1996-02-23 1997-09-05 Canon Inc Vibrating device
JP2012246202A (en) * 2011-05-31 2012-12-13 Canon Inc Oriented piezoelectric ceramic, piezoelectric element, liquid discharge head, ultrasonic motor, and dust removing device
JP2015233399A (en) * 2014-05-14 2015-12-24 キヤノン株式会社 Vibration type driving device, interchangeable lens comprising vibration type driving device, imaging device and adjustment method for vibration type driving device
JP2018078759A (en) * 2016-11-11 2018-05-17 キヤノン株式会社 Vibration wave motor

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000060163A (en) * 1998-02-10 2000-02-25 Nikon Corp Vibration actuator
US7187104B2 (en) * 2003-03-28 2007-03-06 Canon Kabushiki Kaisha Vibration-type driving device, control apparatus for controlling the driving of the vibration-type driving device, and electronic equipment having the vibration-type driving device and the control apparatus
US6882084B2 (en) * 2003-06-13 2005-04-19 Piezomotor Uppsala Ab Electromagnetic drive unit
JP4697929B2 (en) * 2003-11-13 2011-06-08 キヤノン株式会社 Multilayer piezoelectric element and vibration wave drive device
JP4977202B2 (en) * 2007-07-12 2012-07-18 パナソニック株式会社 Vibrating actuator and drive device including the same
JP2009268182A (en) * 2008-04-22 2009-11-12 Olympus Corp Stacked piezoelectric element and ultrasonic motor
JP5590795B2 (en) 2008-12-27 2014-09-17 キヤノン株式会社 Vibration wave drive
US8643252B2 (en) * 2010-05-11 2014-02-04 Canon Kabushiki Kaisha Vibration wave actuator
JP5709413B2 (en) * 2010-06-21 2015-04-30 キヤノン株式会社 Vibration type driving device
JP5818500B2 (en) * 2011-04-26 2015-11-18 キヤノン株式会社 Vibration wave driving device and method of manufacturing the same
JP5959915B2 (en) * 2012-04-19 2016-08-02 キヤノン株式会社 Method for manufacturing vibrator
JP5984523B2 (en) * 2012-06-15 2016-09-06 キヤノン株式会社 Vibration wave drive
JP6271963B2 (en) * 2013-11-21 2018-01-31 キヤノン株式会社 Vibration type actuator
JP6478665B2 (en) * 2015-01-30 2019-03-06 キヤノン株式会社 Vibration body drive control circuit, vibration body drive method, vibration-type drive device, and imaging device
JP6460833B2 (en) * 2015-02-25 2019-01-30 キヤノン株式会社 Vibrating body, driving method of vibrating body, vibration type driving device, dust removing device, and imaging device
JP6305377B2 (en) * 2015-08-04 2018-04-04 キヤノン株式会社 Vibrating actuator, device and optical instrument
US10833608B2 (en) * 2016-08-03 2020-11-10 Canon Kabushiki Kaisha Vibration actuator and electronic apparatus using vibration actuator
JP7321688B2 (en) * 2017-09-29 2023-08-07 キヤノン株式会社 Oscillating wave actuator and imaging device and stage device using the same
JP7313909B2 (en) * 2019-05-30 2023-07-25 キヤノン株式会社 vibration wave motors and electronics.
JP7520635B2 (en) * 2020-08-06 2024-07-23 キヤノン株式会社 Vibration actuator and contact body used therein

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09233868A (en) * 1996-02-23 1997-09-05 Canon Inc Vibrating device
JP2012246202A (en) * 2011-05-31 2012-12-13 Canon Inc Oriented piezoelectric ceramic, piezoelectric element, liquid discharge head, ultrasonic motor, and dust removing device
JP2015233399A (en) * 2014-05-14 2015-12-24 キヤノン株式会社 Vibration type driving device, interchangeable lens comprising vibration type driving device, imaging device and adjustment method for vibration type driving device
JP2018078759A (en) * 2016-11-11 2018-05-17 キヤノン株式会社 Vibration wave motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022230712A1 (en) * 2021-04-27 2022-11-03 キヤノン株式会社 Vibration actuator, optical device, and electronic device

Also Published As

Publication number Publication date
JP7362366B2 (en) 2023-10-17
US20210067059A1 (en) 2021-03-04
US11606046B2 (en) 2023-03-14

Similar Documents

Publication Publication Date Title
JP2021040374A (en) Vibration type actuator, optical apparatus and electronic apparatus
US20180175747A1 (en) Vibration-wave motor
JP2016086619A (en) Vibration type drive device, barrel, imaging apparatus and stage device
US10510944B2 (en) Vibration actuator reduced in cost and size, and electronic device
JP2017225291A (en) Vibration wave motor and optical instrument employing the same
WO2021079799A1 (en) Vibration wave motor, optical device, and electronic device
JP7313909B2 (en) vibration wave motors and electronics.
WO2016002917A1 (en) Vibration-type actuator, lens barrel, image-capturing device, and automatic stage
CN107947626B (en) Motor using vibrator and electronic device
JP6525801B2 (en) Vibration type motor, lens barrel, imaging device and drive device
US11218088B2 (en) Oscillation actuator and electronic device having oscillation actuator
CN109698637A (en) Oscillation actuator and electronic equipment including the oscillation actuator
US11843279B2 (en) Vibration wave driving apparatus and image pickup apparatus
JP2021002967A (en) Vibration type motor and optical apparatus
JP2022155689A (en) Vibration type actuator, and optical instrument and electronic instrument having the same
JP2022028254A (en) Vibration type actuator and apparatus
WO2024014258A1 (en) Vibration actuator and electronic device
WO2021210366A1 (en) Vibration wave motor and electronic devcie equipped with same
JP2022095180A (en) Vibration type actuator, and electronic apparatus including the same
JP6869727B2 (en) Vibration wave motor
JP2023019753A (en) Vibration actuator and imaging apparatus
JP2024110109A (en) Driving device and vibration wave motor unit
JP2016140141A (en) Vibration type driving device and method of driving the same, and imaging apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231004

R151 Written notification of patent or utility model registration

Ref document number: 7362366

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151