JP2020509153A - Grain-oriented electrical steel sheet and its manufacturing method - Google Patents
Grain-oriented electrical steel sheet and its manufacturing method Download PDFInfo
- Publication number
- JP2020509153A JP2020509153A JP2019522885A JP2019522885A JP2020509153A JP 2020509153 A JP2020509153 A JP 2020509153A JP 2019522885 A JP2019522885 A JP 2019522885A JP 2019522885 A JP2019522885 A JP 2019522885A JP 2020509153 A JP2020509153 A JP 2020509153A
- Authority
- JP
- Japan
- Prior art keywords
- grain
- steel sheet
- oriented electrical
- electrical steel
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910001224 Grain-oriented electrical steel Inorganic materials 0.000 title claims abstract description 41
- 238000004519 manufacturing process Methods 0.000 title claims description 29
- 229910052788 barium Inorganic materials 0.000 claims abstract description 35
- 229910052727 yttrium Inorganic materials 0.000 claims abstract description 35
- 229910052796 boron Inorganic materials 0.000 claims abstract description 20
- 239000012535 impurity Substances 0.000 claims abstract description 13
- 238000000137 annealing Methods 0.000 claims description 50
- 239000013078 crystal Substances 0.000 claims description 41
- 238000001953 recrystallisation Methods 0.000 claims description 37
- 238000000034 method Methods 0.000 claims description 22
- 238000005097 cold rolling Methods 0.000 claims description 20
- 238000010438 heat treatment Methods 0.000 claims description 12
- 238000005098 hot rolling Methods 0.000 claims description 10
- 229910052782 aluminium Inorganic materials 0.000 claims description 8
- 238000002791 soaking Methods 0.000 claims description 8
- 229910052748 manganese Inorganic materials 0.000 claims description 6
- 229910052710 silicon Inorganic materials 0.000 abstract description 5
- 238000010586 diagram Methods 0.000 abstract 1
- 229910000831 Steel Inorganic materials 0.000 description 28
- 239000010959 steel Substances 0.000 description 28
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 22
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 20
- 238000005096 rolling process Methods 0.000 description 19
- 239000003966 growth inhibitor Substances 0.000 description 16
- 239000002244 precipitate Substances 0.000 description 13
- 239000011572 manganese Substances 0.000 description 12
- 229910052757 nitrogen Inorganic materials 0.000 description 12
- 230000008569 process Effects 0.000 description 12
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 9
- 239000001257 hydrogen Substances 0.000 description 9
- 229910052739 hydrogen Inorganic materials 0.000 description 9
- 230000004907 flux Effects 0.000 description 8
- 239000007789 gas Substances 0.000 description 8
- 230000005389 magnetism Effects 0.000 description 8
- 238000005261 decarburization Methods 0.000 description 7
- 229910052742 iron Inorganic materials 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 239000010960 cold rolled steel Substances 0.000 description 6
- 238000005204 segregation Methods 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 5
- 239000010410 layer Substances 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 229910052717 sulfur Inorganic materials 0.000 description 5
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 4
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000005121 nitriding Methods 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 230000005381 magnetic domain Effects 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- 229910000976 Electrical steel Inorganic materials 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000011162 core material Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- -1 inclusions Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 239000002345 surface coating layer Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/005—Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0236—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1244—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
- C21D8/1272—Final recrystallisation annealing
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/16—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C2202/00—Physical properties
- C22C2202/02—Magnetic
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
- H01F1/14766—Fe-Si based alloys
- H01F1/14775—Fe-Si based alloys in the form of sheets
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Electromagnetism (AREA)
- Manufacturing & Machinery (AREA)
- Dispersion Chemistry (AREA)
- Power Engineering (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
Abstract
本発明の一実施例による方向性電磁鋼板は、重量%で、Si:1.0〜7.0%、B:0.001〜0.1%並びに、BaおよびYをそれぞれ単独または合量で0.005重量%〜0.5重量%含み、残部はFeおよびその他の不可避不純物を含むことを特徴とする。【選択図】図1The grain-oriented electrical steel sheet according to one embodiment of the present invention is, by weight%, Si: 1.0 to 7.0%, B: 0.001 to 0.1%, and Ba and Y each alone or in a combined amount. It is characterized by containing 0.005% by weight to 0.5% by weight, with the balance containing Fe and other unavoidable impurities. [Selection diagram] Fig. 1
Description
本発明は、方向性電磁鋼板およびその製造方法に係り、より詳しくは、B、Ba、Yを一定量含ませて、結晶粒界に偏析させた方向性電磁鋼板およびその製造方法に関する。 The present invention relates to a grain-oriented electrical steel sheet and a method for producing the same, and more particularly, to a grain-oriented electrical steel sheet containing B, Ba, and Y in a certain amount and segregated at crystal grain boundaries, and a method for producing the same.
方向性電磁鋼板は、鋼板の結晶方位が{110}<001>である、別名、ゴス(Goss)方位を有する結晶粒からなる、圧延方向への磁気的特性に優れた軟磁性材料である。
一般に、磁気特性は、磁束密度と鉄損で表現され、高い磁束密度は、結晶粒の方位を{110}<001>方位に正確に配列することにより得られる。磁束密度が高い電磁鋼板は、電気機器の鉄心材料の大きさを小さくできるだけでなく、履歴損失が低くなって電気機器の小型化と同時に高効率化を高めることができる。鉄損は、鋼板に任意の交流磁場を加えた時、熱エネルギーとして消費される電力損失であって、鋼板の磁束密度と板厚さ、鋼板中の不純物量、比抵抗、そして2次再結晶粒の大きさなどによって大きく変化し、磁束密度と比抵抗が高いほど、そして板厚さと鋼板中の不純物量が低いほど、鉄損が低くなって電気機器の効率が増加する。
A grain-oriented electrical steel sheet is a soft magnetic material having excellent magnetic properties in the rolling direction, made of crystal grains having a crystal orientation of {110} <001>, also known as a Goss orientation.
In general, magnetic properties are expressed by magnetic flux density and iron loss, and high magnetic flux density can be obtained by accurately arranging crystal grains in the {110} <001> direction. An electromagnetic steel sheet having a high magnetic flux density not only can reduce the size of the iron core material of an electric device, but also can reduce the history loss and increase the efficiency as well as the size of the electric device. Iron loss is the power loss that is consumed as thermal energy when an arbitrary alternating magnetic field is applied to a steel sheet, and the magnetic flux density and thickness of the steel sheet, the amount of impurities in the steel sheet, the specific resistance, and the secondary recrystallization It changes greatly depending on the size of the grains and the like, and the higher the magnetic flux density and the specific resistance, and the lower the thickness and the amount of impurities in the steel plate, the lower the iron loss and the higher the efficiency of the electric equipment.
現在、全世界的にCO2発生を低減することで地球温暖化に対処するために、エネルギー節約と共に高効率製品化を目指す傾向にあり、電気エネルギーを少なく使用する高効率化された電気機器の拡大普及に対する需要が増加するに伴い、より優れた低鉄損特性を有する方向性電磁鋼板の開発に対する社会的要求が増大している。
一般に、磁気特性に優れた方向性電磁鋼板は、鋼板の圧延方向に{110}<001>方位のゴス組織(Goss texture)が強く発達しなければならず、このような集合組織を形成させるためには、ゴス方位の結晶粒が2次再結晶という異常な結晶粒成長を形成させなければならない。このような異常な結晶成長は、通常の結晶粒成長とは異なり、正常な結晶粒成長が析出物、介在物やあるいは固溶または粒界に偏析する元素によって正常に成長する結晶粒界の移動が抑制された時に発生する。このように結晶粒成長を抑制する析出物や介在物などを特に結晶粒成長抑制剤(inhibitor)と呼び、{110}<001>方位の2次再結晶による方向性電磁鋼板の製造技術に関する研究は、強い結晶粒成長抑制剤を用いて{110}<001>方位に対する集積度が高い2次再結晶を形成して優れた磁気特性を確保するのに力を注いできた。
Currently, in order to deal with global warming by reducing the worldwide CO 2 occurs, it tends to aim higher efficiency market with energy saving, high-efficiency electrical appliances to use less electrical energy As the demand for expansion and spread has increased, social demands for the development of grain-oriented electrical steel sheets having better low iron loss characteristics have increased.
In general, a grain-oriented electrical steel sheet having excellent magnetic properties must have a strong {110} <001> -oriented Goss texture in the rolling direction of the steel sheet. In this case, the crystal grains in the Goss orientation must form an abnormal crystal grain growth called secondary recrystallization. Such abnormal crystal growth is different from normal crystal growth, and the movement of normal crystal growth is normally caused by precipitates, inclusions, or solid solution or segregated elements at the crystal boundaries. Occurs when is suppressed. Such precipitates and inclusions that suppress the growth of crystal grains are particularly referred to as crystal growth inhibitors (inhibitors), and are studied on the manufacturing technology of grain-oriented electrical steel sheets by secondary recrystallization of {110} <001> orientation. Has focused on forming secondary recrystallization with a high degree of integration in the {110} <001> orientation using a strong grain growth inhibitor to ensure excellent magnetic properties.
既存の方向性電磁鋼板技術では、主に、AlN、MnS[Se]などの析出物を結晶粒成長抑制剤として用いている。一例として、1回の強冷間圧延後、脱炭を実施した後に、アンモニアガスを用いた別途の窒化工程により、鋼板の内部に窒素を供給して強い結晶粒成長抑制効果を発揮するAl系の窒化物によって2次再結晶を起こす製造方法がある。
しかし、高温焼鈍過程で炉内雰囲気による脱窒または復窒による析出物の不安定性の深刻化および高温で30時間以上の長時間の純化焼鈍が必要であるという点は、製造工程上の複雑性とコスト負担を伴う。
In the existing grain-oriented electrical steel sheet technology, a precipitate such as AlN or MnS [Se] is mainly used as a grain growth inhibitor. As an example, an Al-based steel which exerts a strong crystal grain growth suppressing effect by supplying nitrogen to the inside of the steel sheet by a separate nitriding step using ammonia gas after performing one strong cold rolling and then decarburizing. There is a manufacturing method in which secondary recrystallization is caused by the nitride.
However, the instability of precipitates due to denitrification or denitrification in the furnace atmosphere during the high-temperature annealing process, and the necessity of long-time purification annealing for 30 hours or more at high temperatures is a complicated process. And costs.
このような理由から、最近、AlN、MnSなどの析出物を結晶粒成長抑制剤として使用せずに方向性電磁鋼板を製造する方法が提案されている。一例として、バリウム(Ba)およびイットリウム(Y)などの粒界偏析元素を用いる製造方法がある。
BaおよびYは、2次再結晶の形成が可能なほど結晶粒成長抑制効果に優れ、高温焼鈍過程で炉内雰囲気の影響を受けないなどの利点があるが、粒界の結合力を弱めるという欠点がある。したがって、強圧下が必要な冷間圧延過程で粒界クラックが多数発生して生産性の低下を避けられなくなる問題がある。
For these reasons, recently, a method for producing a grain-oriented electrical steel sheet without using a precipitate such as AlN or MnS as a crystal grain growth inhibitor has been proposed. As an example, there is a manufacturing method using grain boundary segregation elements such as barium (Ba) and yttrium (Y).
Ba and Y have such an advantage that the formation of secondary recrystallized crystals is excellent in suppressing the growth of crystal grains so that they are not affected by the atmosphere in the furnace during the high-temperature annealing process. There are drawbacks. Therefore, there is a problem that a large number of grain boundary cracks are generated in a cold rolling process that requires a strong reduction, and a reduction in productivity cannot be avoided.
本発明の目的とするところは、方向性電磁鋼板およびその製造方法を提供することにある。 An object of the present invention is to provide a grain-oriented electrical steel sheet and a method for manufacturing the same.
本発明の一実施例による方向性電磁鋼板は、重量%で、Si:1.0〜7.0%、B:0.001〜0.1%、およびBaおよびYをそれぞれ単独または合量で0.005重量%〜0.5重量%含み、残部はFeおよびその他の不可避不純物を含むこと位を特徴とする。 The grain-oriented electrical steel sheet according to one embodiment of the present invention is, by weight%, Si: 1.0 to 7.0%, B: 0.001 to 0.1%, and Ba and Y each alone or in a combined amount. It is characterized by containing 0.005% by weight to 0.5% by weight, with the balance containing Fe and other unavoidable impurities.
本発明の一実施例による方向性電磁鋼板は、下記式1を満足することができる。
[式1]
0.5≦([Ba]+[Y])/([B]*10)≦3
(ただし、式1中、[Ba]、[Y]、[B]は、それぞれBa、Y、Bの含有量(重量%)を示す。)
C:0.005%以下(0%を除く)、Al:0.005%以下(0%を除く)、N:0.0055%以下(0%を除く)、およびS:0.0055%以下(0%を除く)をさらに含むことができる。
The grain-oriented electrical steel sheet according to one embodiment of the present invention may satisfy Equation 1 below.
[Equation 1]
0.5 ≦ ([Ba] + [Y]) / ([B] * 10) ≦ 3
(However, in Formula 1, [Ba], [Y], and [B] indicate the contents (% by weight) of Ba, Y, and B, respectively.)
C: 0.005% or less (excluding 0%), Al: 0.005% or less (excluding 0%), N: 0.0055% or less (excluding 0%), and S: 0.0055% or less (Except 0%).
Mn:0.01%〜0.5%をさらに含むことができる。
2mm以上の粒径を有する結晶粒の平均粒径は、10mm以上であること位が好ましい。
結晶粒界に偏析したB並びに、BaまたはYを含むことができる。
Mn: 0.01 to 0.5%.
The average grain size of the crystal grains having a grain size of 2 mm or more is preferably 10 mm or more.
B and Ba or Y segregated at the crystal grain boundary can be contained.
本発明の一実施例による方向性電磁鋼板の製造方法は、重量%で、Si:1.0〜7.0%、B:0.001〜0.1%並びに、BaおよびYをそれぞれ単独または合量で0.005重量%〜0.5重量%含み、残部はFeおよびその他の不可避不純物を含むスラブを加熱する段階、スラブを熱間圧延して熱延板を製造する段階、熱延板を冷間圧延して冷延板を製造する段階、冷延板を1次再結晶焼鈍する段階、および、1次再結晶焼鈍が完了した冷延板を2次再結晶焼鈍する段階、を含むことを特徴とする The method for manufacturing a grain-oriented electrical steel sheet according to one embodiment of the present invention is as follows: Si is 1.0 to 7.0%, B is 0.001 to 0.1%, and Ba and Y are used alone or in weight%. A step of heating a slab containing Fe and other unavoidable impurities, a step of manufacturing a hot-rolled sheet by hot-rolling the slab, A cold-rolled sheet to produce a cold-rolled sheet, a step of subjecting the cold-rolled sheet to primary recrystallization annealing, and a step of subjecting the cold-rolled sheet after the primary recrystallization annealing to secondary recrystallization annealing. Characterized by
スラブは、下記式1を満足することができる。
[式1]
0.5≦([Ba]+[Y])/([B]*10)≦3
(ただし、式1中、[Ba]、[Y]、[B]は、それぞれBa、Y、Bの含有量(重量%)を示す。)
スラブは、C:0.001〜0.1%、Al:0.01%以下(0%を除く)、N:0.0055%以下(0%を除く)、およびS:0.0055%以下(0%を除く)をさらに含むことができる。
The slab can satisfy the following equation 1.
[Equation 1]
0.5 ≦ ([Ba] + [Y]) / ([B] * 10) ≦ 3
(However, in Formula 1, [Ba], [Y], and [B] indicate the contents (% by weight) of Ba, Y, and B, respectively.)
Slabs: C: 0.001 to 0.1%, Al: 0.01% or less (excluding 0%), N: 0.0055% or less (excluding 0%), and S: 0.0055% or less (Except 0%).
スラブは、Mn:0.01%〜0.5%をさらに含むことができる。
スラブを加熱する段階で、1000〜1280℃に加熱することがよい。
熱延板を冷間圧延して冷延板を製造する段階で、最終圧下率が80%以上になることが好ましい。
2次再結晶焼鈍する段階は、昇温段階および均熱段階を含み、均熱段階の温度は、900〜1250℃になることがよい。
The slab may further include Mn: 0.01% to 0.5%.
In the step of heating the slab, the slab is preferably heated to 1000 to 1280 ° C.
It is preferable that the final rolling reduction is 80% or more at the stage of manufacturing the cold-rolled sheet by cold rolling the hot-rolled sheet.
The stage of secondary recrystallization annealing includes a heating stage and a soaking stage, and the temperature of the soaking stage may be 900 to 1250 ° C.
本発明の一実施例による方向性電磁鋼板は、ゴス結晶粒を安定的に形成させることによって、磁気的特性に優れている。
また、結晶粒成長抑制剤としてAlNおよびMnSを使用しないので、1300℃以上の高温にスラブを加熱する必要がない。
さらに、結晶粒界強化効果によって、強冷間圧延下でも粒界クラックの発生が低減され、生産性の向上および製造費用が節減される。
The grain-oriented electrical steel sheet according to one embodiment of the present invention has excellent magnetic properties by stably forming Goss crystal grains.
Further, since AlN and MnS are not used as a crystal grain growth inhibitor, it is not necessary to heat the slab to a high temperature of 1300 ° C. or higher.
Further, due to the effect of strengthening the grain boundaries, the occurrence of grain boundary cracks is reduced even under strong cold rolling, so that productivity is improved and manufacturing costs are reduced.
第1、第2および第3などの用語は、多様な部分、成分、領域、層および/またはセクションを説明するために使用されるが、これらに限定されない。これらの用語は、ある部分、成分、領域、層またはセクションを、他の部分、成分、領域、層またはセクションと区別するためにのみ使用される。したがって、以下に述べる第1部分、成分、領域、層またはセクションは、本発明の範囲を逸脱しない範囲内で第2部分、成分、領域、層またはセクションとして言及される。
ここで使用される専門用語は、単に特定の実施例を言及するためのものであり、本発明を限定することを意図しない。ここで使用される単数形態は、文言がこれと明確に反対の意味を示さない限り、複数形態も含む。明細書で使用される「含む」の意味は、特定の特性、領域、整数、段階、動作、要素および/または成分を具体化し、他の特性、領域、整数、段階、動作、要素および/または成分の存在や付加を除外させるわけではない。
Terms such as first, second and third are used to describe various parts, components, regions, layers and / or sections, but are not limited to these. These terms are only used to distinguish one part, component, region, layer or section from another part, component, region, layer or section. Accordingly, a first portion, component, region, layer or section described below is referred to as a second portion, component, region, layer or section without departing from the scope of the invention.
The terminology used herein is merely for referring to particular embodiments and is not intended to limit the invention. As used herein, the singular includes the plural unless the language clearly indicates the opposite. As used herein, the meaning of "comprising" embodies a particular property, region, integer, step, action, element and / or component; other properties, area, integer, step, action, element and / or It does not exclude the presence or addition of components.
ある部分が他の部分の「上に」あると言及する場合、これは、まさに他の部分の上にあるか、その間に他の部分が伴ってもよい。対照的にある部分が他の部分の「真上に」あると言及する場合、その間に他の部分が介在しない。
別途に定義しないものの、ここに使用される技術用語および科学用語を含むすべての用語は、本発明の属する技術分野における通常の知識を有する者が一般に理解する意味と同じ意味を有する。通常使用される辞書に定義された用語は、関連技術文献と現在開示された内容に符合する意味を有するものとして追加解釈され、定義されない限り、理想的または非常に公式的な意味で解釈されない。
また、特に言及しない限り、%は、重量%を意味し、1ppmは、0.0001重量%である。
When referring to one part being “on” another, this may be directly on the other part, or may be accompanied by other parts in between. In contrast, when an element is referred to as being "directly on" another element, there are no intervening elements in between.
Unless defined otherwise, all terms including technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Terms defined in commonly used dictionaries are additionally to be interpreted as having a meaning consistent with the relevant technical literature and the presently disclosed content, and are not to be interpreted in an ideal or very formal sense unless defined.
Unless otherwise specified,% means% by weight, and 1 ppm means 0.0001% by weight.
以下、本発明の実施例について、本発明の属する技術分野における通常の知識を有する者が容易に実施できるように詳細に説明する。しかし、本発明は種々の異なる形態で実現可能であり、ここで説明する実施例に限定されない。
既存の方向性電磁鋼板技術では、結晶粒成長抑制剤としてAlN、MnSなどのような析出物を使用しており、すべての工程が析出物の分布を厳格に制御し、2次再結晶された鋼板内に残留した析出物が除去されるようにするための条件によって工程条件が極めて限られていた。
反面、本発明の一実施例では、結晶粒成長抑制剤としてAlN、MnSなどのような析出物を使用しない。本発明の一実施例では、B並びに、BaまたはYを結晶粒成長抑制剤として使用することによって、Goss結晶粒の分率を増加させ、磁性に優れた電磁鋼板を得ることができる。
Hereinafter, embodiments of the present invention will be described in detail so that those having ordinary knowledge in the technical field to which the present invention belongs can be easily implemented. However, the invention can be implemented in various different forms and is not limited to the embodiments described here.
In the existing grain-oriented electrical steel sheet technology, precipitates such as AlN and MnS are used as a grain growth inhibitor, and in all processes, the distribution of the precipitates is strictly controlled and secondary recrystallization is performed. The process conditions were extremely limited by the conditions for removing precipitates remaining in the steel sheet.
On the other hand, in one embodiment of the present invention, a precipitate such as AlN or MnS is not used as a grain growth inhibitor. In one embodiment of the present invention, by using B, Ba or Y as a crystal grain growth inhibitor, the fraction of Goss crystal grains can be increased, and an electrical steel sheet excellent in magnetism can be obtained.
本発明の一実施例による方向性電磁鋼板は、重量%で、Si:1.0〜7.0%、Mn:0.01%〜0.5%、B:0.001〜0.1%並びに、BaおよびYをそれぞれ単独または合量で0.005重量%〜0.5重量%含み、残部はFeおよびその他の不可避不純物を含む。
以下、各成分について具体的に説明する。
The grain-oriented electrical steel sheet according to an embodiment of the present invention is, as a percentage by weight, Si: 1.0 to 7.0%, Mn: 0.01% to 0.5%, B: 0.001 to 0.1%. Ba and Y are contained individually or in a total amount of 0.005% by weight to 0.5% by weight, and the balance contains Fe and other unavoidable impurities.
Hereinafter, each component will be described specifically.
バリウム(Ba)およびイットリウム(Y)は、本発明の一実施例において、結晶粒成長抑制剤として作用し、2次再結晶焼鈍時、ゴス結晶粒以外の他の方位の結晶粒が成長するのを抑制して電磁鋼板の磁性を向上させる。BaおよびYは、それぞれ単独で添加されるか、複合添加されてもよい。BaおよびYをそれぞれ単独または合量で0.005重量%〜0.5重量%含むことができる。つまり、BaまたはYがそれぞれ単独で添加される場合、BaまたはYの含有量がそれぞれ0.005重量%〜0.5重量%になってもよく、BaおよびYが同時に添加される場合、BaおよびYの含有量の合計が(つまり、合量が)0.005重量%〜0.5重量%になってもよい。BaまたはYまたはその合量が少なすぎると、十分な抑制力を発揮しにくく、BaまたはYまたはその合量が多すぎると、鋼板の脆性が増加して、圧延時にクラックが発生することがある。 In one embodiment of the present invention, barium (Ba) and yttrium (Y) act as a crystal grain growth inhibitor, and during secondary recrystallization annealing, crystal grains having a direction other than Goss crystal grains grow. And improve the magnetism of the magnetic steel sheet. Ba and Y may be added alone or in combination. Ba and Y may be contained individually or in a total amount of 0.005% by weight to 0.5% by weight. That is, when Ba or Y is added alone, respectively, the content of Ba or Y may be 0.005% by weight to 0.5% by weight, and when Ba and Y are added simultaneously, And the total content of Y (i.e., the total amount) may be 0.005% by weight to 0.5% by weight. If Ba or Y or its combined amount is too small, it is difficult to exert sufficient suppressing power, and if Ba or Y or its combined amount is too large, the brittleness of the steel sheet increases and cracks may occur during rolling. .
ホウ素(B、ボロン)は、粒界に偏析して粒界結合力を強化するので、圧延時のクラック発生および圧延回数を低減する役割を果たす。また、鋼中の窒素と反応してBN析出物を一部形成するが、BNは、高温安定性に優れていて、前述したBaおよびYと共に結晶粒成長を抑制する補助インヒビターの作用が可能である。Bの含有量は、0.001〜0.1重量%になってもよい。Bが過度に少なく含まれると、BaおよびYによる粒界脆性を緩和させるのに不足しうる。Bが過度に多く含まれると、BaおよびYの粒界偏析を抑制し、高温焼鈍過程で介在物を多数形成して磁気特性が低下しうる。
Bは、BaおよびYとの関係において下記式1を満足することができる。
[式1]
0.5≦([Ba]+[Y])/([B]*10)≦3
(ただし、式1中、[Ba]、[Y]、[B]は、それぞれBa、Y、Bの含有量(重量%)を示す。)
式1の値が0.5未満の場合、BaおよびYの粒界偏析を抑制し、高温焼鈍過程で介在物を多数形成して磁気特性が低下しうる。式1の値が3超過の場合、BaおよびYによる粒界脆性を緩和させるのに不足しうる。
Boron (B, boron) segregates at the grain boundaries and strengthens the grain boundary bonding force, and thus plays a role in reducing the occurrence of cracks during rolling and the number of times of rolling. In addition, BN reacts with nitrogen in steel to partially form BN precipitates. BN is excellent in high-temperature stability and can act as an auxiliary inhibitor that suppresses crystal grain growth together with Ba and Y described above. is there. The content of B may be 0.001 to 0.1% by weight. If B is contained in an excessively small amount, it may be insufficient to reduce grain boundary brittleness due to Ba and Y. When B is excessively contained, segregation of grain boundaries of Ba and Y is suppressed, and a large number of inclusions are formed during the high-temperature annealing process, so that magnetic properties may be deteriorated.
B can satisfy the following expression 1 in relation to Ba and Y.
[Equation 1]
0.5 ≦ ([Ba] + [Y]) / ([B] * 10) ≦ 3
(However, in Formula 1, [Ba], [Y], and [B] indicate the contents (% by weight) of Ba, Y, and B, respectively.)
When the value of Equation 1 is less than 0.5, segregation of grain boundaries of Ba and Y is suppressed, and a large number of inclusions are formed during the high-temperature annealing process, so that magnetic properties may be deteriorated. If the value of Equation 1 exceeds 3, it may be insufficient to alleviate grain boundary brittleness due to Ba and Y.
シリコン(Si)は、素材の比抵抗を増加させて鉄損を低くする役割を果たす。スラブおよび電磁鋼板においてSi含有量が1.0重量%未満の場合、比抵抗が減少して鉄損特性が低下しうる。逆に、方向性電磁鋼板においてSi含有量が7重量%を超える場合、変圧器の製造時に加工が難しいので、方向性電磁鋼板におけるSi含有量は、7重量%以下であるのが良い。
炭素(C)は、オーステナイト安定化元素であって、0.001重量%以上スラブ中に添加されて、連鋳過程で発生する粗大な柱状組織を微細化し、Sのスラブ中心偏析を抑制することができる。また、冷間圧延中に鋼板の加工硬化を促進して、鋼板内に{110}<001>方位の2次再結晶の核生成を促進したりすることができる。しかし、0.1%を超えると、熱延中にエッジ−クラック(edge−crack)が発生することがある。ただし、電磁鋼板の製造時に脱炭焼鈍を経るようになり、脱炭焼鈍後の最終電磁鋼板内のC含有量は、0.005重量%以下であるのが良い。より具体的には0.003重量%以下である。
Silicon (Si) plays a role in increasing the specific resistance of the material and reducing iron loss. When the Si content in the slab and the magnetic steel sheet is less than 1.0% by weight, the specific resistance decreases and the iron loss characteristics may decrease. Conversely, if the Si content in the grain-oriented electrical steel sheet exceeds 7% by weight, it is difficult to process the transformer during the manufacture of the transformer. Therefore, the Si content in the grain-oriented electrical steel sheet is preferably 7% by weight or less.
Carbon (C) is an austenite stabilizing element, and is added to a slab in an amount of 0.001% by weight or more to reduce a coarse columnar structure generated in a continuous casting process and suppress slab center segregation of S. Can be. Further, it is possible to promote the work hardening of the steel sheet during the cold rolling, thereby promoting the nucleation of secondary recrystallization of {110} <001> orientation in the steel sheet. However, if it exceeds 0.1%, edge-cracks may occur during hot rolling. However, the carbon steel sheet is subjected to decarburization annealing during the production of the magnetic steel sheet, and the C content in the final magnetic steel sheet after the decarburization annealing is preferably 0.005% by weight or less. More specifically, the content is 0.003% by weight or less.
本発明の一実施例において、AlN、MnSなどの析出物を結晶粒成長抑制剤として使用しないので、アルミニウム(Al)、窒素(N)、硫黄(S)など一般的な方向性電磁鋼板で必須として使用される元素は、不純物範囲で管理される。つまり、不可避にAl、N、Sなどをさらに含む場合、Alを0.005重量%以下、Sを0.0055重量%以下、およびNを0.0055重量%以下でさらに含んでもよい。
本発明の一実施例では、AlNを結晶粒成長抑制剤として使用しなくてよいので、アルミニウム(Al)含有量を積極的に抑制することができる。したがって、本発明の一実施例では、方向性電磁鋼板内にAlは添加されなかったり、0.005重量%以下に制御することができる。また、スラブでは、製造工程過程でAlが除去されるので、Alを0.01重量%以下で含むことができる。
In one embodiment of the present invention, since a precipitate such as AlN or MnS is not used as a grain growth inhibitor, aluminum (Al), nitrogen (N), sulfur (S) and the like are indispensable for general grain-oriented electrical steel sheets. The element used as is controlled in the impurity range. That is, when unavoidably further containing Al, N, S, etc., it may further contain 0.005% by weight or less of Al, 0.0055% by weight or less of S, and 0.0055% by weight or less of N.
In one embodiment of the present invention, since AlN does not need to be used as a crystal grain growth inhibitor, the aluminum (Al) content can be positively suppressed. Therefore, in one embodiment of the present invention, Al may not be added to the grain-oriented electrical steel sheet, or may be controlled to 0.005% by weight or less. In the slab, since Al is removed during the manufacturing process, Al can be contained at 0.01% by weight or less.
窒素(N)は、AlN、(Al、Mn)N、(Al、Si、Mn)N、Si3N4、BNなどの析出物を形成するので、本発明の一実施例では、Nは添加されなかったり、0.0055重量%以下に制御することができる。より具体的には0.0030重量%以下であってもよい。本発明の一実施例では、浸窒工程を省略できるので、スラブ内のN含有量と最終電磁鋼板内のN含有量とが実質的に同一であり得る。
硫黄(S)は、熱間圧延時、固溶温度が高くて偏析が激しい元素であるので、本発明の一実施例では、添加されなかったり、0.0055重量%以下に制御することができる。より具体的には0.0035重量%以下であってもよい。
Since nitrogen (N) forms precipitates such as AlN, (Al, Mn) N, (Al, Si, Mn) N, Si3N4, and BN, N is not added in one embodiment of the present invention. , 0.0055% by weight or less. More specifically, it may be 0.0030% by weight or less. In one embodiment of the present invention, since the nitriding step can be omitted, the N content in the slab and the N content in the final magnetic steel sheet can be substantially the same.
Sulfur (S) is an element having a high solid solution temperature and severe segregation during hot rolling. Therefore, in one embodiment of the present invention, sulfur (S) is not added or can be controlled to 0.0055% by weight or less. . More specifically, it may be 0.0035% by weight or less.
本発明の一実施例では、MnSを結晶粒成長抑制剤として使用しないので、マンガン(Mn)を添加しなくてよい。ただし、Mnは、比抵抗元素であって磁性を改善する効果があるので、スラブおよび電磁鋼板に任意成分として、追加的にさらに含まれてもよい。Mnが追加的に含まれる場合、Mnの含有量は、0.01重量%以上であってもよい。しかし、0.5重量%を超える場合、2次再結晶後に相変態を起こして磁性が劣化することがある。本発明の一実施例において、追加元素をさらに含む場合、残部の鉄(Fe)を代替して添加されることが理解される。
また、その他の不可避不純物として、Ti、Mg、Caのような成分は、鋼中で酸素と反応して酸化物を形成して、介在物として最終製品の磁区移動に妨害を与えて磁性劣化の原因になりうるので、強力抑制することが必要である。したがって、これらを不可避に含有する場合、それぞれの成分ごとに0.005重量%以下で管理することができる。
In one embodiment of the present invention, manganese (Mn) does not have to be added because MnS is not used as a grain growth inhibitor. However, since Mn is a specific resistance element and has an effect of improving magnetism, it may be additionally contained as an optional component in the slab and the magnetic steel sheet. When Mn is additionally contained, the content of Mn may be 0.01% by weight or more. However, when the content exceeds 0.5% by weight, phase transformation may occur after the secondary recrystallization and magnetism may be deteriorated. In one embodiment of the present invention, when an additional element is further included, it is understood that iron (Fe) is added instead of the remaining iron.
In addition, as other unavoidable impurities, components such as Ti, Mg, and Ca react with oxygen in steel to form oxides, which interfere with the magnetic domain movement of the final product as inclusions, thereby causing magnetic deterioration. It may be a cause, so it is necessary to suppress it strongly. Therefore, when these are inevitably contained, they can be controlled at 0.005% by weight or less for each component.
本発明の一実施例による方向性電磁鋼板は、2mm以上の粒径を有する結晶粒の平均粒径が10mm以上になる。2mm以上の粒径を有する結晶粒の平均粒径が10mm未満の場合、結晶粒が十分に成長せずに磁性が低下しうる。本発明の一実施例において、結晶粒の粒径とは、円に相当する結晶粒に対する直径の長さを意味する。
本発明の一実施例による方向性電磁鋼板は、ゴス結晶粒を安定的に形成させることによって、磁気的特性に優れている。具体的には、本発明の一実施例による方向性電磁鋼板は、800A/mの磁場で測定した磁束密度のB8が1.88T以上であってもよい。
In the grain-oriented electrical steel sheet according to one embodiment of the present invention, the average grain size of crystal grains having a grain size of 2 mm or more is 10 mm or more. When the average grain size of the crystal grains having a grain diameter of 2 mm or more is less than 10 mm, the crystal grains may not grow sufficiently and the magnetism may be reduced. In one embodiment of the present invention, the grain size of a crystal grain means the length of the diameter of the crystal grain corresponding to a circle.
The grain-oriented electrical steel sheet according to one embodiment of the present invention has excellent magnetic properties by stably forming Goss crystal grains. Specifically, the grain-oriented electrical steel sheet according to one embodiment of the present invention may have a magnetic flux density B8 measured at a magnetic field of 800 A / m of 1.88 T or more.
本発明の一実施例による方向性電磁鋼板の製造方法は、重量%で、Si:1.0〜7.0%、B:0.001〜0.1%並びに、BaおよびYをそれぞれ単独または合量で0.005重量%〜0.5重量%含み、残部はFeおよびその他の不可避不純物を含むスラブを加熱する段階、スラブを熱間圧延して熱延板を製造する段階、熱延板を冷間圧延して冷延板を製造する段階、冷延板を1次再結晶焼鈍する段階、および、1次再結晶焼鈍が完了した冷延板を2次再結晶焼鈍する段階、を含む。 The method for manufacturing a grain-oriented electrical steel sheet according to one embodiment of the present invention is as follows: Si is 1.0 to 7.0%, B is 0.001 to 0.1%, and Ba and Y are used alone or in weight%. A step of heating a slab containing Fe and other unavoidable impurities, a step of manufacturing a hot-rolled sheet by hot-rolling the slab, A cold-rolled sheet to produce a cold-rolled sheet, a step of subjecting the cold-rolled sheet to primary recrystallization annealing, and a step of subjecting the cold-rolled sheet after the primary recrystallization annealing to secondary recrystallization annealing. .
以下、各段階ごとに方向性電磁鋼板の製造方法を具体的に説明する。
まず、スラブを加熱する。
スラブの組成については、電磁鋼板の組成に関連して具体的に説明したので、重複する説明は省略する。
スラブの加熱温度は制限されないが、スラブを1280℃以下の温度に加熱すると、スラブの柱状晶組織が粗大に成長するのを防止して、熱間圧延工程で板のクラックが発生するのを防止することができる。したがって、スラブの加熱温度は、1000℃〜1280℃であってもよい。特に、本発明の一実施例では、結晶粒成長抑制剤としてAlNおよびMnSを使用しないので、1300℃以上の高温にスラブを加熱する必要がない。
Hereinafter, a method for manufacturing a grain-oriented electrical steel sheet will be specifically described for each step.
First, the slab is heated.
The composition of the slab has been specifically described in relation to the composition of the magnetic steel sheet, and therefore, redundant description will be omitted.
The heating temperature of the slab is not limited, but when the slab is heated to a temperature of 1280 ° C. or less, the columnar crystal structure of the slab is prevented from growing coarsely, and the plate is prevented from cracking in the hot rolling process. can do. Therefore, the heating temperature of the slab may be between 1000C and 1280C. In particular, in one embodiment of the present invention, since AlN and MnS are not used as a grain growth inhibitor, it is not necessary to heat the slab to a high temperature of 1300 ° C. or higher.
次に、スラブを熱間圧延して熱延板を製造する。熱間圧延温度は制限されず、一実施例として950℃以下で熱延を終了することができる。この後、水冷して600℃以下で巻取ることができる。
次に、必要に応じて、熱延板を熱延板焼鈍することができる。熱延板焼鈍を実施する場合、熱延組織を均一にするために、900℃以上の温度に加熱し、均熱した後、冷却することができる。
次に、熱延板を冷間圧延して冷延板を製造する。冷間圧延は、リバース(Reverse)圧延機あるいはタンデム(Tandom)圧延機を用いて、1回の冷間圧延、複数回の冷間圧延、または中間焼鈍を含む複数回の冷間圧延法で0.1mm〜0.5mmの厚さの冷延板を製造することができる。
また、冷間圧延中に鋼板の温度を100℃以上に維持する温間圧延を実施できる。
Next, the slab is hot-rolled to produce a hot-rolled sheet. The hot rolling temperature is not limited, and the hot rolling can be completed at 950 ° C. or less as an example. Thereafter, the film can be cooled with water and wound at 600 ° C. or less.
Next, if necessary, the hot rolled sheet can be subjected to hot rolled sheet annealing. When performing hot-rolled sheet annealing, in order to make the hot-rolled structure uniform, the sheet can be heated to a temperature of 900 ° C. or higher, soaked and then cooled.
Next, the hot-rolled sheet is cold-rolled to produce a cold-rolled sheet. The cold rolling is performed by using a reverse rolling mill or a tandem rolling mill, and using a single cold rolling, a plurality of cold rollings, or a plurality of cold rolling processes including intermediate annealing. A cold rolled sheet having a thickness of 0.1 mm to 0.5 mm can be manufactured.
Further, it is possible to perform warm rolling in which the temperature of the steel sheet is maintained at 100 ° C. or higher during cold rolling.
さらに、冷間圧延による最終圧下率は、80%以上になってもよい。本発明の一実施例では、前述のように、スラブ成分内にBを特定の含有量含むことによって、粒界に偏析して粒界結合力を強化するので、圧延時のクラック発生および圧延回数を低減することができ、最終圧下率を高めることができる。
次に、冷間圧延された冷延板を1次再結晶焼鈍する。1次再結晶焼鈍段階でゴス結晶粒の核が生成される1次再結晶が起こる。1次再結晶焼鈍段階で冷延板の脱炭が行われる。脱炭のために、800℃〜900℃の温度で焼鈍することができる。また、雰囲気は、水素および窒素の混合ガス雰囲気であってもよい。さらに、脱炭が完了すると、冷延板内の炭素含有量は、0.005重量%以下になってもよい。本発明の一実施例では、AlN結晶粒成長抑制剤を使用しないので、窒化工程を省略することができる。
Furthermore, the final draft by cold rolling may be 80% or more. In one embodiment of the present invention, as described above, by including B in the slab component in a specific content, segregation at the grain boundaries and strengthening of the grain boundary bonding force, the occurrence of cracks during rolling and the number of rolling times Can be reduced, and the final draft can be increased.
Next, the cold rolled cold rolled sheet is subjected to primary recrystallization annealing. In the primary recrystallization annealing step, primary recrystallization occurs in which nuclei of Goss crystal grains are generated. Decarburization of the cold rolled sheet is performed in the primary recrystallization annealing stage. For decarburization, annealing can be performed at a temperature of 800C to 900C. The atmosphere may be a mixed gas atmosphere of hydrogen and nitrogen. Further, when the decarburization is completed, the carbon content in the cold rolled sheet may be 0.005% by weight or less. In one embodiment of the present invention, since the AlN grain growth inhibitor is not used, the nitriding step can be omitted.
次に、1次再結晶焼鈍が完了した冷延板を2次再結晶焼鈍する。この時、1次再結晶焼鈍が完了した冷延板に焼鈍分離剤を塗布した後、2次再結晶焼鈍することができる。この時、焼鈍分離剤は特に制限せず、MgOを主成分として含む焼鈍分離剤を使用することができる。
2次再結晶焼鈍する段階は、昇温段階および均熱段階を含む。昇温段階は、1次再結晶焼鈍が完了した冷延板を均熱段階の温度まで昇温する段階である。均熱段階の温度は、900℃〜1250℃であってもよい。900℃未満であれば、ゴス結晶粒が十分に成長せずに磁性が低下し、1250℃超過時、結晶粒が粗大に成長して電磁鋼板の特性が低下しうる。昇温段階は水素および窒素の混合ガス雰囲気で、均熱段階は水素雰囲気で行われる。
Next, the cold rolled sheet on which primary recrystallization annealing has been completed is subjected to secondary recrystallization annealing. At this time, after applying the annealing separating agent to the cold-rolled sheet on which the primary recrystallization annealing has been completed, secondary recrystallization annealing can be performed. At this time, the annealing separator is not particularly limited, and an annealing separator containing MgO as a main component can be used.
The stage of the secondary recrystallization annealing includes a heating stage and a soaking stage. The temperature raising step is a step of raising the temperature of the cold-rolled sheet after the first recrystallization annealing to the temperature in the soaking stage. The temperature in the soaking stage may be between 900C and 1250C. If the temperature is lower than 900 ° C., the Goss crystal grains do not grow sufficiently and the magnetism decreases. If the temperature exceeds 1250 ° C., the crystal grains grow coarsely and the properties of the magnetic steel sheet may deteriorate. The heating step is performed in a mixed gas atmosphere of hydrogen and nitrogen, and the soaking step is performed in a hydrogen atmosphere.
本発明の一実施例による方向性電磁鋼板の製造方法では、AlN、MnSの結晶粒成長抑制剤を使用しないので、2次再結晶焼鈍が完了した後、純化焼鈍工程を省略することができる。従来のMnS、AlNを結晶粒成長抑制剤として使用する方向性電磁鋼板の製造方法では、AlNおよびMnSのような析出物を除去するための高温の純化焼鈍が必要であったが、本発明の一実施例による方向性電磁鋼板の製造方法では、純化焼鈍工程を必要としない。
この後、必要に応じて、方向性電磁鋼板の表面に絶縁被膜を形成したり、磁区微細化処理を行うことができる。本発明の一実施例において、方向性電磁鋼板の合金成分は、絶縁被膜などのコーティング層を除いた素地鋼板を意味する。
以下、実施例を通じて本発明をより詳細に説明する。しかし、このような実施例は単に本発明を例示するためのものであり、本発明がこれに限定されるものではない。
In the method for manufacturing a grain-oriented electrical steel sheet according to one embodiment of the present invention, since the grain growth inhibitor of AlN and MnS is not used, the purification annealing step can be omitted after the secondary recrystallization annealing is completed. In the conventional method for producing a grain-oriented electrical steel sheet using MnS and AlN as a grain growth inhibitor, high-temperature purification annealing for removing precipitates such as AlN and MnS was required. The method for manufacturing a grain-oriented electrical steel sheet according to one embodiment does not require a purification annealing step.
Thereafter, if necessary, an insulating film can be formed on the surface of the grain-oriented electrical steel sheet, or a magnetic domain refining process can be performed. In one embodiment of the present invention, the alloy component of the grain-oriented electrical steel sheet means a base steel sheet excluding a coating layer such as an insulating coating.
Hereinafter, the present invention will be described in more detail through examples. However, such an example is only for illustrating the present invention, and the present invention is not limited thereto.
実施例1
重量%で、Si:3.2%、C:0.05%、Mn:0.06%、S:0.0048%、N:0.0032%、および、Al:0.005%を含み、バリウム(Ba)、イットリウム(Y)、およびボロン(B)を下記表1のように含有し、残部Feとその他不可避に混入する不純物からなるスラブを準備した。
スラブを1150℃の温度に90分間加熱した後、熱間圧延して2.6mmの厚さの熱延板を製造した。この熱延板を1050℃以上の温度に加熱した後、910℃で90秒間維持し、水冷した後、酸洗した。次に、リバース(Reverse)圧延機を用いて、計7回のパスを経て0.30mmの厚さまで冷間圧延した。各パスあたりの圧下率は、試験条件ごとに同一に適用した。冷間圧延された鋼板は、炉中で昇温した後、水素:50体積%および窒素:50体積%の混合ガス雰囲気、および、焼鈍温度850℃で120秒間維持して炭素濃度0.002重量%まで脱炭と共に1次再結晶焼鈍を行った。この後、MgOを塗布した後、コイル状に巻取って2次再結晶焼鈍した。2次再結晶焼鈍は、窒素:25体積%および水素:75体積%の混合ガス雰囲気で1200℃まで昇温し、1200℃到達後には水素:100体積%のガス雰囲気で20時間維持後、炉冷した。
Example 1
Containing, by weight%, 3.2% Si, 0.05% C, 0.06% Mn, 0.0048% S, 0.0032% N, and 0.005% Al; A slab containing barium (Ba), yttrium (Y), and boron (B) as shown in Table 1 below, and the balance being Fe and other impurities unavoidably mixed therein was prepared.
The slab was heated to a temperature of 1150 ° C. for 90 minutes and then hot-rolled to produce a hot-rolled sheet having a thickness of 2.6 mm. After heating this hot rolled sheet to a temperature of 1050 ° C. or higher, it was maintained at 910 ° C. for 90 seconds, cooled with water, and then pickled. Next, using a reverse (Reverse) rolling mill, cold rolling was performed to a thickness of 0.30 mm through a total of seven passes. The rolling reduction for each pass was the same for each test condition. After the temperature of the cold-rolled steel sheet is raised in a furnace, the carbon concentration is 0.002 weight by maintaining the mixed gas atmosphere of 50% by volume of hydrogen and 50% by volume of nitrogen and the annealing temperature of 850 ° C. for 120 seconds. % And primary recrystallization annealing together with decarburization. Then, after applying MgO, it was wound into a coil and subjected to secondary recrystallization annealing. In the secondary recrystallization annealing, the temperature is raised to 1200 ° C. in a mixed gas atmosphere of nitrogen: 25% by volume and hydrogen: 75% by volume, and after reaching 1200 ° C., maintained in a gas atmosphere of hydrogen: 100% by volume for 20 hours. Cooled down.
最終的に得られた鋼板を表面洗浄後、single sheet測定法を利用して、磁場の強さを800A/mの条件で磁束密度を測定した。
表1から確認できるように、BaおよびYの含有量に応じてBの含有量が本発明の範囲内で制御された場合に、圧延クラックの発生がなく、比較材に比べて優れた磁性を得ることができた。
また、図1、および図2に、試料番号2番の発明材の製造工程中の冷延鋼板の写真、および試料番号1番の比較材の製造工程中の冷延鋼板の写真を示した。比較材の場合、圧延クラックが明確に現れることを確認できる。
As can be seen from Table 1, when the content of B is controlled within the range of the present invention in accordance with the content of Ba and Y, there is no occurrence of rolling cracks and excellent magnetism as compared with the comparative material. I got it.
1 and 2 show photographs of the cold-rolled steel sheet during the manufacturing process of the inventive material of sample No. 2 and photographs of the cold-rolled steel plate during the manufacturing process of the comparative material of sample No. 1. In the case of the comparative material, it can be confirmed that rolling cracks clearly appear.
実施例2
重量%で、Si:3.2%、C:0.048%、Mn:0.11%、S:0.0051%、N:0.0028%、および、Al:0.008%を含み、バリウム(Ba)、イットリウム(Y)、およびボロン(B)を下記表2のように含有し、残部Feとその他不可避に混入する不純物からなるスラブを準備した。
スラブを1150℃の温度に90分間加熱した後、熱間圧延して2.6mmの厚さの熱延板を製造した。この熱延板を1050℃以上の温度に加熱した後、910℃で90秒間維持し、水冷した後、酸洗した。次に、リバース(Reverse)圧延機を用いて、計7回のパスを経て0.30mmの厚さまで冷間圧延した。各パスあたりの圧下率は、試験条件ごとに同一に適用した。冷間圧延された鋼板は、炉中で昇温した後、水素:50体積%および窒素:50体積%の混合ガス雰囲気、および、焼鈍温度850℃で120秒間維持して炭素濃度0.003重量%まで脱炭と共に1次再結晶焼鈍を行った。この後、MgOを塗布した後、コイル状に巻取って2次再結晶焼鈍した。2次再結晶焼鈍は、窒素:25体積%および水素:75体積%の混合ガス雰囲気で1200℃まで昇温し、1200℃到達後には水素:100体積%のガス雰囲気で20時間維持後、炉冷した。
Example 2
% By weight, containing 3.2% of Si, 0.048% of C, 0.11% of Mn, 0.0051% of S, 0.0028% of N, and 0.008% of Al; A slab was prepared containing barium (Ba), yttrium (Y), and boron (B) as shown in Table 2 below, and the balance was Fe and other impurities unavoidably mixed.
The slab was heated to a temperature of 1150 ° C. for 90 minutes and then hot-rolled to produce a hot-rolled sheet having a thickness of 2.6 mm. After heating this hot rolled sheet to a temperature of 1050 ° C. or higher, it was maintained at 910 ° C. for 90 seconds, cooled with water, and then pickled. Next, using a reverse (Reverse) rolling mill, cold rolling was performed to a thickness of 0.30 mm through a total of seven passes. The rolling reduction for each pass was the same for each test condition. After the temperature of the cold-rolled steel sheet is raised in a furnace, the carbon concentration is 0.003 weight by maintaining the mixed gas atmosphere of 50% by volume of hydrogen and 50% by volume of nitrogen and the annealing temperature of 850 ° C. for 120 seconds. % And primary recrystallization annealing together with decarburization. Then, after applying MgO, it was wound into a coil and subjected to secondary recrystallization annealing. In the secondary recrystallization annealing, the temperature is raised to 1200 ° C. in a mixed gas atmosphere of nitrogen: 25% by volume and hydrogen: 75% by volume, and after reaching 1200 ° C., maintained in a gas atmosphere of hydrogen: 100% by volume for 20 hours. Cooled down.
最終的に得られた鋼板を表面洗浄後、single sheet測定法を利用して、磁場の強さを800A/mの条件で磁束密度を測定した。また、結晶粒の粒径は60℃に加熱された塩酸に5分間浸漬して表面のコーティング層を除去した後、面積に応じた平均値で計算した。
本発明は、上記の実施例に限定されるものではなく、互いに異なる多様な形態で製造可能であり、本発明の属する技術分野における通常の知識を有する者は、本発明の技術的な思想や必須の特徴を変更することなく他の具体的な形態で実施可能であることを理解するであろう。そのため、以上に述べた実施例はあらゆる面で例示的なものであり、限定的ではないと理解しなければならない。 The present invention is not limited to the embodiments described above, but can be manufactured in various forms different from each other, and those having ordinary knowledge in the technical field to which the present invention pertains need to understand the technical ideas and the present invention. It will be appreciated that the invention may be embodied in other specific forms without altering the essential characteristics. Therefore, it should be understood that the above-described embodiments are illustrative in every aspect and not restrictive.
次に、スラブを熱間圧延して熱延板を製造する。熱間圧延温度は制限されず、一実施例として950℃以下で熱延を終了することができる。この後、水冷して600℃以下で巻取ることができる。
次に、必要に応じて、熱延板を熱延板焼鈍することができる。熱延板焼鈍を実施する場合、熱延組織を均一にするために、900℃以上の温度に加熱し、均熱した後、冷却することができる。
次に、熱延板を冷間圧延して冷延板を製造する。冷間圧延は、リバース(Reverse)圧延機あるいはタンデム(Tandem)圧延機を用いて、1回の冷間圧延、複数回の冷間圧延、または中間焼鈍を含む複数回の冷間圧延法で0.1mm〜0.5mmの厚さの冷延板を製造することができる。
また、冷間圧延中に鋼板の温度を100℃以上に維持する温間圧延を実施できる。
Next, the slab is hot-rolled to produce a hot-rolled sheet. The hot rolling temperature is not limited, and the hot rolling can be completed at 950 ° C. or less as an example. Thereafter, the film can be cooled with water and wound at 600 ° C. or less.
Next, if necessary, the hot rolled sheet can be subjected to hot rolled sheet annealing. When performing hot-rolled sheet annealing, in order to make the hot-rolled structure uniform, the sheet can be heated to a temperature of 900 ° C. or higher, soaked and then cooled.
Next, the hot-rolled sheet is cold-rolled to produce a cold-rolled sheet. Cold rolling, using a reverse (Reverse) mill or a tandem (Tandem) rolling mill, one of the cold rolling, a plurality of times of cold rolling, or multiple cold rolling method including intermediate annealing 0 A cold rolled sheet having a thickness of 0.1 mm to 0.5 mm can be manufactured.
Further, it is possible to perform warm rolling in which the temperature of the steel sheet is maintained at 100 ° C. or higher during cold rolling.
Claims (13)
[式1]
0.5≦([Ba]+[Y])/([B]*10)≦3
(ただし、式1中、[Ba]、[Y]、[B]は、それぞれBa、Y、Bの含有量(重量%)を示す。) The grain-oriented electrical steel sheet according to claim 1, which satisfies the following expression 1.
[Equation 1]
0.5 ≦ ([Ba] + [Y]) / ([B] * 10) ≦ 3
(However, in Formula 1, [Ba], [Y], and [B] indicate the contents (% by weight) of Ba, Y, and B, respectively.)
前記スラブを熱間圧延して熱延板を製造する段階、
前記熱延板を冷間圧延して冷延板を製造する段階、
前記冷延板を1次再結晶焼鈍する段階、および、
1次再結晶焼鈍が完了した冷延板を2次再結晶焼鈍する段階、を含む方向性電磁鋼板の製造方法。 % By weight, Si: 1.0 to 7.0%, B: 0.001 to 0.1%, and Ba and Y each alone or in an amount of 0.005 to 0.5% by weight, Heating the slab containing Fe and other unavoidable impurities,
Hot rolling the slab to produce a hot rolled sheet,
Cold rolling the hot rolled sheet to produce a cold rolled sheet,
First recrystallization annealing the cold rolled sheet; and
Performing a secondary recrystallization annealing of the cold rolled sheet after the first recrystallization annealing is completed.
[式1]
0.5≦([Ba]+[Y])/([B]*10)≦3
(ただし、式1中、[Ba]、[Y]、[B]は、それぞれBa、Y、Bの含有量(重量%)を示す。) The method for manufacturing a grain-oriented electrical steel sheet according to claim 7, wherein the slab satisfies Equation 1 below.
[Equation 1]
0.5 ≦ ([Ba] + [Y]) / ([B] * 10) ≦ 3
(However, in Formula 1, [Ba], [Y], and [B] indicate the contents (% by weight) of Ba, Y, and B, respectively.)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2016-0139937 | 2016-10-26 | ||
KR1020160139937A KR101884428B1 (en) | 2016-10-26 | 2016-10-26 | Grain oriented electrical steel sheet and method for manufacturing the same |
PCT/KR2017/011849 WO2018080167A1 (en) | 2016-10-26 | 2017-10-25 | Grain-oriented electrical steel sheet and method for manufacturing same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020509153A true JP2020509153A (en) | 2020-03-26 |
JP6808830B2 JP6808830B2 (en) | 2021-01-06 |
Family
ID=62023776
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019522885A Active JP6808830B2 (en) | 2016-10-26 | 2017-10-25 | Electrical steel sheet and its manufacturing method |
Country Status (6)
Country | Link |
---|---|
US (1) | US20190309387A1 (en) |
EP (1) | EP3533896B1 (en) |
JP (1) | JP6808830B2 (en) |
KR (1) | KR101884428B1 (en) |
CN (1) | CN109906284B (en) |
WO (1) | WO2018080167A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102176348B1 (en) * | 2018-11-30 | 2020-11-09 | 주식회사 포스코 | Grain oriented electrical steel sheet and manufacturing method of the same |
KR102305718B1 (en) * | 2019-12-18 | 2021-09-27 | 주식회사 포스코 | Grain oriented electrical steel sheet and method of manufacturing the same |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010229521A (en) * | 2009-03-27 | 2010-10-14 | Jfe Steel Corp | Method for manufacturing grain-oriented electrical steel sheet |
KR20150073551A (en) * | 2013-12-23 | 2015-07-01 | 주식회사 포스코 | Oriented electrical steel sheets and method for manufacturing the same |
KR20150073511A (en) * | 2013-12-23 | 2015-07-01 | 김종암 | Warmth keeping cover for chima-part and the vinyl house using the same |
KR20160072704A (en) * | 2014-12-15 | 2016-06-23 | 주식회사 포스코 | Grain orientied electrical steel sheet and method for manufacturing the same |
JP2016156068A (en) * | 2015-02-25 | 2016-09-01 | Jfeスチール株式会社 | Method for producing grain-oriented silicon steel sheet |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6162306A (en) * | 1997-11-04 | 2000-12-19 | Kawasaki Steel Corporation | Electromagnetic steel sheet having excellent high-frequency magnetic properities and method |
JP4352691B2 (en) * | 2002-12-05 | 2009-10-28 | Jfeスチール株式会社 | Age-hardening non-oriented electrical steel sheet excellent in punchability and iron loss, method for producing the same, and method for producing a rotor using the same |
US7513959B2 (en) * | 2002-12-05 | 2009-04-07 | Jfe Steel Corporation | Non-oriented electrical steel sheet and method for manufacturing the same |
DE20316160U1 (en) * | 2003-10-22 | 2004-01-15 | Turevsky, Boris | Steel alloy used in metallurgy contains alloying additions of silicon, manganese, chromium, aluminum, vanadium, calcium, boron, titanium and barium |
JP2005264280A (en) * | 2004-03-22 | 2005-09-29 | Jfe Steel Kk | Grain-oriented electromagnetic steel sheet having superior stamping property and peeling resistance of coating, and manufacturing method therefor |
PL1840906T3 (en) * | 2004-12-17 | 2015-11-30 | Hitachi Metals Ltd | Magnetic core for current transformer, current transformer and watthour meter |
WO2006126660A1 (en) * | 2005-05-23 | 2006-11-30 | Nippon Steel Corporation | Grain oriented electromagnetic steel sheet having excellent film adhesion and process for producing the same |
CN102002567B (en) * | 2010-12-15 | 2012-07-11 | 北京科技大学 | Production method of oriented high-silicon-steel thin plates |
KR101482354B1 (en) * | 2012-12-27 | 2015-01-13 | 주식회사 포스코 | Grain-oriented electrical steel having excellent magnetic properties |
KR20150074925A (en) * | 2013-12-24 | 2015-07-02 | 주식회사 포스코 | Non-oriented electrical steel sheets and method for manufacturing the same |
CN104928452B (en) * | 2015-05-15 | 2018-03-20 | 武汉钢铁有限公司 | A kind of coating that can prevent orientation silicon steel secondary recrystallization annealing side from splitting |
-
2016
- 2016-10-26 KR KR1020160139937A patent/KR101884428B1/en active IP Right Grant
-
2017
- 2017-10-25 CN CN201780066820.2A patent/CN109906284B/en active Active
- 2017-10-25 EP EP17866141.9A patent/EP3533896B1/en active Active
- 2017-10-25 JP JP2019522885A patent/JP6808830B2/en active Active
- 2017-10-25 US US16/345,488 patent/US20190309387A1/en not_active Abandoned
- 2017-10-25 WO PCT/KR2017/011849 patent/WO2018080167A1/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010229521A (en) * | 2009-03-27 | 2010-10-14 | Jfe Steel Corp | Method for manufacturing grain-oriented electrical steel sheet |
KR20150073551A (en) * | 2013-12-23 | 2015-07-01 | 주식회사 포스코 | Oriented electrical steel sheets and method for manufacturing the same |
KR20150073511A (en) * | 2013-12-23 | 2015-07-01 | 김종암 | Warmth keeping cover for chima-part and the vinyl house using the same |
KR20160072704A (en) * | 2014-12-15 | 2016-06-23 | 주식회사 포스코 | Grain orientied electrical steel sheet and method for manufacturing the same |
JP2016156068A (en) * | 2015-02-25 | 2016-09-01 | Jfeスチール株式会社 | Method for producing grain-oriented silicon steel sheet |
Also Published As
Publication number | Publication date |
---|---|
KR20180045504A (en) | 2018-05-04 |
EP3533896A1 (en) | 2019-09-04 |
JP6808830B2 (en) | 2021-01-06 |
CN109906284B (en) | 2021-10-15 |
EP3533896B1 (en) | 2021-03-31 |
EP3533896A4 (en) | 2019-10-16 |
CN109906284A (en) | 2019-06-18 |
WO2018080167A1 (en) | 2018-05-03 |
KR101884428B1 (en) | 2018-08-01 |
US20190309387A1 (en) | 2019-10-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5423909B1 (en) | Method for producing grain-oriented electrical steel sheet | |
US9953752B2 (en) | Production method for grain-oriented electrical steel sheet and primary recrystallized steel sheet for production of grain-oriented electrical steel sheet | |
US20210130937A1 (en) | Grain-oriented electrical steel sheet and manufacturing method therefor | |
WO2011102456A1 (en) | Manufacturing method for grain-oriented electromagnetic steel sheet | |
JP2018505961A (en) | Oriented electrical steel sheet and manufacturing method thereof | |
JP6663999B2 (en) | Grain-oriented electrical steel sheet and its manufacturing method | |
JP2019501282A (en) | Oriented electrical steel sheet and manufacturing method thereof | |
JP2022514794A (en) | Directional electrical steel sheet and its manufacturing method | |
US11608540B2 (en) | Grain-oriented electrical steel sheet and manufacturing method therefor | |
JP6808830B2 (en) | Electrical steel sheet and its manufacturing method | |
KR102579761B1 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
KR20140084893A (en) | Oriented electrical steel steet and method for the same | |
JP7160926B2 (en) | Grain-oriented electrical steel sheet and manufacturing method thereof | |
KR101594601B1 (en) | Oriented electrical steel sheets and method for manufacturing the same | |
JP2019116680A (en) | Slab for grain-oriented electrical steel sheet, grain-oriented electrical steel sheet and manufacturing method thereof | |
JP7465975B2 (en) | Grain-oriented electrical steel sheet and its manufacturing method | |
JP2016053203A (en) | Method for producing oriented magnetic steel sheet and nitriding treatment equipment | |
KR101664096B1 (en) | Grain-orientied electrical steel sheet and method for manufacturing the same | |
KR102319831B1 (en) | Method of grain oriented electrical steel sheet | |
JP5904151B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP2020509209A (en) | Grain-oriented electrical steel sheet and its manufacturing method | |
JP7221480B2 (en) | Grain-oriented electrical steel sheet and manufacturing method thereof | |
JP2022509867A (en) | Directional electrical steel sheet and its manufacturing method | |
KR20130055915A (en) | Method for manufacturing grain oriented electrical steel having excellent productive fabrication and manufactured grain oriented electrical steel by the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190426 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190426 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200623 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200923 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20201110 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20201209 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6808830 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |