JP2020130745A - Mind and body management system - Google Patents
Mind and body management system Download PDFInfo
- Publication number
- JP2020130745A JP2020130745A JP2019029931A JP2019029931A JP2020130745A JP 2020130745 A JP2020130745 A JP 2020130745A JP 2019029931 A JP2019029931 A JP 2019029931A JP 2019029931 A JP2019029931 A JP 2019029931A JP 2020130745 A JP2020130745 A JP 2020130745A
- Authority
- JP
- Japan
- Prior art keywords
- index value
- mind
- mental
- state
- management system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Medical Treatment And Welfare Office Work (AREA)
Abstract
Description
本発明は、心身が作業(運転、操作等)に適した状態か否かを推定できる心身管理システム等に関する。 The present invention relates to a mind-body management system or the like that can estimate whether or not the mind and body are in a state suitable for work (driving, operation, etc.).
人が行う作業の成果は、外面的な肉体状態のみならず、内面的な精神状態からも影響を受ける。例えば、ストレス状態にあるときと、リラックス状態にあるときとでは、作業成果が異なり得る。 The results of the work done by humans are influenced not only by the external physical condition but also by the internal mental state. For example, work results can differ between when you are in a stressed state and when you are in a relaxed state.
そこで、生理的な状態(特徴量)の変化を観察・分析して、人の精神状態(心理状態)を推定することが行われている。例えば、心拍は、自律神経を構成する交感神経と副交換神経の活動バランスにより定まり、その活動バランスが心理状態に影響を及ぼすことが知られている。そこで、心電図等から得られた心拍情報を解析して、心理状態の推定がなされている。これに関連した記載が、例えば、下記の特許文献にある。 Therefore, changes in physiological states (features) are observed and analyzed to estimate a person's mental state (psychological state). For example, it is known that the heartbeat is determined by the activity balance of the sympathetic nerve and the sympathetic nerve that constitute the autonomic nerve, and the activity balance affects the psychological state. Therefore, the psychological state is estimated by analyzing the heartbeat information obtained from the electrocardiogram or the like. A description related to this can be found in the following patent documents, for example.
特許文献1では、心拍情報に基づいて、被験者が集中状態と安静状態のいずれにあるかを推定している。特許文献2では、心拍情報から求まる低周波成分(LF)と高周波成分(HF)の比(LF/HF)に基づいて、作業の適性度を推定している。 In Patent Document 1, it is estimated whether the subject is in a concentrated state or a resting state based on the heartbeat information. In Patent Document 2, the suitability of work is estimated based on the ratio (LF / HF) of the low frequency component (LF) and the high frequency component (HF) obtained from the heartbeat information.
本発明はこのような事情に鑑みて為されたものであり、従来とは異なる手法により、心身が作業に適した状態か否かを推定できる心身管理システム等を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a mind-body management system or the like that can estimate whether or not the mind and body are in a state suitable for work by a method different from the conventional one.
本発明者はこの課題を解決すべく鋭意研究した結果、特定の指標値の増減により、心身が作業に適した状態にあるか否かを推定できることを新たに見出した。この成果を発展させることにより、以降に述べる本発明を完成するに至った。 As a result of diligent research to solve this problem, the present inventor has newly found that it is possible to estimate whether or not the mind and body are in a state suitable for work by increasing or decreasing a specific index value. By developing this result, the present invention described below has been completed.
《心身管理システム》
(1)本発明は、呼吸周波数を指標する第1指標値(V1)の増減と、心拍情報から得られた心拍変動の高周波成分(HF)と低周波成分(LF)の合計に対する該低周波成分の割合(LF/HF+LF)である第2指標値(V2)の増減とに基づいて、作業に対する心身状態の適性を推定する推定手段を備える心身管理システムである。
<< Mental and physical management system >>
(1) In the present invention, the low frequency with respect to the increase / decrease of the first index value (V1) for indexing the respiratory frequency and the total of the high frequency component (HF) and the low frequency component (LF) of the heart rate variability obtained from the heartbeat information. It is a mental and physical management system provided with an estimation means for estimating the suitability of the mental and physical condition for work based on the increase and decrease of the second index value (V2) which is the ratio of components (LF / HF + LF).
(2)本発明の心身管理システム(単に「システム」ともいう。)は、例えば、第1指標値が増加(ΔV1>0)し、かつ第2指標値が減少(ΔV2<0)するとき、心身(特に精神面)が作業に対して適正状態にあると推定する。このような心身状態(心理状態)の推定を活用することにより、作業の適確化や効率化の向上が図られる。 (2) The mental and physical management system of the present invention (also simply referred to as "system") is, for example, when the first index value increases (ΔV1> 0) and the second index value decreases (ΔV2 <0). It is estimated that the mind and body (especially the mental aspect) are in an appropriate state for work. By utilizing such estimation of the mental and physical state (psychological state), it is possible to improve the optimization and efficiency of work.
《その他》
(1)本発明は、装置または方法としても把握できる。例えば、本発明は、心身状態の推定装置またはその推定方法としても把握される。本明細書でいう各手段は、各ステップと読み替えることにより方法の構成要素となる。また本発明は、各ステップをコンピュータで実行するプログラムや、そのプログラムを記録した記憶媒体等としても把握され得る。
<< Other >>
(1) The present invention can also be grasped as an apparatus or a method. For example, the present invention is also grasped as a mental and physical state estimation device or a method for estimating the same. Each means referred to in the present specification becomes a component of the method by being read as each step. The present invention can also be grasped as a program that executes each step on a computer, a storage medium that records the program, and the like.
(2)変化量には、適宜、「Δ」を付して示す。ΔV>0(ΔV:正)は、指標値(V)が増加していることを意味する。逆に、ΔV<0(ΔV:負)は、その指標値が減少していることを意味する。なお、本明細書でいう「増減」は、特定の基準値との比較における増減でよい。その「増減」は、必ずしも、隣接する時系列間の増減(単位時間あたりの変化量の正負)でなくてもよい。 (2) The amount of change is indicated by adding "Δ" as appropriate. When ΔV> 0 (ΔV: positive), it means that the index value (V) is increasing. On the contrary, when ΔV <0 (ΔV: negative), it means that the index value is decreasing. The "increase / decrease" referred to in the present specification may be an increase / decrease in comparison with a specific reference value. The "increase / decrease" does not necessarily have to be an increase / decrease between adjacent time series (positive or negative of the amount of change per unit time).
(3)特に断らない限り本明細書でいう「x〜y」は下限値xおよび上限値yを含む。本明細書に記載した種々の数値または数値範囲に含まれる任意の数値を新たな下限値または上限値として「a〜b」のような範囲を新設し得る。また、特に断らない限り、本明細書でいう「x〜yHz」はxHz〜yHzを意味する。他の単位系(msec2/Hz等)についても同様である。 (3) Unless otherwise specified, "x to y" in the present specification includes a lower limit value x and an upper limit value y. A range such as "ab" may be newly established with any numerical value included in the various numerical values or numerical ranges described in the present specification as a new lower limit value or upper limit value. Further, unless otherwise specified, "x to yHz" in the present specification means xHz to yHz. The same applies to other unit systems (msec 2 / Hz, etc.).
上述した本発明の構成要素に、本明細書中から任意に選択した一つまたは二つ以上の構成要素を付加し得る。本明細書で説明する内容は、本発明に係るシステム、装置、方法、プログラム等に適宜該当し得る。 One or more components arbitrarily selected from the present specification may be added to the components of the present invention described above. The contents described in the present specification may appropriately correspond to the system, apparatus, method, program and the like according to the present invention.
《心身状態の推定》
(1)第2指標値
第2指標値は、LF/(HF+LF)により求まる。これは、HFとLFから正規化されたLF(normalizedLF)に相当し、本明細書では「LFnorm」という。
《Estimation of mental and physical condition》
(1) Second index value The second index value is obtained by LF / (HF + LF). This corresponds to LF (normalized LF) normalized from HF and LF, and is referred to as "LF norm" in the present specification.
LFnormの算出に必要なHFとLFは、心拍情報から求まる。心拍情報は、例えば、心電図や脈波から得られる。便宜上、ここでは、代表例である心電図に基づいて、HFとLFを算出する場合について説明する。 The HF and LF required for calculating the LFnorm can be obtained from the heartbeat information. Heart rate information is obtained, for example, from an electrocardiogram or a pulse wave. For convenience, here, a case where HF and LF are calculated based on a typical electrocardiogram will be described.
心拍は、身体が安静な状態にあっても一定ではなく、心拍間隔は周期的に変動している。このような心拍間隔の変動を心拍変動(心拍ゆらぎ)という。 The heartbeat is not constant even when the body is at rest, and the heartbeat interval fluctuates periodically. Such fluctuations in the heartbeat interval are called heartbeat fluctuations (heartbeat fluctuations).
心拍間隔には、通常、心電図上に現れた最も鋭いピーク(R波)間の時間差(隣接するR波の間隔/RR Interval)が採用される。心電図から抽出(算出)された心拍間隔の(離散的な)時系列的な変動データ(RRI時系列データ)が心拍変動データとなる。心拍変動データを周波数解析(スペクトル解析)すると、横軸を周波数(Hz)、縦軸をパワー(msec2/Hz)とするパワースペクトル密度(PSD:Power Spectral Density)が得られる。このPSD関数を、高周波数帯域(0.15〜0.50Hz)と低周波数帯域(0.04〜0.15Hz)でそれぞれ積分する。こうして求まる各周波数帯幅に相当する積算値(面積)が、高周波成分(HF)と低周波成分(LF)となる。 As the heartbeat interval, the time difference between the sharpest peaks (R waves) appearing on the electrocardiogram (interval between adjacent R waves / RR Interval) is usually adopted. The (discrete) time-series fluctuation data (RRI time-series data) of the heartbeat interval extracted (calculated) from the electrocardiogram becomes the heartbeat fluctuation data. When the heart rate variability data is frequency-analyzed (spectral analysis), a power spectral density (PSD: Power Spectral Density) having a horizontal axis of frequency (Hz) and a vertical axis of power (msec 2 / Hz) can be obtained. This PSD function is integrated in the high frequency band (0.15 to 0.50 Hz) and the low frequency band (0.04 to 0.15 Hz), respectively. The integrated value (area) corresponding to each frequency bandwidth thus obtained becomes a high frequency component (HF) and a low frequency component (LF).
ちなみに、拍動(心拍)は、拍動を統括する心臓の洞房結節の周囲に密に分布した交感神経と副交換神経の活動バランスによりコントロールされている。交感神経は心拍を早め、副交換神経は心拍を遅らせる。一般的に、HFは副交換神経の活動のみを反映するが、LFは交感神経と副交換神経の両方の活動を反映する。そこで、単なるLFではなく、相対化(正規化)したLFnormが、交感神経活動指標とされる。 By the way, the pulsation (heartbeat) is controlled by the activity balance of the sympathetic nerve and the sympathetic nerve, which are densely distributed around the sinoatrial node of the heart that controls the pulsation. The sympathetic nerve accelerates the heartbeat, and the sympathetic nerve slows the heartbeat. In general, HF reflects only the activity of the accessory sympathetic nerve, while LF reflects the activity of both the sympathetic and accessory sympathetic nerves. Therefore, not just LF, but relativized (normalized) LFnorm is used as a sympathetic nerve activity index.
LFnormが大きいか増加するとき、交感神経が活発で心身は緊張状態(ストレス状態)にあると考えられる。逆に、LFnormが小さいか減少するとき、交感神経の活動が低下して副交換神経が活発となり、心身はリラックス状態にあると考えられる。 When the LFnorm is large or increased, it is considered that the sympathetic nerve is active and the mind and body are in a tense state (stress state). Conversely, when the LFnorm is small or decreased, the sympathetic nerve activity is reduced and the accessory sympathetic nerve is activated, and the mind and body are considered to be in a relaxed state.
(2)第1指標値
第1指標値は、呼吸周波数を指標している。第1指標値は、呼吸周波数自体または呼吸周波数を直接的に指標する値でもよいし、呼吸周波数を間接的に指標する相関値でもよい。後者として、高周波成分の重心周波数(「HFcentF」という。)がある。
(2) First index value The first index value is an index of the respiratory frequency. The first index value may be a value that directly indexes the respiration frequency itself or the respiration frequency, or may be a correlation value that indirectly indexes the respiration frequency. As the latter, there is a center of gravity frequency (referred to as "HFcentF") of a high frequency component.
HFcentFは、上述した高周波数帯域におけるHFの重心に対応する周波数として求まる。このため、第1指標値としてHFcentFを採用すれば、呼吸情報を別に用意するまでもなく、心拍情報だけで、心身状態の推定が可能となる。なお、呼吸性洞性不整脈とも呼ばれるHFの周波数が呼吸周波数と強い相関があることは、例えば、文献(吉田他、心拍変動時系列からの呼吸関連パラメータの推定、生体医工学、43(3)、456-460、2005)に示されている。 HFcentF is obtained as a frequency corresponding to the center of gravity of HF in the above-mentioned high frequency band. Therefore, if HFcentF is adopted as the first index value, it is possible to estimate the mental and physical condition only by the heartbeat information without preparing the respiratory information separately. The fact that the frequency of HF, which is also called respiratory sinus arrhythmia, has a strong correlation with the respiratory frequency can be found in, for example, the literature (Yoshida et al., Estimating respiratory-related parameters from heart rate variability time series, Biomedical Engineering, 43 (3). , 456-460, 2005).
HFの重心は、上述した高周波数帯域のパワースペクトル密度関数の中心となる周波数である。例えば、高周波数帯域の下限側または上限側から算出した積算値(面積)が、全体(HF)の1/2になるときの周波数である。 The center of gravity of the HF is the frequency that is the center of the power spectral density function in the high frequency band described above. For example, it is a frequency when the integrated value (area) calculated from the lower limit side or the upper limit side of the high frequency band becomes 1/2 of the whole (HF).
(3)指標値の増減
指標値の増減は、基準となる指標値(基準指標値)との比較により判断する。基準指標値は、経時的に新たな指標値が算出される毎に更新されてもよいし、特定の時点で算出された指標値が所定期間維持(継続)されていてもよい。
(3) Increase / decrease in index value The increase / decrease in index value is judged by comparison with the reference index value (reference index value). The reference index value may be updated every time a new index value is calculated over time, or the index value calculated at a specific time point may be maintained (continued) for a predetermined period.
(4)測定の期間・頻度(間隔)
第1指標値となるHFcentFや第2指標値となるLFnormを算出するためには、自ずと、ある測定時間(期間)の心拍間隔を採取する必要がある。
(4) Measurement period / frequency (interval)
In order to calculate HFcentF, which is the first index value, and LFnorm, which is the second index value, it is naturally necessary to collect the heartbeat interval for a certain measurement time (period).
この点は、第1指標値として、呼吸周波数自体またはその直接的な指標値を採用するときも同様である。このとき、例えば、測定時間内の呼吸回数をその測定時間で除した算術(相加)平均である平均呼吸周波数を第1指標値としてもよい。 This point is the same when the respiratory frequency itself or its direct index value is adopted as the first index value. At this time, for example, the average respiration frequency, which is the arithmetic (additive) average obtained by dividing the number of respirations within the measurement time by the measurement time, may be used as the first index value.
なお、測定時間は、適宜設定できるが、例えば、120秒(2分)または180秒(3分)とするとよい。指標値の算出やその算出に必要となる情報(データ)の取得は、継続的に行われてもよいし、断続的に行われてもよい。 The measurement time can be set as appropriate, but is preferably 120 seconds (2 minutes) or 180 seconds (3 minutes), for example. The calculation of the index value and the acquisition of the information (data) necessary for the calculation may be performed continuously or intermittently.
《機能性成分の放出》
心身を作業に適した状態へ誘導するために、機能性成分が放出されてもよい。このような機能性成分は種々ある。機能性成分は香りとして知覚されなくてもよい。機能性成分は、例えば、シトロネロール、リモネン、酢酸ボルニル、カンファーまたは1,8-シネオールの一種以上であるとよい。機能性成分は、適当な濃度に調整されて放出されるとよい。機能性成分は、特定の作業者のみに対して放出されてもよいし、その作業者がいる環境下(例えば室内)全体に対して放出されてもよい。
<< Release of functional ingredients >>
Functional components may be released to guide the mind and body to a state suitable for work. There are various such functional components. The functional ingredient does not have to be perceived as a scent. The functional ingredient may be, for example, one or more of citronellol, limonene, bornyl acetate, camphor or 1,8-cineole. The functional component may be adjusted to an appropriate concentration and released. The functional component may be released only to a specific worker, or may be released to the entire environment (for example, indoors) in which the worker is present.
機能性成分の放出タイミングや放出時間は、適宜調整され得る。例えば、各指標値を基準指標値と比較して、少なくとも、心身が作業に対する適正状態(ΔV1>0かつΔV2<0)と推定されないとき(要するに、ΔV1≦0またはΔV2≧0のとき)に放出されるとよい。換言すると、第1指標値が増加(ΔV1>0)しないとき、または第2指標値が減少(ΔV2<0)しないときに、機能性成分が放出されるとよい。 The release timing and release time of the functional component can be adjusted as appropriate. For example, each index value is compared with the reference index value, and at least when the mind and body are not estimated to be in an appropriate state for work (ΔV1> 0 and ΔV2 <0) (in short, when ΔV1 ≦ 0 or ΔV2 ≧ 0). It should be done. In other words, the functional component may be released when the first index value does not increase (ΔV1> 0) or when the second index value does not decrease (ΔV2 <0).
《システム》
本システムは、推定手段や放出手段の他に、人の呼吸や心拍を直接または間接に測定する測定手段と、測定手段から得られたデータを処理または解析する解析手段を適宜備えてもよい。また、心身が適正状態にないと推定されるとき、機能性成分の放出に替えて、またはその放出と共に、音や振動等の刺激(警告)が作業者に与えられてもよい。
"system"
In addition to the estimation means and the release means, the system may appropriately include a measuring means for directly or indirectly measuring a person's respiration or heartbeat, and an analysis means for processing or analyzing data obtained from the measuring means. Further, when it is presumed that the mind and body are not in an appropriate state, a stimulus (warning) such as sound or vibration may be given to the operator in place of or in addition to the release of the functional component.
測定手段は、例えば、心拍情報なら心電計、脈拍計、心拍センサ等により実現される。呼吸情報なら伸縮性ひずみセンサ、圧電素子等を用いた呼吸センサ等により測定される。 For example, in the case of heart rate information, the measuring means is realized by an electrocardiograph, a pulse meter, a heart rate sensor, or the like. Respiratory information is measured by a stretchable strain sensor, a respiration sensor using a piezoelectric element, or the like.
解析手段や推定手段は、所定のプログラムをコンピュータで実行することにより実現される。放出手段は、例えば、機能性成分の貯留部(タンク、カートリッジ等)と、貯留部からの機能性成分の放出(量)を調整する制御部(弁等)により実現される。 The analysis means and the estimation means are realized by executing a predetermined program on a computer. The release means is realized by, for example, a storage unit (tank, cartridge, etc.) for the functional component and a control unit (valve, etc.) for adjusting the release (amount) of the functional component from the storage unit.
本システムにより心身状態が管理される対象者(作業者)は問わない。代表例は、比較的単純な作業を長時間強いられるドライバー、パイロット等である。このとき、運転席(コックピット)の周辺(ハンドル、シート、計器板等)に配置、または直接装着した各種のセンサ(測定手段)から取得した心拍や呼吸に関連した信号を処理して、上述した心身状態の推定が可能となる。 The target person (worker) whose mental and physical condition is managed by this system does not matter. Typical examples are drivers, pilots, etc. who are forced to perform relatively simple tasks for a long time. At this time, signals related to heartbeat and respiration obtained from various sensors (measuring means) arranged around the driver's seat (cockpit) (handle, seat, instrument panel, etc.) or directly attached are processed and described above. It is possible to estimate the mental and physical condition.
なお、作業者が長時間の単純作業等に適した状態(例えば、リラックスと集中を両立した状態)にあるか否かが推定された結果、作業者がそのような状態にないときは、注意喚起されたり、機能性成分(香り成分)の放出等により作業者の心身を適正状態へ誘導されるとよい。 Note that if the worker is not in such a state as a result of estimating whether or not the worker is in a state suitable for simple work for a long time (for example, a state in which relaxation and concentration are compatible), caution is required. It is advisable to induce the mind and body of the worker to an appropriate state by arousing or releasing a functional component (scent component).
心電図を測定している被験者に、課題(作業)を繰り返し処理させる試験を行うことにより、被験者の心身状態と課題成績の相関を評価した。この具体例に基づいて、以下に本発明をさらに詳しく説明する。 The correlation between the physical and mental condition of the subject and the task performance was evaluated by conducting a test in which the subject measuring the electrocardiogram was repeatedly processed with the task (work). Based on this specific example, the present invention will be described in more detail below.
《試験》
被験者に対して行った試験の様子を図1に模式的に示した。具体的には、次の通りである。
"test"
The state of the test conducted on the subjects is schematically shown in FIG. Specifically, it is as follows.
(1)被験者
無作為に抽出した被験者20名に対して試験を行った。
(1) Subjects The test was conducted on 20 randomly selected subjects.
(2)課題
各被験者に次の数字探索課題を処理させた。試験開始後(合図後)、着席した被験者の前にあるディスプレイの画面に100個の数字群(0〜99)が格子状にランダムに表示される。それと同時に、その画面上部に探索対象の数字が表示される。ランダム表示された数字群から、制限時間内(10秒内/緑色のバーが消えるまでの間)に、探索対象の数字を、被験者に探索させる。正しい数字を探索してクリックできたときは、「探索成功」とする。制限時間内に、正しい数字がクリックされなかったときは、「探索失敗」とする。こうした課題処理(以下、「タスク」という。)を3分間継続する。
(2) Task Each subject was asked to process the following numerical search task. After the start of the test (after the signal), 100 numbers (0 to 99) are randomly displayed in a grid pattern on the screen of the display in front of the seated subject. At the same time, the number to be searched is displayed at the top of the screen. The subject is made to search for the number to be searched from the randomly displayed number group within the time limit (within 10 seconds / until the green bar disappears). When the correct number is searched and clicked, it is regarded as "search successful". If the correct number is not clicked within the time limit, it is considered as "search failure". Such task processing (hereinafter referred to as "task") is continued for 3 minutes.
3分回のタスクが終了する毎に、1分間休憩する。これらを繰り返して、1条件(環境)あたり、6回のタスク(これを「1セット」という。)を行う。 Take a 1-minute break after each 3-minute task. By repeating these steps, 6 tasks (this is referred to as "1 set") are performed per condition (environment).
(3)条件
香り成分(機能性成分)を放出しない無臭環境下(1条件)と、図3に示した9種の香り成分を個別に放出する芳香環境下(9条件)とを併せた10条件下で、1条件あたり1セットのタスクを被験者に課した。こうして被験者一人あたり、合計で10セットのタスク(10×6回のタスク)を行った。
(3) Conditions A combination of an odorless environment (1 condition) in which no scent component (functional component) is released and an fragrance environment (9 conditions) in which the 9 types of scent components shown in FIG. 3 are individually released 10 Under the conditions, subjects were assigned one set of tasks per condition. In this way, a total of 10 sets of tasks (10 x 6 tasks) were performed for each subject.
なお、香り成分の放出は、3〜6回目のタスクで行った。つまり、1〜2回目のタスクは香り成分を放出せずに行った。香り成分の放出は次のように行った。先ず、各香り成分の原液を溶媒(水)で希釈した水溶液を調製した。各香り成分の希釈割合(35〜100μL/水100mL)は図3に併せて示した。各香り成分を含む水溶液を、市販のアロマディフューザー(放出手段の一例)を用いて、被験者の周囲へ放出した。このとき、サーキュレータにより、香り成分を室内全体に拡散させた。 The release of the scent component was carried out in the 3rd to 6th tasks. That is, the first and second tasks were performed without releasing the scent component. The scent component was released as follows. First, an aqueous solution was prepared by diluting the stock solution of each scent component with a solvent (water). The dilution ratio of each scent component (35 to 100 μL / 100 mL of water) is also shown in FIG. An aqueous solution containing each scent component was discharged around the subject using a commercially available aroma diffuser (an example of a releasing means). At this time, the scent component was diffused throughout the room by a circulator.
(4)心電図
被験者の心電図を、第II誘導胸部誘導法により測定した。心電図は、本試験中、継続して測定した。心電図の測定には、Polymate Mini AP108(株式会社ミユキ技研製)を用いた。
(4) Electrocardiogram The subject's electrocardiogram was measured by the lead II chest lead method. Electrocardiograms were continuously measured during this study. Polymate Mini AP108 (manufactured by Miyuki Giken Co., Ltd.) was used for the measurement of the electrocardiogram.
《データ処理》
(1)指標値
心電図から得られた心電データ(心電波形)からR波を検出して、その時間間隔(RRInterval)を心拍間隔とした。心拍間隔の時系列データである心拍変動データを周波数解析して、低周波数側(0.04〜0.15Hz)の心拍変動成分(低周波成分:LF)と、高周波数側(0.15〜0.50Hz)の心拍変動成分(高周波成分:HF)とを算出した。また、高周波成分の重心周波数(HFcentF)と、LF/LF+HF(LFnorm)も算出した。なお、心拍変動データの取込、周波数解析、HF、LF、HFcentFの算出は、数値解析ソフトウェア MATLAB(Math works社製)を用いて行った。このとき、R波の検出不良を判定するための心拍間隔が適切な範囲の値であることを確認し(例:500〜1300ms)、R波の検出不良が含まれた区間は解析から除外した。
"Data processing"
(1) Index value The R wave was detected from the electrocardiographic data (electrocardiographic waveform) obtained from the electrocardiogram, and the time interval (RRInterval) was defined as the heartbeat interval. The heart rate variability data, which is the time-series data of the heart rate interval, is frequency-analyzed, and the heart rate variability component (low frequency component: LF) on the low frequency side (0.04 to 0.15 Hz) and the high frequency side (0.15-0.15 Hz) are analyzed. The heart rate variability component (high frequency component: HF) of 0.50 Hz) was calculated. In addition, the center of gravity frequency (HFcentF) of the high frequency component and LF / LF + HF (LFnorm) were also calculated. The acquisition of heart rate variability data, frequency analysis, and calculation of HF, LF, and HFcentF were performed using the numerical analysis software MATLAB (manufactured by Mathworks). At this time, it was confirmed that the heartbeat interval for determining the R wave detection failure was within an appropriate range (example: 500 to 1300 ms), and the section including the R wave detection failure was excluded from the analysis. ..
LF、HF、HFcentF、LFnormは、66秒を1解析区間として算出し、1秒ずつずらして指標を算出した後、各タスク(180秒間)毎に平均値を算出した。また、各条件下で、2回目のタスクで得られたHFcentF、LFnormを基準指標値とした。そして、各条件下で、3〜6回目の各タスクに関して、基準指標値に対する差分として、ΔHFcentF、ΔLFnormをそれぞれ算出した。例えば、3回目のタスクのΔHFcentFは、3回目のタスクのHFcentFから2回目のタスクのHFcentFを差し引いて求めた。 For LF, HF, HFcentF, and LFnorm, 66 seconds was calculated as one analysis section, the index was calculated by shifting by 1 second, and then the average value was calculated for each task (180 seconds). Further, under each condition, HFcentF and LFnorm obtained in the second task were used as reference index values. Then, under each condition, ΔHFcentF and ΔLFnorm were calculated as differences with respect to the reference index value for each task of the 3rd to 6th times. For example, ΔHFcentF of the third task was obtained by subtracting HFcentF of the second task from HFcentF of the third task.
(2)課題成績
各タスク毎に、探索失敗割合を算出した。例えば、1タスクあたり、20個の数字を探索できた場合に、そのうち1個が探索失敗であったとき、探索失敗割合は1/20=0.05となる。なお、探索は、その成否とは別に、所定時間内において次々になされる。
(2) Task results The search failure rate was calculated for each task. For example, if 20 numbers can be searched per task and one of them fails the search, the search failure rate is 1/20 = 0.05. The search is performed one after another within a predetermined time, regardless of its success or failure.
各条件下で、2回目のタスクの探索失敗割合に対する3〜6回目の各タスクの探索失敗割合の差分を求めた。例えば、3回目のタスクの探索失敗割合が1/20で、基準となる2回目のタスクの探索失敗割合が2/20なら、その差分は−1/20=−0.05となる。この差分を、探索失敗割合変化とする。 Under each condition, the difference between the search failure rate of the second task and the search failure rate of each task in the 3rd to 6th times was calculated. For example, if the search failure rate of the third task is 1/20 and the search failure rate of the reference second task is 2/20, the difference is -1/20 = -0.05. This difference is defined as the change in the search failure rate.
(3)多重比較
こうして得られた全タスクに係るΔHFcentF、ΔLFnorm、探索失敗割合変化を、TukeyのHSD法による多重比較により整理した。その結果を図2に示した。なお、このときのデータ数(全タスク数)は723(被験者19名×10条件×4タスク)であった。被験者1名は心電計測に問題があったため、その被験者に係るデータは除外した。
(3) Multiple comparison The changes in ΔHFcentF, ΔLFnorm, and search failure rate related to all the tasks thus obtained were arranged by multiple comparison by Tukey's HSD method. The result is shown in FIG. The number of data (total number of tasks) at this time was 723 (19 subjects × 10 conditions × 4 tasks). One subject had a problem with electrocardiography, so the data related to that subject was excluded.
《評価》
(1)課題成績と指標値
図2から明らかなように、ΔHFcentF>0(正)、かつΔLFnorm<0(負)のときだけ、探索失敗割合変化が減少している。つまり、そのときだけ、課題成績が向上することがわかった(ΔHFcentF<0(負)かつΔLFnorm<0(負)のとき、および、ΔHFcentF<0(負)かつΔLFnorm>0(正)のときと比べて、p<0.01で有意に課題成績が向上したといえる)。
<< Evaluation >>
(1) Task performance and index value As is clear from FIG. 2, the change in the search failure rate decreases only when ΔHFcentF> 0 (positive) and ΔLFnorm <0 (negative). That is, it was found that the task performance was improved only at that time (when ΔHFcentF <0 (negative) and ΔLFnorm <0 (negative), and when ΔHFcentF <0 (negative) and ΔLFnorm> 0 (positive). In comparison, it can be said that the task performance was significantly improved when p <0.01).
(2)香り成分
各条件下で、ΔHFcentF>0(正)かつΔLFnorm<0(負)(適正状態)となったタスクの回数の割合(適正状態の発生割合)を、図3にまとめて示した。例えば、香り成分を全く放出しないとき(条件j:無臭)、適正状態となったタスクは、全タスク76(被験者19名×4タスク)に対して20であった。このときの適正状態の発生割合は26.3%となる。
(2) Fragrance component The ratio of the number of tasks for which ΔHFcentF> 0 (positive) and ΔLFnorm <0 (negative) (appropriate state) under each condition (proper state occurrence rate) is summarized in FIG. It was. For example, when no scent component was released (condition j: odorless), the number of tasks in the proper state was 20 for all tasks 76 (19 subjects × 4 tasks). The rate of occurrence of the proper state at this time is 26.3%.
その無臭時(条件j)を基準とすると、図3から明らかなように、シトロネロール(条件b)、カンファー(条件c)、酢酸ボルニル(条件e)、リモネン(条件g)、1,8-シネオール(条件h)のいずれかを放出したときに、適正状態の発生割合が向上した。 Based on the odorless state (condition j), as is clear from FIG. 3, citronellol (condition b), camphor (condition c), bornyl acetate (condition e), limonene (condition g), 1,8-cineole When any of (condition h) was released, the rate of occurrence of the proper state was improved.
以上から明らかなように、第1指標値(例えばHFcentF)と第2指標値(ΔLFnorm)の各増減に基づけば、心身が作業に適した状態にあるか否かを推定できることがわかった。また、適切な機能性成分を放出すれば、心身を作業に対する適正状態へ誘導し得ることもわかった。 As is clear from the above, it was found that it is possible to estimate whether or not the mind and body are in a state suitable for work based on each increase / decrease of the first index value (for example, HFcentF) and the second index value (ΔLFnorm). It was also found that if an appropriate functional component is released, the mind and body can be guided to an appropriate state for work.
LFnormの減少は、交感神経よりも副交換神経が活発であったことを意味し、適正状態の作業者(被験者)はリラックス状態にあったと考えられる。また、適正状態の作業者は課題成績が向上したことから、集中状態にあったといえる。従って、適正状態は、リラックス状態と集中状態が両立した心身状態と考えられる。そして、LFnorm(ΔLFnorm)はリラックス状態の指標となり、HFcentF(またはΔHFcentF)は集中状態の指標になるといえる。 The decrease in LFnorm means that the accessory sympathetic nerve was more active than the sympathetic nerve, and it is considered that the worker (subject) in a proper state was in a relaxed state. In addition, it can be said that the workers in the proper state were in a concentrated state because the task results were improved. Therefore, the proper state is considered to be a mental and physical state in which both a relaxed state and a concentrated state are compatible. Then, it can be said that LFnorm (ΔLFnorm) is an index of a relaxed state and HFcentF (or ΔHFcentF) is an index of a concentrated state.
以上の結果を踏まえると、生体情報に基づいて得られる各指標値の増減から、特定の心身状態を推定するアルゴリズムまたはプログラム(推定手段の一例)を実行する心身管理システムが完成される。本発明の心身管理システムによれば、心身が運転、操作等の各作業を適確に行える適正状態にあるか否かを適確に推測できるようになる。なお、本発明の心身管理システムは、各指標値の増減の組み合わせにより、適正状態でない非適正状態となる各場合の少なくともいずれかを推定するものでもよい。 Based on the above results, a mental / physical management system that executes an algorithm or program (an example of estimation means) for estimating a specific mental / physical state is completed from the increase / decrease of each index value obtained based on biological information. According to the mind-body management system of the present invention, it becomes possible to accurately estimate whether or not the mind and body are in an appropriate state in which each work such as driving and operation can be performed appropriately. The mind-body management system of the present invention may estimate at least one of the cases in which the non-proper state is not the proper state by combining the increase / decrease of each index value.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019029931A JP7141960B2 (en) | 2019-02-22 | 2019-02-22 | mind and body management system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019029931A JP7141960B2 (en) | 2019-02-22 | 2019-02-22 | mind and body management system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020130745A true JP2020130745A (en) | 2020-08-31 |
JP7141960B2 JP7141960B2 (en) | 2022-09-26 |
Family
ID=72277109
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019029931A Active JP7141960B2 (en) | 2019-02-22 | 2019-02-22 | mind and body management system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7141960B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114469037A (en) * | 2022-01-29 | 2022-05-13 | 武汉大学 | High-reliability heart rate measurement method based on millimeter wave radar |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005095307A (en) * | 2003-09-24 | 2005-04-14 | Matsushita Electric Ind Co Ltd | Biosensor and supporting system using it |
JP2012171944A (en) * | 2011-02-24 | 2012-09-10 | Kyushu Univ | θ WAVE EXPRESSION ENHANCING AGENT |
JP2015054002A (en) * | 2013-09-11 | 2015-03-23 | 株式会社日立システムズ | Examination system for fatigue and stress |
JP2018140162A (en) * | 2017-02-28 | 2018-09-13 | パナソニックIpマネジメント株式会社 | Work appropriateness determination system |
-
2019
- 2019-02-22 JP JP2019029931A patent/JP7141960B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005095307A (en) * | 2003-09-24 | 2005-04-14 | Matsushita Electric Ind Co Ltd | Biosensor and supporting system using it |
JP2012171944A (en) * | 2011-02-24 | 2012-09-10 | Kyushu Univ | θ WAVE EXPRESSION ENHANCING AGENT |
JP2015054002A (en) * | 2013-09-11 | 2015-03-23 | 株式会社日立システムズ | Examination system for fatigue and stress |
JP2018140162A (en) * | 2017-02-28 | 2018-09-13 | パナソニックIpマネジメント株式会社 | Work appropriateness determination system |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114469037A (en) * | 2022-01-29 | 2022-05-13 | 武汉大学 | High-reliability heart rate measurement method based on millimeter wave radar |
CN114469037B (en) * | 2022-01-29 | 2024-01-12 | 武汉大学 | Heart rate measuring method based on millimeter wave radar |
Also Published As
Publication number | Publication date |
---|---|
JP7141960B2 (en) | 2022-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Tekok-Kilic et al. | Stimulus modality and Go/NoGo effects on P3 during parallel visual and auditory continuous performance tasks | |
JP7191159B2 (en) | Computer program and method of providing subject's emotional state | |
JP6579890B2 (en) | Fatigue meter | |
JP6513005B2 (en) | Fatigue meter | |
DE102012002037A1 (en) | Device for analyzing state e.g. health of driver, has processing module to analyze time-and-frequency-domain HRV parameters in digital signal to display stress state and activity of nervous system of driver on traffic light system | |
JP2014100227A (en) | Concentration degree estimation apparatus, concentration degree estimation method, driving assistance apparatus, and driving assistance method | |
JPH07231880A (en) | Stress evaluation method and device therefor | |
JPH11511036A (en) | Apparatus and method for time-dependent power spectrum analysis of physiological signals | |
KR101534809B1 (en) | Multidimensional physiological signal-based method which evaluates the efficiency of audio-video content devised to enhance the attention abilities of humans | |
JPH07143972A (en) | Method and apparatus for judging sleeping condition | |
KR20200066290A (en) | Method and device for detecting stress using ECG function between beats | |
JP7141960B2 (en) | mind and body management system | |
KR102719232B1 (en) | Massage device, system and method capable of inducing individual parameters | |
WO2019189678A1 (en) | Fatigue determination device, fatigue determination method, and program | |
EP3316768B1 (en) | Device and method for monitoring and measuring the autoregulation mechanism of the blood pressure in a living being | |
JP2017064364A (en) | Biological state estimation apparatus, biological state estimation method, and computer program | |
Kong et al. | Estimation for driver fatigue with phase locking value | |
EP2862509B1 (en) | Psychiatric symptom and psychiatric disorder onset risk evaluator using heart rate variability index | |
JP3048918B2 (en) | Concentration estimation device | |
JP4255598B2 (en) | Mental burden evaluation method, vehicle performance evaluation method, tire performance evaluation method and mental burden evaluation apparatus using the same | |
US20220183619A1 (en) | Method for classifying a polysomnography recording into defined sleep stages | |
WO2013140585A1 (en) | Status estimation device | |
JP7280543B2 (en) | Loss of consciousness estimation device, loss of consciousness estimation method and program | |
JP7323848B2 (en) | Loss of consciousness estimation device, loss of consciousness estimation method and program | |
JP6550952B2 (en) | Method and apparatus for analyzing electroencephalogram |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210820 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220614 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220617 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220726 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220817 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220912 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7141960 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |