JP2020113631A - High frequency superconducting laminate - Google Patents
High frequency superconducting laminate Download PDFInfo
- Publication number
- JP2020113631A JP2020113631A JP2019002966A JP2019002966A JP2020113631A JP 2020113631 A JP2020113631 A JP 2020113631A JP 2019002966 A JP2019002966 A JP 2019002966A JP 2019002966 A JP2019002966 A JP 2019002966A JP 2020113631 A JP2020113631 A JP 2020113631A
- Authority
- JP
- Japan
- Prior art keywords
- spiral
- coil
- superconductor coil
- dielectric
- spiral superconductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002887 superconductor Substances 0.000 claims abstract description 126
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 4
- 239000004020 conductor Substances 0.000 abstract description 5
- 229910052761 rare earth metal Inorganic materials 0.000 abstract description 5
- 150000002910 rare earth metals Chemical class 0.000 abstract description 3
- 238000004088 simulation Methods 0.000 description 15
- 239000000463 material Substances 0.000 description 9
- 238000000034 method Methods 0.000 description 7
- 230000005540 biological transmission Effects 0.000 description 6
- 239000010408 film Substances 0.000 description 6
- 239000004576 sand Substances 0.000 description 6
- 239000013078 crystal Substances 0.000 description 5
- 230000001681 protective effect Effects 0.000 description 5
- 238000005481 NMR spectroscopy Methods 0.000 description 4
- 238000003876 NQR spectroscopy Methods 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 229910052594 sapphire Inorganic materials 0.000 description 4
- 239000010980 sapphire Substances 0.000 description 4
- 238000001514 detection method Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 239000003989 dielectric material Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 2
- 239000005751 Copper oxide Substances 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 229910000431 copper oxide Inorganic materials 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000002595 magnetic resonance imaging Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000011241 protective layer Substances 0.000 description 2
- 241000954177 Bangana ariza Species 0.000 description 1
- 229910004247 CaCu Inorganic materials 0.000 description 1
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 229910052689 Holmium Inorganic materials 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 229910052775 Thulium Inorganic materials 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 239000002117 illicit drug Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005488 sandblasting Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Description
本発明は、超伝導体、特に、誘電体支持体に挟まれた渦巻状超伝導体コイルを備える高周波用超伝導積層体に関する。 The present invention relates to a superconductor, and particularly to a high frequency superconducting laminate including a spiral superconductor coil sandwiched between dielectric supports.
高周波帯(数KHz〜数100MHz)で用いられる共振器には、核磁気共鳴を用いたMRI及びNMR装置の共鳴信号を受信するための検出コイル(共振器)、核四極共鳴(NQR)を用いた爆発物や不正薬物探知装置の検出コイル(共振器)、近年注目されている無線電力伝送(WPT)に用いられる送受電コイル(共振器)などがある。 For the resonator used in the high frequency band (several KHz to several 100 MHz), the detection coil (resonator) for receiving the resonance signal of MRI and NMR equipment using nuclear magnetic resonance, and the nuclear quadrupole resonance (NQR) are used. There are explosives and detection coils (resonators) for illicit drug detection devices, and power transmission/reception coils (resonators) used for wireless power transmission (WPT), which has been attracting attention recently.
これら装置の性能(例えば、感度及び伝送効率)を改善する最も基本的な方法は、高いQ値(導体損失が低い)のコイルを用いることである。 The most basic way to improve the performance (eg sensitivity and transmission efficiency) of these devices is to use high Q factor (low conductor loss) coils.
しかしながら、これらコイルは、通常、銅線を用いて作製されており、これ以上導体損失を低減できない。従って、高いQ値を実現できずMRI、NMR、NQR、WPTの性能改善は限界を迎えている。 However, these coils are usually made of copper wire, and the conductor loss cannot be further reduced. Therefore, the high Q value cannot be realized, and the improvement in the performance of MRI, NMR, NQR, and WPT has reached the limit.
この問題を解決できる方法のひとつとして「超伝導体」の利用がある。 One of the ways to solve this problem is to use "superconductor".
超伝導体は、直流の場合、無損失であり、高周波帯では銅と比較して3桁以上低い導体損失となることが期待できる。従って、超伝導体をコイルに用いることで飛躍的に高いQ値を実現でき、各種装置の性能改善が期待できる。 Superconductors are lossless in the case of direct current, and can be expected to have conductor loss three or more orders of magnitude lower than that of copper in the high frequency band. Therefore, by using a superconductor for the coil, a dramatically high Q value can be realized, and improvement in the performance of various devices can be expected.
しかしながら、現在実用化されている直流用途に開発された希土類系超伝導線材は、直流では無損失であるが高周波帯では導体損失がさほど小さくならないため、それを用いて上記コイルを作製しても高いQ値を実現できなかった。また、超伝導薄膜基板は、平面構造であり、大面積化が困難である。 However, the rare earth-based superconducting wire developed for direct current applications that is currently in practical use has no loss in direct current, but the conductor loss does not become so small in the high frequency band. We could not achieve a high Q value. Further, the superconducting thin film substrate has a planar structure, and it is difficult to increase the area.
よって超伝導材料の高周波帯での応用は未開拓であった。非特許文献1は、超伝導線材の新しい構造(高周波用超伝導線材)を提案し、上記問題の解決を図っている。 Therefore, the application of superconducting materials in the high frequency band was unexplored. Non-Patent Document 1 proposes a new structure of a superconducting wire (a high-frequency superconducting wire) to solve the above problem.
しかしなら、非特許文献1には、(1)超伝導線材の貼り合わせ方法、(2)超伝導線材を支持するための構造、及び(3)保護膜の薄膜化など、高周波用超伝導線材を実現するために解決すべき課題が存在していた。 However, in Non-Patent Document 1, high-frequency superconducting wires such as (1) a method for bonding the superconducting wires, (2) a structure for supporting the superconducting wires, and (3) a thin protective film. There were problems to be solved in order to realize.
本発明者らは、超伝導バルクから製造された渦巻状超伝導体コイルを用いて上記課題の解決を図った。しかしながら、超伝導バルクの直径を大きくすることは技術的に困難なため、単純にコイルの直径を大きくすることで渦巻状超伝導体コイルの巻き数を増やすことは容易ではない。また、渦巻状超伝導体コイルの共振周波数を下げるためには渦巻状超伝導体コイルの巻き数を増やすことが好ましいが、上述のように渦巻状超伝導コイルの直径を大きくすることは困難なため、渦巻状超伝導体コイルの線間距離と線幅を狭めることにより巻き数を増やすことを検討したが、線間距離と線幅を狭めるとQ値が低下してしまうことが判明した。即ち、高いQ値を維持したまま渦巻状超伝導体コイルの共振周波数を下げるのには限界があった。 The present inventors have attempted to solve the above problems by using a spiral superconductor coil manufactured from a superconducting bulk. However, since it is technically difficult to increase the diameter of the superconducting bulk, it is not easy to increase the number of turns of the spiral superconductor coil by simply increasing the diameter of the coil. Further, in order to reduce the resonance frequency of the spiral superconductor coil, it is preferable to increase the number of turns of the spiral superconductor coil, but it is difficult to increase the diameter of the spiral superconductor coil as described above. Therefore, we examined increasing the number of turns by narrowing the wire distance and wire width of the spiral superconductor coil, but it was found that the Q value decreases when the wire distance and wire width are narrowed. That is, there is a limit to lowering the resonance frequency of the spiral superconductor coil while maintaining a high Q value.
そこで、本発明者らは、鋭意研究の結果、渦巻状超伝導体コイルが誘電体支持体で挟まれた超伝導積層体を用いることで上記課題をすべて解決することを明らかにした。 Therefore, as a result of earnest research, the present inventors have revealed that all of the above problems can be solved by using a superconducting laminate in which a spiral superconductor coil is sandwiched by dielectric supports.
本発明は、
少なくとも1つの渦巻状超伝導体コイルと、
少なくとも2つの誘電体支持体と、を備え、
上記渦巻状超伝導体は、上記誘電体支持体に挟まれており、
上記誘電体支持体の誘電体損失は、7.0×10−5以下である、
高周波用超伝導積層体
である。
The present invention is
At least one spiral superconductor coil;
At least two dielectric supports,
The spiral superconductor is sandwiched between the dielectric supports,
The dielectric loss of the dielectric support is 7.0×10 −5 or less,
It is a superconducting laminate for high frequencies.
かかる超伝導積層体は、(1)超伝導線材の貼り合せを必要とせず、(2)コイル形状を維持するための構造を必要とせず、(3)保護膜の成膜工程が超伝導線材とは異なるため、保護膜の薄膜化も容易にできるという利点を有する。 Such a superconducting laminated body does not require (1) the bonding of the superconducting wire, (2) does not need a structure for maintaining the coil shape, and (3) the superconducting wire is formed by the step of forming the protective film. Therefore, there is an advantage that the protective film can be easily thinned.
別途規定されない限り、本願で使用される全ての技術用語及び科学用語は、本発明が属する技術分野の当業者が一般的に理解するのと同じ意味を有する。文脈で別途明記されない限り、単数形「a」、「an」及び「the」は複数の言及を含む。 Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The singular forms "a", "an" and "the" include plural references unless the context clearly dictates otherwise.
本発明で示す数値範囲及びパラメーターは、近似値であるが、特定の実施例に示されている数値は可能な限り正確に記載している。しかしながら、いずれの数値も本質的に、それぞれの試験測定値に見られる標準偏差から必然的に生じる特定の誤差を含んでいる。また、本明細書で使用する「約」という用語は、一般に、所与の値又は範囲の10%、5%、1%又は0.5%以内を意味する。或いは、用語「約」は、当業者が考慮する場合、許容可能な標準誤差内にあることを意味する。 The numerical ranges and parameters given in the present invention are approximations, but the numerical values given in the specific examples are stated as accurately as possible. However, any numerical value inherently contains certain errors necessarily resulting from the standard deviation found in their respective testing measurements. Also, the term "about" as used herein generally means within 10%, 5%, 1%, or 0.5% of a given value or range. Alternatively, the term “about” means within an acceptable standard error when considered by one of skill in the art.
第一実施形態
本実施形態にかかる高周波用超伝導積層体は、1つの渦巻状超伝導体コイルと、2つの誘電体支持体と、を備え、上記渦巻状超伝導体は、上記誘電体支持体に挟まれており、誘電体支持体の誘電体損失は、7.0×10−5以下である。
First Embodiment A high frequency superconducting laminate according to the present embodiment includes one spiral superconductor coil and two dielectric supports, and the spiral superconductor is the dielectric support. It is sandwiched between the bodies, and the dielectric loss of the dielectric support is 7.0×10 −5 or less.
高周波用超伝導積層体
図1は、本実施形態にかかる、1つの渦巻状超伝導体コイル10を2つの誘電体支持体20(第一誘電体支持体21と第二誘電体支持体22)が挟む構造の高周波用超伝導積層体1の展開図を示している。図2は、本実施形態にかかる、1つの渦巻状超伝導体コイル10を2つ誘電体支持体20(第一誘電体支持体21と第二誘電体支持体22)が挟んだ状態にある高周波用超伝導積層体1の斜視断面図を示している。図2の通り、高周波用超伝導積層体1の使用時は、渦巻状超伝導体コイル10は、第一誘電体支持体20aと第二誘電体支持体20bに挟まれている。即ち、高周波用超伝導積層体1の使用時は、第一誘電体支持体20aは、渦巻状超伝導体コイル10の一方の面と接しており、第二誘電体支持体20bは、渦巻状超伝導体コイル10の他方の面と接している。渦巻状超伝導体コイル10の一方の面及び他方の面は、渦巻状超伝導体コイル10の中心軸が垂直に通過する面を指し、互いに裏表の関係にある。高周波用超伝導積層体1における渦巻状超伝導体コイル10のQ値は、好ましくは、10000以上であり、より好ましくは18000以上であり、更に好ましくは20000以上である。
High Frequency Superconducting Laminated Body FIG. 1 shows one spiral superconductor coil 10 according to the present embodiment with two dielectric supports 20 (first dielectric support 21 and second dielectric support 22). The development view of the high frequency superconducting laminated body 1 of the structure sandwiched between is shown. FIG. 2 shows a state in which one spiral superconductor coil 10 according to the present embodiment is sandwiched by two dielectric supports 20 (first dielectric support 21 and second dielectric support 22). The perspective sectional view of the superconducting laminated body 1 for high frequencies is shown. As shown in FIG. 2, when the high-frequency superconducting laminate 1 is used, the spiral superconductor coil 10 is sandwiched between the first dielectric support 20a and the second dielectric support 20b. That is, when the high-frequency superconducting laminate 1 is used, the first dielectric support 20a is in contact with one surface of the spiral superconductor coil 10 and the second dielectric support 20b is spiral. It is in contact with the other surface of the superconductor coil 10. The one surface and the other surface of the spiral superconductor coil 10 are surfaces on which the central axis of the spiral superconductor coil 10 passes vertically, and are in a front-back relationship with each other. The Q value of the spiral superconductor coil 10 in the high frequency superconducting laminate 1 is preferably 10000 or more, more preferably 18000 or more, and further preferably 20000 or more.
渦巻状超伝導体コイル
渦巻状超伝導体コイル10は、平面上における渦巻き形状を有する超伝導体コイルである。渦巻状超伝導体コイル10の直径は、特に限定するものではないが、渦巻状超伝導体コイル10の製造時に使用する超伝導バルクの直径と略同一であってもよい。渦巻状超伝導体コイル10の厚さは、実際の実施環境に基づいて決定してもよく、例えば、1、2、3、4、5、6、7、8、9、10mmのうちの任意の二点間の範囲内の厚さであってもよく、10mmを超える厚さであってもよい。
Spiral Superconductor Coil The spiral superconductor coil 10 is a superconductor coil having a spiral shape on a plane. The diameter of the spiral superconductor coil 10 is not particularly limited, but may be substantially the same as the diameter of the superconducting bulk used when manufacturing the spiral superconductor coil 10. The thickness of the spiral superconductor coil 10 may be determined based on the actual environment of implementation, for example, any of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 mm. The thickness may be in the range between the two points or may be more than 10 mm.
渦巻状超伝導体コイル10の超伝導材料は、限定するものではないが、合金系材料、銅系酸化物超伝導体材料、及び鉄系超伝導物質からなる群より選択される。合金系材料は、限定するものではないが、NbTi、Nb3Sn、MgB2及びNbNからなる群より選択される。銅系酸化物超伝導体材料は、Bi2Sr2CaCu2O8、Bi2Sr2Ca2Cu3O10、YBa2Cu3O7及びREBa2Cu3O7からなる群より選択される(ただし、RE(希土類元素)は、La、Pr、Nd、Sm、Eu、Gd、Dy、Ho、Er、Tm、Yb及びLuからなる群より選択される)。 The superconducting material of the spiral superconductor coil 10 is selected from the group consisting of, but not limited to, an alloy material, a copper oxide superconductor material, and an iron superconductor material. The alloy-based material is selected from, but is not limited to, the group consisting of NbTi, Nb 3 Sn, MgB 2 and NbN. Copper oxide superconductor material is selected from the group consisting of Bi 2 Sr 2 CaCu 2 O 8 , Bi 2 Sr 2 Ca 2 Cu 3 O 10, YBa 2 Cu 3 O 7 and REBa 2 Cu 3 O 7 (However, RE (rare earth element) is selected from the group consisting of La, Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb and Lu).
渦巻状超伝導体コイル10は、例えば、超伝導体材料を結晶化させて得られた超伝導バルクをコイル形状に加工する方法(GF法)、又は、超伝導体材料の成分からなる前駆体をコイル形状に加工した後結晶化させる方法(FG法)によって製造することができる。 The spiral superconductor coil 10 is, for example, a method of processing a superconducting bulk obtained by crystallizing a superconductor material into a coil shape (GF method), or a precursor composed of components of the superconductor material. Can be manufactured by a method (FG method) in which the is processed into a coil shape and then crystallized.
超伝導バルクは、部分溶融状態からゆっくり冷やして結晶を成長させる溶融結晶方法によって製造してもよい。超伝導バルクは、単結晶状であることが望ましい。ここで、「単結晶状」とは、完璧な単結晶という意味であってもよく、実用に差し支えない欠陥(小傾角粒界など)を有する単結晶という意味であってもよい。 The superconducting bulk may be produced by a melt crystallization method in which a partially melted state is slowly cooled to grow crystals. The superconducting bulk is preferably single crystal. Here, the term "single crystal" may mean a perfect single crystal or a single crystal having a defect (such as a small tilt grain boundary) that does not interfere with practical use.
渦巻状超伝導体コイル10は、超伝導バルクに渦巻状の溝を形成することによって製造することができる。その製造方法は、例えば、(1)超伝導バルクを所定の厚さにスライスし円盤状に加工する工程と、(2)スライスされた超伝導バルクに渦巻状の溝を形成する工程を含む。スライス加工は、ダイヤモンド粉末を埋め込んだブレード等による切断加工が適している。渦巻加工は、小型のダイヤモンドポイント又はサンドブラスト加工によって実施することができる。 The spiral superconductor coil 10 can be manufactured by forming spiral grooves in the superconducting bulk. The manufacturing method includes, for example, (1) a step of slicing the superconducting bulk into a predetermined thickness and processing it into a disk shape, and (2) a step of forming a spiral groove in the sliced superconducting bulk. For the slicing process, a cutting process using a blade having diamond powder embedded therein is suitable. Swirl processing can be performed by small diamond point or sandblasting.
渦巻状超伝導体コイル10の線間距離gは、渦巻状超伝導体コイル10のQ値が10000以上であることを実現することができるのであれば特に限定するものではないが、0.2mm以上であることが好ましく、例えば、0.2、0.5、0.6、0.7、0.8、0.9、1.0、1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9、2.0、2.1、2.2、2.3、2.4、2.5、2.6、2.7、2.8、2.9、3.0、3.1、3.2、3.3、3.4、3.5、3.6、3.7、3.8、3.9、4.0、4.1、4.2、4.3、4.4、4.5、4.6、4.7、4.8、4.9及び5.0mmのうちの任意の2点間の範囲内である。 The line-to-line distance g of the spiral superconductor coil 10 is not particularly limited as long as it is possible to realize that the Q value of the spiral superconductor coil 10 is 10,000 or more, but 0.2 mm or more. Preferably, for example, 0.2, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4.0, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9 and It is within a range between any two points of 5.0 mm.
渦巻状超伝導体コイル10の線路幅wは、渦巻状超伝導体コイル10のQ値が10000以上であることを実現することができるのであれば特に限定するものではないが、1.5、1.6、1.7、1.8、1.9、2.0、2.1、2.2、2.3、2.4及び2.5mmのうちの任意の2点間の範囲内であることが好ましい。 The line width w of the spiral superconductor coil 10 is not particularly limited as long as it is possible to realize that the Q value of the spiral superconductor coil 10 is 10000 or more, but 1.5, 1.6, It is preferably within a range between any two points of 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4 and 2.5 mm.
渦巻状超伝導体コイル10のQ値が10000以上であることを実現することができるのであれば、渦巻状超伝導体コイル10には、任意の保護層又は保護膜が設けられてもよいが、保護層又は保護膜は必須ではない。好ましくは、渦巻状超伝導体コイル10は、その表面に人工的な層又は膜形成加工が施されていない。渦巻状超伝導体コイル10のQ値が10000以上であることを実現することができるのであれば、渦巻状超伝導体コイル10の線間を、任意の物質で埋めてもよいが、任意の物質で埋める必要はない。渦巻状超伝導体コイル10の線間は、好ましくは空気が満たされており、より好ましくは真空である。渦巻状超伝導体コイル10の線間を真空とする場合は、高周波用超伝導積層体1は、その内部を真空にすることが可能な密閉された構造であってもよく、高周波用超伝導積層体1を覆う装置の内部を真空にすることが可能な密閉された構造であってもよい。 If it is possible to realize that the Q value of the spiral superconductor coil 10 is 10000 or more, the spiral superconductor coil 10 may be provided with any protective layer or protective film. A protective layer or protective film is not essential. Preferably, the spiral superconductor coil 10 has no artificial layer or film forming process on its surface. If it is possible to realize that the Q value of the spiral superconductor coil 10 is 10,000 or more, the space between the spiral superconductor coils 10 may be filled with any substance, but No need to fill with material. The space between the spiral superconductor coils 10 is preferably filled with air, more preferably a vacuum. When the space between the spiral superconductor coils 10 is to be evacuated, the high frequency superconducting laminate 1 may have a sealed structure capable of forming a vacuum inside. It may be a closed structure capable of creating a vacuum inside the device that covers the laminate 1.
誘電体支持体
誘電体支持体20の寸法は、渦巻状超伝導体コイル10を挟んだ際に、渦巻状超伝導体コイル10が覆われる寸法である。誘電体支持体20の形状は、円盤形状であってもよく、四角い板形状であってもよい。また、例えば十字形状などのように、渦巻状超伝導体コイル10の一部が覆われていない形状でもよい。第一誘電体支持体21の寸法は、第二誘電体支持体22の寸法は同一であってもよく、互いに異なる寸法であってもよい。
Dielectric Support The size of the dielectric support 20 is such that the spiral superconductor coil 10 is covered when the spiral superconductor coil 10 is sandwiched. The dielectric support 20 may have a disc shape or a rectangular plate shape. Further, it may have a shape in which a part of the spiral superconductor coil 10 is not covered, such as a cross shape. Regarding the dimensions of the first dielectric support 21, the dimensions of the second dielectric support 22 may be the same or different from each other.
誘電体支持体20の誘電体損失は、渦巻状超伝導体コイル10のQ値が10000以上であることを実現することができるのであれば特に限定するものではないが、好ましくは7.0×10−5以下であり、より好ましくは1.0×10−5以下であり、更に好ましくは1.0×10−6以下である。誘導体支持体は、MgO又はAl2O3(サファイア)でできていいてもよく、好ましくはAl2O3(サファイア)でできている。Al2O3(サファイア)は、高熱伝導率を有するため、冷凍機冷却をする場合において冷凍機のコールドヘッドから熱伝導を利用して渦巻状超伝導コイルを冷却することができる。すなわち、渦巻状超伝導体コイル10のQ値を高い値に維持したまま渦巻状超伝導体コイル10の冷却を行うことができる. The dielectric loss of the dielectric support 20 is not particularly limited as long as it can realize that the Q value of the spiral superconductor coil 10 is 10000 or more, but it is preferably 7.0×. It is 10 −5 or less, more preferably 1.0×10 −5 or less, and further preferably 1.0×10 −6 or less. The derivative support may be made of MgO or Al 2 O 3 (sapphire), preferably Al 2 O 3 (sapphire). Since Al 2 O 3 (sapphire) has a high thermal conductivity, it is possible to cool the spiral superconducting coil by utilizing heat conduction from the cold head of the refrigerator when cooling the refrigerator. That is, the spiral superconductor coil 10 can be cooled while the Q value of the spiral superconductor coil 10 is maintained at a high value.
誘電体支持体20の厚さは、所望の共振周波数に応じて変更することが可能であり、0.5、1、2、3、4、5、6、7、8、9、10mmのうちの任意の二点間の範囲内の厚さであってもよく、実際の実施環境に基づいて、10mmを超える厚さであってもよい。 The thickness of the dielectric support 20 can be changed according to a desired resonance frequency, and is 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 mm. May be in the range between any two points, and may be more than 10 mm based on the actual operating environment.
第二実施形態
図3は、本実施形態にかかる、2つの渦巻状超伝導体コイル100(第一渦巻状超伝導体コイル101、第二渦巻状超伝導体コイル102)と、3つの誘電体支持体200(第一誘電体支持体201、第二誘電体支持体202、第三誘電体支持体203)と、を備える高周波用超伝導積層体2の展開図を示している。第一渦巻状超伝導体コイル101は、第一誘電体支持体201と第二誘電体支持体202に挟まれる。第二渦巻状超伝導体コイル102は、第二誘電体支持体202と第三誘電体支持体203に挟まれる。なお、高周波用超伝導積層体1における渦巻状超伝導体コイル10と誘電体支持体20の各種条件・パラメーター等は、高周波用超伝導積層体2における渦巻状超伝導体コイル100と誘電体支持体200の各種条件・パラメーター等にも当てはまる。
Second Embodiment FIG. 3 shows two spiral superconductor coils 100 (first spiral superconductor coil 101, second spiral superconductor coil 102) and three dielectrics according to the present embodiment. The development view of the high frequency superconducting laminated body 2 including the support body 200 (first dielectric support body 201, second dielectric support body 202, third dielectric support body 203) is shown. The first spiral superconductor coil 101 is sandwiched between a first dielectric support 201 and a second dielectric support 202. The second spiral superconductor coil 102 is sandwiched between the second dielectric support 202 and the third dielectric support 203. Various conditions and parameters of the spiral superconductor coil 10 and the dielectric support 20 in the high frequency superconducting laminate 1 are determined by the spiral superconductor coil 100 and the dielectric support in the high frequency superconducting laminate 2. The same applies to various conditions and parameters of the body 200.
第一渦巻状超伝導体コイル101の中心軸は、第二渦巻状超伝導体コイル102の中心軸と同一直線上に存在している。第一渦巻状超伝導体コイル101の渦巻方向は、第二渦巻状超伝導体コイル102の渦巻方向と反対方向である。この対面する二つのコイルの共振周波数が一致していることが重要である。同じ共振周波数のコイルが結合することで,共振周波数が2つにスプリットする。その低周波側の共振周波数を使用することで、コイル1枚のときと同一サイズのコイルを使用しながら、共振周波数を低周波に下げることができる。そのため,同一形状のコイルを2枚用意することがよいが、形状が異なっていても、二つのコイルの共振周波数が合っていれば二つのコイルが結合することで,周波数を下げることができる。すなわち、共振周波数が一致していれば、第一渦巻状超伝導体コイル101の巻き数は、第二渦巻状超伝導体コイル102の巻き数と同じであってもよく、異なっていてもよい。また、第一渦巻状超伝導体コイル101の直径は、第二渦巻状超伝導体コイル102の直径と同じであってもよく、異なっていてもよい。 The central axis of the first spiral superconductor coil 101 exists on the same straight line as the central axis of the second spiral superconductor coil 102. The spiral direction of the first spiral superconductor coil 101 is opposite to the spiral direction of the second spiral superconductor coil 102. It is important that the resonance frequencies of the two coils facing each other match. When the coils with the same resonance frequency are combined, the resonance frequency splits in two. By using the resonance frequency on the low frequency side, the resonance frequency can be lowered to the low frequency while using the coil of the same size as the case of one coil. Therefore, it is preferable to prepare two coils having the same shape, but even if the coils have different shapes, if the resonance frequencies of the two coils match, the two coils can be combined to reduce the frequency. That is, if the resonance frequencies are the same, the number of turns of the first spiral superconductor coil 101 may be the same as or different from the number of turns of the second spiral superconductor coil 102. .. The diameter of the first spiral superconductor coil 101 may be the same as or different from the diameter of the second spiral superconductor coil 102.
対面する二つのコイルのサイズや形状が同じ場合、第一渦巻状超伝導体コイル101の渦巻方向は、第二渦巻状超伝導体コイル102の渦巻方向と同じ向きでもよい。この場合、結合したコイルの共振周波数が下がることはないが、結合したコイルの厚さは対面した二つのコイルのそれぞれの厚さを足し合わせた厚さと同等となるため、単体のコイルの厚さに製造上の制約があるがより厚いコイルの使用が望まれる場合に適用できる。 When the two coils facing each other have the same size and shape, the spiral direction of the first spiral superconductor coil 101 may be the same as the spiral direction of the second spiral superconductor coil 102. In this case, the resonance frequency of the combined coil does not decrease, but the thickness of the combined coil is the same as the sum of the thicknesses of the two facing coils. This is applicable when there are manufacturing restrictions, but it is desired to use thicker coils.
シミュレーション1
図4は、本実施形態にかかる高周波用超伝導積層体1における渦巻状超伝導体コイル10の線間距離(gap)gと線路幅wによるQ値の変化のシミュレーション結果を示すグラフである。シミュレーションには、3次元電磁界シミュレーター(CST Studio Suite)を用いた。渦巻状超伝導体コイル10の導電率が9×1011S/m、渦巻状超伝導体コイル10の直径が65mm、渦巻状超伝導体コイル10の厚さが1mm、渦巻状超伝導体コイル10の線路幅wが1.5mm、2.0mm及び2.5mmの間の場合、渦巻状超伝導体コイル10の線間距離gを0.2mmから5.0mmに設定することで、Q値10000以上を実現することができることが明らかになった。
Simulation 1
FIG. 4 is a graph showing simulation results of changes in the Q value depending on the line distance (gap) g of the spiral superconductor coil 10 and the line width w in the high frequency superconducting laminate 1 according to the present embodiment. A three-dimensional electromagnetic field simulator (CST Studio Suite) was used for the simulation. The conductivity of the spiral superconductor coil 10 is 9×10 11 S/m, the diameter of the spiral superconductor coil 10 is 65 mm, the thickness of the spiral superconductor coil 10 is 1 mm, and the spiral superconductor coil 10 is When the line width w of 10 is between 1.5 mm, 2.0 mm and 2.5 mm, the Q value of 10,000 or more is realized by setting the line distance g of the spiral superconductor coil 10 from 0.2 mm to 5.0 mm. It became clear that it was possible.
図5は、本実施形態にかかる高周波用超伝導積層体1における誘電体支持体の誘電体損失(dielectric loss(loss tangent))とQ値との関係のシミュレーション結果を示すグラフである。渦巻状超伝導体コイル10の導電率が9×1011S/m、渦巻状超伝導体コイル10の直径が65mm、渦巻状超伝導体コイル10の厚さが1mm、渦巻状超伝導体コイル10の線路幅wを1.5mm、渦巻状超伝導体コイル10の線間距離gを0.95mm、誘電体支持体の比誘電率eを9.9とした場合、7.0×10-5以下の誘電体損失を持つ誘電体支持体を使用することで、Q値10000以上を実現することができることが明らかになった。 FIG. 5 is a graph showing simulation results of the relationship between the dielectric loss (dielectric loss (loss tangent)) of the dielectric support and the Q value in the high-frequency superconducting laminate 1 according to the present embodiment. The conductivity of the spiral superconductor coil 10 is 9×10 11 S/m, the diameter of the spiral superconductor coil 10 is 65 mm, the thickness of the spiral superconductor coil 10 is 1 mm, and the spiral superconductor coil 10 is When the line width w of 10 is 1.5 mm, the line distance g of the spiral superconductor coil 10 is 0.95 mm, and the relative permittivity e of the dielectric support is 9.9, the dielectric loss is 7.0×10 -5 or less. It was revealed that a Q value of 10,000 or more can be realized by using a dielectric support having
図6は、本実施形態にかかる高周波用超伝導積層体1における誘電体支持体の比誘電率(relative dielectric constant)と共振周波数(resonance frequency [MHz])との関係のシミュレーション結果を示すグラフである。渦巻状超伝導体コイル10の導電率が9×1011S/m、渦巻状超伝導体コイル10の直径が65mm、渦巻状超伝導体コイル10の厚さが1mm、渦巻状超伝導体コイル10の線路幅wを1.5mm、渦巻状超伝導体コイル10の線間距離gを0.95mm、誘電体支持体の誘電体損失を1.0×10-7とした。図6に示す通り、誘電体支持体の比誘電率が大きくなるにつれて共振周波数が減少することが明らかになった。 FIG. 6 is a graph showing the simulation result of the relationship between the relative dielectric constant of the dielectric support and the resonance frequency [MHz] in the high frequency superconducting laminate 1 according to the present embodiment. is there. The conductivity of the spiral superconductor coil 10 is 9×10 11 S/m, the diameter of the spiral superconductor coil 10 is 65 mm, the thickness of the spiral superconductor coil 10 is 1 mm, and the spiral superconductor coil 10 is The line width w of 10 was 1.5 mm, the line distance g of the spiral superconductor coil 10 was 0.95 mm, and the dielectric loss of the dielectric support was 1.0×10 −7 . As shown in FIG. 6, it became clear that the resonance frequency decreases as the relative permittivity of the dielectric support increases.
図7は、本実施形態にかかる高周波用超伝導積層体1における誘電体支持体の厚さと共振周波数との関係のシミュレーション結果を示すグラフである。渦巻状超伝導体コイル10の導電率が9×1011S/m、渦巻状超伝導体コイル10の直径が65mm、渦巻状超伝導体コイル10の厚さが1mm、渦巻状超伝導体コイル10の線路幅wを1.5mm、渦巻状超伝導体コイル10の線間距離gを0.95mm、誘電体支持体は、サファイアでできた誘電体支持体を使用した。図7に示す通り、誘電体支持体の厚さが厚くなるにつれて共振周波数が減少することが明らかになった。 FIG. 7 is a graph showing a simulation result of the relationship between the thickness of the dielectric support and the resonance frequency in the high-frequency superconducting laminate 1 according to this embodiment. The conductivity of the spiral superconductor coil 10 is 9×10 11 S/m, the diameter of the spiral superconductor coil 10 is 65 mm, the thickness of the spiral superconductor coil 10 is 1 mm, and the spiral superconductor coil 10 is The line width w of 10 was 1.5 mm, the line distance g of the spiral superconductor coil 10 was 0.95 mm, and the dielectric support was a sapphire dielectric support. As shown in FIG. 7, it was revealed that the resonant frequency decreased as the thickness of the dielectric support increased.
以上のシミュレーションの結果から、誘電体損失が7.0×10-5以下の誘電体支持体を使用することにより、渦巻状超伝導体コイルの直径を変えずに、線路幅wが1.5mm、2.0mm及び2.5mmの間の場合、渦巻状超伝導体コイル10の線間距離gを0.2mmから5.0mmに設定することにより高いQ値を実現できる。また、誘電体支持体の比誘電率を大きくする又は厚さを厚くすることによって、高いQ値を維持したまま渦巻状超伝導体コイルの共振周波数を下げることが可能になった。 From the above simulation results, by using a dielectric support with a dielectric loss of 7.0 × 10 -5 or less, the line width w can be 1.5 mm and 2.0 mm without changing the diameter of the spiral superconductor coil. And 2.5 mm, a high Q value can be realized by setting the line distance g of the spiral superconductor coil 10 from 0.2 mm to 5.0 mm. In addition, by increasing the relative permittivity or increasing the thickness of the dielectric support, it is possible to reduce the resonance frequency of the spiral superconductor coil while maintaining a high Q value.
シミュレーション2
図8は、本実施形態にかかる高周波用超伝導積層体2における第一渦巻状超伝導体コイル101と第二渦巻状超伝導体コイル102の線間距離(gap)gと線路幅wによるQ値の変化のシミュレーション結果を示すグラフである。第一渦巻状超伝導体コイル101と第二渦巻状超伝導体コイル102の導電率、直径、厚さ及び線路幅wがそれぞれ9×1011S/m、65mm、1mm、1.5mmの場合、渦巻状超伝導体コイル10の線間距離gを0.4mmから3.9mmに設定することで、Q値10000以上を実現することができることが明らかになった。また、線路幅wが2.0mmの場合は、渦巻状超伝導体コイル10の線間距離gを0.3mmから3.5mmに設定することで、Q値10000以上を実現することができることが明らかになった。
Simulation 2
FIG. 8 shows Q according to the line distance (gap) g and the line width w of the first spiral superconductor coil 101 and the second spiral superconductor coil 102 in the high-frequency superconducting laminate 2 according to the present embodiment. It is a graph which shows the simulation result of a change of a value. When the conductivity, diameter, thickness and line width w of the first spiral superconductor coil 101 and the second spiral superconductor coil 102 are 9×10 11 S/m, 65 mm, 1 mm and 1.5 mm, respectively, It has been clarified that a Q value of 10,000 or more can be realized by setting the line distance g of the spiral superconductor coil 10 from 0.4 mm to 3.9 mm. Further, when the line width w is 2.0 mm, it is clear that the Q value of 10,000 or more can be realized by setting the line distance g of the spiral superconductor coil 10 from 0.3 mm to 3.5 mm. It was
渦巻状超伝導体コイル10(single、誘電体支持体なし)、高周波用超伝導積層体1(single sand)、第一渦巻状超伝導体コイル101と第二渦巻状超伝導体コイル102(double、誘電体支持体なし)及び高周波用超伝導積層体2(double sand)あの場合のQ値及び共振周波数を求めた。結果を表1に示す。 Spiral superconductor coil 10 (single, no dielectric support), high frequency superconducting laminate 1 (single sand), first spiral superconductor coil 101 and second spiral superconductor coil 102 (double , No dielectric support) and the high frequency superconducting laminate 2 (double sand), and the Q value and the resonance frequency were determined. The results are shown in Table 1.
表1において、Single sandの共振周波数がSingleの共振周波数より低いのは、誘電体によりLC共振の容量成分が増加したためである。Double及びDouble sandにおいて共振周波数がSingleの共振周波数より低いのはコイル間の結合によるものである。Double sandの共振周波数がDoubleの共振周波数より低いのは、誘電体を入れることでよりコイル間の容量結合が強まることと、LC共振の容量成分が増加することで,周波数のシフト量が大幅に増えるからである。 In Table 1, the resonance frequency of the single sand is lower than the resonance frequency of the single because the capacitance component of the LC resonance is increased by the dielectric. In Double and Double sand, the resonance frequency is lower than that of Single due to the coupling between the coils. The resonance frequency of the double sand is lower than that of the double because the capacitive coupling between the coils is strengthened by inserting the dielectric material and the capacitance component of the LC resonance is increased. Because it will increase.
表1の通り、singleからdouble sandにかけて共振周波数は低下している。即ち、渦巻状超伝導体コイルとそれを挟む誘電体支持体の数が多いほど共振周波数を低下させることが明らかとなった。 As shown in Table 1, the resonance frequency decreases from single to double sand. That is, it has been clarified that the larger the number of spiral superconductor coils and the number of dielectric supports sandwiching the spiral superconductor coil, the lower the resonance frequency.
第二実施形態及びシミュレーション2の結果より、以下のことが言える。すなわち、二つのコイルを結合させることで共振周波数を低周波にシフトさせることができる。また、共振周波数は二つのコイルの結合の大きさによって決まる。従って二つのコイル間距離が小さい方が結合が大きくなり、周波数が低周波にシフトする。二つのコイルを対面させることで、浮遊容量をコイル間に閉じ込めることができる。それによって、誘電体が近づいても影響が少なくなる。特に誘電体でコイルを挟んだ方が浮遊容量の閉じ込め効果が大きい。 The following can be said from the results of the second embodiment and the simulation 2. That is, the resonance frequency can be shifted to a low frequency by connecting the two coils. Also, the resonance frequency is determined by the size of the coupling between the two coils. Therefore, the smaller the distance between the two coils is, the larger the coupling becomes, and the frequency shifts to the low frequency. Stray capacitance can be confined between the coils by facing the two coils. This reduces the effect of the dielectric approaching. In particular, the effect of confining stray capacitance is greater when the coil is sandwiched between dielectrics.
本発明による高周波用超伝導積層体は、無線電力伝送用送受電コイルに用いることで伝送効率を飛躍的に改善できる。また、本発明による高周波用超伝導積層体を各種分析装置(NMR,MRI,NQRなど)などのコイルに用いることで分析装置の感度を飛躍的に改善できる。更に、本発明による高周波用超伝導積層体は、高感度高周波アンテナ及び高周波低損失フィルターに用いることができる。 The high-frequency superconducting laminate according to the present invention can dramatically improve the transmission efficiency when used in a power transmission/reception coil for wireless power transmission. Further, by using the high-frequency superconducting laminate according to the present invention in a coil of various analyzers (NMR, MRI, NQR, etc.), the sensitivity of the analyzer can be dramatically improved. Furthermore, the high frequency superconducting laminate according to the present invention can be used for a high sensitivity high frequency antenna and a high frequency low loss filter.
1 高周波用超伝導積層体
2 高周波用超伝導積層体
10 渦巻状超伝導体コイル
100 渦巻状超伝導体コイル
101 第一渦巻状超伝導体コイル
102 第二渦巻状超伝導体コイル
20 誘電体支持体
200 誘電体支持体
21 第一誘電体支持体
22 第二誘電体支持体
201 第一誘電体支持体
202 第二誘電体支持体
203 第三誘電体支持体
g 渦巻状超伝導体コイルの線間距離
w 渦巻状超伝導体コイルの線路幅
DESCRIPTION OF SYMBOLS 1 High-frequency superconducting laminated body 2 High-frequency superconducting laminated body 10 Spiral superconductor coil 100 Spiral superconductor coil 101 First spiral superconductor coil 102 Second spiral superconductor coil 20 Dielectric support Body 200 Dielectric support 21 First dielectric support 22 Second dielectric support 201 First dielectric support 202 Second dielectric support 203 Third dielectric support g Spiral superconductor coil wire Distance w The line width of the spiral superconductor coil
Claims (7)
少なくとも2つの誘電体支持体と、を備え、
前記渦巻状超伝導体は、前記誘電体支持体に挟まれており、
前記誘電体支持体の誘電体損失は、7.0×10−5以下である、
高周波用超伝導積層体。 At least one spiral superconductor coil;
At least two dielectric supports,
The spiral superconductor is sandwiched between the dielectric supports,
The dielectric loss of the dielectric support is 7.0×10 −5 or less,
High frequency superconducting laminate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019002966A JP7290006B2 (en) | 2019-01-10 | 2019-01-10 | High frequency superconducting laminate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019002966A JP7290006B2 (en) | 2019-01-10 | 2019-01-10 | High frequency superconducting laminate |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020113631A true JP2020113631A (en) | 2020-07-27 |
JP7290006B2 JP7290006B2 (en) | 2023-06-13 |
Family
ID=71667272
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019002966A Active JP7290006B2 (en) | 2019-01-10 | 2019-01-10 | High frequency superconducting laminate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7290006B2 (en) |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62241867A (en) * | 1986-04-15 | 1987-10-22 | 旭硝子株式会社 | Insulation substrate |
JPH0582330A (en) * | 1991-09-20 | 1993-04-02 | Furukawa Electric Co Ltd:The | Manufacture of oxide series superconductor coil |
JPH07245211A (en) * | 1994-03-04 | 1995-09-19 | Nippon Steel Corp | Superconducting magnet and its manufacture |
JPH08500436A (en) * | 1992-06-01 | 1996-01-16 | コンダクタス・インコーポレーテッド | Superconducting magnetic resonance probe coil |
JPH0952762A (en) * | 1995-08-11 | 1997-02-25 | Kyocera Corp | Aluminous ceramic composition |
JP2003535631A (en) * | 2000-06-08 | 2003-12-02 | ヴァリアン インコーポレーテッド | Superconducting birdcage coil |
JP2004002137A (en) * | 2002-03-22 | 2004-01-08 | Kyocera Corp | Low-loss alumina sintered compact and its manufacturing method |
JP2005191538A (en) * | 2003-12-02 | 2005-07-14 | Nippon Steel Corp | Working method of oxide superconductor, oxide superconductive element and superconducting magnet |
JP2009170550A (en) * | 2008-01-11 | 2009-07-30 | Nippon Steel Corp | Oxide superconducting magnet, its manufacturing method, and cooling method |
JP2010081295A (en) * | 2008-09-26 | 2010-04-08 | Toshiba Corp | Resonator and filter |
JP2014165383A (en) * | 2013-02-26 | 2014-09-08 | Chubu Electric Power Co Inc | Superconducting coil and method for manufacturing the same |
-
2019
- 2019-01-10 JP JP2019002966A patent/JP7290006B2/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62241867A (en) * | 1986-04-15 | 1987-10-22 | 旭硝子株式会社 | Insulation substrate |
JPH0582330A (en) * | 1991-09-20 | 1993-04-02 | Furukawa Electric Co Ltd:The | Manufacture of oxide series superconductor coil |
JPH08500436A (en) * | 1992-06-01 | 1996-01-16 | コンダクタス・インコーポレーテッド | Superconducting magnetic resonance probe coil |
JPH07245211A (en) * | 1994-03-04 | 1995-09-19 | Nippon Steel Corp | Superconducting magnet and its manufacture |
JPH0952762A (en) * | 1995-08-11 | 1997-02-25 | Kyocera Corp | Aluminous ceramic composition |
JP2003535631A (en) * | 2000-06-08 | 2003-12-02 | ヴァリアン インコーポレーテッド | Superconducting birdcage coil |
JP2004002137A (en) * | 2002-03-22 | 2004-01-08 | Kyocera Corp | Low-loss alumina sintered compact and its manufacturing method |
JP2005191538A (en) * | 2003-12-02 | 2005-07-14 | Nippon Steel Corp | Working method of oxide superconductor, oxide superconductive element and superconducting magnet |
JP2009170550A (en) * | 2008-01-11 | 2009-07-30 | Nippon Steel Corp | Oxide superconducting magnet, its manufacturing method, and cooling method |
JP2010081295A (en) * | 2008-09-26 | 2010-04-08 | Toshiba Corp | Resonator and filter |
JP2014165383A (en) * | 2013-02-26 | 2014-09-08 | Chubu Electric Power Co Inc | Superconducting coil and method for manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
JP7290006B2 (en) | 2023-06-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2122605C (en) | High temperature superconductor-dielectric resonator | |
Ikeda et al. | Thin-film inductor for gigahertz band with CoFeSiO-SiO/sub 2/multilayer granular films and its application for power amplifier module | |
EP2511917B1 (en) | Oxide superconducting bulk magnet member | |
RU2597876C2 (en) | Superconducting coil and superconducting device | |
JP2020129685A (en) | Bulk magnet structure, magnet system for nmr using the same, and magnetization method for bulk magnet structure | |
JP2000500286A (en) | Hybrid high-field superconducting magnet assembly and its manufacturing method | |
US11127514B2 (en) | Superconducting wire, superconducting coil, MRI and NMR | |
JP7290006B2 (en) | High frequency superconducting laminate | |
JP5736216B2 (en) | Superconducting bulk body, manufacturing method thereof, and superconducting bulk magnet | |
JP4865081B2 (en) | Oxide superconducting bulk magnet member | |
US7565188B2 (en) | Superconducting filter device having disk resonators embedded in depressions of a substrate and method of producing the same | |
Fujita et al. | Design and performance of superconducting bulk coil for RF applications | |
JP2006319000A (en) | Material and system for oxide super conductive magnet | |
JP2010038922A (en) | Nmr spiral rf probe coil pair with low external electric field | |
JP4454589B2 (en) | Superconducting filter device and filter characteristic adjusting method | |
JPWO2004077600A1 (en) | Superconductor transmission line | |
Kato et al. | Power-handling capability of superconducting filters using disk-and ring-type bulk resonators | |
Takeda et al. | Angular dependence of resistance and critical current of a Bi-2223 superconducting joint | |
Saito et al. | Dependence of surface resistance in HTS thin films on a DC magnetic field | |
JP7460879B2 (en) | Nuclear magnetic resonance magnetic field generating device and method for producing the same | |
Afford et al. | Low loss sintered dielectric resonators with HTS thick films | |
JP3766448B2 (en) | Superconducting current lead | |
KR101116784B1 (en) | Superconducting disk resonator, method of manufacturing the same and dielectric anisotropy evaluating method | |
Kiani et al. | Designing a self-biased CPW circulator based on strontium hexaferrite thick film | |
JP7205545B2 (en) | Magnet unit for nuclear magnetic resonance and magnetic field generator for nuclear magnetic resonance using oxide superconducting bulk material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20211126 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20221019 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20221025 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20221223 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230110 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230309 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230328 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230406 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230418 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230501 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230519 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7290006 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |