JP2020104211A - Double-head grinding method - Google Patents
Double-head grinding method Download PDFInfo
- Publication number
- JP2020104211A JP2020104211A JP2018245302A JP2018245302A JP2020104211A JP 2020104211 A JP2020104211 A JP 2020104211A JP 2018245302 A JP2018245302 A JP 2018245302A JP 2018245302 A JP2018245302 A JP 2018245302A JP 2020104211 A JP2020104211 A JP 2020104211A
- Authority
- JP
- Japan
- Prior art keywords
- grinding
- ground
- wafer
- thickness
- nanotopography
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02002—Preparing wafers
- H01L21/02005—Preparing bulk and homogeneous wafers
- H01L21/02008—Multistep processes
- H01L21/0201—Specific process step
- H01L21/02013—Grinding, lapping
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B7/00—Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor
- B24B7/10—Single-purpose machines or devices
- B24B7/16—Single-purpose machines or devices for grinding end-faces, e.g. of gauges, rollers, nuts, piston rings
- B24B7/17—Single-purpose machines or devices for grinding end-faces, e.g. of gauges, rollers, nuts, piston rings for simultaneously grinding opposite and parallel end faces, e.g. double disc grinders
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67092—Apparatus for mechanical treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B49/00—Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
- B24B49/02—Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation according to the instantaneous size and required size of the workpiece acted upon, the measuring or gauging being continuous or intermittent
- B24B49/03—Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation according to the instantaneous size and required size of the workpiece acted upon, the measuring or gauging being continuous or intermittent according to the final size of the previously ground workpiece
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B49/00—Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
- B24B49/02—Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation according to the instantaneous size and required size of the workpiece acted upon, the measuring or gauging being continuous or intermittent
- B24B49/04—Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation according to the instantaneous size and required size of the workpiece acted upon, the measuring or gauging being continuous or intermittent involving measurement of the workpiece at the place of grinding during grinding operation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L22/00—Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
- H01L22/20—Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
- H01L22/26—Acting in response to an ongoing measurement without interruption of processing, e.g. endpoint detection, in-situ thickness measurement
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
- Grinding Of Cylindrical And Plane Surfaces (AREA)
- Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
Abstract
Description
本発明は、両頭研削方法に関する。 The present invention relates to a double head grinding method.
従来、被研削物を回転させるとともに当該被研削物の両主面に研削液を供給し、研削ホイールの砥石を被研削物の両主面にそれぞれ当接させることによって、被研削物を研削する両頭研削方法が知られている(例えば、特許文献1参照)。
特許文献1に記載の方法は、砥石の高さが減少するにしたがって、研削液の供給量を少なくすることで、被研削物と砥石との間のハイドロプレーニング効果の低減を図り、各被研削物の研削状態を一定にしている。
Conventionally, an object to be ground is ground by rotating the object to be ground and supplying a grinding liquid to both main surfaces of the object to be ground, and bringing a grinding wheel of a grinding wheel into contact with both main surfaces of the object to be ground. A double-sided grinding method is known (for example, refer to Patent Document 1).
The method described in
しかしながら、特許文献1のような方法では、研削液の流量の変化によって加工雰囲気の温度が変化し、厚さなどの品質の変動を招くおそれがある。
However, in the method as disclosed in
本発明の目的は、ナノトポグラフィが良好でかつ所望の厚さの被研削物を得られる両頭研削方法を提供することにある。 An object of the present invention is to provide a double-sided grinding method in which a nanotopography is good and an object to be ground having a desired thickness can be obtained.
本発明の両頭研削方法は、被研削物を回転させるとともに当該被研削物の両主面に研削液を供給し、研削ホイールの砥石を前記被研削物の両主面にそれぞれ当接させることによって、前記被研削物を研削する研削手段と、前記被研削物の厚さを計測する厚さ計測手段とを備える両頭研削装置を用い、前記厚さ計測手段の計測結果に基づいて、前記被研削物の厚さが所定厚さになるまで研削を行う両頭研削方法であって、第1の被研削物の両主面に所定量の研削液を供給しつつ、前記第1の被研削物の厚さが前記所定厚さになるまで研削を行う第1の研削工程と、前記第1の被研削物のナノトポグラフィを計測するナノトポグラフィ計測工程と、前記ナノトポグラフィ計測工程の計測結果に基づいて、第2の被研削物のナノトポグラフィが0に近づくように研削条件を調整して、前記第2の被研削物の厚さが前記所定厚さになるまで研削を行う第2の研削工程とを備え、前記第2の研削工程は、前記第1の研削工程における研削液の総供給量を維持しつつ、前記第2の被研削物の一方の主面に対する研削液の供給量と他方の主面に対する研削液の供給量との比率を調整して、前記第2の被研削物を研削することを特徴とする。 The double-sided grinding method of the present invention, by rotating the object to be ground and supplying the grinding liquid to both main surfaces of the object to be ground, and bringing the grindstone of the grinding wheel into contact with both main surfaces of the object to be ground, respectively. Using a double-sided grinder equipped with a grinding means for grinding the object to be ground and a thickness measuring means for measuring the thickness of the object to be ground, based on the measurement result of the thickness measuring means, A double-headed grinding method for grinding a material to a predetermined thickness, wherein a predetermined amount of a grinding liquid is supplied to both main surfaces of the first material to be ground, Based on a first grinding step of performing grinding until the thickness reaches the predetermined thickness, a nanotopography measuring step of measuring the nanotopography of the first workpiece, and a measurement result of the nanotopography measuring step. A second grinding step in which the grinding conditions are adjusted so that the nanotopography of the second object to be ground approaches 0, and grinding is performed until the thickness of the second object to be ground reaches the predetermined thickness. In the second grinding step, while maintaining the total amount of the grinding fluid supplied in the first grinding step, the second grinding step supplies the grinding fluid to the one main surface of the second object to be ground and the other. It is characterized in that the second object to be ground is ground by adjusting the ratio with the supply amount of the grinding liquid to the main surface.
本発明の両頭研削方法において、前記厚さ計測手段として、前記被研削物の両主面にそれぞれ接触する一対の接触子を有し、当該一対の接触子の位置に応じた信号を出力することで前記被研削物の厚さを計測する差動トランス型変位計を用いることが好ましい。 In the double-sided grinding method of the present invention, as the thickness measuring means, a pair of contactors respectively contacting both main surfaces of the object to be ground are provided, and a signal corresponding to the position of the pair of contactors is output. It is preferable to use a differential transformer type displacement gauge for measuring the thickness of the object to be ground.
本発明の両頭研削方法において、前記第2の研削工程は、前記第1の被研削物の前記ナノトポグラフィ計測工程の計測結果に基づいて、前記第2の被研削物における前記第1の被研削物の凹んでいる側の主面に対する研削液の供給量を、もう一方の主面に対する研削液の供給量よりも多くなるように前記比率を調整することが好ましい。 In the double-sided grinding method of the present invention, the second grinding step is based on a measurement result of the nanotopography measuring step of the first object to be ground, and the first object to be ground in the second object to be ground. It is preferable to adjust the ratio so that the amount of the grinding liquid supplied to the main surface on the concave side of the object is larger than the amount of the grinding liquid supplied to the other main surface.
本発明によれば、ナノトポグラフィが良好でかつ所望の厚さの被研削物を得られる。 According to the present invention, an object to be ground having good nanotopography and a desired thickness can be obtained.
[本発明の関連技術]
まず、本発明の関連技術を説明する。
〔両頭研削装置の構成〕
図1〜図3に示すように、両頭研削装置1は、研削手段2と、厚さ計測手段としての差動トランス型変位計3と、加工室4と、制御手段5とを備えている。
[Related Technology of the Present Invention]
First, a related technique of the present invention will be described.
[Configuration of double-headed grinding machine]
As shown in FIGS. 1 to 3, the double-
研削手段2は、キャリアリング21と、ウェーハ回転手段22と、第1,第2の研削ホイール23,24と、第1,第2のホイール回転手段25,26と、第1,第2のホイール進退手段27,28と、研削液供給手段29とを備えている。
The grinding means 2 includes a
キャリアリング21は、円環状に形成され、その内部でウェーハWを保持する。
ウェーハ回転手段22は、制御手段5によって制御され、キャリアリング21をウェーハWの中心を中心にして回転させる。
The
The wafer rotating means 22 is controlled by the control means 5 and rotates the
第1,第2の研削ホイール23,24は、略円板状のホイールベース23A,24Aと、このホイールベース23A,24Aの一面の外縁に沿って所定間隔で設けられた複数の砥石23B,24Bとを備えている。ホイールベース23A,24Aの中央には、当該ホイールベース23A,24Aの両面を貫通する研削液供給孔23C,24Cが設けられている。
第1,第2のホイール回転手段25,26は、先端でそれぞれ第1,第2の研削ホイール23,24を保持するスピンドル25A,26Aと、制御手段5によって制御され、スピンドル25A,26Aをそれぞれ回転させる回転用モータ25B,26Bとを備えている。第1のホイール回転手段25は、ウェーハWに対して図1における左側に設けられ、第2のホイール回転手段26は、右側に設けられている。
第1,第2のホイール進退手段27、28は、制御手段5によって制御され、第1,第2のホイール回転手段25,26をウェーハWに対して進退させる。
The first and
The first and second wheel rotating means 25 and 26 are controlled by the
The first and second wheel advancing/retreating means 27, 28 are controlled by the control means 5 to advance/retreat the first and second wheel rotating means 25, 26 with respect to the wafer W.
研削液供給手段29は、制御手段5によって制御され、第1,第2の研削ホイール23,24の研削液供給孔23C,24Cを介して、第1,第2の研削ホイール23,24内に、研削液を供給する。
The grinding fluid supply means 29 is controlled by the control means 5 and is fed into the first and second grinding
差動トランス型変位計3は、一対の信号出力手段31と、各信号出力手段31から下方に延びるアーム32と、各アーム32の先端に設けられた接触子33とを備えている。一対の接触子33は、それぞれウェーハWの第1,第2の主面W1,W2に接触し、ウェーハWの厚みに応じて移動するように設けられている。信号出力手段31は、各接触子33の位置に応じた信号を制御手段5に出力する。
The differential transformer
加工室4は、少なくともウェーハWと、第1,第2の研削ホイール23,24と、差動トランス型変位計3とを内部に配置可能な箱状に形成されており、研削液や研削屑が当該加工室4の外部に飛散することを防止する。
The processing chamber 4 is formed in a box shape in which at least the wafer W, the first and second grinding
制御手段5は、図示しないメモリに接続され、メモリに記憶された各種条件に基づいて、ウェーハWの研削を行う。 The control means 5 is connected to a memory (not shown) and grinds the wafer W based on various conditions stored in the memory.
〔関連技術の両頭研削方法〕
次に、上述の両頭研削装置1を用いた関連技術の両頭研削方法について説明する。
まず、図1に実線で示す位置に第1,第2の研削ホイール23,24が位置し、差動トランス型変位計3の各接触子33がウェーハWの第1,第2の主面W1,W2に接触している状態において、制御手段5は、ウェーハ回転手段22、第1,第2のホイール回転手段25,26、第1,第2のホイール進退手段27、28、研削液供給手段29を制御して、図1に二点鎖線で示すように、ウェーハWの第1,第2の主面W1,W2にそれぞれ第1,第2の研削ホイール23,24を押し当てるとともに、第1,第2の研削ホイール23,24内に研削液を供給し、キャリアリング21および第1,第2の研削ホイール23,24を回転させることで、ウェーハWを研削する。
[Double-head grinding method of related technology]
Next, a related-art double-sided grinding method using the above-described double-sided
First, the first and
このとき、図2に示すように、制御手段5は、ウェーハWおよび第2の研削ホイール24を同図の左側から見て時計回り方向(右回り方向)に回転させるとともに、第1の研削ホイール23を反時計回り方向(左回り方向)に回転させる。また、制御手段5は、第1の主面W1および第2の主面W2に同じ量の研削液を供給する。なお、第1,第2の研削ホイール23,24の回転方向は、上述の方向に限られない。
そして、制御手段5は、差動トランス型変位計3から出力される信号に基づいてウェーハWの厚さを管理し、ウェーハWが予め設定された所定厚さまで研削されたと判断すると、第1,第2の研削ホイール23,24をウェーハWから離して研削を終了する。
At this time, as shown in FIG. 2, the control means 5 causes the wafer W and the
Then, the control means 5 manages the thickness of the wafer W based on the signal output from the differential transformer
[本発明を導くに至った経緯]
本発明者は、鋭意研究を重ねた結果、以下の知見を得た。
〔実験1〕
上述の関連技術の両頭研削方法で得られたウェーハWのナノトポグラフィを計測したところ、第1の主面W1側から見てウェーハWの中心が凹み方向のうねりを持っていることを確認した。なお、ナノトポグラフィとは、ウェーハWを非吸着または弱吸着で載置したときのミリメータ周期に存在する、ナノメーターレンジのうねりであり、広義には平坦度に包含される。
本発明者は、このような現象の発生原因について考察し、研削液流量や砥石23B,24Bの品質のわずかな差や、ウェーハW表面の状態などによって、第1,第2の研削ホイール23,24の摩耗や切れ刃の状態に差が生じ、第1,第2の研削ホイール23,24が研削中に常時接するウェーハWの中心部において、表裏取り代量差が特に顕著に現れ、中央部分に凹みまたは凸の癖が生じるものと推測した。
そこで、本発明者は、考察を行ったところ、研削液の供給量を調整することで、ウェーハWのナノトポグラフィを改善できる可能性があると考え、以下の実験を行った。
[History that led to the present invention]
As a result of earnest studies, the present inventor has obtained the following findings.
[Experiment 1]
When the nanotopography of the wafer W obtained by the double-sided grinding method of the above-mentioned related art was measured, it was confirmed that the center of the wafer W had a waviness in the concave direction when viewed from the first main surface W1 side. Note that the nanotopography is a waviness in the nanometer range that exists in a millimeter cycle when the wafer W is placed without adsorption or weak adsorption, and is broadly included in flatness.
The present inventor considered the cause of such a phenomenon, and determined the first and
Therefore, as a result of consideration, the present inventor considered that there is a possibility that the nanotopography of the wafer W could be improved by adjusting the supply amount of the grinding liquid, and conducted the following experiment.
まず、両頭研削装置1(光洋機械工業株式会社製 型式:DXSG320)を準備した。そして、第1の主面W1および第2の主面W2に1.2L/minずつの研削液を供給しながら、上記関連技術の両頭研削方法を実施して、直径が300mmのウェーハWを所定厚さになるまで研削した(実験例1−1)。
また、第1の主面W1および第2の主面W2に対する研削液の供給量を、1.5L/minずつ(実験例1−2)、1.8L/minずつ(実験例1−3)にしたこと以外は、実験例1と同じ条件で10枚のウェーハWを研削した。
First, a double-sided grinding machine 1 (Model: DXSG320 manufactured by Koyo Machine Industry Co., Ltd.) was prepared. Then, the double-sided grinding method of the related art is carried out while supplying the grinding liquid at 1.2 L/min to each of the first main surface W1 and the second main surface W2, and the wafer W having a diameter of 300 mm is predetermined. It grind|pulverized until it became thickness (Experimental example 1-1).
In addition, the supply amount of the grinding fluid to the first main surface W1 and the second main surface W2 is 1.5 L/min each (Experimental example 1-2) and 1.8 L/min each (Experimental example 1-3). 10 wafers W were ground under the same conditions as in Experimental Example 1 except that
実験例1−1〜1−3の研削方法で、それぞれ10枚ずつのウェーハWを研削し、ナノトポグラフィ計測機(株式会社溝尻光学工業所製 型式:FT−300U)で第1の主面W1のナノトポグラフィを計測した。このときのナノトポグラフィは、第1の主面W1の最外周部の位置を0nmとした場合における、第1の主面W1の表面形状の凹凸のプロファイルを計測するものであり、第1の主面W1の中心のナノトポグラフィを計測し、ウェーハWの中心を通るクロスセクションのプロファイルデータを取得し、そのプロファイルにおけるウェーハWの中央部の数値を評価指標とした。なお、最外周部の値を基準(0nm)とする。その結果を、図4に示す。
図4では、ナノトポグラフィの値が0未満の場合、第1の主面W1の中心が凹んでいることを表し、0を超える場合、中心が突出していることを表す。また、ナノトポグラフィの絶対値が大きいほど、凹み量や突出量が大きいことを表す。
Ten wafers W were each ground by the grinding methods of Experimental Examples 1-1 to 1-3, and the first main surface W1 was measured by a nanotopography measuring machine (Model: FT-300U manufactured by Mizojiri Optical Co., Ltd.). The nanotopography of was measured. The nanotopography at this time measures the profile of the unevenness of the surface shape of the first main surface W1 when the position of the outermost peripheral portion of the first main surface W1 is 0 nm. The nanotopography of the center of the surface W1 was measured, profile data of a cross section passing through the center of the wafer W was acquired, and the numerical value of the central portion of the wafer W in the profile was used as an evaluation index. In addition, the value of the outermost peripheral portion is used as a reference (0 nm). The result is shown in FIG.
In FIG. 4, a nanotopography value of less than 0 indicates that the center of the first principal surface W1 is concave, and a value of more than 0 indicates that the center is protruding. Further, the larger the absolute value of the nanotopography, the larger the depression amount and the protrusion amount.
図4に示すように、研削液の供給量を調整することで、ナノトポグラフィが変化することが確認できた。
このことから、第1の主面W1および第2の主面W2に対する研削液の供給量を調整することで、ウェーハWのナノトポグラフィを改善できる可能性があることを知見した。
As shown in FIG. 4, it was confirmed that the nanotopography was changed by adjusting the supply amount of the grinding fluid.
From this, it was found that there is a possibility that the nanotopography of the wafer W can be improved by adjusting the supply amount of the grinding liquid to the first main surface W1 and the second main surface W2.
〔実験2〕
本発明者は、上記実験1の結果から、研削液の供給量を調整することでウェーハWのナノトポグラフィを改善できる可能性があることを知見したが、実験例1−1,1−3のウェーハWの中心の厚さを計測すると、図5に示すように、実験例1−1の方が実験例1−3よりも1μm程度厚いことが確認できた。
ウェーハWのナノトポグラフィを改善できても、厚さが狙い値と異なってしまうことは好ましくない。
そこで、本発明者は、考察を行ったところ、研削液の供給量調整によって加工室4の温度が変化してしまい、この温度変化に伴い差動トランス型変位計3の計測誤差が生じた結果、ウェーハWの厚さが狙い値と異なってしまった可能性があると考え、以下の実験を行った。
[Experiment 2]
The present inventor has found from the results of
Even if the nanotopography of the wafer W can be improved, it is not preferable that the thickness be different from the target value.
Therefore, as a result of consideration by the present inventor, the temperature of the processing chamber 4 changes due to the adjustment of the supply amount of the grinding fluid, and a measurement error of the differential transformer
まず、差動トランス型変位計3の計測環境温度と計測値との関係を調べた。
差動トランス型変位計3(株式会社東京精密製 型式:PULCOMシリーズ)を準備し、当該差動トランス型変位計3の信号出力手段31の筐体に温度センサ(T&D社製 型式:TR−52i)を取り付けた。所定厚さのウェーハWに接触子33を接触させ、計測環境温度を変化させながら、厚さを計測した。その計測結果を、図6に示す。
図6に示すように、環境温度が上がるほど差動トランス型変位計3の計測値が小さくなることが確認できた。
このことから、差動トランス型変位計3を用いて同じ厚さを狙って研削を行う場合、加工室4内の温度が高いほど、研削が進行していない段階で、ウェーハWが狙い値に到達したとの計測結果が得られるため、ウェーハWが厚くなると推定できる。
First, the relationship between the measured environmental temperature and the measured value of the differential transformer
A differential transformer type displacement meter 3 (manufactured by Tokyo Seimitsu Co., Ltd. model: PULCOM series) is prepared, and a temperature sensor (T&D company model: TR-52i is provided in the housing of the signal output means 31 of the differential transformer type displacement meter 3. ) Was attached. The
As shown in FIG. 6, it was confirmed that the measured value of the differential transformer
Therefore, when the differential transformer
次に、研削液の供給量と加工室4内の温度との関係を調べた。
上記温度センサを信号出力手段31に取り付けた両頭研削装置1を準備し、研削液の供給量を上記実験例1−1と同じにした条件でウェーハWを研削し、研削中の加工室4の温度変化を1秒ごとに計測した(実験例2−1)。
また、研削液の供給量を上記実験例1−3と同じにしたこと以外は、実験例2−1と同じ条件でウェーハWを研削し、研削中の温度変化を計測した(実験例2−2)。
計測結果の平均値を表1に示す。
表1に示すように、実験例2−2の温度が実験例2−1よりも約0.7℃低くなった。これは、研削液が多いほど、研削時のウェーハWの冷却効果が高まり、その結果、供給量が多い実験例2−2における加工室4の温度が低くなったと考えられる。
Next, the relationship between the amount of grinding fluid supplied and the temperature in the processing chamber 4 was investigated.
The double-
Further, the wafer W was ground under the same conditions as in Experimental Example 2-1 except that the supply amount of the grinding liquid was the same as in Experimental Example 1-3, and the temperature change during grinding was measured (Experimental Example 2- 2).
Table 1 shows the average values of the measurement results.
As shown in Table 1, the temperature of Experimental Example 2-2 was about 0.7° C. lower than that of Experimental Example 2-1. It is considered that the larger the amount of grinding liquid, the higher the cooling effect of the wafer W during grinding, and as a result, the temperature of the processing chamber 4 in Experimental Example 2-2 in which the supply amount was large became lower.
図5と表1の結果から、加工室4の温度が高いほど、研削後のウェーハWが厚くなると考えられ、これは、上述の図6の結果に基づく推定と一致する。
このことから、研削液の供給量を調整すると、差動トランス型変位計3の計測誤差が生じ、研削後のウェーハWの厚さが狙い値と異なってしまうことが確認できた。
From the results of FIG. 5 and Table 1, it is considered that the higher the temperature of the processing chamber 4, the thicker the wafer W after grinding, which is consistent with the estimation based on the results of FIG. 6 described above.
From this, it was confirmed that if the supply amount of the grinding liquid was adjusted, a measurement error of the differential transformer
〔実験3〕
実験1の結果から、第1の主面W1および第2の主面W2に対する研削液の供給量を調整することで、ウェーハWのナノトポグラフィを改善できる可能性があることを知見した。また、実験2の結果から、研削液の供給量を調整すると、研削後のウェーハWの厚さが狙い値と異なってしまうことが確認できた。
本発明者は、実験1,2の結果を踏まえ、鋭意研究を重ねた結果、第1,第2の主面W1,W2に対する研削液の総供給量を維持しつつ、第1の主面W1に対する研削液の供給量と第2の主面W2に対する研削液の供給量との比率を調整することで、ウェーハWのナノトポグラフィを改善しつつ、所望の厚さのウェーハWを得られる可能性があると考え、以下の実験を行った。
[Experiment 3]
From the results of
The present inventor has conducted extensive studies based on the results of
実験2と同じ両頭研削装置1と、厚さが約870μmかつ直径が300mmのウェーハWを準備した。そして、以下の表2に示す条件に基づいて、上記関連技術と同じ処理内容の両頭研削方法を実施し、それぞれ10枚ずつのウェーハWを研削するとともに、研削中の加工室4の温度変化を1秒ごとに計測した(実験例3−1〜3−3)。
すなわち、実験例3−1〜3−3では、第1,第2の主面W1,W2に対する研削液の総供給量を2.8L/minで固定し、各主面W1,主面W2に対する供給量の比率を調整した。
The same double-
That is, in Experimental Examples 3-1 to 3-3, the total supply amount of the grinding fluid to the first and second main surfaces W1 and W2 was fixed at 2.8 L/min, and the respective main surfaces W1 and W2 were fixed. The ratio of supply amount was adjusted.
表3に、加工室4内の温度の計測結果の平均値を示す。
表3に示すように、実験例3−1〜3−3の最大温度差は0.1℃であり、研削液の総供給量が同じであれば、第1,第2の主面W1,W2に対する供給量の比率を変更しても、加工室4内の温度はほとんど変化しないことが確認できた。
Table 3 shows the average value of the measurement results of the temperature in the processing chamber 4.
As shown in Table 3, the maximum temperature difference between Experimental Examples 3-1 to 3-3 is 0.1° C., and if the total supply amount of the grinding fluid is the same, the first and second main surfaces W1 and It was confirmed that the temperature inside the processing chamber 4 hardly changed even if the ratio of the supply amount to W2 was changed.
図7に、第1の主面W1の最外周部の位置を0nmとした場合における、第1の主面W1の中心のナノトポグラフィの算出結果を示す。
図7に示すように、第1,第2の主面W1,W2に対する研削液の総供給量を維持したままでも、第1,第2の主面W1,W2に対する供給量の比率を変更することで、ナノトポグラフィを調整できることが確認できた。特に、凹んでいる側の第1の主面W1に対する研削液の供給量を、もう一方の第2の主面W2に対する研削液の供給量よりも多くなるように比率を調整することで、ナノトポグラフィを0nmに近づけられることが確認できた。
FIG. 7 shows the calculation result of the nanotopography of the center of the first main surface W1 when the position of the outermost peripheral portion of the first main surface W1 is 0 nm.
As shown in FIG. 7, the ratio of the supply amount to the first and second main surfaces W1 and W2 is changed even while maintaining the total supply amount of the grinding fluid to the first and second main surfaces W1 and W2. Therefore, it was confirmed that the nanotopography can be adjusted. Particularly, by adjusting the ratio so that the amount of the grinding liquid supplied to the first main surface W1 on the concave side is larger than the amount of the grinding liquid supplied to the second main surface W2 on the other side, It was confirmed that the topography can be brought close to 0 nm.
図8に、ウェーハWの中心の厚さとその平均値とを示す。
図8に示すように、第1,第2の主面W1,W2に対する供給量の比率を変更しても、第1,第2の主面W1,W2に対する研削液の総供給量が同じであれば、ウェーハWの厚さがほとんど変わらないことが確認できた。
FIG. 8 shows the thickness of the center of the wafer W and its average value.
As shown in FIG. 8, even if the ratio of the supply amount to the first and second main surfaces W1 and W2 is changed, the total supply amount of the grinding fluid to the first and second main surfaces W1 and W2 is the same. If so, it was confirmed that the thickness of the wafer W hardly changed.
図7および図8に示す結果から、第1,第2の主面W1,W2に対する研削液の総供給量を維持しつつ、第1の主面W1に対する研削液の供給量と第2の主面W2に対する研削液の供給量との比率を調整することで、ウェーハWのナノトポグラフィを改善しつつ、所望の厚さのウェーハWを得られることが確認できた。 From the results shown in FIG. 7 and FIG. 8, while maintaining the total supply amount of the grinding liquid to the first and second main surfaces W1 and W2, the supply amount of the grinding liquid to the first main surface W1 and the second main surface W1 It was confirmed that the wafer W having a desired thickness can be obtained while improving the nanotopography of the wafer W by adjusting the ratio of the supply amount of the grinding liquid to the surface W2.
[実施形態]
次に、本発明の一実施形態に係る両頭研削方法について説明する。
まず、関連技術の両頭研削装置1と、第1の被研削物としての第1のウェーハWtと、第2の被研削物としての第2のウェーハWpを準備する。第1のウェーハWtと第2のウェーハWpとは、材質、形状がほぼ同じであり、例えば、1本のシリコン単結晶インゴットから、あるいは、同じ製造条件で製造された異なるシリコン単結晶インゴットから、それぞれ切り出されたものである。
[Embodiment]
Next, a double-sided grinding method according to an embodiment of the present invention will be described.
First, a related-art double-
そして、キャリアリング21に第1のウェーハWtがセットされた後、制御手段5は、図9に示すように、当該第1のウェーハWtの研削を行う(ステップS1:第1の研削工程)。第1の研削工程で用いる第1のウェーハWtは、予備研削用のダミーウェーハであってもよいし、前ロットの製品用ウェーハであってもよい。
この第1の研削工程において、差動トランス型変位計3は、第1のウェーハWtの厚さを計測し、この計測結果に応じた信号を制御手段5に出力する。制御手段5は、第1のウェーハWtの第1,第2の主面W1,W2に所定量の研削液を供給しつつ、差動トランス型変位計3からの信号に基づき第1のウェーハWtの厚さが所定厚さまで研削されたと判断すると、研削を終了する。この第1の研削工程における第1,第2の主面W1,W2に対する研削液の供給量は、同じであってもよいし、異なっていてもよいが、第1の研削工程における総供給量が後述する第2の研削工程における総供給量と同じになるように設定されている。
Then, after the first wafer W t is set on the
In this first grinding step, the differential transformer
次に、作業者が図示しないナノトポ計測器を用いて、第1のウェーハWtのナノトポグラフィを計測する(ステップS2:ナノトポグラフィ計測工程)。
その後、制御手段5は、キャリアリング21にセットされた第2のウェーハWpの研削を行う(ステップS3:第2の研削工程)。
この第2の研削工程では、まず、作業者は、ナノトポグラフィ計測工程での計測結果に基づいて、第2のウェーハWpのナノトポグラフィが0に近づくような研削条件を設定する。具体的には、作業者は、ウェーハWの中心のナノトポグラフィに基づいて、第2のウェーハWpにおける中心のナノトポグラフィが0に近づくように、第1,第2の主面W1,W2に対する研削液の総供給量を維持しつつ、第1の主面W1に対する研削液の供給量と第2の主面W2に対する研削液の供給量との比率を設定する。
例えば、第1の主面W1に対する供給量の比率を高くするほど、第1の主面W1の凹み量が小さくなるという傾向がわかっており、第1のウェーハWtの第1の主面W1の中心が凹んでいる場合、作業者は、第1の主面W1に対する供給量の比率を高くし、第1の主面W1の中心が突出している場合、第1の主面W1に対する供給量の比率を低くする。逆に言えば、第1のウェーハWtの第2の主面W2の中心が凹んでいる場合、作業者は、第2の主面W2に対する比率を高くし、第2の主面W2の中心が突出している場合、第2の主面W2に対する比率を低くする。すなわち、中央が凹んでいる主面に対する供給量の比率を高くすればよい。このとき、研削液の供給比率は、比率が高い方の供給量を低い方の供給量で除した値が200%以下となることが好ましく、例えば、比率が高い方の供給量が2L/min、低い方の供給量が1L/minとなることが好ましい。
Next, the operator measures the nanotopography of the first wafer W t using a nanotopography measuring device (not shown) (step S2: nanotopography measuring step).
After that, the control means 5 grinds the second wafer W p set on the carrier ring 21 (step S3: second grinding step).
In the second grinding step, first, the operator sets the grinding condition such that the nanotopography of the second wafer W p approaches 0 based on the measurement result of the nanotopography measurement step. Specifically, the worker performs measurement on the first and second main surfaces W1 and W2 based on the nanotopography of the center of the wafer W so that the center nanotopography of the second wafer W p approaches 0. While maintaining the total supply amount of the grinding liquid, the ratio of the supply amount of the grinding liquid to the first main surface W1 and the supply amount of the grinding liquid to the second main surface W2 is set.
For example, it is known that the higher the ratio of the supply amount to the first main surface W1 is, the smaller the depression amount of the first main surface W1 is, and the first main surface W1 of the first wafer W t . When the center of the first main surface W1 is depressed, the worker increases the ratio of the supply amount to the first main surface W1, and when the center of the first main surface W1 is protruded, the supply amount to the first main surface W1 is increased. Lower the ratio of. Conversely, when the center of the second main surface W2 of the first wafer W t is recessed, the operator increases the ratio with respect to the second main surface W2 to set the center of the second main surface W2. When is protruded, the ratio to the second main surface W2 is lowered. That is, the ratio of the supply amount with respect to the main surface having the depressed center may be increased. At this time, the supply ratio of the grinding fluid is preferably 200% or less as a value obtained by dividing the supply amount of the higher ratio by the supply amount of the lower ratio, for example, the supply amount of the higher ratio is 2 L/min. The lower supply amount is preferably 1 L/min.
そして、制御手段5は、作業者の設定に基づいて、第1,第2の主面W1,W2に対する研削液の供給比率以外は、予備研削工程と同じ研削条件で、第2のウェーハWpの研削を行う。 Then, the control means 5 sets the second wafer W p under the same grinding conditions as in the preliminary grinding step except for the supply ratio of the grinding liquid to the first and second main surfaces W1 and W2 based on the setting of the operator. Grinding.
[実施形態の作用効果]
上記実施形態によれば、第2の研削工程において、第1のウェーハWtのナノトポグラフィに基づいて、第1,第2の主面W1,W2に対する研削液の総供給量を維持しつつ、第1,第2の主面W1,W2に対する研削液の供給比率を調整する。このように、研削液の供給比率を調整することで、ナノトポグラフィを改善しつつ、研削液の総供給量を維持することで、第2のウェーハWpの厚さを第1のウェーハWtとほぼ同じにすることができる。したがって、ナノトポグラフィが良好な所望の厚さの第2のウェーハWpを得ることができる。
特に、研削液の総供給量を維持しつつ、供給比率を変更するため、第1の研削工程と第2の研削工程とにおける加工室4内の温度をほぼ同じにすることができる。このため、環境温度によって計測誤差が生じる差動トランス型変位計3を用いても、第1の研削工程と第2の研削工程との両方において、ウェーハWの厚さを狙い値とほぼ同じにすることができる。差動トランス型変位計3の測定精度は高いため、より高精度に厚さが調整された第2のウェーハWpを得ることができる。
[Operation and effect of the embodiment]
According to the above embodiment, in the second grinding step, while maintaining the total supply amount of the grinding liquid to the first and second main surfaces W1 and W2 based on the nanotopography of the first wafer W t , The supply ratio of the grinding fluid to the first and second main surfaces W1 and W2 is adjusted. As described above, by adjusting the supply ratio of the grinding liquid, the nanotopography is improved and the total supply amount of the grinding liquid is maintained, so that the thickness of the second wafer W p can be adjusted to the first wafer W t. Can be almost the same as. Therefore, it is possible to obtain the second wafer W p having a desired thickness and excellent nanotopography.
In particular, since the supply ratio is changed while maintaining the total supply amount of the grinding liquid, the temperatures in the processing chamber 4 in the first grinding process and the second grinding process can be made substantially the same. Therefore, even if the differential transformer
[変形例]
なお、本発明は上記実施形態にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の改良ならびに設計の変更などが可能である。
[Modification]
The present invention is not limited to the above-described embodiment, and various improvements and design changes can be made without departing from the spirit of the present invention.
例えば、被研削物としては、シリコン以外のウェーハでもよいし、セラミックスや石材など、ウェーハW以外の円板状のものを対象としてもよい。 For example, the object to be ground may be a wafer other than silicon, or a disk-shaped object other than the wafer W such as ceramics or stone.
作業者の設定に基づいて第2の研削工程を行ったが、以下のようにしてもよい。
まず、メモリに、第1,第2の主面W1,W2に対する研削液の総供給量を所定量に維持した状態において、第1の主面W1に対する研削液の供給量と第2の主面W2に対する研削液の供給量との比率を調整した場合に、ナノトポグラフィがどのように変化するのかを示す供給比率調整情報を記憶させておく。例えば、実験3で得られた結果のように、第1の主面W1に対する供給量の比率を高くするほど、第1の主面W1の凹み量が小さくなるという供給比率調整情報を記憶させておく。このとき、ウェーハWの材質やサイズや研削後の狙い厚さ、あるいは、研削液の総供給量、さらには、ウェーハWと第1,第2の研削ホイール23,24との回転方向の関係ごとに、内容が異なる供給比率調整情報を記憶させておくことが好ましい。供給比率調整情報は、両頭研削装置1を用いた実験結果に基づいて作成されたものであってもよいし、シミュレーションで作成されたものであってもよい。
そして、制御手段5が第1のウェーハWtのナノトポグラフィと供給比率調整情報とに基づいて、第2のウェーハWpのナノトポグラフィが0に近づくような供給量の比率を調整してもよい。
Although the second grinding process is performed based on the setting of the operator, it may be performed as follows.
First, in the memory, in a state where the total supply amount of the grinding liquid to the first and second main surfaces W1 and W2 is maintained at a predetermined amount, the supply amount of the grinding liquid to the first main surface W1 and the second main surface Supply ratio adjustment information indicating how the nanotopography changes when the ratio of the grinding liquid supply amount to W2 is adjusted is stored. For example, as in the result obtained in
Then, the control means 5 may adjust the ratio of the supply amount such that the nanotopography of the second wafer W p approaches 0 based on the nanotopography of the first wafer W t and the supply ratio adjustment information. ..
1…両頭研削装置、2…研削手段、3…差動トランス型変位計(厚さ計測手段)、23,24…第1,第2の研削ホイール、23B,24B…砥石、33…接触子、W…ウェーハ(被研削物)、Wt…第1のウェーハ(第1の被研削物)、Wp…第1のウェーハ(第2の被研削物)、W1…第1の主面(一方の主面)、W2…第2の主面(他方の主面)。
DESCRIPTION OF
Claims (3)
第1の被研削物の両主面に所定量の研削液を供給しつつ、前記第1の被研削物の厚さが前記所定厚さになるまで研削を行う第1の研削工程と、
前記第1の被研削物のナノトポグラフィを計測するナノトポグラフィ計測工程と、
前記ナノトポグラフィ計測工程の計測結果に基づいて、第2の被研削物のナノトポグラフィが0に近づくように研削条件を調整して、前記第2の被研削物の厚さが前記所定厚さになるまで研削を行う第2の研削工程とを備え、
前記第2の研削工程は、前記第1の研削工程における研削液の総供給量を維持しつつ、前記第2の被研削物の一方の主面に対する研削液の供給量と他方の主面に対する研削液の供給量との比率を調整して、前記第2の被研削物を研削することを特徴とする両頭研削方法。 The object to be ground is ground by rotating the object to be ground and supplying a grinding liquid to both main surfaces of the object to be ground, and bringing a grindstone of a grinding wheel into contact with both main surfaces of the object to be ground. Using a double-sided grinder including a grinding means and a thickness measuring means for measuring the thickness of the object to be ground, the thickness of the object to be ground is a predetermined thickness based on the measurement result of the thickness measuring means. It is a double-sided grinding method that grinds until
A first grinding step of performing grinding until the thickness of the first object to be ground reaches the predetermined thickness while supplying a predetermined amount of grinding liquid to both main surfaces of the first object to be ground;
A nanotopography measuring step of measuring the nanotopography of the first object to be ground;
Based on the measurement result of the nanotopography measurement step, the grinding conditions are adjusted so that the nanotopography of the second object to be ground approaches 0, and the thickness of the second object to be ground becomes the predetermined thickness. And a second grinding step of grinding until
In the second grinding step, while maintaining the total amount of the grinding fluid supplied in the first grinding step, the amount of the grinding fluid supplied to one main surface of the second object to be ground and the other main surface thereof. A double-sided grinding method, characterized in that the second object to be ground is ground by adjusting the ratio with the supply amount of the grinding liquid.
前記厚さ計測手段として、前記被研削物の両主面にそれぞれ接触する一対の接触子を有し、当該一対の接触子の位置に応じた信号を出力することで前記被研削物の厚さを計測する差動トランス型変位計を用いることを特徴とする両頭研削方法。 The double-sided grinding method according to claim 1,
As the thickness measuring means, a pair of contacts that respectively come into contact with both main surfaces of the object to be ground, and the thickness of the object to be ground by outputting a signal corresponding to the position of the pair of contacts. A double-headed grinding method characterized by using a differential transformer type displacement meter for measuring the.
前記第2の研削工程は、前記第1の被研削物の前記ナノトポグラフィ計測工程の計測結果に基づいて、前記第2の被研削物における前記第1の被研削物の凹んでいる側の主面に対する研削液の供給量を、もう一方の主面に対する研削液の供給量よりも多くなるように前記比率を調整することを特徴とする両頭研削方法。 The double-sided grinding method according to claim 1 or 2,
The second grinding step is based on the measurement result of the nanotopography measuring step of the first object to be ground, and is used to determine the main side of the second object to be ground on the concave side of the first object to be ground. A double-sided grinding method, wherein the ratio is adjusted so that the amount of the grinding liquid supplied to the surface is larger than the amount of the grinding liquid supplied to the other main surface.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018245302A JP7159861B2 (en) | 2018-12-27 | 2018-12-27 | Double-headed grinding method |
TW108140396A TWI702115B (en) | 2018-12-27 | 2019-11-07 | Method of double-headed polishing |
DE112019006452.5T DE112019006452T5 (en) | 2018-12-27 | 2019-11-08 | DOUBLE GRINDING PROCESS |
KR1020217018567A KR102517771B1 (en) | 2018-12-27 | 2019-11-08 | Double head grinding method |
PCT/JP2019/043882 WO2020137187A1 (en) | 2018-12-27 | 2019-11-08 | Double grinding method |
CN201980086217.XA CN113396030B (en) | 2018-12-27 | 2019-11-08 | Double-end grinding method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018245302A JP7159861B2 (en) | 2018-12-27 | 2018-12-27 | Double-headed grinding method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020104211A true JP2020104211A (en) | 2020-07-09 |
JP7159861B2 JP7159861B2 (en) | 2022-10-25 |
Family
ID=71128947
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018245302A Active JP7159861B2 (en) | 2018-12-27 | 2018-12-27 | Double-headed grinding method |
Country Status (6)
Country | Link |
---|---|
JP (1) | JP7159861B2 (en) |
KR (1) | KR102517771B1 (en) |
CN (1) | CN113396030B (en) |
DE (1) | DE112019006452T5 (en) |
TW (1) | TWI702115B (en) |
WO (1) | WO2020137187A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000024892A (en) * | 1998-07-15 | 2000-01-25 | Nippei Toyama Corp | Duplex head flat surface grinding device |
JP2006040947A (en) * | 2004-07-22 | 2006-02-09 | Matsushita Electric Ind Co Ltd | Semiconductor device and its manufacturing method |
JP2009016842A (en) * | 2007-07-04 | 2009-01-22 | Siltronic Ag | Method for grinding semiconductor wafer |
JP5439217B2 (en) * | 2010-02-15 | 2014-03-12 | 信越半導体株式会社 | Ring-shaped holder for double-head grinding machine and double-head grinding machine |
JP5494552B2 (en) * | 2011-04-15 | 2014-05-14 | 信越半導体株式会社 | Double-head grinding method and double-head grinding apparatus |
WO2017061486A1 (en) * | 2015-10-09 | 2017-04-13 | 株式会社Sumco | Carrier ring, grinding device, and grinding method |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5256018A (en) * | 1975-11-05 | 1977-05-09 | Kouka Kuroomu Kougiyou Kk | Method of manufacturing continuous casting mould for steel |
JP4752475B2 (en) * | 2005-12-08 | 2011-08-17 | 信越半導体株式会社 | Semiconductor wafer double-head grinding apparatus, hydrostatic pad and double-head grinding method using the same |
EP1981685B1 (en) * | 2006-01-30 | 2012-05-30 | MEMC Electronic Materials, Inc. | Double side wafer grinder and methods for assessing workpiece nanotopology |
CN100467219C (en) * | 2006-07-10 | 2009-03-11 | 中芯国际集成电路制造(上海)有限公司 | Chemical and mechanical grinding method |
JP4985451B2 (en) * | 2008-02-14 | 2012-07-25 | 信越半導体株式会社 | Double-head grinding apparatus for workpiece and double-head grinding method for workpiece |
JP5463570B2 (en) * | 2008-10-31 | 2014-04-09 | Sumco Techxiv株式会社 | Double-head grinding apparatus for wafer and double-head grinding method |
JP5357672B2 (en) * | 2009-09-07 | 2013-12-04 | 株式会社ディスコ | Grinding method |
DE102009048436B4 (en) * | 2009-10-07 | 2012-12-20 | Siltronic Ag | Method for grinding a semiconductor wafer |
CN101722477B (en) * | 2009-10-16 | 2011-09-14 | 青岛理工大学 | Nano fluid grinding process |
US8712575B2 (en) * | 2010-03-26 | 2014-04-29 | Memc Electronic Materials, Inc. | Hydrostatic pad pressure modulation in a simultaneous double side wafer grinder |
DE102010013520B4 (en) * | 2010-03-31 | 2013-02-07 | Siltronic Ag | Process for double-sided polishing of a semiconductor wafer |
DE102010013519B4 (en) * | 2010-03-31 | 2012-12-27 | Siltronic Ag | Method for polishing a semiconductor wafer |
DE102011082777A1 (en) * | 2011-09-15 | 2012-02-09 | Siltronic Ag | Method for double-sided polishing of semiconductor wafer e.g. silicon wafer, involves forming channel-shaped recesses in surface of polishing cloth of semiconductor wafer |
JP5724958B2 (en) * | 2012-07-03 | 2015-05-27 | 信越半導体株式会社 | Double-head grinding apparatus and double-head grinding method for workpiece |
SG2012096699A (en) * | 2012-12-31 | 2014-07-30 | Agency Science Tech & Res | Amphiphilic linear peptide/peptoid and hydrogel comprising the same |
JP2014204092A (en) * | 2013-04-10 | 2014-10-27 | 株式会社岡本工作機械製作所 | Method of grinding work piece |
JP6040947B2 (en) | 2014-02-20 | 2016-12-07 | 信越半導体株式会社 | Double-head grinding method for workpieces |
JP6316652B2 (en) * | 2014-05-14 | 2018-04-25 | 株式会社ディスコ | Grinding equipment |
-
2018
- 2018-12-27 JP JP2018245302A patent/JP7159861B2/en active Active
-
2019
- 2019-11-07 TW TW108140396A patent/TWI702115B/en active
- 2019-11-08 DE DE112019006452.5T patent/DE112019006452T5/en active Pending
- 2019-11-08 WO PCT/JP2019/043882 patent/WO2020137187A1/en active Application Filing
- 2019-11-08 CN CN201980086217.XA patent/CN113396030B/en active Active
- 2019-11-08 KR KR1020217018567A patent/KR102517771B1/en active IP Right Grant
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000024892A (en) * | 1998-07-15 | 2000-01-25 | Nippei Toyama Corp | Duplex head flat surface grinding device |
JP2006040947A (en) * | 2004-07-22 | 2006-02-09 | Matsushita Electric Ind Co Ltd | Semiconductor device and its manufacturing method |
JP2009016842A (en) * | 2007-07-04 | 2009-01-22 | Siltronic Ag | Method for grinding semiconductor wafer |
JP5439217B2 (en) * | 2010-02-15 | 2014-03-12 | 信越半導体株式会社 | Ring-shaped holder for double-head grinding machine and double-head grinding machine |
JP5494552B2 (en) * | 2011-04-15 | 2014-05-14 | 信越半導体株式会社 | Double-head grinding method and double-head grinding apparatus |
WO2017061486A1 (en) * | 2015-10-09 | 2017-04-13 | 株式会社Sumco | Carrier ring, grinding device, and grinding method |
Also Published As
Publication number | Publication date |
---|---|
TWI702115B (en) | 2020-08-21 |
CN113396030A (en) | 2021-09-14 |
CN113396030B (en) | 2023-07-21 |
JP7159861B2 (en) | 2022-10-25 |
WO2020137187A1 (en) | 2020-07-02 |
KR102517771B1 (en) | 2023-04-03 |
KR20210089770A (en) | 2021-07-16 |
TW202037456A (en) | 2020-10-16 |
DE112019006452T5 (en) | 2021-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Pei et al. | Fine grinding of silicon wafers | |
JP5594295B2 (en) | Cylindrical member polishing apparatus and cylindrical member polishing method | |
TWI422465B (en) | Double - sided grinding of workpiece and double - sided grinding of workpiece | |
Xie et al. | Study on ductile-mode mirror grinding of SiC ceramic freeform surface using an elliptical torus-shaped diamond wheel | |
JP5504901B2 (en) | Polishing pad shape correction method | |
Zhang et al. | A new model of grit cutting depth in wafer rotational grinding considering the effect of the grinding wheel, workpiece characteristics, and grinding parameters | |
Chen et al. | On-machine precision form truing of arc-shaped diamond wheels | |
KR101908359B1 (en) | Double-headed grinding device and method for double-headed grinding of workpieces | |
JP2007210074A (en) | Grinding device, polishing device, grinding method and polishing method | |
JP5815150B2 (en) | Finish grinding apparatus and finish grinding method | |
JP2016203342A (en) | Method for manufacturing truer and method for manufacturing semiconductor wafer, and chamfering device for semiconductor wafer | |
JP2020069600A (en) | Machine tool | |
JP2010021394A (en) | Method of manufacturing semiconductor wafer | |
Xie et al. | Study on axial-feed mirror finish grinding of hard and brittle materials in relation to micron-scale grain protrusion parameters | |
WO2020137187A1 (en) | Double grinding method | |
JP2019126887A (en) | Removal processing method, removal processing program and removal processor | |
Barylski et al. | Finishing of ceramics in a single-disk lapping machine configuration | |
JP7525268B2 (en) | Surface grinding equipment | |
US3378000A (en) | Wheel dresser | |
JP2001277084A (en) | Double head grinder | |
JP5326662B2 (en) | Grinding wheel forming apparatus, grinding machine and grinding wheel forming method | |
Suzuki et al. | Precision machining and measurement of micro aspheric molds | |
TWI467645B (en) | Chemical mechanical polishing method and system | |
JP2003260646A (en) | Grinding method of nonaxisymmetric and aspheric surface, and its device | |
Gao et al. | Research on Elliptic Vibration Dressing of Large-Grit Bronze-Bonded Diamond Grinding Wheel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210105 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220329 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220421 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220913 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220926 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7159861 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |