[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2020190889A - Monitoring system for care-needing person - Google Patents

Monitoring system for care-needing person Download PDF

Info

Publication number
JP2020190889A
JP2020190889A JP2019095427A JP2019095427A JP2020190889A JP 2020190889 A JP2020190889 A JP 2020190889A JP 2019095427 A JP2019095427 A JP 2019095427A JP 2019095427 A JP2019095427 A JP 2019095427A JP 2020190889 A JP2020190889 A JP 2020190889A
Authority
JP
Japan
Prior art keywords
posture
behavior
person
care
abnormal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019095427A
Other languages
Japanese (ja)
Inventor
安正 向田
Yasumasa Mukoda
安正 向田
介伸 西村
Sukenobu Nishimura
介伸 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinsei Electronics Co Ltd
Original Assignee
Shinsei Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinsei Electronics Co Ltd filed Critical Shinsei Electronics Co Ltd
Priority to JP2019095427A priority Critical patent/JP2020190889A/en
Publication of JP2020190889A publication Critical patent/JP2020190889A/en
Pending legal-status Critical Current

Links

Landscapes

  • Closed-Circuit Television Systems (AREA)
  • Emergency Alarm Devices (AREA)
  • Alarm Systems (AREA)

Abstract

To provide a monitoring system for a care-needing person capable of reliably and quickly detecting any abnormality of the care-needing person.SOLUTION: A monitoring system for a care-needing person performs: high resolution processing S2 that converts low-resolution image data based on temperature distribution data from an infrared array sensor unit placed in a room of the care-needing person into high-resolution image data; person detection processing S3 that detects the care-needing person and identifies a person area based on the high-pixel image data; posture/behavior detection processing S5 that detects a posture/behavior of the care-needing person based on the identified person area; posture/behavior abnormality determination processing S6 that determines whether or not the posture/behavior of the care-needing person is abnormal based on posture/behavior resulting data of the posture/behavior detection processing S5; and report processing S7 that transmits an abnormal signal to a caregiver when the posture/behavior abnormality determination processing S6 determines that the posture/behavior is abnormal.SELECTED DRAWING: Figure 3

Description

本発明は、要介護者見守りシステムに関する。 The present invention relates to a care-requiring person watching system.

従来、老人や病人等の要介護者が、トイレを所定時間以上使用しないと、異常状態として、介護者に通報する要介護者見守りシステムが公知である(例えば、特許文献1参照)。 Conventionally, there is a known system for watching over a care-requiring person, such as an elderly person or a sick person, who reports to the caregiver as an abnormal state if the toilet is not used for a predetermined time or longer (see, for example, Patent Document 1).

特開2001−67576号公報Japanese Unexamined Patent Publication No. 2001-67576

しかし、要介護者が転倒や呼吸困難、あるいは、暴れたり、徘徊を始めた等の異常状態になると、通報までに時間がかかり、介護者による発見が遅れて重大な事故になる可能性があった。 However, if the care recipient falls or has difficulty breathing, or is in an abnormal state such as rampage or wandering, it may take time to report and the caregiver's discovery may be delayed, resulting in a serious accident. It was.

そこで、本発明は、要介護者の異常を確実にかつ素早く検知可能な要介護者見守りシステムの提供を目的とする。さらに、最近の老人介護施設の人手不足は深刻な社会問題となっているが、そのような問題を解決し、介護職員の負担軽減を図ることを目的とする。 Therefore, an object of the present invention is to provide a care-requiring person watching system that can reliably and quickly detect an abnormality of a care-requiring person. Furthermore, the recent labor shortage of long-term care facilities has become a serious social problem, and the purpose is to solve such a problem and reduce the burden on long-term care staff.

本発明の要介護者見守りシステムは、要介護者の室内に配設された赤外線アレイセンサ部からの温度分布データに基づいた低画素イメージデータを高画素イメージデータに変換する高解像度化処理と、上記高画素イメージデータに基づいて要介護者を検出して人物エリアを特定する人検知処理と、特定した上記人物エリアに基づいて要介護者の姿勢及び行動を検出する姿勢・行動検知処理と、該姿勢・行動検知処理の姿勢・行動結果データに基づいて要介護者の姿勢・行動が異常姿勢・行動状態か否か判定する姿勢・行動異常判定処理と、該姿勢・行動異常判定処理が異常姿勢・行動状態と判定した場合に異常信号を介護者側へ送信する通報処理と、を行うものである。
また、同室に複数の要介護者が入居している状況下で、同室の複数の要介護者各々について歩容特徴のデータベースを作成し、該データベースからルックアップした歩容特徴を使用する歩容認証処理が付加されている。
The care-requiring person watching system of the present invention includes high-resolution processing for converting low-pixel image data based on temperature distribution data from an infrared array sensor unit arranged in a care-requiring person's room into high-pixel image data. A person detection process that detects a person requiring care and identifies a person area based on the high pixel image data, and a posture / behavior detection process that detects the posture and behavior of a person requiring care based on the specified person area. The posture / behavior abnormality judgment processing for determining whether the posture / behavior of the care recipient is an abnormal posture / behavior state based on the posture / behavior result data of the posture / behavior detection processing, and the posture / behavior abnormality judgment processing are abnormal. It performs a notification process that sends an abnormal signal to the caregiver when it is determined to be in a posture / behavioral state.
In addition, in a situation where a plurality of care-requiring persons are occupying the same room, a database of gait characteristics is created for each of the plurality of care-requiring persons in the same room, and the gait characteristics used by looking up from the database. Authentication processing is added.

また、異常判定が誤りであることを意味する誤判定情報が介護者によって入力されると異常姿勢・行動状態か否かを判定するための判定基準データベースを修正する判定基準修正処理を行うものである。
また、検出した上記人物エリアにおいて、要介護者の体温が異常か否かを判定する体温異常判定処理と、該体温異常判定処理が異常体温状態と判定した場合に異常信号を介護者側へ送信する通報処理と、を行うものである。
また、上記赤外線アレイセンサ部を有すると共に、上記高解像度化処理と上記人検知処理と上記姿勢・行動検知処理と姿勢・行動結果データを送信する姿勢・行動結果送信処理とを行うセンサ装置と、上記センサ装置からの上記姿勢・行動結果データを受信して上記姿勢・行動異常判定処理と上記通報処理とを行うサーバ装置と、上記サーバ装置からの上記異常信号を受信する介護者用情報端末と、を備えている。
In addition, when the caregiver inputs erroneous judgment information that means that the abnormality judgment is erroneous, the judgment standard correction process for correcting the judgment standard database for judging whether or not the patient is in an abnormal posture / behavioral state is performed. is there.
Further, in the detected person area, a body temperature abnormality determination process for determining whether or not the body temperature of the person requiring nursing care is abnormal, and an abnormality signal are transmitted to the caregiver side when the body temperature abnormality determination process determines that the body temperature is abnormal. It is the one that performs the report processing and.
Further, a sensor device having the infrared array sensor unit and performing the high resolution processing, the person detection processing, the posture / behavior detection processing, and the posture / behavior result transmission processing for transmitting the posture / behavior result data. A server device that receives the posture / action result data from the sensor device and performs the posture / behavior abnormality determination process and the report process, and a caregiver information terminal that receives the abnormality signal from the server device. , Is equipped.

本発明によれば、要介護者の異常を素早く(リアルタイムに)検知でき、通報の遅れを防止できる。姿勢・行動検知によって、迅速な通報が可能となる。また、姿勢の動的変化───即ち、行動───も検知できるので、ベッドからの転落・暴れ行為、徘徊、転倒等を確実かつ迅速に検知できる。しかも、視覚プライバシーが保護される。また、介護者への誤報も減少する。また、システム導入時や導入後の経済的負担を少なくできる。さらに、最近の老人介護施設の人手不足という問題を解消可能となると共に、介護職員の負担をも軽減できる。 According to the present invention, it is possible to quickly (in real time) detect an abnormality of a care recipient and prevent a delay in reporting. Posture / behavior detection enables quick notification. In addition, since dynamic changes in posture ─── that is, behavior ─── can be detected, falling / rampaging behavior, wandering, falling, etc. from the bed can be detected reliably and quickly. Moreover, visual privacy is protected. In addition, false alarms to caregivers are reduced. In addition, the financial burden at the time of system introduction and after introduction can be reduced. Furthermore, it is possible to solve the recent problem of labor shortage in long-term care facilities and reduce the burden on long-term care staff.

本発明の実施の一形態を示す全体構成図である。It is an overall block diagram which shows one Embodiment of this invention. 本発明の実施の一形態を示す全体ブロック図である。It is a whole block diagram which shows one Embodiment of this invention. 見守り処理を説明するためのフローチャート図である。It is a flowchart for demonstrating the watching process. 見守り処理を説明するためのフローチャート図である。It is a flowchart for demonstrating the watching process. 低画素イメージデータの一例を示す簡略イメージデータ図である。It is a simplified image data diagram which shows an example of low pixel image data. 高画素イメージデータの一例を示す簡略イメージデータ図である。It is a simplified image data diagram which shows an example of high pixel image data. 人検知処理の一例を説明するための説明図である。It is explanatory drawing for demonstrating an example of a person detection process. 姿勢検知処理の一例を説明するための説明図である。It is explanatory drawing for demonstrating an example of a posture detection process. 骨格化モデルを具体的に示す図であって、(A)は頭を左右に振りつつ両手で頭をたたいている骨格化モデルの図、(B)はベッドから転落した骨格化モデルの図、(C)はベッドに座って離床せんとしている骨格化モデルの図である。The figure which shows the skeleton model concretely, (A) is the figure of the skeleton model which hits the head with both hands while swinging the head left and right, (B) is the figure of the skeleton model which fell from the bed. , (C) is a diagram of a skeletal model in which a person sits on a bed and tries to get out of bed.

以下、図示の実施形態に基づき本発明を詳説する。
本発明の要介護者見守りシステムは、図1及び図2に示すように、複数の監視用のセンサ装置1と、複数のセンサ装置1とデータ(情報)を送受信可能に有線又は無線で接続されたサーバ装置2と、サーバ装置2とデータ(情報)を送受信可能に無線接続された携帯型の介護者用情報端末3と、を備え、センサ装置1の周辺に存在している老人や病人等の要介護者の異常を検知して、介護士や看護士や保護者等の介護者へ通報する見守り処理を行うものである。なお、図示省略するが介護者用情報端末3は、複数台である。
Hereinafter, the present invention will be described in detail based on the illustrated embodiments.
As shown in FIGS. 1 and 2, the care-requiring person watching system of the present invention is connected to a plurality of monitoring sensor devices 1 and a plurality of sensor devices 1 by wire or wirelessly so as to be able to transmit and receive data (information). The server device 2 and the portable caregiver information terminal 3 wirelessly connected to the server device 2 so as to be able to send and receive data (information) are provided, and an elderly person, a sick person, etc. existing in the vicinity of the sensor device 1 are provided. This is a monitoring process that detects anomalies in the care recipient and reports it to caregivers such as caregivers, nurses, and parents. Although not shown, there are a plurality of caregiver information terminals 3.

センサ装置1は、介護福祉施設や病院、高齢者住宅等に設けられた要介護者用居室(部屋)Rの室内に配設している。
サーバ装置2は、図示省略するが、スタッフルームや管理人室やナースセンター等の管理室に配設している。
The sensor device 1 is arranged in a room R for a person requiring nursing care, which is provided in a nursing care welfare facility, a hospital, an elderly house, or the like.
Although not shown, the server device 2 is arranged in a management room such as a staff room, a manager's room, or a nurse center.

図2に示すように、センサ装置1は、温度分布データを取得可能な低解像度の赤外線アレイセンサ部10と、所定の処理を行うためのマイコンやCPU等のセンサ側演算処理部11と、データを記憶するためのRAMやフラッシュメモリ等のセンサ側記憶部12と、センサ側記憶部12に記憶したデータをサーバ装置2へ送信可能なセンサ側送信部18と、サーバ装置2や介護者用情報端末3等の外部機器からの命令信号やデータを受信可能なセンサ側受信部19と、を備えている。なお、図2において、センサ側送信部18とセンサ側受信部19とをセンサ側送受信部として一体に図示している。 As shown in FIG. 2, the sensor device 1 includes a low-resolution infrared array sensor unit 10 capable of acquiring temperature distribution data, a sensor-side arithmetic processing unit 11 such as a microcomputer or a CPU for performing predetermined processing, and data. A sensor-side storage unit 12 such as a RAM or a flash memory for storing data, a sensor-side transmission unit 18 capable of transmitting data stored in the sensor-side storage unit 12 to the server device 2, and information for the server device 2 and a caregiver. It includes a sensor-side receiver 19 capable of receiving command signals and data from an external device such as a terminal 3. In FIG. 2, the sensor-side transmitting unit 18 and the sensor-side receiving unit 19 are integrally shown as a sensor-side transmitting / receiving unit.

サーバ装置2は、センサ装置1からのデータや介護者用情報端末3からの命令信号やデー等を受信可能なサーバ側受信部29と、所定の処理を行うためのマイコンやCPU等のサーバ側演算処理部21と、データを記憶するRAMやROM、HD(ハードディスク)等のサーバ側記憶部22と、サーバ側記憶部22に記憶したデータを介護者用情報端末3へ送信可能なサーバ側送信部28と、を備えている。なお、図2において、サーバ側送信部28とサーバ側受信部29とをサーバ側送受信部として一体に図示している。 The server device 2 includes a server-side receiving unit 29 capable of receiving data from the sensor device 1 and command signals and data from the caregiver information terminal 3, and a server-side such as a microcomputer or a CPU for performing predetermined processing. A server-side transmission capable of transmitting the data stored in the arithmetic processing unit 21, the server-side storage unit 22 such as RAM, ROM, HD (hard disk) for storing data, and the server-side storage unit 22 to the caregiver information terminal 3. It has a part 28 and. In FIG. 2, the server-side transmitting unit 28 and the server-side receiving unit 29 are integrally illustrated as a server-side transmitting / receiving unit.

介護者用情報端末3は、サーバ装置2からのデータや信号を、直接的に、又は、情報通信回線網J等を介して、受信可能な端末側受信部39と、命令信号やデータをサーバ装置2やセンサ装置1等の外部機器へ送信可能な端末側送信部38と、を備えた、携帯型(持ち運び自在な機器)である。
介護者用情報端末3は、所定の処理を行うためのマイコンやCPU等の端末側演算処理部31と、データを記憶するRAMやROM、HD(ハードディスク)等の端末側記憶部32と、端末側記憶部32のデータやサーバ装置2からの情報(通報)を表示可能な液晶ディスプレイや有機ELディスプレイ等の端末側表示部33と、命令信号や情報を入力するためのタッチパネルやボタン等の端末側入力部34と、を備え、スマートフォン、タブレットPC、携帯型ゲーム器、PDA等である。なお、図2において、端末側送信部38と端末側受信部39とを端末側送受信部として一体に図示している。
The caregiver information terminal 3 receives data and signals from the server device 2 directly or via the information communication network J or the like, and a terminal-side receiving unit 39 and a server for command signals and data. It is a portable type (portable device) including a terminal-side transmitter 38 capable of transmitting data to an external device such as the device 2 or the sensor device 1.
The caregiver information terminal 3 includes a terminal-side arithmetic processing unit 31 such as a microcomputer or a CPU for performing predetermined processing, a terminal-side storage unit 32 such as a RAM, ROM, or HD (hard disk) for storing data, and a terminal. Terminals such as liquid crystal displays and organic EL displays that can display data from the side storage unit 32 and information (reports) from the server device 2. Terminals such as touch panels and buttons for inputting command signals and information. It is equipped with a side input unit 34, such as a smartphone, a tablet PC, a portable game device, and a PDA. In FIG. 2, the terminal-side transmitting unit 38 and the terminal-side receiving unit 39 are integrally shown as a terminal-side transmitting / receiving unit.

先ず、システム全体の見守り処理のフローについて説明する。
図3及び図1,図2に於て、低解像度の赤外線アレイセンサ部10にて温度分布データを取得する温度分布測定処理S1を行う。温度分布データ基づいた低画素イメージデータ51(図5参照)が赤外線アレイセンサ部10から出力される。
First, the flow of monitoring processing of the entire system will be described.
In FIGS. 3 and 1 and 2, the temperature distribution measurement process S1 for acquiring temperature distribution data is performed by the low-resolution infrared array sensor unit 10. Low pixel image data 51 (see FIG. 5) based on the temperature distribution data is output from the infrared array sensor unit 10.

次に、低画素イメージデータ51を高画素イメージデータ52(図6参照)に変換する高解像度化処理S2を行う。
例えば、80×60画素の低画素イメージデータ(低解像度画像データ)51を、320×240画素(QVGA)の高画素イメージデータ(高解像度画像データ)52に変換する。なお、本発明において低画素(低解像度)とは、160×120画素(QQVGA)未満を言う。高画素(高解像度)は、160×120画素以上を言う。
Next, the high resolution processing S2 for converting the low pixel image data 51 into the high pixel image data 52 (see FIG. 6) is performed.
For example, the low pixel image data (low resolution image data) 51 of 80 × 60 pixels is converted into the high pixel image data (high resolution image data) 52 of 320 × 240 pixels (QVGA). In the present invention, low pixel (low resolution) means less than 160 × 120 pixels (QQVGA). High pixel (high resolution) means 160 × 120 pixels or more.

そして、高画素イメージデータ52を用いて要介護者(人物)を検出し、さらに、要介護者が存在する人物エリアE(図7参照)を特定する人検知処理S3を行う。
人検知処理S3は、人型シルエットを検知すると、人物が存在しているという判定を行い、その人型シルエット近傍の矩形状枠の範囲を人物エリアEとして特定する。
Then, the person requiring care (person) is detected using the high pixel image data 52, and the person detection process S3 for identifying the person area E (see FIG. 7) in which the person requiring care exists is performed.
When the person detection process S3 detects the humanoid silhouette, it determines that a person exists, and specifies the range of the rectangular frame in the vicinity of the humanoid silhouette as the person area E.

そして、次のエリア特定確認ステップS4において、人物エリアEが特定できた場合は、次の姿勢・行動検知処理S5へ進む。
人物エリアEが特定できなかった場合は、次々と、高解像度化処理されてくる画像に対して人物エリアEが特定されるまで人検知処理S3を繰り返す。
Then, if the person area E can be identified in the next area identification confirmation step S4, the process proceeds to the next posture / action detection process S5.
If the person area E cannot be specified, the person detection process S3 is repeated one after another until the person area E is specified for the image to be processed for high resolution.

そして、姿勢・行動検知処理S5は、図8及び図9に示すように、特定した人物エリアE内に対して、先ず、要介護者(人物)の関節点6を推定し、推定した各関節点6を、直線で結んで骨格化モデル5を作成し、その骨格化モデル5に基づいて、姿勢(フォーム)を検出して、姿勢・行動結果データを作成する。 Then, as shown in FIGS. 8 and 9, the posture / behavior detection process S5 first estimates the joint points 6 of the person requiring care (person) in the specified person area E, and each estimated joint. A skeletal model 5 is created by connecting points 6 with a straight line, and a posture (form) is detected based on the skeletal model 5, and posture / action result data is created.

姿勢・行動結果データは、例えば、「ベッドからの歩行を開始しようとする姿勢や行動」「足がつまずいて転倒する行動」「四つん這いの姿勢や行動」「うつ伏せになる姿勢や行動」「胸に手をあてて寄りかかる姿勢や行動」「転倒して手を突いた姿勢」「うつ伏せ姿勢」「床に座っている姿勢」「起立歩行姿勢や動作」等様々な種類がある。図9(A)では、立ち姿勢で頭を左右に振りつつ両手で頭をたたく行動を示し、図9(B)はベッドから転落した瞬間の姿勢を示し、図9(C)はベッドに座った姿勢と行動を示す。 Posture / action result data is, for example, "posture / action to start walking from bed", "posture / action to trip over", "posture / action to crawl on all fours", "posture / action to lie down", "on the chest". There are various types of postures such as "postures and actions of leaning against each other", "postures of falling and poking hands", "postures of lying down", "postures of sitting on the floor", and "postures of standing up and walking". FIG. 9 (A) shows the behavior of hitting the head with both hands while swinging the head from side to side in a standing posture, FIG. 9 (B) shows the posture at the moment of falling from the bed, and FIG. 9 (C) shows the posture of sitting on the bed. Show attitude and behavior.

ここで、姿勢・行動結果データは、人物識別情報が関連付けされている。
人物識別情報は、姿勢・行動結果データがどの要介護者のものであるかを識別(判別)可能であれば良く、センサ装置1自身のセンサ識別情報、センサ装置1を設置した居室Rの部屋番号等の居室識別情報、各要介護者に予め付与している介護者名簿番号やカルテ番号等の個人識別情報、の内の1つ又は複数を組み合わせた情報である。識別情報は数字や文字や記号等自由である。
また、多床室の場合、歩容認証を使い、その部屋に属するどの要介護者であるかを識別するのが望ましい。
Here, the posture / action result data is associated with the person identification information.
The person identification information may be any information as long as it is possible to identify (determine) which care-requiring person the posture / action result data belongs to, and the sensor identification information of the sensor device 1 itself and the room R of the living room R in which the sensor device 1 is installed. This is information that is a combination of one or more of the room identification information such as a number and the personal identification information such as a caregiver list number and a chart number given to each person requiring long-term care in advance. The identification information is free, such as numbers, letters, and symbols.
Also, in the case of a multi-bed room, it is desirable to use gait authentication to identify which care recipient belongs to the room.

即ち、同室に複数の要介護者が入居している状況下で、同室の複数の要介護者各々について歩容特徴のデータベースを作成し、該データベースからルックアップした歩容特徴を使用する歩容認証処理を行うのが、プライバシー保護の面から最も望ましい。
ここで、「歩容特徴」とは、図8及び図9(A)等に例示した骨格化モデル5をベースとして各部位の時間的変化、即ち、肩の振りや腕の振り、足の運び、その周期等を、追跡して、歩き方の癖を求め、その動き(癖)による特徴を指すものである。
That is, in a situation where a plurality of care-requiring persons are occupying the same room, a database of gait characteristics is created for each of the plurality of care-requiring persons in the same room, and the gait characteristics retrieved from the database are used. It is most desirable to perform the authentication process from the viewpoint of privacy protection.
Here, the "gait feature" refers to the temporal change of each part based on the skeletal model 5 illustrated in FIGS. 8 and 9 (A), that is, the swing of the shoulder, the swing of the arm, and the movement of the foot. , The cycle, etc. are tracked, the habit of walking is obtained, and the characteristics of the movement (habit) are pointed out.

そして、図3に示すように、姿勢・行動検知処理S5の後に、人物識別情報が関連付けられている姿勢・行動結果データに基づいて、要介護者の姿勢又は行動が異常姿勢・行動状態か否かを判定する姿勢・行動異常判定処理S6を行う。 Then, as shown in FIG. 3, after the posture / behavior detection process S5, whether or not the posture or behavior of the person requiring care is an abnormal posture / behavior state based on the posture / behavior result data associated with the person identification information. The posture / behavior abnormality determination process S6 is performed.

ここで、姿勢・行動異常判定処理S6は、異常(異常姿勢・行動状態)か否かを判定するための判定基準データベースDから、人物識別情報が関連付けられている異常姿勢・行動基準データdaを、読み出す。
つまり、姿勢・行動結果データに関連付けられている人物識別情報と一致する人物識別情報が予め関連付けられている異常姿勢・行動基準データdaを読み出す。
Here, the posture / behavior abnormality determination process S6 obtains the abnormal posture / behavior standard data da to which the person identification information is associated from the judgment criterion database D for determining whether or not it is abnormal (abnormal posture / behavior state). ,read out.
That is, the abnormal posture / behavior standard data da in which the person identification information matching the person identification information associated with the posture / behavior result data is associated in advance is read out.

異常姿勢・行動基準データdaは、例えば「うつ伏せになっている姿勢」「四つん這いになっている姿勢」等の異常が発生している姿勢(異常発生姿勢)データに限らず、倒れてゆく途中の動き(異常行動)や、図9(B)に示したベッドから転落してゆく動き(異常行動)も重要である。 The abnormal posture / behavioral standard data da is not limited to the posture (abnormal posture) data in which an abnormality such as "prone posture" or "crawl on all fours" is occurring, and is in the process of collapsing. The movement (abnormal behavior) and the movement of falling from the bed shown in FIG. 9 (B) (abnormal behavior) are also important.

そして、姿勢・行動異常判定処理S6は、姿勢・行動結果データと異常姿勢・行動基準データdaを比較して、異常姿勢・行動状態か否かを判定する。即ち、姿勢・行動結果データと異常姿勢・行動基準データdaが一致乃至近似した場合に、異常と判定する。 Then, the posture / behavior abnormality determination process S6 compares the posture / behavior result data with the abnormal posture / behavior standard data da, and determines whether or not the posture / behavior abnormality is in the abnormal posture / behavior state. That is, when the posture / behavior result data and the abnormal posture / behavior standard data da match or approximate, it is determined to be abnormal.

そして、異常姿勢・行動状態と判定した場合に、異常信号T(図1と図2参照)を、介護者側へ送信する通報処理S7を行う。この異常信号Tは、言い換えると、異常姿勢・行動信号Taであり、この異常姿勢・行動信号Taを発信(送信)する処理を異常姿勢・行動通報処理S71と呼ぶ場合もある。即ち、介護者は、要介護者が、異常発生姿勢中又は異常行動中であることを知る。 Then, when it is determined that the posture / behavioral state is abnormal, the notification process S7 for transmitting the abnormality signal T (see FIGS. 1 and 2) to the caregiver side is performed. In other words, the abnormal posture signal T is an abnormal posture / action signal Ta, and the process of transmitting (transmitting) the abnormal posture / action signal Ta may be referred to as an abnormal posture / action report process S71. That is, the caregiver knows that the care recipient is in an abnormal posture or an abnormal behavior.

ここで、判定基準データベースDには、予め、前述の歩容による人物認証情報が関連付けられた異常姿勢・行動基準データdaを、複数(多数)人分有している。また、1つ(1名)の人物認証情報に、1つ又は複数種類の異常姿勢・行動基準データdaを関連付けている。
しかも、人物認証情報(要介護者)毎に、関連付けている異常姿勢・行動基準データdaの種類(内容)は異なっている。
Here, the determination standard database D has, in advance, a plurality (many) persons of abnormal posture / behavior standard data da associated with the person authentication information based on the above-mentioned gait. In addition, one or a plurality of types of abnormal posture / behavior standard data da are associated with one (one person) person authentication information.
Moreover, the type (content) of the associated abnormal posture / behavioral standard data da is different for each person authentication information (person requiring nursing care).

このように、各要介護者に応じて、判定基準データベースDを予め作成しておくことで、(個性に応じた)適切な判定を行うことができる。
例えば、足腰が弱って一人での歩行が困難であることを認知症によって認識できない要介護者の人物認証情報(例えば、「A氏」)には、「ベッドからの歩行を開始しようとする姿勢・行動」の異常姿勢・行動基準データdaを関連付けている。そして、歩行が可能な介護者の人物認証情報(例えば、「B氏」)には、「ベッドからの歩行を開始しようとする姿勢・行動」の異常姿勢・行動基準データdaを関連付けていない。従って、A氏がベッドから歩行を開始しようとすると、異常姿勢・行動状態と判定して通報処理S7を行うが、B氏がベッドからの歩行を開始しようとしても異常姿勢・行動状態と判定せず通報処理S7は行われない。介護者の無駄な駆けつけを軽減できる。
In this way, by creating the determination criterion database D in advance for each person requiring nursing care, it is possible to make an appropriate determination (according to individuality).
For example, the person authentication information of a person requiring nursing care (for example, "Mr. A") who cannot recognize that it is difficult to walk alone due to dementia due to weak legs is described as "posture to start walking from bed".・ Abnormal posture of "behavior" ・ Behavioral standard data da is associated. Further, the person authentication information of the caregiver who can walk (for example, "Mr. B") is not associated with the abnormal posture / behavior standard data da of "posture / behavior to start walking from the bed". Therefore, when Mr. A tries to start walking from the bed, it is determined that the posture / behavioral state is abnormal and the notification process S7 is performed. However, even if Mr. B tries to start walking from the bed, it is determined that the posture / behavioral condition is abnormal. The report processing S7 is not performed. It is possible to reduce unnecessary rushes of caregivers.

さらに、通報後に介護者が要介護者の状況を確認して、問題の無い(危険性の無い)行動や姿勢であったことが分かった場合に、図3に示すように、誤判定情報入力確認ステップS8において、異常判定(異常姿勢・行動状態と判定したこと)が誤りであることを意味する誤判定情報が介護者によって入力されたことが確認されると、判定基準データベースDを修正する判定基準修正処理S9へ進む。 Further, when the caregiver confirms the situation of the care recipient after the report and finds that the behavior or posture is not problematic (no danger), the misjudgment information is input as shown in FIG. In the confirmation step S8, when it is confirmed that the caregiver has input the erroneous judgment information indicating that the abnormality judgment (determined as an abnormal posture / behavioral state) is erroneous, the judgment criterion database D is corrected. Proceed to the determination criterion correction process S9.

判定基準修正処理S9は、姿勢・行動異常判定処理S6において判定材料(基準)となった異常姿勢・行動基準データdaを修正する。
ここで、異常姿勢・行動基準データdaは、検出したい姿勢及び行動が同じ種類であっても、その姿勢のパターンを、複数(多数)有している。
例えば、検出したい行動(姿勢)が、「ベッドからの歩行を開始しようとする姿勢」の1種類であっても、その姿勢であると予測される姿勢のパターンとして、「ベッドの手摺を把持して上半身を起こした姿勢」、「上半身を起こして顔と上半身をベッド側方へ向け片膝を立てた姿勢」、「ベッド側縁部に腰掛けて起立しようとしている姿勢」等のパターンがある。
The determination standard correction process S9 corrects the abnormal posture / behavior standard data da that is the determination material (reference) in the posture / behavior abnormality determination process S6.
Here, the abnormal posture / behavior standard data da has a plurality (many) patterns of the posture even if the posture and the behavior to be detected are the same type.
For example, even if the behavior (posture) to be detected is one type of "posture trying to start walking from the bed", as a pattern of the posture predicted to be that posture, "hold the handrail of the bed". There are patterns such as "posture with the upper body raised", "posture with the upper body raised and the face and upper body facing the side of the bed with one knee upright", and "posture with the upper body sitting on the side edge of the bed and trying to stand up".

そして、姿勢・行動異常判定処理S6において、例えば、「ベッドの手摺を把持して上半身を起こした姿勢・行動」の異常姿勢・行動基準データdaを、判断材料(基準)として異常姿勢・行動と判定したが、この要介護者は、この行動(姿勢)だけを繰り返すクセがあり、実際にベッドから歩行を開始しようとした行動ではないことが、介護者によって確認され(異常判定が誤判定であることが確認され)、誤判定情報入力確認ステップS8において誤判定情報が入力されたことが確認されると、判定基準修正処理S9に進んで、その判断材料となった「ベッドの手摺を把持して上半身を起こした姿勢・行動」の異常姿勢・行動基準データdaを、削除する修正、又は、異常の重みづけを低く変更する修正、或いは、正常姿勢・行動基準データに変更する修正、を行う。すると、次回、その介護者が、「ベッドの手摺を把持して上半身を起こした姿勢・行動」となっても通報処理S7は行われない。
つまり、次回の姿勢・行動異常判定処理S6は、修正(更新)された判定基準データベースDに基づいて姿勢・行動異常判定処理S6が行われるため、検出精度が向上することとなり、過剰な通報が減って(信頼性を向上でき)、介護者の負担を軽減できる。
Then, in the posture / behavior abnormality determination process S6, for example, the abnormal posture / behavior standard data da of "the posture / behavior of holding the handrail of the bed and raising the upper body" is used as the judgment material (reference) as the abnormal posture / behavior. Although it was judged, the care recipient confirmed that the care recipient had a habit of repeating only this action (posture) and was not actually trying to start walking from the bed (abnormality judgment was an erroneous judgment). When it is confirmed that the erroneous judgment information has been input in the erroneous judgment information input confirmation step S8, the process proceeds to the judgment standard correction process S9, and the judgment material is "grasping the handrail of the bed". The abnormal posture / behavior standard data da of "the posture / behavior that raised the upper body" is deleted, the weighting of the abnormality is changed to be low, or the normal posture / behavior standard data is changed. Do. Then, next time, even if the caregiver becomes "a posture / action in which the upper body is raised by grasping the handrail of the bed", the report processing S7 is not performed.
That is, in the next posture / behavior abnormality determination process S6, the posture / behavior abnormality determination process S6 is performed based on the corrected (updated) determination criterion database D, so that the detection accuracy is improved and an excessive report is made. It can be reduced (reliability can be improved) and the burden on the caregiver can be reduced.

また、姿勢・行動異常判定処理S6や判定基準修正処理S9を行う演算処理部(サーバ側演算処理部21)を、AI(人工知能)プログラムで処理を行うように構成する。そして、姿勢・行動結果データと判定基準データベースDに基づいた機械学習を行って、姿勢・行動異常判定処理S6や判定基準修正処理S9を行う。さらに、姿勢・行動結果データと判定基準データベースDに基づいた深層学習(ディープラーニング)を行って、異常前兆姿勢・行動や異常発生姿勢・行動を推論(推定)して、新たな異常姿勢・行動基準データdaを自ら作成し、判定基準データベースDを自ら修正(異常姿勢・行動基準データdaを追加・削除・変更)する自己修正処理を行うように構成する。この深層学習によって、誤報(及び通報漏れ)を効率良く無くすことができ、各要介護者(個性)の違いによる判定の精度(信頼性)を高め、安心・安全で、介護者の負担の少ないシステムとできる。 Further, the arithmetic processing unit (server-side arithmetic processing unit 21) that performs the posture / behavior abnormality determination processing S6 and the determination standard correction processing S9 is configured to be processed by the AI (artificial intelligence) program. Then, machine learning is performed based on the posture / behavior result data and the judgment standard database D, and the posture / behavior abnormality judgment processing S6 and the judgment standard correction processing S9 are performed. Furthermore, deep learning (deep learning) is performed based on the attitude / behavior result data and the judgment criterion database D to infer (estimate) the abnormal precursor attitude / behavior and the abnormal occurrence posture / behavior, and to infer (estimate) the new abnormal posture / behavior. It is configured to create the reference data da by itself and perform the self-correction process of correcting the judgment standard database D by itself (adding / deleting / changing the abnormal posture / behavior standard data da). By this deep learning, false alarms (and omissions of reports) can be efficiently eliminated, the accuracy (reliability) of judgment due to the difference in each care recipient (individuality) is improved, and it is safe and secure, and the burden on the caregiver is small. Can be a system.

また、図3及び図4において、人物エリアEを特定できた場合に、人物エリアEにおいて、要介護者(人物)の体温を検出して、人物識別情報を関連付けた体温結果データを作成する体温検知処理S11を行う。
そして、体温検知処理S11後に、人物識別情報が関連付けられている体温結果データに基づいて、異常(体温が異常体温状態)か否かを判定する体温異常判定処理S12を行う。
Further, in FIGS. 3 and 4, when the person area E can be identified, the body temperature of the person requiring care (person) is detected in the person area E, and the body temperature result data associated with the person identification information is created. The detection process S11 is performed.
Then, after the body temperature detection process S11, a body temperature abnormality determination process S12 for determining whether or not an abnormality (body temperature is in an abnormal body temperature state) is performed based on the body temperature result data associated with the person identification information.

ここで、体温異常判定処理S12は、異常体温状態か否かを判定するための判定基準データベースDから、人物識別情報が関連付けられている異常体温基準データdbを読み出す。
つまり、体温結果データに関連付けられている人物識別情報と一致する人物識別情報が予め関連付けられている異常体温基準データdbを読み出す。
また、異常体温基準データdbは、人物識別情報(要介護者)毎に異なる。
Here, the body temperature abnormality determination process S12 reads out the abnormal body temperature reference data db associated with the person identification information from the determination reference database D for determining whether or not the body temperature is abnormal.
That is, the abnormal body temperature reference data db associated with the person identification information that matches the person identification information associated with the body temperature result data is read out.
In addition, the abnormal body temperature reference data db differs for each person identification information (person requiring nursing care).

そして、体温異常判定処理S12は、体温結果データと異常体温基準データdbを比較して、異常(異常体温状態)か否かを判定する。
体温結果データと異常体温基準データdbが一致した場合に、異常と判定する。
Then, the body temperature abnormality determination process S12 compares the body temperature result data with the abnormal body temperature reference data db to determine whether or not it is abnormal (abnormal body temperature state).
When the body temperature result data and the abnormal body temperature reference data db match, it is determined to be abnormal.

そして、異常体温状態と判定した場合に、異常信号Tを、介護者側へ送信する通報処理S7を行う。この異常信号Tは、言い換えると、異常体温信号Tbであり、この異常体温信号Tbを発信(送信)する処理を異常体温通報処理S72と呼ぶ場合もある。
なお、風邪やインフルエンザ等によって、要介護者の異常体温状態が継続している場合は、誤判定情報の入力にて、判定基準修正処理S9を実行させて、判定基準データベースDの異常体温基準データdbの修正を行う。この場合にも、AI(人工知能)プログラムの深層学習によって修正するのが望ましい。
本発明では、図3について既述した姿勢・行動の見守りシステムの人検知処理S3において、必ず、赤外線アレイセンサ部10からの温度分布データを活用するシステムであるが故に、図4に示した要介護者の体温の異常の検知は、極めて容易かつ確実に実施できるという利点がある。
Then, when it is determined that the abnormal body temperature state is determined, the notification process S7 for transmitting the abnormal signal T to the caregiver side is performed. In other words, the abnormal body temperature signal T is an abnormal body temperature signal Tb, and the process of transmitting (transmitting) the abnormal body temperature signal Tb may be referred to as an abnormal body temperature reporting process S72.
If the abnormal body temperature of the person requiring nursing care continues due to a cold, influenza, etc., the judgment standard correction process S9 is executed by inputting the erroneous judgment information, and the abnormal body temperature standard data of the judgment standard database D is executed. Modify db. In this case as well, it is desirable to correct it by deep learning of the AI (artificial intelligence) program.
In the present invention, in the human detection process S3 of the posture / behavior monitoring system described with reference to FIG. 3, the temperature distribution data from the infrared array sensor unit 10 is always utilized in the human detection process S3. There is an advantage that the detection of abnormal body temperature of a caregiver can be carried out extremely easily and reliably.

次に、各装置1,2,3の処理(作動)について説明する。
センサ装置1は、センサ側演算処理部11が、温度分布測定処理S1と高解像度化処理S2と人検知処理S3とエリア特定確認ステップS4と姿勢・行動検知処理S5とを行い、さらに、姿勢・行動結果データをセンサ側送信部18からサーバ装置2へ送信する姿勢・行動結果送信処理を行う。なお、センサ側記憶部12はセンサ識別情報等の人物識別情報が記憶されている。
Next, the processing (operation) of each of the devices 1, 2 and 3 will be described.
In the sensor device 1, the sensor-side arithmetic processing unit 11 performs temperature distribution measurement processing S1, high-resolution processing S2, human detection processing S3, area identification confirmation step S4, and posture / behavior detection processing S5, and further, posture / behavior detection processing S5. The posture / action result transmission process for transmitting the action result data from the sensor side transmission unit 18 to the server device 2 is performed. The sensor-side storage unit 12 stores person identification information such as sensor identification information.

サーバ装置2は、サーバ側受信部29にて姿勢・行動結果データを受信する。サーバ側演算処理部21は、サーバ側記憶部22に予め記憶させていた判定基準データベースDから異常姿勢・行動基準データdaを呼び出して姿勢・行動結果データと比較する姿勢・行動異常判定処理S6を行い、異常姿勢・行動状態と判定した場合は、異常信号T(異常姿勢・行動信号Ta)を、サーバ側送信部28から介護者用情報端末3へ送信する通報処理S7(異常姿勢・行動通報処理S71)を行う。ところで、サーバ装置2の演算処理部21や記憶部22等に、機械学習(深層学習)を行うAI機能を付加するのが望ましい。使用日数を経るにつれて、姿勢・行動の解析が正確となり、誤報も減少し、異常を予知することも可能となる。 The server device 2 receives the posture / action result data at the server-side receiving unit 29. The server-side arithmetic processing unit 21 calls the abnormal posture / behavior standard data da from the judgment standard database D stored in the server-side storage unit 22 in advance, and performs the posture / behavior abnormality determination processing S6 to be compared with the posture / behavior result data. If it is determined to be in an abnormal posture / behavior state, an abnormality signal T (abnormal posture / behavior signal Ta) is transmitted from the server-side transmission unit 28 to the caregiver information terminal 3 Report processing S7 (abnormal posture / behavior report). Process S71) is performed. By the way, it is desirable to add an AI function for performing machine learning (deep learning) to the arithmetic processing unit 21 and the storage unit 22 of the server device 2. As the number of days of use elapses, posture / behavior analysis becomes more accurate, false alarms decrease, and abnormalities can be predicted.

介護者用情報端末3は、異常姿勢・行動信号Taを端末側受信部39にて受信し、端末側演算処理部31は、端末側表示部33に異常姿勢・行動信号Taに基づいた姿勢・行動警報情報を表示させる。
また、端末側入力部34に介護者によって誤判定情報が入力されると、端末側演算処理部31は、端末側送信部38から誤判定情報をサーバ装置2に送信する。
サーバ装置2は、誤判定情報をサーバ側受信部29にて受信すると、サーバ側演算処理部21にて異常姿勢・行動基準データdaに関する判定基準修正処理S9を行う。
The caregiver information terminal 3 receives the abnormal posture / action signal Ta on the terminal-side receiving unit 39, and the terminal-side arithmetic processing unit 31 displays the abnormal posture / behavior signal Ta on the terminal-side display unit 33. Display behavior warning information.
When the caregiver inputs erroneous determination information to the terminal-side input unit 34, the terminal-side arithmetic processing unit 31 transmits the erroneous determination information from the terminal-side transmission unit 38 to the server device 2.
When the server device 2 receives the erroneous determination information in the server-side receiving unit 29, the server-side arithmetic processing unit 21 performs the determination standard correction process S9 regarding the abnormal posture / behavior standard data da.

また、センサ装置1は、体温検知処理S11と、体温結果データをセンサ側送信部18からサーバ装置2へ送信する体温結果送信処理を行う。
サーバ装置2は、サーバ側受信部29にて体温結果データを受信する。サーバ側演算処理部21は、サーバ側記憶部22に予め記憶させていた判定基準データベースDから異常体温基準データdbを呼び出して体温結果データと比較する体温異常判定処理S12を行い、異常体温状態と判定した場合は、異常信号T(異常体温信号Tb)を、サーバ側送信部28から介護者用情報端末3へ送信する通報処理S7(異常体温通報処理S72)を行う。
Further, the sensor device 1 performs the body temperature detection process S11 and the body temperature result transmission process of transmitting the body temperature result data from the sensor side transmission unit 18 to the server device 2.
The server device 2 receives the body temperature result data at the server-side receiving unit 29. The server-side arithmetic processing unit 21 calls the abnormal body temperature reference data db from the judgment standard database D stored in advance in the server-side storage unit 22 and performs the body temperature abnormality judgment process S12 to compare with the body temperature result data, and determines the abnormal body temperature state. If it is determined, the notification process S7 (abnormal body temperature notification process S72) for transmitting the abnormal signal T (abnormal body temperature signal Tb) from the server-side transmission unit 28 to the caregiver information terminal 3 is performed.

介護者用情報端末3は、異常体温信号Tbを端末側受信部39にて受信し、端末側演算処理部31は、端末側表示部33に異常体温信号Tbに基づいた体温警報情報を表示させる。
また、端末側入力部34に介護者によって誤判定情報が入力されると、端末側演算処理部31は、端末側送信部38から誤判定情報をサーバ装置2に送信する。
サーバ装置2は、誤判定情報をサーバ側受信部29にて受信すると、サーバ側演算処理部21にて異常体温基準データdbに関する判定基準修正処理S9を行う。
The caregiver information terminal 3 receives the abnormal body temperature signal Tb at the terminal side receiving unit 39, and the terminal side arithmetic processing unit 31 causes the terminal side display unit 33 to display the body temperature alarm information based on the abnormal body temperature signal Tb. ..
When the caregiver inputs erroneous determination information to the terminal-side input unit 34, the terminal-side arithmetic processing unit 31 transmits the erroneous determination information from the terminal-side transmission unit 38 to the server device 2.
When the server device 2 receives the erroneous determination information in the server-side receiving unit 29, the server-side arithmetic processing unit 21 performs the determination standard correction process S9 regarding the abnormal body temperature reference data db.

また、複数のセンサ装置1,1とサーバ装置2は、電力線を利用したPLCやPLTとも呼ばれる電力線搬送通信にて接続するのが望ましい。LAN配線工事等の新たな配線工事が不要で、導入費用(設置工事費用)を抑えることができると共に、通信が安定する。
また、赤外線アレイセンサ部10は、低解像度のため(低画素イメージデータ51を出力するため)、居室(部屋)Rの室内において、居間や台所、廊下、浴室、トイレ等室内全体をモニタリング(監視・検出)しても、プライバシーが保護され、導入(設置)に理解が得られやすい。
Further, it is desirable that the plurality of sensor devices 1 and 1 and the server device 2 are connected by power line carrier communication, which is also called PLC or PLT, using a power line. No new wiring work such as LAN wiring work is required, installation costs (installation work costs) can be suppressed, and communication is stable.
Further, since the infrared array sensor unit 10 has a low resolution (to output low pixel image data 51), it monitors (monitors) the entire room such as the living room, kitchen, corridor, bathroom, and toilet in the room of the living room (room) R.・ Even if it is detected), privacy is protected and it is easy to understand the introduction (installation).

なお、本発明は、設計変更可能であって、センサ装置1が温度分布測定処理S1を行い、サーバ装置2(サーバ側演算処理部21)にて、高解像度化処理S2と人検知処理S3とエリア特定確認ステップS4と姿勢・行動検知処理S5と、体温検知処理S11を行うも良い。
また、センサ装置1が姿勢・行動異常判定処理S6と体温異常判定処理S12と通報処理S7と判定基準修正処理S9と判定基準データベースDの保持(記憶)とを行うようにするも良い(サーバ装置2を省略するも良い)。センサ装置1とサーバ装置2の接続方式は自由であって、LAN回線による有線接続や、無線ルータを介した無線接続、インターネットや上位管理回線網等の情報通信回線網Jを介した有線接続又は無線接続とするも良い。異常信号Tにおいて、異常姿勢・行動信号Taと異常体温信号Tbは、同じ内容のデータ(単に異常を伝えるデータ)とするも良い。また、端末側表示部33が警報情報(姿勢・行動警報情報や体温警報情報)を表示する処理は、異常信号Tに関連付けてサーバ装置2から送信された警報情報を表示、又は、端末側記憶部32に記憶させていた警報情報を異常姿勢・行動信号Taに応じて読み出す等自由である。
In the present invention, the design can be changed, the sensor device 1 performs the temperature distribution measurement process S1, and the server device 2 (server-side arithmetic processing unit 21) performs the high-resolution processing S2 and the human detection process S3. The area identification confirmation step S4, the posture / behavior detection process S5, and the body temperature detection process S11 may be performed.
Further, the sensor device 1 may perform posture / behavior abnormality determination processing S6, body temperature abnormality determination processing S12, notification processing S7, determination criterion correction processing S9, and retention (memory) of the determination criterion database D (server device). 2 may be omitted). The connection method between the sensor device 1 and the server device 2 is free, and may be a wired connection via a LAN line, a wireless connection via a wireless router, a wired connection via an information communication network J such as the Internet or a host management network, or a wired connection. It may be a wireless connection. In the abnormal signal T, the abnormal posture / behavior signal Ta and the abnormal body temperature signal Tb may be data having the same contents (simply data for transmitting an abnormality). Further, in the process of displaying the alarm information (attitude / behavior alarm information and body temperature alarm information) on the terminal side display unit 33, the alarm information transmitted from the server device 2 in association with the abnormality signal T is displayed or stored on the terminal side. The alarm information stored in the unit 32 can be freely read out according to the abnormal posture / action signal Ta.

なお、サーバ装置2は、データを表示可能な液晶モニター等のサーバ側表示部と、データ検索や表示命令を指示するためのキーボードやマウス等のサーバ側入力部と、記憶しているデータ(情報)や表示内容を紙等に出力するためのプリンタ等のサーバ側出力部と、を備えたサーバ型パーソナルコンピュータ(サーバPC)やサーバ型ワークステーション等の情報処理装置とするも良い。そして、サーバ側入力部にて誤判定情報を入力するも良い。また、サーバ側表示部に姿勢・行動警報情報や体温警報情報を表示させるも良い。 The server device 2 has a server-side display unit such as a liquid crystal monitor capable of displaying data, a server-side input unit such as a keyboard or mouse for instructing data search and display commands, and stored data (information). ) And a server-side output unit such as a printer for outputting the display contents on paper or the like, and an information processing device such as a server-type personal computer (server PC) or a server-type workstation may be used. Then, the erroneous determination information may be input in the input unit on the server side. It is also possible to display posture / behavior warning information and body temperature warning information on the server side display unit.

また、サーバ装置2のサーバ側演算処理部21は、センサ装置1からの姿勢・行動結果データや体温結果データ等の検出結果データに基づいて、要介護者の生活行動記録表データを作成するも良い。なお、センサ装置1で作製される検出結果データには日時データを関連付けている。
生活行動記録表データは、姿勢・行動結果データに基づいた生活行動記録、及び、体温結果データに基づいた検温記録を、日時データと関連付けた表(グラフ図を含む)にしたものであって、例えば、寝返りの回数、歩数又は歩行距離、起床時間、就寝時間、トイレの使用回数、所定時間毎の体温等である。介護者による介護(看護)記録の作製の手間や時間を軽減できると共に、時間毎の体温測定等介護者の巡回業務を軽減できる。さらに、要介護者の自己申告よりも正確な記録を得ることができる。
また、作成した生活行動記録表データは、サーバ装置2から介護者用情報端末3に送信し、端末側表示部33に表示させる。或いは、サーバ側表示部に表示させ、サーバ側出力部から紙に出力(印刷)する。
In addition, the server-side arithmetic processing unit 21 of the server device 2 creates the life behavior record table data of the care recipient based on the detection result data such as the posture / action result data and the body temperature result data from the sensor device 1. good. The date and time data is associated with the detection result data produced by the sensor device 1.
The life behavior record table data is a table (including a graph) in which the life behavior record based on the posture / behavior result data and the temperature measurement record based on the body temperature result data are associated with the date and time data. For example, the number of turns, the number of steps or walking distance, the wake-up time, the bedtime, the number of times the toilet is used, the body temperature at predetermined time intervals, and the like. It is possible to reduce the labor and time required for the caregiver to create a care (nursing) record, and also to reduce the caregiver's patrol work such as hourly body temperature measurement. Furthermore, it is possible to obtain more accurate records than the self-report of the care recipient.
Further, the created life behavior record table data is transmitted from the server device 2 to the caregiver information terminal 3 and displayed on the terminal side display unit 33. Alternatively, it is displayed on the server side display unit and output (printed) on paper from the server side output unit.

なお、要介護者は、老人や病人に限らず、一人での日常生活な困難な人であれば良い。
介護者は、介護士等の介護職員や、看護士や医者等の医療従事者や、警備員や家族等、要介護者の日常生活を補助可能な人であれば良い。居室Rは、介護福祉施設や病院、高齢者向け住宅等に限らず、一般的な集合住宅であっても良く、複数人の要介護者が生活している建築物において、その一室であれば良い。
The person requiring nursing care is not limited to the elderly and the sick, but may be a person who has difficulty in daily life alone.
The caregiver may be a care worker such as a caregiver, a medical worker such as a nurse or a doctor, a guard, a family member, or any other person who can assist the daily life of the care recipient. Living room R is not limited to nursing care welfare facilities, hospitals, housing for the elderly, etc., but may be a general apartment building, or even one room in a building where multiple people requiring nursing care live. Just do it.

以上のように、本発明の要介護者見守りシステムは、要介護者の室内に配設された赤外線アレイセンサ部10からの温度分布データに基づいた低画素イメージデータ51を高画素イメージデータ52に変換する高解像度化処理S2と、上記高画素イメージデータ52に基づいて要介護者を検出して人物エリアEを特定する人検知処理S3と、特定した上記人物エリアEに基づいて要介護者の姿勢及び行動を検出する姿勢・行動検知処理S5と、該姿勢・行動検知処理S5の姿勢・行動結果データに基づいて要介護者の姿勢・行動が異常姿勢・行動状態か否か判定する姿勢・行動異常判定処理S6と、該姿勢・行動異常判定処理S6が異常姿勢・行動状態と判定した場合に異常信号Tを介護者側へ送信する通報処理S7と、を行うので、要介護者の異常を素早く(リアルタイムに)検知でき、通報の遅れを防止できる。姿勢・行動検知によって、異常状態になる直前を検知して、予測的な通報(予報)や異常発生直後の迅速な通報が可能となる。介護者のプライバシー保護性に優れる。システム導入時や導入後の経済的負担を少なくできる。また、特定した人物エリアEに基づいて姿勢・行動異常判定処理S6を行うので、処理容量(処理範囲)が小さく、処理速度の向上や処理負荷の軽減を実現できる。 As described above, the care-requiring person watching system of the present invention converts the low-pixel image data 51 based on the temperature distribution data from the infrared array sensor unit 10 arranged in the care-requiring person's room into the high-pixel image data 52. The high resolution processing S2 to be converted, the person detection process S3 that detects the person requiring care based on the high pixel image data 52 and identifies the person area E, and the person requiring care based on the specified person area E. Posture / behavior detection process S5 that detects posture / behavior and posture / behavior that determines whether the posture / behavior of the person requiring care is an abnormal posture / behavior state based on the posture / behavior result data of the posture / behavior detection process S5. Since the behavior abnormality determination processing S6 and the notification processing S7 for transmitting an abnormality signal T to the caregiver side when the posture / behavior abnormality determination processing S6 determines that the posture / behavior abnormality is determined, the abnormality of the person requiring care is performed. Can be detected quickly (in real time) and delays in reporting can be prevented. Posture / behavior detection enables predictive reporting (forecasting) and prompt reporting immediately after an abnormality occurs by detecting immediately before an abnormal state occurs. Excellent privacy protection for caregivers. The financial burden at the time of system introduction and after introduction can be reduced. Further, since the posture / behavior abnormality determination process S6 is performed based on the specified person area E, the processing capacity (processing range) is small, and the processing speed can be improved and the processing load can be reduced.

また、同室に複数の要介護者が入居している状況下で、同室の複数の要介護者各々について歩容特徴のデータベースを作成し、該データベースからルックアップした歩容特徴を使用する歩容認証処理が付加されているので、各要介護者に関して視覚プライバシーを保護しながらも各人特定(人物認証)が可能となり、各要介護者にとって、望ましい見守りシステムといえる。特に、図9(A)(B)(C)に示したように、要介護者毎に、転倒・徘徊等の危険度が相違し、あるいは暴れる虞れのある人や(病的な)発作を起こす虞れのある人も、洩れなく確実に保護可能である。 In addition, in a situation where a plurality of long-term care recipients are occupying the same room, a database of gait characteristics is created for each of the plurality of long-term care recipients in the same room, and the gait characteristics retrieved from the database are used. Since the authentication process is added, it is possible to identify each person (personal authentication) while protecting the visual privacy of each person requiring long-term care, which can be said to be a desirable monitoring system for each person requiring long-term care. In particular, as shown in FIGS. 9 (A), (B) and (C), the risk of falls, wandering, etc. differs for each person requiring care, or there is a risk of violence or (pathological) seizures. Even those who are at risk of having a seizure can be reliably protected without omission.

また、異常判定が誤りであることを意味する誤判定情報が介護者によって入力されると異常姿勢・行動状態か否かを判定するための判定基準データベースDを修正する判定基準修正処理S9を行うので、誤判定(誤報)を軽減でき、介護者の負担を軽減できる。信頼性の高い(高精度な)通報を発することができる。 Further, when the caregiver inputs erroneous judgment information meaning that the abnormality judgment is erroneous, the judgment standard correction process S9 for correcting the judgment standard database D for determining whether or not the patient is in an abnormal posture / behavioral state is performed. Therefore, it is possible to reduce erroneous judgment (misinformation) and reduce the burden on the caregiver. It is possible to issue highly reliable (highly accurate) reports.

また、検出した上記人物エリアEにおいて、要介護者の体温が異常か否かを判定する体温異常判定処理S12と、該体温異常判定処理S12が異常体温状態と判定した場合に異常信号Tを介護者側へ送信する通報処理S7と、を行うので、介護者は、要介護者自身が自覚していない発熱を知ることができ、素早い対応を実現できる。また、定期的に居室Rへ訪問しなくても、体温結果を得ることができ、介護者の負担を大きく減らせ、少ない人員で介護施設等を運営することができる。 Further, in the detected person area E, the body temperature abnormality determination process S12 for determining whether or not the body temperature of the person requiring long-term care is abnormal, and the abnormality signal T for nursing care when the body temperature abnormality determination process S12 determines that the body temperature is abnormal. Since the notification process S7 to be transmitted to the person is performed, the caregiver can know the fever that the care recipient is not aware of, and can realize a quick response. In addition, the body temperature result can be obtained without visiting the living room R on a regular basis, the burden on the caregiver can be greatly reduced, and the care facility or the like can be operated with a small number of personnel.

また、上記赤外線アレイセンサ部10を有すると共に、上記高解像度化処理S2と上記人検知処理S3と上記姿勢・行動検知処理S5と姿勢・行動結果データを送信する姿勢・行動結果送信処理とを行うセンサ装置1と、上記センサ装置1からの上記姿勢・行動結果データを受信して上記姿勢・行動異常判定処理S6と上記通報処理S7とを行うサーバ装置2と、上記サーバ装置2からの上記異常信号Tを受信する介護者用情報端末3と、を備えたので、複数(多数)必要なセンサ装置1を容易に製造(安価部品で製作)できると共に、サーバ装置2の処理負荷を軽減できる。従って、システム全体としての処理速度を速くすることができる。 In addition to having the infrared array sensor unit 10, the high-resolution processing S2, the person detection processing S3, the posture / behavior detection processing S5, and the posture / behavior result transmission processing for transmitting the posture / behavior result data are performed. The sensor device 1, the server device 2 that receives the posture / action result data from the sensor device 1 and performs the posture / behavior abnormality determination process S6 and the report process S7, and the abnormality from the server device 2. Since the information terminal 3 for a caregiver that receives the signal T is provided, a plurality (many) required sensor devices 1 can be easily manufactured (manufactured with inexpensive parts), and the processing load of the server device 2 can be reduced. Therefore, the processing speed of the entire system can be increased.

1 センサ装置
2 サーバ装置
3 介護者用情報端末
10 赤外線アレイセンサ部
51 低画素イメージデータ
52 高画素イメージデータ
D 判定基準データベース
E 人物エリア
S2 高解像度化処理
S3 人検知処理
S5 姿勢・行動検知処理
S6 姿勢・行動異常判定処理
S7 通報処理
S9 判定基準修正処理
S12 体温異常判定処理
T 異常信号
1 Sensor device 2 Server device 3 Information terminal for caregivers
10 Infrared array sensor
51 Low pixel image data
52 High pixel image data D Judgment standard database E Person area S2 High resolution processing S3 Person detection processing S5 Posture / behavior detection processing S6 Posture / behavior abnormality judgment processing S7 Notification processing S9 Judgment standard correction processing S12 Body temperature abnormality judgment processing T Abnormal signal

Claims (5)

要介護者の室内に配設された赤外線アレイセンサ部(10)からの温度分布データに基づいた低画素イメージデータ(51)を高画素イメージデータ(52)に変換する高解像度化処理(S2)と、上記高画素イメージデータ(52)に基づいて要介護者を検出して人物エリア(E)を特定する人検知処理(S3)と、特定した上記人物エリア(E)に基づいて要介護者の姿勢及び行動を検出する姿勢・行動検知処理(S5)と、該姿勢・行動検知処理(S5)の姿勢・行動結果データに基づいて要介護者の姿勢・行動が異常姿勢・行動状態か否か判定する姿勢・行動異常判定処理(S6)と、該姿勢・行動異常判定処理(S6)が異常姿勢・行動状態と判定した場合に異常信号(T)を介護者側へ送信する通報処理(S7)と、を行うことを特徴とする要介護者見守りシステム。 High resolution processing (S2) that converts low pixel image data (51) based on temperature distribution data from the infrared array sensor unit (10) arranged in the room of the care recipient into high pixel image data (52). A person detection process (S3) that detects a person requiring long-term care based on the high-pixel image data (52) and identifies a person area (E), and a person requiring long-term care based on the specified person area (E). Whether or not the posture / behavior of the care recipient is an abnormal posture / behavior state based on the posture / behavior detection process (S5) that detects the posture / behavior of the person and the posture / behavior result data of the posture / behavior detection process (S5). Posture / behavior abnormality determination processing (S6) for determining whether or not, and notification processing (T) for transmitting an abnormality signal (T) to the caregiver side when the posture / behavior abnormality determination processing (S6) determines that the posture / behavior abnormality is abnormal (S6). S7) and a care-requiring person watching system characterized by performing. 同室に複数の要介護者が入居している状況下で、同室の複数の要介護者各々について歩容特徴のデータベースを作成し、該データベースからルックアップした歩容特徴を使用する歩容認証処理が付加されている請求項1記載の要介護者見守りシステム。 In a situation where multiple long-term care recipients are occupying the same room, a database of gait characteristics is created for each of the multiple long-term care recipients in the same room, and a gait authentication process using the gait features looked up from the database. The care-requiring person watching system according to claim 1, to which is added. 異常判定が誤りであることを意味する誤判定情報が介護者によって入力されると異常姿勢・行動状態か否かを判定するための判定基準データベース(D)を修正する判定基準修正処理(S9)を行う請求項1又は2記載の要介護者見守りシステム。 Judgment standard correction processing (S9) for modifying the judgment standard database (D) for determining whether or not the patient is in an abnormal posture / behavior state when erroneous judgment information indicating that the abnormality judgment is incorrect is input by the caregiver. The care-requiring person watching system according to claim 1 or 2. 検出した上記人物エリア(E)において、要介護者の体温が異常か否かを判定する体温異常判定処理(S12)と、該体温異常判定処理(S12)が異常体温状態と判定した場合に異常信号(T)を介護者側へ送信する通報処理(S7)と、を行う請求項1,2又は3記載の要介護者見守りシステム。 In the detected person area (E), an abnormality occurs when the body temperature abnormality determination process (S12) for determining whether or not the body temperature of the person requiring long-term care is abnormal and the body temperature abnormality determination process (S12) determines that the body temperature is abnormal. The care-requiring person watching system according to claim 1, 2 or 3, which performs a notification process (S7) for transmitting a signal (T) to the caregiver side. 上記赤外線アレイセンサ部(10)を有すると共に、上記高解像度化処理(S2)と上記人検知処理(S3)と上記姿勢・行動検知処理(S5)と姿勢・行動結果データを送信する姿勢・行動結果送信処理とを行うセンサ装置(1)と、
上記センサ装置(1)からの上記姿勢・行動結果データを受信して上記姿勢・行動異常判定処理(S6)と上記通報処理(S7)とを行うサーバ装置(2)と、
上記サーバ装置(2)からの上記異常信号(T)を受信する介護者用情報端末(3)と、
を備えた請求項1,2,3又は4記載の要介護者見守りシステム。
It has the infrared array sensor unit (10), and also transmits the high resolution process (S2), the person detection process (S3), the attitude / action detection process (S5), and the attitude / action result data. A sensor device (1) that performs result transmission processing and
A server device (2) that receives the posture / action result data from the sensor device (1) and performs the posture / behavior abnormality determination process (S6) and the report process (S7).
The caregiver information terminal (3) that receives the abnormal signal (T) from the server device (2), and
The care-requiring person watching system according to claim 1, 2, 3 or 4.
JP2019095427A 2019-05-21 2019-05-21 Monitoring system for care-needing person Pending JP2020190889A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019095427A JP2020190889A (en) 2019-05-21 2019-05-21 Monitoring system for care-needing person

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019095427A JP2020190889A (en) 2019-05-21 2019-05-21 Monitoring system for care-needing person

Publications (1)

Publication Number Publication Date
JP2020190889A true JP2020190889A (en) 2020-11-26

Family

ID=73453762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019095427A Pending JP2020190889A (en) 2019-05-21 2019-05-21 Monitoring system for care-needing person

Country Status (1)

Country Link
JP (1) JP2020190889A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024070335A1 (en) * 2022-09-29 2024-04-04 グローリー株式会社 Monitoring system and monitoring method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006174919A (en) * 2004-12-21 2006-07-06 Hitachi Ltd Body temperature analyzing device and body temperature measuring system
JP2008293301A (en) * 2007-05-25 2008-12-04 Sysmex Corp Patient abnormality notification system and centralized monitor device
JP2011245059A (en) * 2010-05-27 2011-12-08 Tokai Rubber Ind Ltd Bed sensor system
JP2016103237A (en) * 2014-11-28 2016-06-02 クラリオン株式会社 Watching system
WO2016175109A1 (en) * 2015-04-27 2016-11-03 コニカミノルタ株式会社 Monitoring device, monitoring method, monitoring program, and monitoring system
JP2016192110A (en) * 2015-03-31 2016-11-10 日本電気株式会社 Image recognition system, image recognition method, and program
WO2019013257A1 (en) * 2017-07-14 2019-01-17 オムロン株式会社 Monitoring assistance system and method for controlling same, and program

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006174919A (en) * 2004-12-21 2006-07-06 Hitachi Ltd Body temperature analyzing device and body temperature measuring system
JP2008293301A (en) * 2007-05-25 2008-12-04 Sysmex Corp Patient abnormality notification system and centralized monitor device
JP2011245059A (en) * 2010-05-27 2011-12-08 Tokai Rubber Ind Ltd Bed sensor system
JP2016103237A (en) * 2014-11-28 2016-06-02 クラリオン株式会社 Watching system
JP2016192110A (en) * 2015-03-31 2016-11-10 日本電気株式会社 Image recognition system, image recognition method, and program
WO2016175109A1 (en) * 2015-04-27 2016-11-03 コニカミノルタ株式会社 Monitoring device, monitoring method, monitoring program, and monitoring system
WO2019013257A1 (en) * 2017-07-14 2019-01-17 オムロン株式会社 Monitoring assistance system and method for controlling same, and program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024070335A1 (en) * 2022-09-29 2024-04-04 グローリー株式会社 Monitoring system and monitoring method

Similar Documents

Publication Publication Date Title
US11688265B1 (en) System and methods for safety, security, and well-being of individuals
US12148527B2 (en) Sensor-based monitoring of at-risk person at a dwelling
JP2015132963A (en) Monitor system
NZ564706A (en) Trend monitoring system with multiple access levels
US20210158965A1 (en) Automated mobility assessment
Potter et al. Evaluation of sensor technology to detect fall risk and prevent falls in acute care
CN113366529A (en) Nursing recording device, nursing recording system, nursing recording program, and nursing recording method
US12133724B2 (en) Machine vision to predict clinical patient parameters
JPWO2017183602A1 (en) Monitored person monitoring system and monitored person monitoring method
JP6791731B2 (en) Posture judgment device and reporting system
CN105534484B (en) A kind of Household intelligent care appliances
AU2021106898A4 (en) Network-based smart alert system for hospitals and aged care facilities
WO2020003758A1 (en) Report output program, report output method, and report output device
JP7044073B2 (en) Support control method and support system
JP2020190889A (en) Monitoring system for care-needing person
JP7327396B2 (en) Control program, report output method, and report output device
JP4901674B2 (en) Stay status monitoring system, stay status monitoring server, and stay status monitoring method
JP2020091628A (en) Care recipient monitoring system
JP2014092946A (en) Personal information disclosure system and personal information disclosure method
KR102608941B1 (en) Abnormal behavior detecting system using artificial intelligence
JP7152795B2 (en) Monitoring system for people requiring nursing care
JP2020052806A (en) Supervision system, supervision program, and supervision method
JP7467869B2 (en) CONTROL PROGRAM, INFORMATION PROCESSING APPARATUS, AND INFORMATION PROCESSING SYSTEM
JP7484393B2 (en) Information processing device and information processing program
JP2024167938A (en) Information processing device, information processing program, and machine learning device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210302

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210402