JP2020186154A - Large particle size nickel oxide powder and method for producing the same - Google Patents
Large particle size nickel oxide powder and method for producing the same Download PDFInfo
- Publication number
- JP2020186154A JP2020186154A JP2019092944A JP2019092944A JP2020186154A JP 2020186154 A JP2020186154 A JP 2020186154A JP 2019092944 A JP2019092944 A JP 2019092944A JP 2019092944 A JP2019092944 A JP 2019092944A JP 2020186154 A JP2020186154 A JP 2020186154A
- Authority
- JP
- Japan
- Prior art keywords
- nickel oxide
- oxide powder
- nickel
- particles
- aqueous solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Inert Electrodes (AREA)
- Fuel Cell (AREA)
Abstract
Description
本発明は、電子部品用材料や固体酸化物形燃料電池の電極用材料として好適な不純物品位の低い大粒径酸化ニッケル粉末及びその製造方法に関する。 The present invention relates to a large particle size nickel oxide powder having a low impurity grade and a method for producing the same, which is suitable as a material for electronic parts and an electrode material for a solid oxide fuel cell.
一般に、酸化ニッケル粉末は、硫酸ニッケル、硝酸ニッケル、炭酸ニッケル、水酸化ニッケル等のニッケル塩類又はニッケルメタル粉を、ロータリーキルン等の転動炉、プッシャー炉等のような連続炉、あるいはバーナー炉のようなバッチ炉に装入して酸化性雰囲気下で焼成することによって製造される。これらの酸化ニッケル粉末の用途は、従来の電子部品用材料のほか、低環境負荷及び省エネルギーの両面において優れているため新しい発電システムとして期待されている固体酸化物形燃料電池の電極用材料等の様々な分野に広がっている。 Generally, the nickel oxide powder is a nickel salt such as nickel sulfate, nickel nitrate, nickel carbonate, nickel hydroxide, or nickel metal powder, such as a rolling furnace such as a rotary kiln, a continuous furnace such as a pusher furnace, or a burner furnace. It is manufactured by charging it in a batch furnace and firing it in an oxidizing atmosphere. These nickel oxide powders are used not only for conventional materials for electronic parts, but also for electrodes for solid oxide fuel cells, which are expected as new power generation systems because they are excellent in terms of both low environmental load and energy saving. It has spread to various fields.
例えば、電子部品用材料としての用途では、酸化ニッケル粉末を酸化鉄や酸化亜鉛等の他の材料と混合した後、焼結することにより作製されるフェライト部品等の原材料として広く用いられている。このフェライト部品のように、複数の材料を混合して焼成することにより、これらを反応させて複合金属酸化物を製造する場合には、生成反応は固相の拡散反応で律速されるので、該原材料の形態としては一般に微細な粉末が好適に用いられる。一方、固体酸化物形燃料電池としての用途では、該燃料電池のセルを構成する焼結成形された燃料極の原材料として用いられている。この場合、該焼結成形により得られる燃料極の機械的強度を確保するため、及びガスが流通する空隙を内包させるため、比較的粒径が大きな酸化ニッケル粉末を微細な粉末と混合することが多い。 For example, in applications as materials for electronic parts, nickel oxide powder is widely used as a raw material for ferrite parts and the like produced by mixing nickel oxide powder with other materials such as iron oxide and zinc oxide and then sintering the powder. When a plurality of materials are mixed and fired to produce a composite metal oxide like this ferrite component, the production reaction is rate-determined by the diffusion reaction of the solid phase. Generally, fine powder is preferably used as the form of the raw material. On the other hand, in the application as a solid oxide fuel cell, it is used as a raw material for a sintered fuel electrode constituting the cell of the fuel cell. In this case, nickel oxide powder having a relatively large particle size may be mixed with the fine powder in order to secure the mechanical strength of the fuel electrode obtained by the sintering molding and to include voids through which the gas flows. There are many.
上記の焼結形成により得られる燃料極の機械的強度と空隙の内包量とは一般にトレードオフの関係にあり、その両立が固体酸化物形燃料電池のセルスタックの発電特性や寿命を向上させる上で重要な要件となる。また、固体酸化物形燃料電池等においては、上記原材料の酸化ニッケル粉末に含まれる不純物元素の品位を低減することが求められている。不純物元素の中でも特に塩素や硫黄は、電極に利用されている銀と反応して電極劣化を生じさせたり、焼成炉を腐食させたりすることがあるため、できるだけ低減することが望ましい。 The mechanical strength of the fuel electrode obtained by the above sintering formation and the amount of voids included are generally in a trade-off relationship, and both of them improve the power generation characteristics and life of the cell stack of the solid oxide fuel cell. It becomes an important requirement in. Further, in solid oxide fuel cells and the like, it is required to reduce the grade of impurity elements contained in the nickel oxide powder as the raw material. Among the impurity elements, chlorine and sulfur may react with silver used for the electrodes to cause electrode deterioration and corrode the firing furnace, so it is desirable to reduce them as much as possible.
例えば特許文献1には、原料としての硫酸ニッケルをキルンなどに装入し、酸化雰囲気中で焙焼温度950〜1000℃で焙焼する第1段焙焼と、焙焼温度1000〜1200℃で焙焼する第2段焙焼とで熱処理して酸化ニッケル粉末を製造する方法が提案されている。この特許文献1の製造方法によれば、平均粒径が制御され、且つ硫黄品位が50質量ppm以下である酸化ニッケル微粉末が得られると記載されている。 For example, in Patent Document 1, nickel sulfate as a raw material is charged into a kiln or the like and roasted in an oxidizing atmosphere at a roasting temperature of 950 to 1000 ° C. A method of producing nickel oxide powder by heat treatment in the second stage roasting for roasting has been proposed. According to the production method of Patent Document 1, it is described that nickel oxide fine powder having an average particle size controlled and a sulfur grade of 50 mass ppm or less can be obtained.
また、特許文献2には、原料としての無水の硫酸ニッケルを横型回転式製造炉に装入し、強制的に空気を導入しながら最高温度900〜1250℃で焙焼する酸化ニッケル粉末の製造方法が提案されている。この特許文献2の製造方法においても不純物品位を低減することができ、例えば硫黄品位が500質量ppm以下の酸化ニッケル粉末が得られると記載されている。 Further, Patent Document 2 describes a method for producing nickel oxide powder in which anhydrous nickel sulfate as a raw material is charged into a horizontal rotary production furnace and roasted at a maximum temperature of 900 to 1250 ° C. while forcibly introducing air. Has been proposed. It is described that the production method of Patent Document 2 can also reduce the impurity grade, and for example, a nickel oxide powder having a sulfur grade of 500 mass ppm or less can be obtained.
上記の特許文献1の製造方法によれば、不純物品位の低い酸化ニッケル粉末が得られるものの、熱処理が2回必要になるため製造コストが高くなってしまう。また、特許文献1及び2のいずれの製造方法においても、熱処理の際にSOxを含む排ガスが大量に発生するため、その除害処理のために高価な除害設備が必要になるという問題を抱えている。 According to the production method of Patent Document 1 described above, nickel oxide powder having a low impurity grade can be obtained, but the production cost is high because heat treatment is required twice. Further, in any of the manufacturing methods of Patent Documents 1 and 2, since a large amount of exhaust gas containing SOx is generated during heat treatment, there is a problem that expensive abatement equipment is required for the abatement treatment. ing.
このSOxを含む排ガスの発生を抑えた酸化ニッケル粉末の製造方法として、硫酸ニッケルや塩化ニッケル等のニッケル塩を含む水溶液を、水酸化ナトリウム水溶液等のアルカリで中和して水酸化ニッケル粒子を晶析させ、これを焙焼する方法が提案されている。この製造方法では、水酸化ニッケル粒子の焙焼の際に陰イオン成分由来の物質を含む排ガスの発生が少ないため、排ガス処理設備は不要となるか若しくは簡易な排ガス処理設備でよく、その分製造コストを抑えることが可能になると考えられる。 As a method for producing nickel oxide powder that suppresses the generation of exhaust gas containing SO x , an aqueous solution containing a nickel salt such as nickel sulfate or nickel chloride is neutralized with an alkali such as an aqueous solution of sodium hydroxide to form nickel hydroxide particles. A method of crystallizing and roasting this has been proposed. In this manufacturing method, since the generation of exhaust gas containing substances derived from anionic components is small when the nickel hydroxide particles are roasted, the exhaust gas treatment equipment is unnecessary or a simple exhaust gas treatment equipment is sufficient, and the production is performed accordingly. It will be possible to keep costs down.
酸化ニッケル粉末は、例えばフェライト部品の用途では前述したように酸化鉄や酸化亜鉛と混合して焼結することが行われ、固体酸化物形燃料電池の電極材料の用途では固体電解質と混合して用いられる。これら混合の際に、フェライト部品や固体酸化物形燃料電池の電極材料として所望の特性が得られるようにするため、比表面積が所定の範囲内に調整された大粒径の酸化ニッケル粉末が求められることがあった。 For example, nickel oxide powder is mixed with iron oxide or zinc oxide and sintered for use in ferrite parts as described above, and is mixed with solid electrolyte for use as an electrode material for solid oxide fuel cells. Used. In order to obtain desired properties as an electrode material for ferrite parts and solid oxide fuel cells during these mixing, a large particle size nickel oxide powder having a specific surface area adjusted within a predetermined range is required. I was sometimes asked.
本発明は、上記の事情に鑑みてなされたものであり、電子部品材料や固体酸化物形燃料電池の電極材料として好適な、粒径及び比表面積が所望の範囲内に制御された酸化ニッケル粉末及びその製造方法を提供することを目的としている。 The present invention has been made in view of the above circumstances, and is a nickel oxide powder in which the particle size and the specific surface area are controlled within a desired range, which is suitable as an electronic component material or an electrode material for a solid oxide fuel cell. And its manufacturing method.
上記目的を達成するため、発明者らは熱処理時に除害処理を要する排ガスが大量に発生しない製造方法として、ニッケル塩水溶液を中和して得た水酸化ニッケルを焙焼して酸化ニッケル粉末を製造する方法に着目して鋭意研究を重ねた結果、原料としての硫酸ニッケル水溶液を特定のアルカリ水溶液で中和して水酸化ニッケルを主成分とする粒子を得た後、得られた水酸化ニッケルを主成分とする粒子を所定の条件で熱処理することで、粒径及び比表面積が特定の範囲内となる酸化ニッケル粉末が得られることを見出し、本発明を完成するに至った。 In order to achieve the above object, the inventors have produced nickel oxide powder by roasting nickel hydroxide obtained by neutralizing a nickel salt aqueous solution as a production method that does not generate a large amount of exhaust gas that requires abatement treatment during heat treatment. As a result of intensive research focusing on the manufacturing method, nickel hydroxide obtained after neutralizing the nickel sulfate aqueous solution as a raw material with a specific alkaline aqueous solution to obtain particles containing nickel hydroxide as a main component. It has been found that nickel oxide powder having a particle size and a specific surface area within a specific range can be obtained by heat-treating the particles containing the above as a main component under predetermined conditions, and the present invention has been completed.
すなわち、本発明に係る酸化ニッケル粉末の製造方法は、一次粒子が凝集した二次粒子の形態を有する酸化ニッケル粉末の製造方法であって、硫酸ニッケル水溶液に対して、アルカリ成分としてのアルカリ金属の水酸化物を含有するアルカリ水溶液で中和して水酸化ニッケルを主成分とする粒子を晶析する晶析工程と、前記水酸化ニッケルを主成分とする粒子を非還元性雰囲気中において900℃以上1100℃未満の雰囲気温度で熱処理して酸化ニッケル粉末を生成する熱処理工程とを含むことを特徴としている。 That is, the method for producing nickel oxide powder according to the present invention is a method for producing nickel oxide powder having the form of secondary particles in which primary particles are aggregated, and is a method for producing nickel oxide powder as an alkaline component with respect to an aqueous nickel sulfate solution. A crystallization step of neutralizing with an alkaline aqueous solution containing a hydroxide to crystallize the particles containing nickel hydroxide as a main component, and the particles containing nickel hydroxide as a main component at 900 ° C. in a non-reducing atmosphere. It is characterized by including a heat treatment step of producing nickel oxide powder by heat treatment at an atmospheric temperature of less than 1100 ° C.
また、本発明に係る酸化ニッケル粉末は、一次粒子が凝集した二次粒子の形態を有する酸化ニッケル粉末であって、BET法で測定した比表面積が0.1m2/g以上1.0m2/g未満であり、レーザー回折・散乱法で測定した該二次粒子の平均粒径D50が5.0μm以上20μm以下であることを特徴としている。 Further, the nickel oxide powder according to the present invention is a nickel oxide powder having the form of secondary particles in which primary particles are aggregated, and the specific surface area measured by the BET method is 0.1 m 2 / g or more and 1.0 m 2 /. It is characterized in that it is less than g and the average particle size D50 of the secondary particles measured by a laser diffraction / scattering method is 5.0 μm or more and 20 μm or less.
本発明によれば、フェライト部品などの電子部品材料や固体酸化物形燃料電池の電極材料として好適な、粒径と比表面積が特定の範囲内に制御された酸化ニッケル粉末を容易に得ることができる。 According to the present invention, it is possible to easily obtain nickel oxide powder having a particle size and a specific surface area controlled within a specific range, which is suitable as an electronic component material such as a ferrite component or an electrode material for a solid oxide fuel cell. it can.
以下、本発明の実施形態に係る酸化ニッケル粉末の製造方法について説明する。この本発明の実施形態の酸化ニッケル粉末の製造方法は、ニッケル塩水溶液をアルカリ水溶液で中和して水酸化ニッケルを主成分とする粒子(以下、特にことわらない限り水酸化ニッケル粒子と称することがある)を得る晶析工程と、得られた水酸化ニッケルを主成分とする粒子を非還元性雰囲気中において900℃以上1100℃未満の雰囲気温度で熱処理して酸化ニッケル粉末を生成する熱処理工程とからなる。 Hereinafter, a method for producing nickel oxide powder according to the embodiment of the present invention will be described. The method for producing nickel oxide powder according to the embodiment of the present invention is to neutralize a nickel salt aqueous solution with an alkaline aqueous solution and refer to particles containing nickel hydroxide as a main component (hereinafter, unless otherwise specified, nickel hydroxide particles. There is a crystallization step to obtain nickel oxide powder, and a heat treatment step to produce nickel oxide powder by heat-treating the obtained nickel hydroxide-based particles in a non-reducing atmosphere at an atmospheric temperature of 900 ° C. or higher and lower than 1100 ° C. It consists of.
かかる製造方法により作製される本発明の実施形態に係る酸化ニッケル粉末は、一次粒子が凝集した二次粒子の形態を有し、レーザー回折・散乱法で測定した該二次粒子の平均粒径D50(粒度分布曲線における粒子量の体積積算で50%となる粒径)が5.0μm以上20μm以下の範囲内であり、BET法で測定した比表面積が0.1m2/g以上1.0m2/g未満の範囲内である。尚、本発明においては、「A以上B以下」を「A〜B」と表すことがある。 The nickel oxide powder according to the embodiment of the present invention produced by such a production method has the form of secondary particles in which primary particles are aggregated, and the average particle size D50 of the secondary particles measured by a laser diffraction / scattering method. (The particle size that is 50% by volume integration of the amount of particles in the particle size distribution curve) is within the range of 5.0 μm or more and 20 μm or less, and the specific surface area measured by the BET method is 0.1 m 2 / g or more and 1.0 m 2 It is within the range of less than / g. In the present invention, "A or more and B or less" may be expressed as "A to B".
酸化ニッケル粉末の反応性は前述したようにより微細であるほど高いため、二次粒子の形態を有する酸化ニッケル粉末は、比較的微細に粒径が調整された一次粒子が凝集しているのが望ましい。しかしながら、微細な一次粒子同士が凝集した二次粒子は、該一次粒子同士の接触部面積が熱処理温度の高温化により増大すると、上記の反応性が低下してしまうと共に、一般的には一次粒子同士の接触部面積が増大すると該接触部は結合力が強化するため、必要に応じて後工程において解砕する際に解砕性が低下するおそれがある。そこで、一次粒子が凝集した二次粒子の形態を有する酸化ニッケル粉末においては、該二次粒子の平均粒径に加えて、反応性の指標として表すことができる比表面積がいずれも上記の所定の範囲内に調整されることが重要となる。 Since the reactivity of the nickel oxide powder is higher as it is finer as described above, it is desirable that the nickel oxide powder having the form of secondary particles has the primary particles having a relatively finely adjusted particle size aggregated. .. However, in the secondary particles in which fine primary particles are aggregated, when the contact area between the primary particles increases due to an increase in the heat treatment temperature, the above-mentioned reactivity decreases and generally the primary particles When the area of the contact portion between the two increases, the binding force of the contact portion is strengthened, so that the crushability may be lowered when crushing in the subsequent step if necessary. Therefore, in the nickel oxide powder having the form of secondary particles in which the primary particles are aggregated, in addition to the average particle size of the secondary particles, the specific surface area that can be expressed as an index of reactivity is the above-mentioned predetermined value. It is important to be adjusted within the range.
上記の晶析工程では、原料のニッケル塩水溶液に硫酸ニッケルを使用することが重要である。硫酸ニッケルを使用することによって、他のニッケル塩を用いた場合に比べて後工程の熱処理工程において熱処理温度を高温化しても微細な酸化ニッケルの一次粒子を得ることが可能となり、その結果、硫黄等の不純物品位が制御された微細な一次粒子が凝集した酸化ニッケル粉末を生成することができる。 In the above crystallization step, it is important to use nickel sulfate as the raw material nickel salt aqueous solution. By using nickel sulfate, it is possible to obtain fine primary particles of nickel oxide even if the heat treatment temperature is raised in the heat treatment step of the subsequent step as compared with the case of using other nickel salts, and as a result, sulfur It is possible to produce nickel oxide powder in which fine primary particles having controlled impurity grades such as the above are aggregated.
本発明者らは、このように原料に硫酸ニッケルを使用することより、熱処理温度が一次粒子の粒径に及ぼす影響を抑えることができ、その結果、酸化ニッケルからなる一次粒子の粒径を微細に維持したままその硫黄品位を制御できることを見出した。さらに、熱処理温度を所定の範囲内に制御することで、一次粒子同士の焼結による凝集の度合いを制御し、二次粒子の粒径と比表面積を特定の範囲内に調整できることを見出した。しかも、上記の晶析工程では原料に塩化ニッケルを用いないでよいため、該原料に不可避的に含まれる不純物以外は実質的に塩素を含有しない一次粒子が凝集した酸化ニッケル粉末を得ることができる。 By using nickel sulfate as a raw material in this way, the present inventors can suppress the influence of the heat treatment temperature on the particle size of the primary particles, and as a result, the particle size of the primary particles made of nickel oxide is fine. It was found that the sulfur grade can be controlled while maintaining the temperature. Furthermore, they have found that by controlling the heat treatment temperature within a predetermined range, the degree of aggregation due to sintering of the primary particles can be controlled, and the particle size and specific surface area of the secondary particles can be adjusted within a specific range. Moreover, since nickel chloride does not have to be used as a raw material in the above crystallization step, it is possible to obtain nickel oxide powder in which primary particles substantially containing no chlorine other than impurities inevitably contained in the raw material are aggregated. ..
上記方法で微細な酸化ニッケル一次粒子が得られる明確な理由は不明であるが、硫酸ニッケルの分解温度は848℃と高温であるため、中和により晶析した水酸化ニッケルを主成分とした粒子の表面や界面に該硫酸ニッケル由来の硫黄成分が硫酸塩として巻きこまれ、これが酸化ニッケル粉末の焼結を高温まで抑制していると考えられる。また、この硫酸ニッケルの分解温度よりも高温で熱処理すれば該硫黄成分は分解又は揮発するため、熱処理後の酸化ニッケル粉末の硫黄品位を低減することができる。 The clear reason why fine nickel oxide primary particles can be obtained by the above method is unknown, but since the decomposition temperature of nickel sulfate is as high as 848 ° C., the particles containing nickel hydroxide crystallized by neutralization as the main component. It is considered that the sulfur component derived from nickel sulfate is involved as a sulfate on the surface or interface of the nickel oxide powder, which suppresses the sintering of nickel oxide powder to a high temperature. Further, if the heat treatment is performed at a temperature higher than the decomposition temperature of the nickel sulfate, the sulfur component is decomposed or volatilized, so that the sulfur grade of the nickel oxide powder after the heat treatment can be reduced.
上記晶析工程後の熱処理工程では、水酸化ニッケル粒子内の水酸基が脱離して酸化ニッケル粉末が生成される。その際、熱処理温度を適切に設定することによって一次粒子群が焼結により凝集した二次粒子の粒径及び比表面積並びに硫黄品位の制御が可能になる。具体的には、水酸化ニッケルを主成分とした粒子の熱処理時の雰囲気温度を、900℃以上1100℃未満、好ましくは950℃以上1050℃以下に制御する。これにより、酸化ニッケル粉末の硫黄品位を100質量ppm以下、レーザー回折・散乱法で測定した平均粒径(D50)を5.0μm以上20μm以下、BET法で測定した比表面積を0.1m2/g以上1.0m2/g未満に制御することができる。以下、かかる本発明の実施形態に係る酸化ニッケル粉末の製造方法について工程毎に詳細に説明する。 In the heat treatment step after the crystallization step, the hydroxyl groups in the nickel hydroxide particles are desorbed to produce nickel oxide powder. At that time, by appropriately setting the heat treatment temperature, it is possible to control the particle size, specific surface area, and sulfur grade of the secondary particles in which the primary particle group is aggregated by sintering. Specifically, the atmospheric temperature of the particles containing nickel hydroxide as a main component during heat treatment is controlled to 900 ° C. or higher and lower than 1100 ° C., preferably 950 ° C. or higher and 1050 ° C. or lower. As a result, the sulfur grade of the nickel oxide powder is 100 mass ppm or less, the average particle size (D50) measured by the laser diffraction / scattering method is 5.0 μm or more and 20 μm or less, and the specific surface area measured by the BET method is 0.1 m 2 /. It can be controlled to be greater than or equal to g and less than 1.0 m 2 / g. Hereinafter, the method for producing nickel oxide powder according to the embodiment of the present invention will be described in detail for each step.
1.晶析工程
先ず、晶析工程では、原料としての硫酸ニッケル水溶液を、アルカリ水溶液で中和して水酸化ニッケルを主成分とする粒子を生成する。この原料として用いる硫酸ニッケル水溶液は、最終的に得られる酸化ニッケル粉末が、電子部品又は固体酸化物形燃料電池の電極として用いられることから、それらの腐食を防止するため、原料中に含まれる不純物の合計が100質量ppm未満であることが望ましい。
1. Crystallization step First, in the crystallization step, the nickel sulfate aqueous solution as a raw material is neutralized with an alkaline aqueous solution to generate particles containing nickel hydroxide as a main component. In the nickel sulfate aqueous solution used as this raw material, since the finally obtained nickel oxide powder is used as an electrode for electronic parts or solid oxide fuel cells, impurities contained in the raw material are contained in order to prevent corrosion thereof. It is desirable that the total of is less than 100 mass ppm.
また、硫酸ニッケル水溶液中のニッケル濃度は、生産性を考慮すると50〜150g/Lが好ましい。この濃度が50g/L未満では生産性が悪くなる。逆にこの濃度が150g/Lを超えると、硫酸ニッケル水溶液中の陰イオン濃度が高くなりすぎ、生成した水酸化ニッケル中の硫黄品位が高くなるため、最終的に得られる酸化ニッケル粉末中の不純物品位が十分に低くならない場合がある。 The nickel concentration in the nickel sulfate aqueous solution is preferably 50 to 150 g / L in consideration of productivity. If this concentration is less than 50 g / L, the productivity will deteriorate. On the contrary, when this concentration exceeds 150 g / L, the anion concentration in the nickel sulfate aqueous solution becomes too high, and the sulfur grade in the produced nickel hydroxide becomes high, so that the impurities in the finally obtained nickel oxide powder are high. The quality may not be sufficiently low.
一方、中和用のアルカリ水溶液には、反応液中に残留するニッケルの量を考慮して、アルカリ金属の水酸化物をアルカリ成分として含有するものを用いる。このアルカリ金属の水酸化物には水酸化ナトリウムや水酸化カリウムが好ましく、コストを考慮すると水酸化ナトリウムがより好ましい。尚、アルカリは固体の状態で硫酸ニッケル溶液に添加することが考えられるが、本発明の実施形態の製造方法では取扱いの容易さから水溶液の形態で添加している。 On the other hand, as the alkaline aqueous solution for neutralization, one containing an alkali metal hydroxide as an alkaline component is used in consideration of the amount of nickel remaining in the reaction solution. Sodium hydroxide and potassium hydroxide are preferable as the hydroxide of the alkali metal, and sodium hydroxide is more preferable in consideration of cost. Alkali may be added to the nickel sulfate solution in a solid state, but in the production method of the embodiment of the present invention, it is added in the form of an aqueous solution for ease of handling.
本発明の実施形態の製造方法では、上記の中和用のアルカリ水溶液が、アルカリ成分として炭酸ナトリウムを含有しているのが好ましい。このように、炭酸ナトリウムがアルカリ水溶液に含まれることにより、詳細は不明ではあるが、晶析により生成した水酸化ニッケル粒子の界面や表面に巻き込まれる硫黄成分やナトリウム等のアルカリ金属成分の量を低減することができる。すなわち、炭酸ナトリウムをアルカリ成分として少量含有させると、水酸化ニッケル粒子中の硫黄品位は一旦増加するが、炭酸ナトリウムの混合割合を増加させるに従い、硫黄品位は低下していく。一方、水酸化ニッケル粒子中のナトリウム等のアルカリ金属の品位は、炭酸ナトリウムを少量含有させることで低下させることができるが、炭酸ナトリウムの混合割合を高くしすぎると逆にナトリウム等のアルカリ金属の品位は高くなる。 In the production method of the embodiment of the present invention, it is preferable that the above-mentioned alkaline aqueous solution for neutralization contains sodium carbonate as an alkaline component. As described above, since sodium carbonate is contained in the alkaline aqueous solution, the details are unknown, but the amount of sulfur components and alkali metal components such as sodium that are involved in the interface and surface of the nickel hydroxide particles generated by crystallization can be determined. Can be reduced. That is, when sodium carbonate is contained in a small amount as an alkaline component, the sulfur grade in the nickel hydroxide particles increases once, but as the mixing ratio of sodium carbonate increases, the sulfur grade decreases. On the other hand, the grade of alkali metals such as sodium in nickel hydroxide particles can be lowered by containing a small amount of sodium carbonate, but if the mixing ratio of sodium carbonate is too high, on the contrary, the quality of alkali metals such as sodium The dignity is high.
そこで、本発明の実施形態の製造方法では、上記アルカリ水溶液に炭酸ナトリウムを含有させる場合、該アルカリ水溶液中の炭酸ナトリウムの濃度を0.4〜0.8mol/Lにしている。この炭酸ナトリウム濃度が0.4mol/L未満では、水酸化ニッケル粒子の硫黄品位が、炭酸ナトリウムを含有させずに中和させた水酸化ニッケル粒子よりも高くなることがあり、逆に0.8mol/Lを超えると、水酸化ニッケル粒子のナトリウム等のアルカリ金属の品位が、炭酸ナトリウムを含有させずに中和させた水酸化ニッケル粒子よりも高くなることがある。ナトリウム等のアルカリ金属は、後述する熱処理工程において高融点の硫酸塩を形成し、これは硫黄成分の分解や揮発を阻害する方向に働くので、水酸化ニッケル粒子のアルカリ金属の品位が高いと、酸化ニッケル微粉末の硫黄品位が高くなりやすい。 Therefore, in the production method of the embodiment of the present invention, when sodium carbonate is contained in the alkaline aqueous solution, the concentration of sodium carbonate in the alkaline aqueous solution is set to 0.4 to 0.8 mol / L. When the sodium carbonate concentration is less than 0.4 mol / L, the sulfur grade of the nickel hydroxide particles may be higher than that of the nickel hydroxide particles neutralized without containing sodium carbonate, and conversely, 0.8 mol. If it exceeds / L, the grade of the alkali metal such as sodium of the nickel hydroxide particles may be higher than that of the nickel hydroxide particles neutralized without containing sodium carbonate. Alkali metals such as sodium form a sulfate having a high melting point in the heat treatment step described later, which acts in a direction of inhibiting the decomposition and volatilization of the sulfur component. Therefore, if the alkali metal quality of the nickel hydroxide particles is high, The sulfur grade of the nickel oxide fine powder tends to be high.
上記中和反応の晶析により得られる水酸化ニッケル粒子は、硫黄品位を2質量%以下にすることができる。この硫黄品位の下限については特に限定はないが、アルカリ水溶液中の炭酸ナトリウムの濃度が0.4mol/L以上0.8mol/L未満の範囲では0.5質量%以上にすることができる。この硫黄品位は、炭酸ナトリウム濃度等を適宜調整することで好適には1.0〜2.0質量%に、より好適には1.2〜1.8質量%にすることができる。また、上記の水酸化ニッケル粒子は、ナトリウム等の総アルカリ金属の品位が10質量ppm以下となり、原料に硫酸ニッケルを用いることで、塩素品位は50質量ppm以下となる。尚、総アルカリ金属の品位とは、ナトリウムやカリウム等アルカリ金属元素を合計した品位のことである。 The nickel hydroxide particles obtained by crystallization of the neutralization reaction can have a sulfur grade of 2% by mass or less. The lower limit of the sulfur grade is not particularly limited, but can be 0.5% by mass or more when the concentration of sodium carbonate in the alkaline aqueous solution is in the range of 0.4 mol / L or more and less than 0.8 mol / L. The sulfur grade can be preferably 1.0 to 2.0% by mass, and more preferably 1.2 to 1.8% by mass by appropriately adjusting the sodium carbonate concentration and the like. Further, in the above nickel hydroxide particles, the grade of total alkali metal such as sodium is 10 mass ppm or less, and by using nickel sulfate as a raw material, the chlorine grade is 50 mass ppm or less. The total alkali metal grade is the total grade of alkali metal elements such as sodium and potassium.
上記中和反応の晶析により得られる水酸化ニッケル粒子は、さらにレーザー回折・散乱法で測定したD90を60μm以下にすることができる。この水酸化ニッケル粒子のD90は、前述した熱処理温度等を適宜調整することで好適には50μm以下にすることができる。上記の水酸化ニッケル粒子のD90の下限値については特に限定はないが、上記中和反応による晶析では通常は5μmが下限となる。 The nickel hydroxide particles obtained by crystallization of the neutralization reaction can further have a D90 of 60 μm or less measured by a laser diffraction / scattering method. The D90 of the nickel hydroxide particles can be preferably 50 μm or less by appropriately adjusting the heat treatment temperature and the like described above. The lower limit of D90 of the nickel hydroxide particles is not particularly limited, but usually 5 μm is the lower limit in the crystallization by the neutralization reaction.
均一な特性の水酸化ニッケル粒子を高い生産性で得るためには、反応槽内において十分に撹拌されている液に、予め調製しておいたニッケル塩水溶液としての硫酸ニッケル水溶液とアルカリ水溶液とをいわゆるダブルジェット方式で添加する連続晶析法が有効である。即ち、反応槽内にニッケル塩水溶液及びアルカリ水溶液のうちのいずれか一方を所定量入れておき、もう一方を添加して中和するのではなく、反応槽内に予め入れておいた十分に攪拌されている液中に、好適にはこの攪拌を継続しながらニッケル塩水溶液とアルカリ水溶液とを同時並行的に且つ連続的に反応層内で乱流状態となるように添加することが好ましい。これにより、十分に混合された反応液中で中和反応させることができるので、効率的な晶析が可能になり、生産性を高めることができる。この場合、反応槽内に予め入れておく液は、純水に上記アルカリ成分を添加し、所定のpHに調整したものを用いるのが好ましい。 In order to obtain nickel hydroxide particles having uniform characteristics with high productivity, a nickel sulfate aqueous solution and an alkaline aqueous solution as a nickel salt aqueous solution prepared in advance are added to a solution that is sufficiently stirred in the reaction vessel. The continuous crystallization method of adding by the so-called double jet method is effective. That is, instead of putting a predetermined amount of either a nickel salt aqueous solution or an alkaline aqueous solution in the reaction vessel and adding the other to neutralize the reaction vessel, the mixture is sufficiently stirred in the reaction vessel in advance. It is preferable to add the nickel salt aqueous solution and the alkaline aqueous solution to the liquid to be turbulent in the reaction layer simultaneously and continuously while continuing this stirring. As a result, the neutralization reaction can be carried out in a sufficiently mixed reaction solution, so that efficient crystallization is possible and productivity can be improved. In this case, it is preferable to use a liquid to be put in the reaction vessel in advance by adding the above alkaline component to pure water and adjusting the pH to a predetermined value.
中和反応時は、反応液のpHを8.3〜9.0の範囲内に調整することが好ましく、この範囲内でpHをほぼ一定に保つことが特に好ましい。このpHが8.3より低いと、水酸化ニッケル粒子中に残存する硫酸イオンなどの陰イオン成分の濃度が増大し、これは後工程の熱処理工程の際に、大量のSOxとなって炉体をいためるため好ましくない。逆に、pHが9.0より高くなると、得られる水酸化ニッケル粒子が微細になりすぎ、後段の濾過が困難になることがある。また、後工程の熱処理工程で焼結が進みすぎ、微細な酸化ニッケル粉末を得ることが困難になることがある。 At the time of the neutralization reaction, it is preferable to adjust the pH of the reaction solution within the range of 8.3 to 9.0, and it is particularly preferable to keep the pH substantially constant within this range. When this pH is lower than 8.3, the concentration of anionic components such as sulfate ions remaining in the nickel hydroxide particles increases, which becomes a large amount of SOx during the heat treatment step in the subsequent step, and the furnace body. It is not preferable because it damages. On the contrary, when the pH is higher than 9.0, the obtained nickel hydroxide particles become too fine, which may make the subsequent filtration difficult. In addition, sintering proceeds too much in the heat treatment step of the subsequent step, and it may be difficult to obtain fine nickel oxide powder.
尚、上記した好適な中和反応条件であるpH9.0以下では、該中和反応後の水溶液中に僅かにニッケル成分が残存することがある。この場合は、上記の中和による晶析後に、該水溶液のpHを10程度まで上げることによって、後述する後段の濾過時に排出される濾液中のニッケル成分濃度を低減することができる。上記の中和反応時は、pHの変動幅が設定値を中心として絶対値で0.2以内でできるだけ一定となるように制御することが好ましい。pHの変動幅がこれより大きくなると、水酸化ニッケル粒子中の不純物品位が増大したり、後工程の熱処理工程で生成される酸化ニッケル粉末の比表面積が低下したりするおそれがある。 At pH 9.0 or lower, which is the preferred neutralization reaction condition described above, a small amount of nickel component may remain in the aqueous solution after the neutralization reaction. In this case, by raising the pH of the aqueous solution to about 10 after crystallization by the above neutralization, the concentration of nickel components in the filtrate discharged during the subsequent filtration, which will be described later, can be reduced. At the time of the above neutralization reaction, it is preferable to control the fluctuation range of pH so as to be as constant as possible within 0.2 in absolute value centering on the set value. If the fluctuation range of pH becomes larger than this, the impurity grade in the nickel hydroxide particles may increase, or the specific surface area of the nickel oxide powder produced in the heat treatment step of the subsequent step may decrease.
上記中和反応時の液温は特に制約はなく、中和反応において通常行われる常温でもよいが、水酸化ニッケル粒子を十分に成長させるため、該液温を50〜70℃とすることが好ましい。このように水酸化ニッケル粒子を十分に成長させることで、水酸化ニッケル粒子中への硫黄成分の過度の含有を防止することができる。また、水酸化ニッケル粒子中へのナトリウムなどの不純物の巻き込みも抑制でき、最終的に得られる酸化ニッケル粉末の不純物品位を低減することができる。 The liquid temperature during the neutralization reaction is not particularly limited and may be normal temperature, which is usually performed in the neutralization reaction, but the liquid temperature is preferably 50 to 70 ° C. in order to sufficiently grow the nickel hydroxide particles. .. By sufficiently growing the nickel hydroxide particles in this way, it is possible to prevent excessive inclusion of the sulfur component in the nickel hydroxide particles. In addition, it is possible to suppress the entrainment of impurities such as sodium in the nickel hydroxide particles, and it is possible to reduce the impurity grade of the finally obtained nickel oxide powder.
この液温が50℃未満では、水酸化ニッケル粒子の成長が不十分になって、水酸化ニッケル中への硫黄成分や不純物の巻き込みが多くなるおそれがある。逆に、この液温が70℃を超えると、水の蒸発量が増加し、水溶液中の硫黄成分等の不純物濃度が高くなって、生成した水酸化ニッケル粒子中の硫黄成分等の不純物品位が高くなるおそれがある。 If the liquid temperature is less than 50 ° C., the growth of nickel hydroxide particles may be insufficient, and sulfur components and impurities may be more involved in nickel hydroxide. On the contrary, when this liquid temperature exceeds 70 ° C., the amount of evaporation of water increases, the concentration of impurities such as sulfur components in the aqueous solution increases, and the grade of impurities such as sulfur components in the generated nickel hydroxide particles becomes high. It may be expensive.
上記中和反応の終了後は、晶析により生成した水酸化ニッケル粒子を含むスラリーを濾過して該水酸化ニッケル粒子を濾過ケーキの形態で回収する。回収した濾過ケーキは、次工程の熱処理工程で処理する前に洗浄することが好ましい。この洗浄では、洗浄液を加えてスラリーの状態にしてから撹拌して洗浄した後、濾過等の固液分離により脱液するいわゆるレパルプ洗浄が好ましい。このレパルプ洗浄に用いる洗浄液としては水が好ましく、純水が特に好ましい。 After the completion of the neutralization reaction, the slurry containing the nickel hydroxide particles produced by crystallization is filtered, and the nickel hydroxide particles are recovered in the form of a filtered cake. It is preferable to wash the recovered filtered cake before processing it in the heat treatment step of the next step. In this cleaning, so-called repulp cleaning is preferable, in which a cleaning liquid is added to form a slurry, the mixture is stirred and washed, and then the liquid is removed by solid-liquid separation such as filtration. Water is preferable as the cleaning liquid used for this repulp cleaning, and pure water is particularly preferable.
上記のレパルプ洗浄時の水酸化ニッケルと水との混合割合には特に限定はなく、ニッケル塩に含まれる陰イオン、特に硫酸イオンや、ナトリウム等のアルカリ金属成分が十分に除去できる混合割合とすればよい。具体的には、残留陰イオン及びアルカリ金属等の不純物が十分に低減でき且つ水酸化ニッケル粒子を良好に分散させるため、50〜150gの水酸化ニッケルに対して洗浄液1Lを混合することが好ましく、100g程度の水酸化ニッケルに対して洗浄液1Lを混合するのがより好ましい。 The mixing ratio of nickel hydroxide and water during the above-mentioned repulp washing is not particularly limited, and the mixing ratio is such that anions contained in the nickel salt, particularly sulfate ions and alkali metal components such as sodium can be sufficiently removed. Just do it. Specifically, in order to sufficiently reduce impurities such as residual anions and alkali metals and to disperse nickel hydroxide particles satisfactorily, it is preferable to mix 1 L of the cleaning liquid with 50 to 150 g of nickel hydroxide. It is more preferable to mix 1 L of the cleaning liquid with about 100 g of nickel hydroxide.
レパルプ洗浄の洗浄時間については、洗浄後の残留不純物が十分に低減されるように、上記の洗浄液との混合割合や洗浄時の液温などの洗浄条件に応じて適宜定めればよい。尚、1回のレパルプ洗浄で陰イオン及びアルカリ金属等の不純物が十分に低減されない場合は、レパルプ洗浄を複数回繰り返すことが好ましい。特に、ナトリウム等のアルカリ金属は次工程の熱処理工程ではほとんど除去できないため、このレパルプ洗浄によって十分に除去することが好ましい。例えば洗浄液に純水を用い、レパルプ洗浄後の洗浄液の導電率を測定して所定の導電率以下となるまでレパルプ洗浄を繰り返すことで、不純物を十分に除去することができる。レパルプ洗浄において濾過した後は、必要に応じて乾燥するのが好ましい。 The cleaning time for repulp cleaning may be appropriately determined according to cleaning conditions such as the mixing ratio with the above cleaning liquid and the liquid temperature during cleaning so that residual impurities after cleaning are sufficiently reduced. If impurities such as anions and alkali metals are not sufficiently reduced by one repulp washing, it is preferable to repeat the repulp washing a plurality of times. In particular, since alkali metals such as sodium can hardly be removed in the heat treatment step of the next step, it is preferable to sufficiently remove them by this repulp washing. For example, impurities can be sufficiently removed by using pure water as the cleaning liquid, measuring the conductivity of the cleaning liquid after the repulp cleaning, and repeating the repulp cleaning until the conductivity becomes equal to or less than a predetermined conductivity. After filtering in the repulp washing, it is preferable to dry it if necessary.
2.熱処理工程
熱処理工程では、上記の晶析工程で得た水酸化ニッケル粒子を非還元性雰囲気中において熱処理することで酸化ニッケル粉末を生成させる。この熱処理では、雰囲気温度を900℃以上1100℃未満の温度範囲内、好ましくは950℃以上1050℃以下の温度範囲内、より好ましくは1000℃を超えて1050℃以下の温度範囲内とする。尚、本発明においては、この熱処理時の雰囲気温度を単に熱処理温度と称することがある。
2. Heat treatment step In the heat treatment step, nickel oxide powder is produced by heat-treating the nickel hydroxide particles obtained in the above crystallization step in a non-reducing atmosphere. In this heat treatment, the ambient temperature is set within a temperature range of 900 ° C. or higher and lower than 1100 ° C., preferably within a temperature range of 950 ° C. or higher and 1050 ° C. or lower, and more preferably within a temperature range of 1000 ° C. or higher and 1050 ° C. or lower. In the present invention, the atmospheric temperature at the time of this heat treatment may be simply referred to as the heat treatment temperature.
このように、熱処理時の雰囲気温度を900℃以上1100℃未満の範囲内にすることにより、硫黄品位を低く抑えながら比表面積を0.1m2/g以上1.0m2/g未満の範囲内に制御できる。すなわち、前述したとおり、この熱処理工程では硫酸ニッケルの分解温度である848℃を超えた温度で熱処理することになるため、硫黄品位が抑えられた一次粒子群が焼結により凝集した二次粒子の形態をもつ酸化ニッケル粉末を生成することができる。 Thus, by the ambient temperature during the heat treatment within a range of less than 900 ° C. or higher 1100 ° C., a specific surface area while suppressing the sulfur grade 0.1 m 2 / g or more 1.0m in the range of less than 2 / g Can be controlled. That is, as described above, since the heat treatment is performed at a temperature exceeding 848 ° C., which is the decomposition temperature of nickel sulfate, in this heat treatment step, the primary particle group having suppressed sulfur grade is aggregated by sintering. A morphological nickel oxide powder can be produced.
尚、熱処理時の雰囲気温度が高くなればなるほど、一次粒子同士の焼結が進行して二次粒子は緻密となり、粒子の機械的強度は向上するものの比表面積は低下する。また、一次粒子の焼結の進行に伴って二次粒子の平均粒径(D50)も低下傾向になる。尚、本発明の実施形態に係る酸化ニッケル粉末の製造方法では、この熱処理工程によって生成した酸化ニッケル粉末の解砕処理は要しない。 The higher the atmospheric temperature during the heat treatment, the more the sintering of the primary particles progresses and the secondary particles become denser, the mechanical strength of the particles improves, but the specific surface area decreases. In addition, the average particle size (D50) of the secondary particles tends to decrease as the sintering of the primary particles progresses. The method for producing nickel oxide powder according to the embodiment of the present invention does not require crushing the nickel oxide powder produced by this heat treatment step.
上記の熱処理温度が1100℃以上では、硫黄成分の分解が進行しすぎて前述した焼結の抑制効果が不十分となると共に、温度による焼結の促進が顕著になる。その結果、熱処理によって得られる酸化ニッケルの一次粒子同士の焼結の結合力が増して、比表面積が0.1m2/g未満になりうるだけでなく、得られた二次粒子の形態の酸化ニッケル粉末を他の材料と混合してフェライト部品や固体酸化物形燃料電池の電極材料に用いる際に、それらの特性を調整することができないことがある。 When the heat treatment temperature is 1100 ° C. or higher, the decomposition of the sulfur component proceeds too much, the above-mentioned effect of suppressing sintering becomes insufficient, and the promotion of sintering by temperature becomes remarkable. As a result, the bonding force of the sintering of the primary particles of nickel oxide obtained by the heat treatment is increased, and not only the specific surface area can be less than 0.1 m 2 / g, but also the oxidation of the obtained secondary particles in the form of the secondary particles. When nickel powder is mixed with other materials and used as an electrode material for ferrite parts or solid oxide fuel cells, it may not be possible to adjust their characteristics.
逆に、上記の熱処理温度が900℃未満では、硫酸塩等の硫黄成分の分解や揮発が不十分となり、水酸化ニッケル粒子中に硫黄成分が過度に残留するため、その熱処理により生成される酸化ニッケル粉末の硫黄品位が100質量ppmを超えるおそれがある。また、得られた酸化ニッケル粉末の比表面積が1.0m2/gよりも高くなったり、該酸化ニッケル粉末を他の材料と混合した時に容易に解砕されたりして、フェライト部品や固体酸化物形燃料電池の電極材料の特性の調整が困難になることがある。 On the contrary, when the heat treatment temperature is less than 900 ° C., the decomposition and volatilization of sulfur components such as sulfates are insufficient, and the sulfur components remain excessively in the nickel hydroxide particles, so that the oxidation generated by the heat treatment The sulfur grade of nickel powder may exceed 100 mass ppm. Further, the specific surface area of the obtained nickel oxide powder becomes higher than 1.0 m 2 / g, or the nickel oxide powder is easily crushed when mixed with other materials, so that ferrite parts and solid oxides are oxidized. It may be difficult to adjust the characteristics of the electrode material of the solid fuel cell.
上記の熱処理時の雰囲気は、非還元性雰囲気であれば特に限定はないが、経済性を考慮すると大気雰囲気とすることが好ましい。また、熱処理の際に水酸基の脱離により水蒸気が発生するため、この水蒸気を効率よく排出することができる程度に十分な流速を有する気流中で行うことが好ましい。このような気流中で熱処理を行う装置には、一般的な焙焼炉を使用することができる。熱処理時間は、上記の熱処理温度や処理量等の熱処理条件に応じて適宜設定することができる。その際、最終的に得られる酸化ニッケル粉末の比表面積が0.1m2/g以上1.0m2/g未満となるように設定するのが好ましい。 The atmosphere at the time of the above heat treatment is not particularly limited as long as it is a non-reducing atmosphere, but it is preferably an air atmosphere in consideration of economy. Further, since water vapor is generated by desorption of hydroxyl groups during the heat treatment, it is preferable to carry out the heat treatment in an air flow having a sufficient flow velocity so that the water vapor can be efficiently discharged. A general roasting furnace can be used as an apparatus for performing heat treatment in such an air flow. The heat treatment time can be appropriately set according to the heat treatment conditions such as the heat treatment temperature and the treatment amount. At that time, it is preferable to set the specific surface area of the nickel oxide powder finally obtained to be 0.1 m 2 / g or more and less than 1.0 m 2 / g.
上記した本発明の実施形態の酸化ニッケル微粉末の製造方法においては、湿式法により製造した水酸化ニッケルを熱処理するため、大量のSOxを含む排ガスはほとんど発生しない。従って、これを除害処理するための高価な除外設備が不要である。さらに熱処理の回数が1回で済むので、製造コストを低く抑えることができる。 In the method for producing the nickel oxide fine powder according to the embodiment of the present invention described above, since the nickel hydroxide produced by the wet method is heat-treated, almost no exhaust gas containing a large amount of SOx is generated. Therefore, there is no need for expensive exclusion equipment for abatement treatment. Further, since the number of heat treatments is only one, the manufacturing cost can be kept low.
3.酸化ニッケル粉末の物性
上記した製造方法により製造される本発明の実施形態の酸化ニッケル粉末は、熱処理後に解砕処理を行わないので、一次粒子が焼結により凝集した二次粒子の形態を有しており、その比表面積は0.1m2/g以上1.0m2/g未満である。このように二次粒子の形態を有しており且つ比表面積がこの範囲の酸化ニッケル粉末であるため、前述したように、他の材料と混合することで、良好にフェライト部品や固体酸化物形燃料電池の電極材料の特性を調整することができる。さらに、この本発明の実施形態の酸化ニッケル粉末は、レーザー回折・散乱法で測定したD50を5.0μm以上20μm以下にでき、前述した熱処理温度等を適宜調整することでより好適な7.0〜15μmにすることができる。
3. Physical properties of nickel oxide powder Since the nickel oxide powder of the embodiment of the present invention produced by the above-mentioned production method is not crushed after heat treatment, the primary particles are aggregated by sintering to form secondary particles. It has a specific surface area of 0.1 m 2 / g or more and less than 1.0 m 2 / g. Since the nickel oxide powder has the form of secondary particles and has a specific surface area in this range, it can be satisfactorily mixed with other materials as described above to form ferrite parts or solid oxides. The characteristics of the electrode material of the fuel cell can be adjusted. Further, the nickel oxide powder according to the embodiment of the present invention can have a D50 of 5.0 μm or more and 20 μm or less measured by a laser diffraction / scattering method, and is more suitable 7.0 by appropriately adjusting the heat treatment temperature and the like described above. It can be ~ 15 μm.
また、本発明の実施形態の酸化ニッケル粉末は、原料から不可避不純物として混入する以外に塩素が混入する工程を含まないので、塩素品位が極めて低い。加えて、硫黄品位が制御されると共に、ナトリウムに代表されるアルカリ金属品位が低い。具体的には、硫黄品位が100質量ppm以下、好ましくは50質量ppm以下であり、塩素品位が50質量ppm以下、好ましくは20質量ppm以下であり、ナトリウム品位が20質量ppm以下であり、好ましくは総アルカリ金属の品位が20質量ppm以下である。 Further, the nickel oxide powder of the embodiment of the present invention does not include a step of mixing chlorine other than being mixed as an unavoidable impurity from the raw material, so that the chlorine grade is extremely low. In addition, the sulfur grade is controlled and the alkali metal grade represented by sodium is low. Specifically, the sulfur grade is 100 mass ppm or less, preferably 50 mass ppm or less, the chlorine grade is 50 mass ppm or less, preferably 20 mass ppm or less, and the sodium grade is 20 mass ppm or less, preferably 20 mass ppm or less. Has a total alkali metal grade of 20 mass ppm or less.
本発明の実施形態の酸化ニッケル粉末は、上記の物性及び不純物品を有するので、電子部品用、特にフェライト部品用の材料や固体酸化物形燃料電池の電極用材料として好適である。尚、固体酸化物形燃料電池の電極用材料としては、硫黄品位が100質量ppm以下であることが好ましいとされている。次に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらの実施例によってなんら限定されるものではない。 Since the nickel oxide powder of the embodiment of the present invention has the above physical properties and impurities, it is suitable as a material for electronic parts, particularly for ferrite parts, and a material for electrodes of solid oxide fuel cells. As a material for electrodes of solid oxide fuel cells, it is said that the sulfur grade is preferably 100 mass ppm or less. Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
反応槽に予め入れておいたアルカリ水溶液に、硫酸ニッケル水溶液とアルカリ水溶液とをダブルジェット方法で添加する連続晶析法により水酸化ニッケル粒子を生成した後、得られた水酸化ニッケル粒子を非還元性雰囲気で熱処理して一次粒子が凝集した大粒径の二次粒子の形態を有する酸化ニッケル粉末を生成した。具体的に説明すると、先ず邪魔板とオーバーフロー口とを有する攪拌機付きの有効容量4Lの反応槽に、純水に炭酸ナトリウム及び水酸化ナトリウムを添加してpH8.5に調整したアルカリ水溶液4Lを張り込み、十分に攪拌した。なお、上記アルカリ水溶液は、炭酸ナトリウム濃度が0.4mol/Lとなるように炭酸ナトリウムの添加量を調整した。 Nickel hydroxide particles are generated by a continuous crystallization method in which a nickel sulfate aqueous solution and an alkaline aqueous solution are added to an alkaline aqueous solution previously placed in a reaction vessel by a double jet method, and then the obtained nickel hydroxide particles are non-reduced. Heat treatment was performed in a sexual atmosphere to produce nickel oxide powder having the form of large-sized secondary particles in which the primary particles were aggregated. Specifically, first, 4 L of an alkaline aqueous solution adjusted to pH 8.5 by adding sodium carbonate and sodium hydroxide to pure water is filled in a reaction tank having an effective capacity of 4 L with a stirrer having a baffle plate and an overflow port. , Stirred well. The amount of sodium carbonate added to the alkaline aqueous solution was adjusted so that the sodium carbonate concentration was 0.4 mol / L.
次に、純水に硫酸ニッケルを溶解させてニッケル濃度120g/Lの添加用硫酸ニッケル水溶液を調製した。さらに、別途用意した純水にアルカリ成分として炭酸ナトリウム及び水酸化ナトリウムを溶解させて添加用アルカリ水溶液を調製した。この添加用アルカリ水溶液の炭酸ナトリウムの濃度は、反応槽に最初に張り込んだ上記のアルカリ水溶液の炭酸ナトリウム濃度と同一の0.4mol/Lとした。 Next, nickel sulfate was dissolved in pure water to prepare a nickel sulfate aqueous solution having a nickel concentration of 120 g / L. Further, an alkaline aqueous solution for addition was prepared by dissolving sodium carbonate and sodium hydroxide as alkaline components in pure water prepared separately. The concentration of sodium carbonate in this alkaline aqueous solution for addition was 0.4 mol / L, which was the same as the concentration of sodium carbonate in the above-mentioned alkaline aqueous solution first filled in the reaction vessel.
上記の添加用硫酸ニッケル水溶液と添加用アルカリ水溶液とを、上記反応槽内において撹拌されているアルカリ水溶液に同時並行的且つ連続的に添加することで混合して反応液とした。その際、該反応液のpHが8.5を中心としてその変動幅が絶対値で0.2以内となるように調整した。この連続晶析法により、水酸化ニッケル粒子を連続的に生成させた。 The above nickel sulfate aqueous solution for addition and the alkaline aqueous solution for addition were added simultaneously and continuously to the alkaline aqueous solution stirred in the reaction vessel to prepare a reaction solution. At that time, the pH of the reaction solution was adjusted to be centered on 8.5 and the fluctuation range was adjusted to be within 0.2 in absolute value. Nickel hydroxide particles were continuously generated by this continuous crystallization method.
尚、添加用硫酸ニッケル水溶液は5mL/分の流量で反応槽に供給することによって、生成した水酸化ニッケル粒子の滞留時間、すなわち、反応槽の有効容量をオーバーフローにより排出される水酸化ニッケル粒子を含んだスラリーの抜出流量で除した値を約3時間に調整した。この時、添加用硫酸ニッケル水溶液と添加用アルカリ水溶液は、いずれもそれらの2個の供給ノズルからの供給先である反応槽内の反応液との2ヶ所の混合部分において、各々乱流状態になっていることを目視にて確認できた。また、この反応槽内では中和反応中の液温を60℃に調整し、該撹拌機の攪拌翼を700rpmで回転させて撹拌した。 By supplying the nickel sulfate aqueous solution for addition to the reaction tank at a flow rate of 5 mL / min, the residence time of the generated nickel hydroxide particles, that is, the nickel hydroxide particles discharged by overflowing the effective capacity of the reaction tank can be obtained. The value divided by the extraction flow rate of the contained slurry was adjusted to about 3 hours. At this time, the nickel sulfate aqueous solution for addition and the alkaline aqueous solution for addition are both in a turbulent state at the two mixed portions of the reaction liquid in the reaction tank, which is the supply destination from the two supply nozzles. I was able to visually confirm that it was. Further, in this reaction vessel, the liquid temperature during the neutralization reaction was adjusted to 60 ° C., and the stirring blade of the stirrer was rotated at 700 rpm for stirring.
上記反応槽のオーバーフロー口から排出される水酸化ニッケル粒子を含むスラリーを回収し、これを濾紙を敷いたヌッチェに導入して濾過することで濾過ケーキを得た。この濾過ケーキに純水を添加して調製したスラリーを撹拌しながら30分間保持した後、上記と同様にヌッチェで濾過するレパルプ洗浄を10回繰り返した。この洗浄後の水酸化ニッケル粒子を含む濾過ケーキを送風乾燥機に装入して130℃の大気雰囲気にて24時間かけて乾燥し、水酸化ニッケル粒子を得た。 A slurry containing nickel hydroxide particles discharged from the overflow port of the reaction vessel was collected, introduced into a nutche covered with filter paper, and filtered to obtain a filtered cake. The slurry prepared by adding pure water to the filtered cake was held for 30 minutes with stirring, and then the repulp washing, which was filtered with Nutche in the same manner as above, was repeated 10 times. The filtered cake containing the nickel hydroxide particles after washing was charged into a blower dryer and dried in an air atmosphere at 130 ° C. for 24 hours to obtain nickel hydroxide particles.
得られた水酸化ニッケル粒子を大気焼成炉に装入し、雰囲気温度995℃の大気中で7時間かけて熱処理した。このようにして試料1の酸化ニッケル粉末を得た。得られた試料1の酸化ニッケル粉末を走査電子顕微鏡(SEM)で観察したところ、図1に示すように一次粒子が焼結により凝集した二次粒子の形態を有していることが認められた。 The obtained nickel hydroxide particles were placed in an atmospheric firing furnace and heat-treated in the atmosphere at an atmospheric temperature of 995 ° C. for 7 hours. In this way, the nickel oxide powder of Sample 1 was obtained. When the nickel oxide powder of the obtained sample 1 was observed with a scanning electron microscope (SEM), it was confirmed that the primary particles had the form of secondary particles aggregated by sintering as shown in FIG. ..
さらに、熱処理時の雰囲気温度を995℃に代えてそれぞれ1030℃及び985℃とした以外は上記試料1と同様にして試料2及び3の酸化ニッケル粉末を生成した。これら試料2及び3の酸化ニッケル粉末をSEMで観察したところ、いずれも一次粒子が焼結により凝集した二次粒子の形態を有していることが認められた。 Further, nickel oxide powders of Samples 2 and 3 were produced in the same manner as in Sample 1 except that the atmospheric temperature at the time of heat treatment was changed to 1030 ° C. and 985 ° C., respectively. When the nickel oxide powders of Samples 2 and 3 were observed by SEM, it was confirmed that the primary particles all had the form of secondary particles aggregated by sintering.
比較例のため、熱処理時の雰囲気温度を995℃に代えてそれぞれ1130℃及び890℃とした以外は上記試料1と同様にして試料4及び5の酸化ニッケル微粉末を生成した。これら試料4及び5の酸化ニッケル粉末をSEMで観察したところ、いずれも一次粒子が焼結により凝集した二次粒子の形態を有していることが認められた。 For a comparative example, nickel oxide fine powders of Samples 4 and 5 were produced in the same manner as in Sample 1 except that the atmospheric temperature during the heat treatment was changed to 1130 ° C and 890 ° C, respectively, instead of 995 ° C. When the nickel oxide powders of Samples 4 and 5 were observed by SEM, it was confirmed that the primary particles all had the form of secondary particles aggregated by sintering.
上記の試料1〜5の酸化ニッケル粉末に対して、塩素品位、硫黄品位及びナトリウム品位を分析した。塩素品位は、各試料を塩素の揮発を抑制できる密閉容器内にてマイクロ波照射下で硝酸に溶解し、硝酸銀を加えて塩化銀を沈殿させ、得られた沈殿物中の塩素を蛍光X線定量分析装置(PANalytical社製 Magix)を用いて検量線法で評価することで分析した。硫黄品位は、各試料を硝酸に溶解した後、ICP発光分光分析装置(セイコー社製 SPS−3000)を用いて分析した。ナトリウム品位は、各試料を硝酸に溶解した後、原子吸光装置(日立ハイテク社製 Z−2300)を用いて評価することで分析した。 The chlorine grade, sulfur grade and sodium grade were analyzed for the nickel oxide powders of the above samples 1 to 5. For chlorine grade, each sample is dissolved in nitrate under microwave irradiation in a closed container that can suppress the volatilization of chlorine, silver nitrate is added to precipitate silver chloride, and the chlorine in the obtained precipitate is fluorescent X-ray. The analysis was performed by evaluation by the calibration curve method using a quantitative analyzer (Magic manufactured by PANalytical). The sulfur grade was analyzed using an ICP emission spectrophotometer (SPS-3000 manufactured by Seiko Corporation) after dissolving each sample in nitric acid. The sodium grade was analyzed by dissolving each sample in nitric acid and then evaluating it using an atomic absorption spectrophotometer (Z-2300 manufactured by Hitachi High-Tech).
さらに、上記の試料1〜5の酸化ニッケル粉末に対して平均粒径及び比表面積を測定した。平均粒径は、レーザー回折・散乱法により測定することで得た粒度分布から体積積算50%での平均粒径D50として求めた。比表面積は、窒素ガス吸着によるBET法により求めた。これら試料1〜5の酸化ニッケル粉末の硫黄(S)品位、塩素(Cl)品位、ナトリウム(Na)品位、比表面積、及び平均粒径D50を下記表1に示す。 Further, the average particle size and the specific surface area of the nickel oxide powders of Samples 1 to 5 were measured. The average particle size was determined as the average particle size D50 at a volume integration of 50% from the particle size distribution obtained by measuring by the laser diffraction / scattering method. The specific surface area was determined by the BET method by adsorbing nitrogen gas. The sulfur (S) grade, chlorine (Cl) grade, sodium (Na) grade, specific surface area, and average particle size D50 of the nickel oxide powders of these samples 1 to 5 are shown in Table 1 below.
上記表1から分かるように、本発明の要件を満たす製造方法で作製した試料1〜3の酸化ニッケル粉末は、いずれも比表面積が0.1m2/g以上1.0m2/g未満の範囲内にあり、平均粒径D50が5.0μm以上20μm以下の範囲内にあった。一方、本発明の要件を満たさない製造方法で作製した試料4〜5の酸化ニッケル粉末は、平均粒径D50が5.0μm以上20μm以下の範囲内に収まっていたものの、いずれも比表面積が0.1m2/g以上1.0m2/g未満の範囲から外れていた。尚、試料3の硫黄品位20質量と、試料5の硫黄品位70質量ppmを除いて試料1〜5の酸化ニッケル粉末は、いずれも不純物品位が10質量ppm未満であった。 As can be seen from Table 1 above, the nickel oxide powders of Samples 1 to 3 produced by the production method satisfying the requirements of the present invention all have a specific surface area in the range of 0.1 m 2 / g or more and less than 1.0 m 2 / g. The average particle size D50 was in the range of 5.0 μm or more and 20 μm or less. On the other hand, the nickel oxide powders of Samples 4 to 5 produced by the production method not satisfying the requirements of the present invention had an average particle size D50 within the range of 5.0 μm or more and 20 μm or less, but all had a specific surface area of 0. It was out of the range of .1 m 2 / g or more and less than 1.0 m 2 / g. Except for the sulfur grade of 20 mass of sample 3 and the sulfur grade of 70 mass ppm of sample 5, the nickel oxide powders of samples 1 to 5 had an impurity grade of less than 10 mass ppm.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019092944A JP2020186154A (en) | 2019-05-16 | 2019-05-16 | Large particle size nickel oxide powder and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019092944A JP2020186154A (en) | 2019-05-16 | 2019-05-16 | Large particle size nickel oxide powder and method for producing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2020186154A true JP2020186154A (en) | 2020-11-19 |
Family
ID=73220809
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019092944A Pending JP2020186154A (en) | 2019-05-16 | 2019-05-16 | Large particle size nickel oxide powder and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2020186154A (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006080059A (en) * | 2004-08-11 | 2006-03-23 | Sumitomo Metal Mining Co Ltd | Nickel powder for fuel electrode material of solid oxide fuel cell and its manufacturing method |
JP2009140730A (en) * | 2007-12-06 | 2009-06-25 | Nippon Shokubai Co Ltd | Fuel electrode material for solid oxide fuel cell, and its manufacturing method |
JP2012166967A (en) * | 2011-02-10 | 2012-09-06 | Sumitomo Metal Mining Co Ltd | Nickel oxide fine powder and method for producing the same |
JP2018024551A (en) * | 2016-08-10 | 2018-02-15 | 住友金属鉱山株式会社 | Nickel hydroxide particle and production method of the same |
JP2018024550A (en) * | 2016-08-10 | 2018-02-15 | 住友金属鉱山株式会社 | Nickel oxide fine powder and production method of the same |
JP2018024535A (en) * | 2016-08-08 | 2018-02-15 | 住友金属鉱山株式会社 | Production method of nickel oxide fine powder |
-
2019
- 2019-05-16 JP JP2019092944A patent/JP2020186154A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006080059A (en) * | 2004-08-11 | 2006-03-23 | Sumitomo Metal Mining Co Ltd | Nickel powder for fuel electrode material of solid oxide fuel cell and its manufacturing method |
JP2009140730A (en) * | 2007-12-06 | 2009-06-25 | Nippon Shokubai Co Ltd | Fuel electrode material for solid oxide fuel cell, and its manufacturing method |
JP2012166967A (en) * | 2011-02-10 | 2012-09-06 | Sumitomo Metal Mining Co Ltd | Nickel oxide fine powder and method for producing the same |
JP2018024535A (en) * | 2016-08-08 | 2018-02-15 | 住友金属鉱山株式会社 | Production method of nickel oxide fine powder |
JP2018024551A (en) * | 2016-08-10 | 2018-02-15 | 住友金属鉱山株式会社 | Nickel hydroxide particle and production method of the same |
JP2018024550A (en) * | 2016-08-10 | 2018-02-15 | 住友金属鉱山株式会社 | Nickel oxide fine powder and production method of the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10329163B2 (en) | Nickel oxide micropowder and method for producing same | |
JP5942659B2 (en) | Method for producing nickel oxide fine powder and method for producing nickel hydroxide powder for raw material for producing nickel oxide fine powder | |
JP6159306B2 (en) | Nickel oxide powder | |
JP5504750B2 (en) | Nickel oxide fine powder and method for producing the same | |
JP2010089988A (en) | Nickel oxide fine powder and method of producing the same | |
JP6763228B2 (en) | Manufacturing method of nickel oxide fine powder | |
JP5621268B2 (en) | Nickel oxide fine powder and method for producing the same | |
JP5733101B2 (en) | Method for producing nickel oxide powder | |
JP2011225395A (en) | Nickel oxide fine powder, and method for producing the same | |
JP6772646B2 (en) | Nickel oxide fine powder and its manufacturing method | |
JP5790292B2 (en) | Method for producing nickel oxide powder | |
JP5509725B2 (en) | Nickel oxide powder and method for producing the same | |
JP2020186154A (en) | Large particle size nickel oxide powder and method for producing the same | |
JP6834235B2 (en) | Manufacturing method of nickel hydroxide particles | |
JP7088236B2 (en) | Nickel hydroxide particles | |
JP7088231B2 (en) | Nickel hydroxide particles | |
JP6819322B2 (en) | Manufacturing method of nickel oxide fine powder | |
JP6969120B2 (en) | Manufacturing method of nickel oxide fine powder | |
JP6772571B2 (en) | A method for producing nickel hydroxide particles and a method for producing nickel oxide fine powder using the same. | |
JP6870232B2 (en) | Manufacturing method of nickel oxide fine powder | |
JP2016172658A (en) | Manufacturing method of nickel oxide powder | |
JP2018162173A (en) | Method for producing nickel oxide fine powder | |
JP6888270B2 (en) | Manufacturing method of nickel oxide powder | |
JP6241491B2 (en) | Nickel oxide fine powder and method for producing the same, nickel hydroxide powder for use in the raw material for producing the nickel oxide fine powder, and method for producing the same | |
JP6852345B2 (en) | Manufacturing method of nickel oxide fine powder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220201 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20221207 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20221213 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20230613 |