JP2020180813A - Ultrasonic flowmeter - Google Patents
Ultrasonic flowmeter Download PDFInfo
- Publication number
- JP2020180813A JP2020180813A JP2019082374A JP2019082374A JP2020180813A JP 2020180813 A JP2020180813 A JP 2020180813A JP 2019082374 A JP2019082374 A JP 2019082374A JP 2019082374 A JP2019082374 A JP 2019082374A JP 2020180813 A JP2020180813 A JP 2020180813A
- Authority
- JP
- Japan
- Prior art keywords
- propagation time
- ultrasonic
- wave
- reception
- time
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Measuring Volume Flow (AREA)
Abstract
Description
本発明は、一対の送受信可能な超音波振動子を用いて超音波の伝搬時間を測定し、被測定流体の流量を計測する超音波流量計に関するものである。 The present invention relates to an ultrasonic flow meter that measures the flow rate of a fluid to be measured by measuring the propagation time of ultrasonic waves using a pair of ultrasonic transducers capable of transmitting and receiving.
従来の超音波流量計に用いられている超音波伝搬時間の測定方法は、一対の送受信可能な超音波振動子を対向して配置し、一方の超音波振動子をバースト信号で駆動し、超音波を送信し、他方の超音波振動子で受信して測定していた。図5は、伝搬時間の測定方法を説明する為の受信波形のイメージ図で、横軸に時間を、縦軸に電圧を示す。図中の起点T0は駆動波13の開始時点を、終点T1は駆動開始後、第m(図ではm=3)波終了時点を示す。受信波14の起点R0は受信開始時点を、終点R1は受信開始後、第m波終了時点を示す。
In the method of measuring the ultrasonic propagation time used in the conventional ultrasonic flowmeter, a pair of transmit and receive ultrasonic vibrators are arranged facing each other, and one ultrasonic vibrator is driven by a burst signal. Sound waves were transmitted and received by the other ultrasonic transducer for measurement. FIG. 5 is an image diagram of a received waveform for explaining a method of measuring the propagation time, with time on the horizontal axis and voltage on the vertical axis. In the figure, the starting point T0 indicates the start time of the
このように、駆動波13の第1波目のゼロクロス点を起点T0とし、他方の超音波送受信器で受信した受信波14の第m波目を終点R1として、起点T0と終点R1との間の伝搬時間TPを測定し、駆動波数から想定される受信遅れ時間TRを予め設定しておき、伝搬時間TPから受信遅れ時間TRを引いて流量計測用の伝搬時間TP0を求め、この伝搬時間TP0を用いて流体の流速を計測し、流量を演算していた。
In this way, between the starting point T0 and the ending point R1 with the zero crossing point of the first wave of the
図6は、特許文献1に記載された超音波流量計の構成を示すものである。この超音波流量計は流体の流れる測定流路101に設置した超音波振動子102と、超音波振動子102を駆動する駆動回路103と、駆動回路103にスタート信号を出力する制御部104と、超音波の伝搬時間を測定する伝搬時間測定部105と、超音波振動子102から送信した超音波を受ける超音波振動子107と、超音波振動子107の出力を増幅するアンプ106と、アンプ106の出力と検知基準電圧15とを比較し大小関係が反転したときに伝搬時間測定部105を停止させる受信検知回路108から構成されている。また、音速に対する温度の影響を無視できるように伝搬時間逆数差法を用いるために、測定流路101の上流側から下流側への超音波の伝搬時間と下流側から上流側への伝搬時間が測定できるように、切り替えスイッチ109を備えている。
FIG. 6 shows the configuration of the ultrasonic flowmeter described in
しかしながら、超音波振動子や送受信回路の温度特性や経年劣化の影響によって、被測定気体を伝わる超音波の伝搬時間以外の遅れ時間に差が発生し、実際には流量が無い状態でも微少の流量があると検知してしまう課題があった。 However, due to the temperature characteristics of the ultrasonic vibrator and transmission / reception circuit and the influence of aging deterioration, there is a difference in the delay time other than the propagation time of the ultrasonic waves transmitted through the gas to be measured, and the flow rate is very small even when there is no actual flow rate. There was a problem of detecting that there was.
前記従来の課題を解決するために、本発明の超音波流量計は、超音波信号を送受信可能な一対の超音波振動子と、一方の前記超音波振動子から送信され、流体を伝搬した超音波信号を他方の超音波振動子が受信するまでの超音波の伝搬時間を測定する伝搬時間測定部と、受信側の前記超音波振動子が受信した受信波の第m波目を検知する受信検知回路と、受信側の前記超音波振動子に超音波が到達して前記受信検知回路で受信開始から超音波の受信波の第m波目を受信したと検知するまでの受信遅れ時間TRを用いて前記伝搬時間測
定部で測定した伝搬時間を補正する伝搬時間補正手段と、前記伝搬時間補正手段で補正された伝搬時間から演算によって前記超音波振動子間を満たす流体の流量を求める制御部と、送信側の前記超音波振動子から超音波を送信して1回目の受信波の第m波目を前記受信検知回路で受信するまでの伝搬時間TPと、受信側の前記超音波振動子と送信側の前記超音波振動子で1回づつ反射して受信側の前記超音波振動子に達した2回目の受信波の第m波目を前記受信検知回路で受信するまでの伝搬時間TP2を測定し、前記伝搬時間TPと伝搬時間TP2の差の2分の1より前記超音波振動子間の真の伝搬時間TP0を演算する方法で、上流側から下流側への真の下流側伝搬時間TP0dと下流側から上流側への真の上流側伝搬時間TP0uを求め、前記真の下流側伝搬時間TP0dと前記真の上流側伝搬時間TP0uの差より流量の有無を判定する流量無判定手段と、を備えたことを特徴としたものである。
In order to solve the above-mentioned conventional problems, the ultrasonic flowmeter of the present invention has a pair of ultrasonic vibrators capable of transmitting and receiving ultrasonic signals, and a supersonic vibrator transmitted from one of the ultrasonic vibrators and propagated in a fluid. A propagation time measuring unit that measures the propagation time of ultrasonic waves until the other ultrasonic vibrator receives a sound wave signal, and a reception that detects the mth wave of the received wave received by the ultrasonic vibrator on the receiving side. The reception delay time TR from the start of reception to the detection that the mth wave of the received ultrasonic wave is received by the detection circuit and the reception detection circuit when the ultrasonic wave reaches the ultrasonic vibrator on the receiving side. A propagation time correction means for correcting the propagation time measured by the propagation time measuring unit, and a control unit for obtaining a flow rate of a fluid satisfying between the ultrasonic vibrators by calculation from the propagation time corrected by the propagation time correcting means. The propagation time TP until the m-th wave of the first received wave is received by the reception detection circuit after transmitting ultrasonic waves from the ultrasonic vibrator on the transmitting side, and the ultrasonic vibrator on the receiving side. Propagation time TP2 until the m-th wave of the second received wave that is reflected once by the transmitting side ultrasonic vibrator and reaches the receiving side ultrasonic vibrator is received by the reception detection circuit. Is calculated, and the true propagation time TP0 between the ultrasonic transducers is calculated from half of the difference between the propagation time TP and the propagation time TP2. True downstream propagation from the upstream side to the downstream side. A flow rate non-determining means for obtaining the true upstream side propagation time TP0u from the time TP0d and the downstream side to the upstream side and determining the presence or absence of a flow rate from the difference between the true downstream side propagation time TP0d and the true upstream side propagation time TP0u. It is characterized by having.
これによって、流量が無い場合の超音波振動子や送受信回路の温度特性や経年劣化の影響を受けることなく、流量が無いことを正確に判定できる。 As a result, it is possible to accurately determine that there is no flow rate without being affected by the temperature characteristics and aging deterioration of the ultrasonic vibrator and the transmission / reception circuit when there is no flow rate.
本発明の超音波流量計は、超音波振動子や送受信回路の特性の影響を受けることなく流量が無いことを判定できるため、微少流量の判定が困難な大型流量計においても微少流量漏れの検知が可能になる。 Since the ultrasonic flow meter of the present invention can determine that there is no flow rate without being affected by the characteristics of the ultrasonic vibrator and the transmission / reception circuit, it can detect minute flow rate leakage even in a large flow meter where it is difficult to determine a minute flow rate. Becomes possible.
第1の発明は、超音波信号を送受信可能な一対の超音波振動子と、一方の前記超音波振動子から送信され、流体を伝搬した超音波信号を他方の超音波振動子が受信するまでの超音波の伝搬時間を測定する伝搬時間測定部と、受信側の前記超音波振動子が受信した受信波の第m波目を検知する受信検知回路と、受信側の前記超音波振動子に超音波が到達して前記受信検知回路で受信開始から超音波の受信波の第m波目を受信したと検知するまでの受信遅れ時間TRを用いて前記伝搬時間測定部で測定した伝搬時間を補正する伝搬時間補正手段と、前記伝搬時間補正手段で補正された伝搬時間から演算によって前記超音波振動子間を満たす流体の流量を求める制御部と、送信側の前記超音波振動子から超音波を送信して1回目の受信波の第m波目を前記受信検知回路で受信するまでの伝搬時間TPと、受信側の前記超音波振動子と送信側の前記超音波振動子で1回づつ反射して受信側の前記超音波振動子に達した2回目の受信波の第m波目を前記受信検知回路で受信するまでの伝搬時間TP2を測定し、前記伝搬時間TPと伝搬時間TP2の差の2分の1より前記超音波振動子間の真の伝搬時間TP0を演算する方法で、上流側から下流側への真の下流側伝搬時間TP0dと下流側から上流側への真の上流側伝搬時間TP0uを求め、前記真の下流側伝搬時間TP0dと前記真の上流側伝搬時間TP0uの差より流量の有無を判定する流量無判定手段と、を備えたことによって、超音波振動子や送受信回路の温度特性や経年劣化の影響を受けることなく正方向と逆方向の真の伝搬時間の差が確認できるため、流量の有無判定の精度を向上させることができる。 The first invention is a pair of ultrasonic transducers capable of transmitting and receiving ultrasonic signals, and until the other ultrasonic transducer receives an ultrasonic signal transmitted from one of the ultrasonic transducers and propagated through a fluid. The propagation time measuring unit that measures the propagation time of the ultrasonic waves, the reception detection circuit that detects the mth wave of the received wave received by the ultrasonic vibrator on the receiving side, and the ultrasonic vibrator on the receiving side. The propagation time measured by the propagation time measuring unit using the reception delay time TR from the start of reception to the detection that the mth wave of the received wave of the ultrasonic wave is received by the reception detection circuit when the ultrasonic wave arrives. A propagation time correction means for correction, a control unit for obtaining a flow rate of a fluid satisfying between the ultrasonic transducers by calculation from the propagation time corrected by the propagation time correction means, and an ultrasonic wave from the ultrasonic transducer on the transmitting side. Propagation time TP until the mth wave of the first received wave is received by the reception detection circuit, and once for the ultrasonic vibrator on the receiving side and once for the ultrasonic vibrator on the transmitting side. The propagation time TP2 until the mth wave of the second received wave that is reflected and reaches the ultrasonic transducer on the receiving side is received by the reception detection circuit is measured, and the propagation time TP and the propagation time TP2 are measured. A method of calculating the true propagation time TP0 between the ultrasonic transducers from one half of the difference, the true downstream propagation time TP0d from the upstream side to the downstream side and the true upstream side from the downstream side to the upstream side. By providing a flow rate non-determining means for obtaining the side propagation time TP0u and determining the presence or absence of the flow rate from the difference between the true downstream side propagation time TP0d and the true upstream side propagation time TP0u, the ultrasonic vibrator and Since the difference in true propagation time between the forward direction and the reverse direction can be confirmed without being affected by the temperature characteristics of the transmission / reception circuit and aging deterioration, the accuracy of determining the presence or absence of the flow rate can be improved.
第2の発明は、第1の発明の構成に加えて、前記流量無判定手段で求めた前記真の下流
側伝搬時間TP0dと、前記真の上流側伝搬時間TP0uを用いて、上流側から下流側への伝搬時間を測定した時の下流側受信遅れ時間TRdと下流側から上流側への伝搬時間を測定した時の上流側受信遅れ時間TRuを求め保存する受信遅れ時間保存手段を備え、
前記伝搬時間補正手段は、前記受信遅れ時間保存手段に保存された下流側受信遅れ時間TRdと上流側受信遅れ時間TRuを用いて前記伝搬時間測定部で測定された1回目の受信波の伝搬時間を補正することによって、超音波振動子や送受信回路の温度特性や経年劣化の影響を受けることなく流量計測精度を向上できる。
In the second invention, in addition to the configuration of the first invention, the true downstream propagation time TP0d and the true upstream propagation time TP0u obtained by the flow rate non-determining means are used to move from the upstream side to the downstream side. It is provided with a reception delay time saving means for obtaining and saving the downstream reception delay time TRd when the propagation time to the side is measured and the upstream reception delay time TRu when the propagation time from the downstream side to the upstream side is measured.
The propagation time correction means uses the downstream reception delay time TRd and the upstream reception delay time TRu stored in the reception delay time storage means to propagate the first received wave measured by the propagation time measuring unit. By correcting the above, the flow rate measurement accuracy can be improved without being affected by the temperature characteristics of the ultrasonic vibrator and the transmission / reception circuit and the deterioration over time.
以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to this embodiment.
(実施の形態1)
図1は、本発明の実施の形態1における超音波流量計の構成図を示すものである。
(Embodiment 1)
FIG. 1 shows a configuration diagram of an ultrasonic flow meter according to the first embodiment of the present invention.
図1に示すように、本実施の形態の超音波流量計20は、流体の流れる測定流路1の上流と下流に設置した超音波信号を送受信可能な一対の超音波振動子2、7と、一対の超音波振動子2、7の送受信の設定切り替えを行う切り替えスイッチ9と、送信側に設定された超音波振動子を駆動する駆動回路3と、駆動回路3にスタート信号を出力する制御部4と、受信側に設定された超音波振動子で受信した超音波信号を所定の振幅に増幅するアンプ6と、アンプ6で増幅された受信波の第m波目を検知する受信検知回路8と、送信側に設定された超音波振動子から送信され、流体を伝搬した超音波信号を受信側に設定された超音波振動子が受信するまでの超音波の伝搬時間TPを測定する伝搬時間測定部5と、伝搬時間TPから演算によって超音波振動子2,7間を満たす流体の流量を求める制御部4と、受信側の超音波振動子に超音波が到達して受信検知回路8で受信開始から超音波の受信波の第m波目を受信したと検知するまでの受信遅れ時間TRを用いて伝搬時間測定部5で測定した伝搬時間を補正する伝搬時間補正手段10、流量有無判定手段12を備えている。
As shown in FIG. 1, the
ここで、受信検知回路8は、図5に示すように、予め設定された検知基準電圧15とアンプ6で増幅された受信波14を比較し、大小関係が反転したことで第m波目を検知(タイミングP)し、その後の最初のゼロクロス点である終点R1を受信タイミングとし、伝搬時間測定部5は、送信開始(起点T0)から終点R1までの時間を伝搬時間TPとして測定する構成である。
Here, as shown in FIG. 5, the
図2は本実施例の受信波と伝搬時間の関係を表したイメージ図である。図に示すように、送信側の超音波振動子は、駆動波13で駆動されて超音波信号を送信し、受信側の超音波振動子は1回目の受信波14として受信する。同時に、反射波が発生して送信側の超音波振動子に波形21として到達して反射される。更に、この反射波を受信側の超音波振動子が2回目の受信波22として受信する。そして、受信検知回路8は、この2回目の受信波22を検知する為の第2受信波検知手段11を備えている。
FIG. 2 is an image diagram showing the relationship between the received wave and the propagation time of this embodiment. As shown in the figure, the ultrasonic transducer on the transmitting side is driven by the
伝搬時間測定部5は、送信側の超音波振動子2から超音波を送信して1回目の受信波14の第m波目を受信検知回路8で受信するまでの伝搬時間TPと、受信側の超音波振動子7と送信側の超音波振動子2で1回づつ反射して受信側の超音波振動子7に達した2回目の受信波22の第m波目を第2受信波検知手段11で受信したと判定するタイミングである終点R2までの伝搬時間TP2を測定する。
The propagation
図2から分かるように、超音波振動子間の真の伝搬時間TP0は次式(1)で求めることができる。 As can be seen from FIG. 2, the true propagation time TP0 between the ultrasonic transducers can be obtained by the following equation (1).
TP0=(TP2−TP)/2 ・・・・・・(1)
本実施の形態では、第2受信波検知手段11を用いて、第2伝搬時間TP2を測定できるようにしたことで、予め定めた所定のタイミングにおいて、伝搬時間測定部5で上流側から下流側への下流側第2伝搬時間TP2dと下流側から上流側への上流側第2伝搬時間TP2uを測定し、流量有無判定手段12は、式(1)と同様に、下記の式(2)、(3)で下流側から上流側への真の下流側伝搬時間TP0dと下流側から上流側への真の上流側伝搬時間TP0uを計算し、2つの伝搬時間の差が所定の値以下だった場合に流量無と判定している。
TP0 = (TP2-TP) / 2 ... (1)
In the present embodiment, the second received wave detecting means 11 is used to measure the second propagation time TP2, so that the propagation
TP0d=(TP2d−TPd)/2 ・・・・・・(2)
TP0u=(TP2u−TPu)/2 ・・・・・・(3)
ここで、TPdとTPuは、通常の流量計測時(1回目の受信波の伝搬時間の測定のみで流量を計測する時)に測定している上流側から下流側への伝搬時間(下流側伝搬時間)と下流側から上流側への伝搬時間(上流側伝搬時間)である。
TP0d = (TP2d-TPd) / 2 ... (2)
TP0u = (TP2u-TPu) / 2 ... (3)
Here, TPd and TPu are propagated from the upstream side to the downstream side (downstream side propagation) measured at the time of normal flow rate measurement (when the flow rate is measured only by measuring the propagation time of the first received wave). Time) and the propagation time from the downstream side to the upstream side (upstream side propagation time).
以上のように、本実施の形態によると、第2受信波検知手段11を用いて、2回目の受信波を検知できるようにしたことで、超音波振動子や送受信回路の温度特性や経年劣化の影響を受けることなく流れの正方向と逆方向の真の伝搬時間の差が確認できるため、流量の有無判定の精度を向上させることができる。 As described above, according to the present embodiment, the second received wave detecting means 11 can be used to detect the second received wave, so that the temperature characteristics and aging deterioration of the ultrasonic oscillator and the transmission / reception circuit are deteriorated. Since the difference in the true propagation time between the forward direction and the reverse direction of the flow can be confirmed without being affected by the above, the accuracy of determining the presence or absence of the flow rate can be improved.
また、本発明の実施の形態では、超音波流量計が設置されている環境での微小漏れを確認することを想定しており、数時間毎に流量有無判定手段12を動作させている。これによって、超音波振動子や送受信回路の温度特性や経年劣化の影響を受けることなく、超音波流量計が設置されている配管システムに漏れがあるかどうかの判定が可能になる。
Further, in the embodiment of the present invention, it is assumed that minute leakage is confirmed in the environment where the ultrasonic flow meter is installed, and the flow rate presence /
なお、第2受信波検知手段11は、1回目の受信波14が受信側の超音波振動子に到着した時点では受信検知動作を行わずに、2回目の受信波22が到着した時点で受信検知動作を行ことで、第2伝搬時間TP2を測定する。図2中の受信遅れ時間TRは超音波振動子の特性で決まるため、1回目の受信波でも2回目の受信波でも同じ値となる。
The second received wave detecting means 11 does not perform the reception detection operation when the first received
(実施の形態2)
図3は実施の形態2による超音波流量計の構成図を示す。基本的な構成、動作は実施の形態1と同じである。本実施の形態の超音波流量計30と実施の形態1の超音波流量計20との差異は、制御部4に受信遅れ時間保存手段16と受信遅れ時間更新手段17を設けたことである。
(Embodiment 2)
FIG. 3 shows a block diagram of the ultrasonic flowmeter according to the second embodiment. The basic configuration and operation are the same as those in the first embodiment. The difference between the
受信遅れ時間保存手段16は、伝搬時間測定部5で測定された下流側伝搬時間TPdと上流側伝搬時間TPu、流量有無判定手段12で求めた真の下流側伝搬時間TP0dと、真の上流側伝搬時間TP0uより上流側から下流側への伝搬時間を測定した時の下流側受信遅れ時間TRdと下流側から上流側への伝搬時間を測定した時の上流側受信遅れ時間TRuを求めて保存する。
The reception delay time saving means 16 includes the downstream propagation time TPd and the upstream propagation time TPu measured by the propagation
図4(a)は上流側から下流側への超音波の伝搬、図4(b)は下流側から上流側への超音波の伝搬を示すイメージ図で、伝搬時間測定部5で測定された下流側伝搬時間TPdと上流側伝搬時間TPu、流量有無判定手段12で求めた真の下流側伝搬時間TP0dと真の上流側伝搬時間TP0u、受信遅れ時間保存手段16で求めて保存された下流側受信遅れ時間TRdと流側受信遅れ時間TRuを示す。
FIG. 4A is an image diagram showing the propagation of ultrasonic waves from the upstream side to the downstream side, and FIG. 4B is an image diagram showing the propagation of ultrasonic waves from the downstream side to the upstream side. The downstream side measured by the propagation
図4から分かるように、下流側受信遅れ時間TRdと上流側受信遅れ時間TRuは、次式(4)、(5)で求めることができる。 As can be seen from FIG. 4, the downstream reception delay time TRd and the upstream reception delay time TRu can be obtained by the following equations (4) and (5).
TRd=TPd−TP0d ・・・・・・(4)
TRu=TPu−TP0u ・・・・・・(5)
また、受信遅れ時間保存手段16に保存された受信遅れ時間TRdとTRuは、受信遅れ時間更新手段17により、伝搬時間測定部5で新しく受信遅れ時間TRdとTRuを測定する度に更新される。
TRd = TPd-TP0d ... (4)
TRu = TCu-TP0u ... (5)
Further, the reception delay times TRd and TRu stored in the reception delay time storage means 16 are updated each time the reception delay time TRd and TRu are newly measured by the propagation
そして、伝搬時間補正手段10は、通常の流量測定時(第2受信波検知手段11による2回目の受信波の受信を行ず、1回目の受信波のみで伝搬時間を測定して流量を求める時)は、伝搬時間測定部5で測定された上流側から下流側への下流側伝搬時間TPdと下流側から上流側への上流側伝搬時間TPuから受信遅れ時間保存手段16に保存された下流側受信遅れ時間TRd、上流側受信遅れ時間TRuをそれぞれ引くことで補正し、制御部4は、伝搬時間補正手段10で補正された伝搬時間を利用して流量を計算する。
Then, the propagation time correction means 10 receives the second received wave by the second received wave detecting means 11 at the time of normal flow rate measurement (the propagation time is measured only by the first received wave to obtain the flow rate. Time) is the downstream propagation time TPd from the upstream side to the downstream side measured by the propagation
以上の構成により、超音波振動子や送受信回路の温度特性や経年劣化の影響を受けることなく流量計測精度を向上できる。また、本実施の形態によれば、周囲環境や流量の有無に関係なくゼロ点補正を実施した状態と同じになるため、超音波流量計の製造時に実施されるゼロ点調整工程を省略でき、製造コストの低減も可能になる。 With the above configuration, the flow rate measurement accuracy can be improved without being affected by the temperature characteristics of the ultrasonic vibrator and the transmission / reception circuit and the deterioration over time. Further, according to the present embodiment, the zero point correction is performed regardless of the surrounding environment and the presence or absence of the flow rate, so that the zero point adjustment step performed at the time of manufacturing the ultrasonic flow meter can be omitted. It also makes it possible to reduce manufacturing costs.
なお、本実施の形態では、超音波の伝搬経路が測定流路1の流れ方向に一致するように上流と下流に一対の超音波振動子2,7を対向して配置した構成で説明したが、一対の超音波振動子2,7と超音波の伝搬経路はこれに限らず、(1)超音波の伝搬経路が測定流路1の流れ方向に対して斜めに横切るように上流と下流に一対の超音波振動子2,7を対向して配置したもの、(2)測定流路1の上流と下流の同一面に一対の超音波振動子2,7を配置し、超音波の伝搬経路が測定流路1の対向する面に1回反射するようにしたもの、(3)測定流路1の上流と下流の同一面に一対の超音波振動子2,7を配置し、超音波の伝搬経路が測定流路1の対向する面に2回反射するようにしたものなど、種々の形態を採用できる。
In the present embodiment, a pair of
以上のように、本発明にかかる超音波流量計は、超音波振動子や送受信回路の温度特性や経年劣化の影響を受けることなく、常に正確な流量無判定が可能となるため、配管の漏洩検知が必要なガスメータ等の用途にも適用できる。 As described above, the ultrasonic flow meter according to the present invention can always accurately determine the flow rate without being affected by the temperature characteristics of the ultrasonic vibrator and the transmission / reception circuit and the deterioration over time. It can also be applied to applications such as gas meters that require detection.
1 測定流路
2、7 超音波振動子
3 駆動回路
4 制御部
5 伝搬時間測定部
6 アンプ
8 受信検知回路
9 切り替えスイッチ
10 伝搬時間補正手段
11 第2受信波検知手段
12 流量有無判定手段
16 受信遅れ時間保存手段
17 受信遅れ時間更新手段
1
Claims (2)
一方の前記超音波振動子から送信され、流体を伝搬した超音波信号を他方の超音波振動子が受信するまでの超音波の伝搬時間を測定する伝搬時間測定部と、
受信側の前記超音波振動子が受信した受信波の第m波目を検知する受信検知回路と、
受信側の前記超音波振動子に超音波が到達して前記受信検知回路で受信開始から超音波の受信波の第m波目を受信したと検知するまでの受信遅れ時間TRを用いて前記伝搬時間測定部で測定した伝搬時間を補正する伝搬時間補正手段と、
前記伝搬時間補正手段で補正された伝搬時間から演算によって前記超音波振動子間を満たす流体の流量を求める制御部と、
送信側の前記超音波振動子から超音波を送信して1回目の受信波の第m波目を前記受信検知回路で受信するまでの伝搬時間TPと、受信側の前記超音波振動子と送信側の前記超音波振動子で1回づつ反射して受信側の前記超音波振動子に達した2回目の受信波の第m波目を前記受信検知回路で受信するまでの伝搬時間TP2を測定し、前記伝搬時間TPと伝搬時間TP2の差の2分の1より前記超音波振動子間の真の伝搬時間TP0を演算する方法で、上流側から下流側への真の下流側伝搬時間TP0dと下流側から上流側への真の上流側伝搬時間TP0uを求め、前記真の下流側伝搬時間TP0dと前記真の上流側伝搬時間TP0uの差より流量の有無を判定する流量無判定手段と、を備えた超音波流量計。 A pair of ultrasonic transducers capable of transmitting and receiving ultrasonic signals,
A propagation time measuring unit that measures the propagation time of ultrasonic waves until the other ultrasonic transducer receives an ultrasonic signal transmitted from one of the ultrasonic transducers and propagated in a fluid.
A reception detection circuit that detects the mth wave of the received wave received by the ultrasonic transducer on the receiving side,
The propagation using the reception delay time TR from the start of reception to the detection that the mth wave of the ultrasonic reception wave is received by the reception detection circuit when the ultrasonic wave reaches the ultrasonic vibrator on the receiving side. Propagation time correction means for correcting the propagation time measured by the time measurement unit,
A control unit that obtains the flow rate of the fluid that satisfies the space between the ultrasonic transducers by calculation from the propagation time corrected by the propagation time correction means.
Propagation time TP until the m-th wave of the first received wave is received by the reception detection circuit after transmitting ultrasonic waves from the ultrasonic transducer on the transmitting side, and transmission with the ultrasonic transducer on the receiving side. The propagation time TP2 until the m-th wave of the second received wave that has been reflected once by the ultrasonic transducer on the receiving side and reached the ultrasonic transducer on the receiving side is received by the reception detection circuit is measured. Then, the true propagation time TP0 between the ultrasonic transducers is calculated from half of the difference between the propagation time TP and the propagation time TP2, and the true downstream propagation time TP0d from the upstream side to the downstream side. A flow rate non-determining means for obtaining the true upstream side propagation time TP0u from the downstream side to the upstream side and determining the presence or absence of the flow rate from the difference between the true downstream side propagation time TP0d and the true upstream side propagation time TP0u. Ultrasonic flowmeter equipped with.
前記伝搬時間補正手段は、前記受信遅れ時間保存手段に保存された下流側受信遅れ時間TRdと上流側受信遅れ時間TRuを用いて前記伝搬時間測定部で測定された1回目の受信波の伝搬時間を補正することを特長とした請求項1に記載の超音波流量計。 The downstream reception delay time TRd when the propagation time from the upstream side to the downstream side is measured using the true downstream side propagation time TP0d and the true upstream side propagation time TP0u obtained by the flow rate non-determining means. It is equipped with a reception delay time storage means for obtaining and storing the upstream reception delay time TRu when the propagation time from the downstream side to the upstream side is measured.
The propagation time correction means uses the downstream reception delay time TRd and the upstream reception delay time TRu stored in the reception delay time storage means to propagate the first received wave measured by the propagation time measuring unit. The ultrasonic flowmeter according to claim 1, wherein the ultrasonic flowmeter is characterized in that.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019082374A JP7203353B2 (en) | 2019-04-24 | 2019-04-24 | ultrasonic flow meter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019082374A JP7203353B2 (en) | 2019-04-24 | 2019-04-24 | ultrasonic flow meter |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020180813A true JP2020180813A (en) | 2020-11-05 |
JP7203353B2 JP7203353B2 (en) | 2023-01-13 |
Family
ID=73024498
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019082374A Active JP7203353B2 (en) | 2019-04-24 | 2019-04-24 | ultrasonic flow meter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7203353B2 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4561088B2 (en) * | 2003-12-10 | 2010-10-13 | パナソニック株式会社 | Ultrasonic flow meter |
JP2011158470A (en) * | 2010-01-07 | 2011-08-18 | Panasonic Corp | Ultrasonic flowmeter |
JP4822731B2 (en) * | 2005-04-05 | 2011-11-24 | リコーエレメックス株式会社 | Ultrasonic flow meter |
-
2019
- 2019-04-24 JP JP2019082374A patent/JP7203353B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4561088B2 (en) * | 2003-12-10 | 2010-10-13 | パナソニック株式会社 | Ultrasonic flow meter |
JP4822731B2 (en) * | 2005-04-05 | 2011-11-24 | リコーエレメックス株式会社 | Ultrasonic flow meter |
JP2011158470A (en) * | 2010-01-07 | 2011-08-18 | Panasonic Corp | Ultrasonic flowmeter |
Also Published As
Publication number | Publication date |
---|---|
JP7203353B2 (en) | 2023-01-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011083766A1 (en) | Ultrasonic flowmeter | |
WO2014068952A1 (en) | Flow rate measuring device and flow rate calculation method | |
JP2008134267A (en) | Ultrasonic flow measurement method | |
WO2011055532A1 (en) | Ultrasonic flowmeter | |
JP2007187506A (en) | Ultrasonic flowmeter | |
JP4561088B2 (en) | Ultrasonic flow meter | |
JP5965292B2 (en) | Ultrasonic flow meter | |
JP5141613B2 (en) | Ultrasonic flow meter | |
JP7203353B2 (en) | ultrasonic flow meter | |
JP4822731B2 (en) | Ultrasonic flow meter | |
JP7320776B2 (en) | ultrasonic flow meter | |
JP7246021B2 (en) | ultrasonic flow meter | |
JP7203352B2 (en) | ultrasonic flow meter | |
JP5034510B2 (en) | Flow velocity or flow rate measuring device and its program | |
JP5990770B2 (en) | Ultrasonic measuring device | |
JP4797515B2 (en) | Ultrasonic flow measuring device | |
JP2005300244A (en) | Ultrasonic flow meter | |
JP2020056639A (en) | Pressure measuring device | |
JP2008180566A (en) | Flow velocity or flow rate measuring device, and program therefor | |
WO2024134908A1 (en) | Ultrasonic flowmeter, and measuring method | |
JP5092413B2 (en) | Flow velocity or flow rate measuring device | |
JP2007064988A5 (en) | ||
JP2007064988A (en) | Flowmeter | |
JP5092414B2 (en) | Flow velocity or flow rate measuring device | |
JP6767628B2 (en) | Flow measuring device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220202 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20220712 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20220714 |
|
TRDD | Decision of grant or rejection written | ||
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20221121 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20221122 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20221216 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 7203353 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |