[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2020165794A - Inclined mirror multiple reflection type radiation thermometer - Google Patents

Inclined mirror multiple reflection type radiation thermometer Download PDF

Info

Publication number
JP2020165794A
JP2020165794A JP2019066341A JP2019066341A JP2020165794A JP 2020165794 A JP2020165794 A JP 2020165794A JP 2019066341 A JP2019066341 A JP 2019066341A JP 2019066341 A JP2019066341 A JP 2019066341A JP 2020165794 A JP2020165794 A JP 2020165794A
Authority
JP
Japan
Prior art keywords
mirror
radiation thermometer
radiation
emissivity
measurement target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019066341A
Other languages
Japanese (ja)
Inventor
大亮 寺田
Daisuke Terada
大亮 寺田
徹 井内
Toru Iuchi
徹 井内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chino Corp
Original Assignee
Chino Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chino Corp filed Critical Chino Corp
Priority to JP2019066341A priority Critical patent/JP2020165794A/en
Publication of JP2020165794A publication Critical patent/JP2020165794A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)

Abstract

To provide an inclined mirror multiple reflection type radiation thermometer which can increase apparent emissivity.SOLUTION: An inclined mirror multiple reflection type radiation thermometer that is planarly widened and extended, has an inclination mirror 0102 arranged on a predetermined range of a measuring object 0101 in which the predetermined range is substantially the same temperature, and measures a temperature of a measuring object by multiple reflection of radiation light (including infrared light) from the measuring object between the inclination mirror and the measuring object, includes: the inclination mirror; a radiation thermometer 0104 that causes an optical axis of a radiation light intake port 0103 to face a surface of the inclination mirror and/or a surface in the predetermined range of the measuring object to the side where the inclination mirror is widely opened; and a hemispherical mirror 0105 which forms a hole 0106 that prevents blocking of the radiation light from the inclination mirror and/or the measuring object incident on the radiation light intake port of the radiation thermometer, is arranged in the front of the radiation thermometer, and has a radiation light intake port side as a projection side.SELECTED DRAWING: Figure 1

Description

本発明は、測温対象に対して傾斜したミラーを配置することで測温対象からの放射光を多重反射させて受光することにより、測温対象の見かけの放射率を大きくして、測温対象を黒体とみなして温度測定を行う放射温度計に関する。 In the present invention, the apparent emissivity of the temperature-measured object is increased by arranging an inclined mirror with respect to the temperature-measured object to multiplely reflect and receive the radiated light from the temperature-measured object, thereby increasing the apparent emissivity of the temperature-measured object. It relates to a radiation thermometer that measures the temperature by regarding the object as a blackbody.

圧延や連続焼きなましなどの金属材の製造プロセスにおける金属材の表面温度の測定には、金属材の表面を傷つけることのない非接触の放射温度計が広く用いられている。放射温度計は対象からの熱放射の強度(分光放射輝度)を測定し、熱放射の強度から温度への換算を、黒体の熱放射強度と温度との関係に基づいて行う。ここで、金属の多くは放射率が低いため、または、酸化などの要因により放射率が変動するため、黒体の放射率に基づく温度換算値と隔たりが生じてしまい正確な温度測定を行うことができないという問題がある。 Non-contact radiation thermometers that do not damage the surface of the metal material are widely used for measuring the surface temperature of the metal material in the manufacturing process of the metal material such as rolling and continuous annealing. The radiation thermometer measures the intensity of thermal radiation from the object (spectral radiance brightness), and converts the intensity of thermal radiation into temperature based on the relationship between the thermal radiation intensity of the blackbody and the temperature. Here, since the emissivity of most metals is low or the emissivity fluctuates due to factors such as oxidation, there is a gap from the temperature conversion value based on the emissivity of the blackbody, and accurate temperature measurement should be performed. There is a problem that it cannot be done.

そこで、鋼板などの測定対象に対してミラーを傾けて配置し、鋼板からの放射光をミラーと鋼板表面とで多重反射させることにより、鋼板表面の見かけの放射率を大きくして黒体の放射率に近づけることで温度換算値の誤差を低減することができる測温方法が提案されている(特許文献1)。 Therefore, the mirror is tilted with respect to the measurement target such as a steel plate, and the synchrotron radiation from the steel plate is repeatedly reflected by the mirror and the surface of the steel plate to increase the apparent emissivity of the surface of the steel plate and emit blackbody radiation. A temperature measurement method has been proposed that can reduce the error of the temperature conversion value by approaching the emissivity (Patent Document 1).

特開昭59−87329号公報JP-A-59-87329

特許文献1の測温方法によれば、測定対象となる鋼板の放射率が0.2以上であれば、見かけの放射率を0.85以上にすることができ、精度の良い温度測定が行えるとしている。 According to the temperature measurement method of Patent Document 1, if the emissivity of the steel sheet to be measured is 0.2 or more, the apparent emissivity can be 0.85 or more, and accurate temperature measurement can be performed. It is supposed to be.

しかしながら、表面が酸化していないアルミニウムのように放射率が0.1を下回る場合には、特許文献1の方法では見かけの放射率を十分大きくして黒体放射とみなすことはできない。 However, when the emissivity is less than 0.1 like aluminum whose surface is not oxidized, the apparent emissivity cannot be sufficiently increased to be regarded as blackbody radiation by the method of Patent Document 1.

そこで、上記課題を解決するために本発明において、平面的に広がりをもち、所定範囲が略同一温度である測定対象の前記所定範囲上に傾斜ミラーを配置して傾斜ミラーと測定対象との間での測定対象からの放射光(赤外光を含む)の多重反射により測定対象の温度を測定する傾斜ミラー多重反射型放射温度計であって、傾斜ミラーと、傾斜ミラーの広く開いた側に傾斜ミラーの面又は/及び測定対象の前記所定範囲の面に放射光取込口の光軸を向けた放射温度計と、放射温度計の放射光取込口に入射する傾斜ミラー又は/及び測定対象からの放射光を遮らないような穴をあけ放射温度計の前方に配置され、前記放射光取込口側を凸側とする半球状ミラーと、からなる傾斜ミラー多重反射型放射温度計を提供する。 Therefore, in order to solve the above-mentioned problems, in the present invention, an inclined mirror is arranged on the predetermined range of the measurement target having a planar spread and a predetermined range having substantially the same temperature, and between the tilt mirror and the measurement target. Inclined mirror that measures the temperature of the object to be measured by multiple reflection of the radiation light (including infrared light) from the object to be measured in the tilted mirror and the wide open side of the inclined mirror. A radiation thermometer whose optical axis of the radiation intake is directed to the surface of the tilt mirror and / and the surface of the predetermined range to be measured, and the tilt mirror and / and measurement which are incident on the radiation intake of the radiation thermometer. A tilted mirror multiple reflection type radiation thermometer consisting of a hemispherical mirror that is placed in front of the radiation thermometer with a hole that does not block the radiation from the target and whose convex side is the radiation intake side. provide.

また、上記の傾斜ミラー多重反射型放射温度計において、前記放射光取込口の光軸と測定対象の前記所定範囲の面の法線となす角度は、傾斜ミラーと測定対象とがなす角度の偶数倍である傾斜ミラー多重反射型放射温度計を提供する。 Further, in the above-mentioned tilt mirror multiple reflection type radiation thermometer, the angle formed by the optical axis of the synchrotron radiation intake port and the normal line of the surface of the predetermined range of the measurement target is the angle formed by the tilt mirror and the measurement target. Provided is a tilted mirror multiple reflection type radiation thermometer which is an even multiple.

また、上記の傾斜ミラー多重反射型放射温度計において、放射温度計の放射光取込口の前面にP偏光子を配置して、P偏光のみが放射光取込口に取り込まれるように構成した傾斜ミラー多重反射型放射温度計を提供する。 Further, in the above-mentioned tilted mirror multiple reflection type radiation thermometer, a P-polarized light is arranged in front of the synchrotron radiation intake port of the radiation thermometer so that only P-polarized light is taken into the synchrotron radiation intake port. An inclined mirror multiple reflection type radiation thermometer is provided.

また、所定範囲の測定対象をアニールするアニール装置と、上記いずれか一の傾斜ミラー多重反射型放射温度計と、からなるアニールシステムを提供する。また、前記アニール装置が半導体ウエハアニール装置であるアニールシステムを提供する。 Further, an annealing system including an annealing device for annealing a measurement target in a predetermined range and any one of the above tilted mirror multiple reflection type radiation thermometers is provided. Further, the annealing device provides an annealing system in which the annealing device is a semiconductor wafer annealing device.

また、所定範囲の測定対象を焼きなましする焼きなまし装置と、上記いずれか一の傾斜ミラー多重反射型放射温度計と、からなる焼きなましシステムを提供する。 Further, the present invention provides an annealing system including an annealing device for annealing a measurement target in a predetermined range, and one of the above tilted mirror multiple reflection type radiation thermometers.

本発明により、従来の傾斜ミラー多重反射型放射温度計に比較して見かけの放射率を大きくすることができ、温度測定の精度を向上することができる。 According to the present invention, the apparent emissivity can be increased as compared with the conventional tilted mirror multiple reflection type radiation thermometer, and the accuracy of temperature measurement can be improved.

実施形態1の傾斜ミラー多重反射型放射温度計の概念図Conceptual diagram of the tilted mirror multiple reflection type radiation thermometer of the first embodiment 等価放射体と半球状ミラーとの多重反射を利用して放射温度計で測温する仕組みを示す概念図Conceptual diagram showing a mechanism for measuring temperature with a radiation thermometer using multiple reflections of an equivalent radiator and a hemispherical mirror 実施形態1におけるより好ましい傾斜ミラー多重反射型放射温度計の概念図Conceptual diagram of a more preferable tilted mirror multiple reflection type radiation thermometer according to the first embodiment 測定対象の放射率εと見かけの放射率εaとの関係を示す図Diagram showing the relationship between the emissivity ε to be measured and the apparent emissivity ε a 測定対象の放射率ε、見かけの放射率εa及び実効放射率εeffを示した表A table showing the emissivity ε, the apparent emissivity ε a, and the effective emissivity ε eff to be measured. 測定対象の放射率εに対する、見かけの放射率εaと実効放射率εeffを示す図The figure which shows the apparent emissivity ε a and the effective emissivity ε eff e with respect to the emissivity ε to be measured. 実施形態1の傾斜ミラー多重反射型放射温度計の概念図Conceptual diagram of the tilted mirror multiple reflection type radiation thermometer of the first embodiment 図8は、アルミニウムを例とした放射率特性を示す図FIG. 8 is a diagram showing emissivity characteristics using aluminum as an example. P偏光による見かけの放射率εa及び実効放射率εeffを示した表Table showing the apparent emissivity ε a and the effective emissivity ε eff by P-polarized light

以下、本発明の実施の形態について、添付図面を用いて説明する。なお、本発明は、これら実施形態に何ら限定されるべきものではなく、その要旨を逸脱しない範囲において、種々なる態様で実施し得る。
<実施形態1>
<概要>
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. The present invention should not be limited to these embodiments, and may be implemented in various embodiments without departing from the gist thereof.
<Embodiment 1>
<Overview>

本実施形態は、傾斜ミラーにより多重反射を経て最終的に測定対象又は傾斜ミラーから放射される放射光を、半球状ミラーにより測定対象又は傾斜ミラーにおいて最終的に放射された地点に向けて放射光を反射させることで、さらに多重反射による見かけの放射率を大きくしたうえで半球状のミラーに設けた穴を通過した放射光を受光して温度測定を行う放射温度計である。
<構成>
In this embodiment, the synchrotron radiation finally emitted from the measurement target or the tilt mirror through multiple reflections by the tilt mirror is directed to the point finally emitted by the measurement target or the tilt mirror by the hemispherical mirror. This is a radiant thermometer that measures the temperature by receiving the synchrotron radiation that has passed through the holes provided in the hemispherical mirror after further increasing the apparent emissivity due to multiple reflections.
<Composition>

図1は、本実施形態の傾斜ミラー多重反射型放射温度計の概念図である。図示するように、傾斜ミラー多重反射型放射温度計は、測定対象0101に対して傾斜して鏡面を向けて配置される傾斜ミラー0102と、測定対象に対して傾斜ミラーが広く開いた側に放射光取込口0103の光軸を測定対象の表面に向けて配置される放射温度計0104と、放射温度計の放射光取込口に入射する傾斜ミラー又は/及び測定対象からの放射光を遮らないような穴0106をあけ放射温度計の前方に配置され、前記放射光取込口側を凸側とする半球状ミラー0105と、からなる。また、図中において傾斜ミラーと測定対象との間で交互にぶつかり反射しながら放射温度計へ進む軌跡は、測定対象のある一点x0から法線方向に放射された放射光を概念的に示すものである。 FIG. 1 is a conceptual diagram of the tilted mirror multiple reflection type radiation thermometer of the present embodiment. As shown in the figure, the tilted mirror multiple reflection type radiation thermometer radiates to the tilted mirror 0102, which is tilted with respect to the measurement target 0101 and arranged with the mirror surface facing, and to the side where the tilted mirror is widely opened with respect to the measurement target. The radiation thermometer 0104, which is arranged with the optical axis of the light intake port 0103 facing the surface of the measurement target, and the tilt mirror and / or the radiation light from the measurement target incident on the radiation light intake port of the radiation thermometer are blocked. It is composed of a hemispherical mirror 0105 which is arranged in front of the radiation thermometer with a hole 0106 which does not exist, and whose convex side is the synchrotron radiation intake side. In addition, the trajectory that travels to the radiation thermometer while alternately colliding with and reflecting between the tilted mirror and the measurement target in the figure conceptually indicates the synchrotron radiation emitted in the normal direction from one point x 0 of the measurement target. It is a thing.

ここで、測定対象は平面的に広がりをもち、所定範囲が略同一温度である。この所定範囲とは、例えば鋼板の製造工程において圧延や表面処理などの個々の工程を経た後の温度管理のための測定を行うことが想定される範囲である。傾斜ミラーは係る所定範囲上に配置される。また、測定対象は金属や半導体が該当し、とくに従来の傾斜ミラー多重反射型放射温度計では測定誤差が生じてしまう低放射率のアルミニウム、金、銀、銅、研磨した鉄鋼などを測定対象とした場合にも誤差の少ない温度測定を行い得る。 Here, the measurement target has a planar spread, and a predetermined range has substantially the same temperature. This predetermined range is a range in which measurements for temperature control are assumed after undergoing individual steps such as rolling and surface treatment in, for example, a steel sheet manufacturing process. The tilt mirror is arranged within the predetermined range. In addition, the measurement targets are metals and semiconductors, and in particular, low-radiation aluminum, gold, silver, copper, polished steel, etc., which cause measurement errors with conventional tilted mirror multiple reflection thermometers, are measured. Even if this is the case, the temperature can be measured with little error.

また、傾斜ミラーは表面を金メッキなどの処理を施した高反射率の平板を用いる。本発明においては傾斜ミラーの反射率は高いほど好ましく、反射率が0.95以上であることがより好ましい。 Further, as the tilt mirror, a flat plate having a high reflectance whose surface is treated with gold plating or the like is used. In the present invention, the higher the reflectance of the tilted mirror is, the more preferable it is, and the more preferably the reflectance is 0.95 or more.

また、半球状ミラーの反射率も高いほど好ましく、反射率が0.95以上であることがより好ましい。半球型ミラーは測定対象又は傾斜ミラーからの光を反射させる機能を果たすものであるので、穴の径は小さいことが好ましく、放射温度計のフォーカス等の受光に係る性能によるがその直径は数mm程度でよい。
≪傾斜ミラーとの多重反射による見かけの放射率εa
Further, the higher the reflectance of the hemispherical mirror is, the more preferable it is, and the more preferably the reflectance is 0.95 or more. Since the hemispherical mirror functions to reflect the light from the measurement target or the tilted mirror, the diameter of the hole is preferably small, and the diameter is several mm depending on the performance related to light reception such as the focus of the radiation thermometer. It is enough.
≪Apparent emissivity due to multiple reflection with tilted mirror ε a

放射温度計0104は、上述した測定対象の所定範囲の一点であるxに放射光取込口0103の光軸を向けて配置され、xからの放射光が入射されるようフォーカスされている。 Radiation thermometer 0104 is located toward the optical axis of the emitted light inlet 0103 to x 4 is one point of a predetermined range of the measurement object described above, light emitted from the x 4 is focused to be incident ..

図1の例において、放射温度計が測定対象上のフォーカスする点を「x」としているが、この「」はフォーカスする点から放射温度計に入射する光が、そのフォーカスする点から放射される光だけでなく、測定対象と傾斜ミラーとの反射を経てフォーカスしている点に到達し、その点で反射して放射温度計に入射し得る放射光であって、そのような反射を経た放射光のうちで最も多く生じ得る反射数を意味している。 In the example of FIG. 1, the focus point on the measurement target of the radiation thermometer is "x 4 ", and this " 4 " means that the light incident on the radiation thermometer from the focus point radiates from the focus point. Not only the light that is emitted, but also the radiation that reaches the point of focus through the reflection between the measurement target and the tilt mirror, is reflected at that point, and can be incident on the radiation thermometer. It means the number of reflections that can occur most of the emitted light.

図1においては、点xからの放射光が傾斜ミラーの一点であるmで略正反射して、さらにxで略正反射して放射温度計に入射する。同じように、点xからの放射光は、m、x、m、xの各点で略正反射して放射温度計に入射する。このように、放射温度計に入射する光は、xからの放射光だけでなく、x、x、x、xの各点からの放射光も含まれる。なお、傾斜ミラーからの放射光は、傾斜ミラーの反射率が極めて高いことから、加えて、測定対象に対して傾斜ミラーの温度を低くすることで、無視できる(以下、同じ)。 In Figure 1, the regularly reflected substantially at m 4 emitted light is one point of the inclined mirror from the point x 3, further substantially regularly reflected by x 4 enters the radiation thermometer. Similarly, light emitted from the point x 2 is, m 3, x 3, m 4, and substantially regularly reflected at each point x 4 incident on the radiation thermometer. Thus, light incident on the radiation thermometer, as well as radiation from the x 4, light emitted from each point of x 3, x 2, x 1 , x 0 is also included. Since the reflectance of the tilted mirror is extremely high, the synchrotron radiation from the tilted mirror can be ignored by lowering the temperature of the tilted mirror with respect to the measurement target (hereinafter, the same applies).

放射温度計に入射する放射光は、上記のように各点から傾斜ミラーが開く方向(以下、右方向)へ放射された放射光だけでなく、各点から傾斜ミラーが閉じる方向(以下、左方向)に放射された放射光も含まれる。例えば、点xにおける放射光であってmに向かう放射光は、傾斜ミラーと測定対象との多重反射によりxに到達して反射し、同じ経路による多重反射を経てxに戻って反射し放射温度計に入射する。同様に、x、x、xの各点から左方向への放射光もxに到達して、多重反射を経てxに戻って反射し放射温度計に入射する。 The synchrotron radiation incident on the radiation thermometer is not only the synchrotron radiation radiated from each point in the direction in which the tilt mirror opens (hereinafter, right direction), but also the direction in which the tilt mirror closes from each point (hereinafter, left). Synchrotron radiation emitted in the direction) is also included. For example, the emitted light towards a synchrotron radiation at point x 4 to m 4 is reflected and reaches the x 0 by multiple reflections between the inclined mirror measured, back to x 4 through the multiple reflection by the same route It reflects and enters the radiation thermometer. Similarly, radiation from each point x 3, x 2, x 1 to the left direction reaches the x 0, through multiple reflection reflects back to x 4 is incident on the radiation thermometer.

ここで、x、x、x、x、xの各点からの分光放射光輝度Lλ(T)(波長λ、温度T)は、黒体分光放射輝度Lb,λ(T)に測定対象の放射率εと反射に応じた反射率とを掛けたものになる。測定対象の放射率をεとすると、反射率はキルヒホッフの法則及びエネルギー保存則から(1−ε)となる(測定対象が金属であり透過率=0とみなせる)。傾斜ミラーの反射率をρとすれば、傾斜ミラーと反射する毎にρが掛かり、測定対象と反射する毎に(1−ε)が掛かる。 Here, the spectral radiance L λ (T) (wavelength λ, temperature T) from each point of x 4 , x 3 , x 2 , x 1 , and x 0 is the blackbody spectral radiance L b, λ ( It is obtained by multiplying T) by the emissivity ε of the measurement target and the reflectance according to the reflection. Assuming that the emissivity of the measurement target is ε, the reflectance is (1-ε) according to Kirchhoff's law and energy conservation law (the measurement target is metal and the transmittance can be regarded as 0). If the reflectance of the tilted mirror is ρ, ρ is multiplied each time it reflects with the tilted mirror, and (1-ε) is multiplied each time it reflects with the measurement target.

例えば、点xから右方向への放射光はmとmで傾斜ミラーと2回反射し、xとxで測定対象と2回反射しているので、放射温度計に入射する分光放射輝度は、Lb,λ(T)にερ(1−ε)を係数として掛けたものになる。 For example, light emitted from the point x 2 in the right direction is reflected inclined mirror and twice with m 3 and m 4, since the reflected measurement object and twice with x 3 and x 4, enters the radiation thermometer The spectral radiance is obtained by multiplying L b, λ (T) by ερ 2 (1-ε) 2 as a coefficient.

このような反射に応じた係数を、測定対象上の点xでの係数として示したものが数式1である。εは点xにおける分光放射率である(i=1,2,3,・・・,n)。
Equation 1 shows the coefficient corresponding to such reflection as the coefficient at the point x i on the measurement target. ε i is the spectral emissivity at point x i (i = 1,2,3, ···, n).

点xから多重反射を経て放射温度計に入射する放射束は、(式1)の係数に比例する。そして、iは0からnまで取り得るから、各点から入射するすべての放射束の和φは、下記の数式2の第2式に比例する。
Radiation beam incident on the radiation thermometer through the multiple reflections from the point x i is proportional to the coefficient of (Equation 1). Then, since i can take from 0 to n, the sum phi r of all the radiant flux incident from each point is proportional to the second equation in Equation 2 below.

一方、左方向に向かう放射束は、上述の通り点xで反射して右方向へ進む。そして、iは0からnまで取り得るから、各点から左方向に向かい点xで反射して右方向へ進み放射温度計に入射するすべての放射束の和φは、下記の数式3の第2式に比例する。
On the other hand, the radiant flux heading to the left is reflected at the point x 0 and travels to the right as described above. Since i can be taken from 0 to n, the sum φ l of all the radiant fluxes that are reflected from each point to the left at the point x 0 , travel to the right, and are incident on the radiation thermometer is given by the following mathematical formula 3. Is proportional to the second equation of.

以上の結果から、点xから放射され放射温度計に入射するすべての放射束φは、数式2のφと数式3のφとの和となり、それは下記の数式4の右辺第2式に比例する。
These results are all the radiant flux phi i the emitted incident on a radiation thermometer from the point x i, the sum of the phi l of phi r and Equation 3 in Equation 2, it is the right-hand side second equation 4 below Proportional to the equation.

放射温度計は、数式4の放射束に対応する見かけの分光放射輝度Laとして、下記の数式5の右辺を計測する。数式5の右辺の第一項は右方向だけの寄与、第二項は左方向の寄与に対応する。
Radiation thermometer, a spectral radiance L a apparent that corresponds to the radiation flux of Equation 4, for measuring the right-hand side of Equation 5 below. The first term on the right side of Equation 5 corresponds to the contribution in the right direction only, and the second term corresponds to the contribution in the left direction.

Lb,λ(T)は、温度T、波長λの黒体分光放射輝度であるから、傾斜ミラーと測定対象との多重反射によって放射温度計に入射する放射束の見かけの分光放射率εaは、下記の数式6となる。
≪半球状ミラーとの多重反射による実効放射率εeff
Since L b and λ (T) are blackbody spectral radiances at temperature T and wavelength λ, the apparent spectral emissivity ε a of the radiant flux incident on the radiation thermometer due to multiple reflections between the tilted mirror and the measurement target. Is the following formula 6.
≪Effective emissivity ε eff by multiple reflection with hemispherical mirror≫

傾斜ミラーと測定対象との多重反射を経て点x(図1の例では、点x)から放射温度計に向かう放射束は、放射温度計の前方に配置される半球状ミラーに設けられる穴を通って放射温度計に入射するが、点xからの放射束はある程度広がりをもって進むため、半球状ミラーの穴の周囲のミラー面で反射する。 (In the example of FIG. 1, point x 4) points x n through the multiple reflection between the inclined mirror and the measurement object radiation beam towards the radiation thermometer from provided hemispherical mirror disposed in front of the radiation thermometer It enters the radiation thermometer through the hole, but the radiant flux from the point xn travels with a certain extent, so it is reflected by the mirror surface around the hole of the hemispherical mirror.

半球状ミラーの曲面の半径を、点xから半球状ミラーのミラー面までの距離と略同じに構成することで、半球状ミラーで反射した放射束は点xに戻り、傾斜ミラーと測定対象とで構成される光路を多重反射して進み、再び点xに戻り放射温度計に向かう放射束は、放射温度計に入射するとともに半球状ミラーと再び反射して点xに戻る。 By configuring the radius of the curved surface of the hemispherical mirror to be substantially the same as the distance from the point x n to the mirror surface of the hemispherical mirror, the radiant flux reflected by the hemispherical mirror returns to the point x n and is measured with the tilt mirror. The radiant flux that travels by multiple reflections in the optical path composed of the object, returns to the point xn , and heads for the radiation thermometer, enters the radiation thermometer and is reflected again by the hemispherical mirror to return to the point xn .

このような多重反射が生じることから、傾斜ミラーと測温対象とからなる構成を、温度T、見かけの分光放射率εa(みかけの反射率ρa=1−εa)の等価放射体とみなすことができる。そして、本発明の傾斜ミラー多重反射型放射温度計は、図2に示すように、この等価放射体0201と半球状ミラー0202との多重反射を利用して放射温度計0203で測温する仕組みを構成していると言える。 Since such multiple reflections occur, the configuration consisting of the tilted mirror and the temperature measurement target is regarded as an equivalent radiator with temperature T and apparent spectral emissivity ε a (apparent reflectance ρ a = 1-ε a ). Can be regarded. Then, as shown in FIG. 2, the tilted mirror multiple reflection type radiation thermometer of the present invention has a mechanism of measuring the temperature with the radiation thermometer 0203 by utilizing the multiple reflection of the equivalent radiator 0201 and the hemispherical mirror 0202. It can be said that it is composed.

ここで、半球状ミラーの穴を通って放射温度計に入射する放射束の見かけの分光放射率εeff(εaとの混同を避けるため、以下では実効放射率εeffという)は、等価放射体と半球状ミラーとの間での多重反射により数式7で示すことができる(式中のρmは半球状ミラーの反射率)。
Here, the apparent spectral emissivity ε eff of the radiant flux incident on the radiation thermometer through the hole of the hemispherical mirror (to avoid confusion with ε a , hereinafter referred to as the effective emissivity ε eff ) is the equivalent radiation. The multiple reflections between the body and the hemispherical mirror can be shown in Equation 7 (ρ m in the equation is the emissivity of the hemispherical mirror).

したがって、温度Tの測定対象から放射温度計が検出する分光放射輝度Leffは数式8で示される。
Therefore, the spectral radiance L eff detected by the radiation thermometer from the object to be measured at the temperature T is expressed by Equation 8.

ここで、Lb,λ(T)は温度T、波長λにおける黒体分光放射輝度を表している。以上の通り、分光放射率εiの測定対象と傾斜ミラーとからなる等価放射体は、みかけの分光放射率εaとなり、さらに半球ミラーとの多重反射により穴からの最終的な実効分光放射率はεeffに増大する。 Here, L b and λ (T) represent the blackbody spectral radiance at the temperature T and the wavelength λ. As described above, the equivalent radiator consisting of the measurement target of the spectral emissivity ε i and the tilted mirror has an apparent spectral emissivity ε a , and further, the final effective spectral emissivity from the hole due to multiple reflections with the hemispherical mirror. Increases to ε eff .

以上のように、傾斜ミラーとの反射だけでなく、半球型ミラーによる反射を重畳して利用することで、従来の傾斜ミラー多重反射型放射温度計よりも見かけの分光放射率を増大させることができ、誤差の少ない温度測定が可能となる。 As described above, by superimposing and using not only the reflection with the tilted mirror but also the reflection by the hemispherical mirror, it is possible to increase the apparent spectral emissivity as compared with the conventional tilted mirror multiple reflection type radiation thermometer. It is possible to measure the temperature with little error.

以上の説明において、放射温度計は測定対象に向けて配置した態様にて説明した。しかし、放射温度計を傾斜ミラーに向けて配置しても同様に見かけの放射率を大きくする効果を得ることができる。種々の式を用いて見かけの放射率が大きくなる原理を説明したように、測定対象自体の放射率に掛かる係数のうち測定対象での反射の回数が1回減るだけであり、見かけの放射率を大きくする効果における影響はわずかである。また、測定対象に向けた放射温度計と傾斜ミラーに向けた放射温度計との二つの放射温度計を配置してもよい。この場合、実効放射率を求める関係式を二つ得ることができることから、例えば、測定対象の放射率を算出することができる。
<より好ましい態様>
In the above description, the radiation thermometer has been described in a manner in which it is arranged toward the measurement target. However, even if the radiation thermometer is arranged toward the tilt mirror, the effect of increasing the apparent emissivity can be obtained as well. As explained the principle that the apparent emissivity increases using various formulas, the number of reflections at the measurement target is reduced by only one of the coefficients of the emissivity of the measurement target itself, and the apparent emissivity The effect on the effect of increasing is small. Further, two radiation thermometers, a radiation thermometer directed at the measurement target and a radiation thermometer directed at the tilt mirror, may be arranged. In this case, since two relational expressions for obtaining the effective emissivity can be obtained, for example, the emissivity of the measurement target can be calculated.
<More preferred embodiment>

この態様は、上述した傾斜ミラー多重反射型放射温度計を基本とし、傾斜ミラーと放射温度計の測定対象に対する設置角度を特定することで、より効果的に実効放射率を高めることができるものである。 This aspect is based on the above-mentioned tilt mirror multiple reflection type radiation thermometer, and the effective emissivity can be increased more effectively by specifying the installation angle of the tilt mirror and the radiation thermometer with respect to the measurement target. is there.

図3は、この態様における傾斜ミラー多重反射型放射温度計を示す概念図である。図示するように、測定対象0301に対して傾斜ミラー0302は角度βで配置されている。そして、放射温度計0303の放射光取込口の光軸と測定対象の表面の法線との角度0304が2nβ(nは測定対象との反射回数)となるように放射温度計は配置される。 FIG. 3 is a conceptual diagram showing a tilted mirror multiple reflection type radiation thermometer in this embodiment. As shown in the figure, the tilt mirror 0302 is arranged at an angle β with respect to the measurement target 0301. Then, the radiation thermometer is arranged so that the angle 0304 between the optical axis of the synchrotron radiation intake port of the radiation thermometer 0303 and the normal of the surface of the measurement target is 2nβ (n is the number of reflections with the measurement target). ..

ここで、測定対象と傾斜ミラーとが仮想的に交差する基点から距離x0の点における法線方向での傾斜ミラーまでの距離をh0とすると、h0=x0 tanβとなる。そして、測定対象とn回反射して達する基点からの距離xnは、数式9で示される。
Here, assuming that the distance from the base point at which the measurement target and the tilted mirror virtually intersect to the tilted mirror in the normal direction at a point at a distance x 0 is h 0 , h 0 = x 0 tan β. Then, the distance x n from the base point reached by reflecting n times with the measurement target is expressed by Equation 9.

このような配置とした場合に、見かけの放射率がどの程度大きくなるかをシミュレーションした。測定対象の放射率εは、0.05、0.1、0.2、・・・0.9とし、反射回数nは4回の場合と8回の場合とで計算した。 We simulated how large the apparent emissivity would be with such an arrangement. The emissivity ε to be measured was 0.05, 0.1, 0.2, ... 0.9, and the number of reflections n was calculated for 4 times and 8 times.

図4(a)は、n=8とした場合の測定対象の放射率εと見かけの放射率εaとの関係を示す図である。図示するように、測定対象の放射率εが0.5の時に見かけの放射率εaが0.95を上回る結果を得た。放射率が0.95以上であれば、黒体放射とみなして測定することが十分に可能である。また、図4(b)は、n=4とした場合の結果だが、図示するように測定対象の放射率εが0.6で見かけの放射率εaが0.95を上回る結果を得た。 FIG. 4A is a diagram showing the relationship between the emissivity ε of the measurement target and the apparent emissivity ε a when n = 8. As shown in the figure, when the emissivity ε of the measurement target was 0.5, the apparent emissivity ε a exceeded 0.95. If the emissivity is 0.95 or more, it is sufficiently possible to consider it as blackbody radiation and measure it. Further, FIG. 4B shows the result when n = 4, and as shown in the figure, the emissivity ε of the measurement target was 0.6 and the apparent emissivity ε a exceeded 0.95. ..

さらに、半球状ミラーとの組み合わせにより実効放射率effがどれほど増大したかのシミュレーションを行った。傾斜ミラーとの反射回数及び交差角度は先のシミュレーションと同じ条件である。図5は、シミュレーション結果として測定対象の放射率ε、見かけの放射率εa及び実効放射率εeffを表として示した図である。 Furthermore, we simulated how much the effective emissivity eff was increased by the combination with the hemispherical mirror. The number of reflections and the crossing angle with the tilted mirror are the same conditions as in the previous simulation. FIG. 5 is a diagram showing as a table the emissivity ε, the apparent emissivity ε a, and the effective emissivity ε eff of the measurement target as simulation results.

測定対象の放射率ε、傾斜ミラーにより増大した見かけの放射率εa、さらに半球状ミラーを用いた場合の実効放射率εeffとしている。先に述べたように、傾斜ミラーのみを用いた場合に見かけの放射率εaが0.95を上回るためには、反射回数n=8の場合でεが0.5以上であることが必要で、反射回数n=4の場合でεが0.6以上であることが必要であった。 The emissivity ε to be measured, the apparent emissivity ε a increased by the tilted mirror, and the effective emissivity ε eff when a hemispherical mirror is used. As described above, in order for the apparent emissivity ε a to exceed 0.95 when only the tilt mirror is used, it is necessary that ε is 0.5 or more when the number of reflections is n = 8. Therefore, it was necessary that ε was 0.6 or more when the number of reflections was n = 4.

しかし、半球状ミラーを用いることにより、反射回数n=8の場合ではεが0.1であっても実効放射率εeffが0.95を上回る。また、反射回数n=4の場合でも測定対象の放射率εが0.2以上であれば実効放射率εeffが0.95を上回るという結果を得ることができた。図6は、この結果を図4に重ねて示す図である。 However, by using the hemispherical mirror, the effective emissivity ε eff exceeds 0.95 even if ε is 0.1 when the number of reflections is n = 8. Further, even when the number of reflections n = 4, if the emissivity ε to be measured is 0.2 or more, the effective emissivity ε eff exceeds 0.95. FIG. 6 is a diagram showing this result superimposed on FIG.

未酸化のアルミニウムや鋼板などは放射率が0.1を下回る場合もある。従来の傾斜ミラー多重反射型放射温度計では、このような放射率の極めて低い物質について精度よく温度測定を行うことができなかったが、本実施形態に実効放射率を黒体放射率に近づけることにより十分な精度により温度測定を行うことが可能となる。
<応用>
The emissivity of unoxidized aluminum and steel sheets may be less than 0.1. With the conventional tilted mirror multiple reflection type radiation thermometer, it was not possible to accurately measure the temperature of such a substance with extremely low emissivity, but in this embodiment, the effective emissivity should be close to the blackbody emissivity. This makes it possible to measure the temperature with sufficient accuracy.
<Application>

本実施形態の傾斜ミラー多重反射型放射温度計は、温度制御が求められる様々な製造プロセス等で応用可能である。例えば、様々な対象に対して熱処理を施す既知のアニール装置と傾斜ミラー多重反射型放射温度計を組み合わせてアニールシステムとして応用することができる。アニール処理は処理対象の温度管理が重要であるので、処理対象において温度管理が必要な範囲を、傾斜ミラー多重反射型放射温度計における所定範囲の測定対象とすることで、温度管理を好適に行いながら対象にアニール処理を施すことができる。 The tilted mirror multiple reflection type radiation thermometer of the present embodiment can be applied to various manufacturing processes that require temperature control. For example, a known annealing device that heat-treats various objects and a tilted mirror multiple reflection type radiation thermometer can be combined and applied as an annealing system. Since it is important to control the temperature of the processing target in the annealing treatment, the temperature control is preferably performed by setting the range in which the temperature control is required in the processing target as the measurement target in the predetermined range in the tilt mirror multiple reflection type radiation thermometer. However, the object can be annealed.

アニール装置の処理対象は限定しないが、とくに半導体ウエハアニール装置が好適である。半導体ウエハ製造プロセスにおいてイオン注入後の結晶性回復や膜質改善などのためにアニール処理が施されるが、温度管理が重要であるとともに対象表面の酸化程度が変化し放射率が変動するため従来の放射温度計で精度よく温度測定することが困難であったが、本傾斜ミラー多重反射型放射温度計を用いることで精度よく温度測定することが可能となる。 The processing target of the annealing device is not limited, but the semiconductor wafer annealing device is particularly suitable. In the semiconductor wafer manufacturing process, annealing is performed to restore crystallinity and improve film quality after ion injection. However, temperature control is important and the degree of oxidation of the target surface changes and the emissivity fluctuates. Although it was difficult to measure the temperature accurately with a radiation thermometer, it is possible to measure the temperature accurately by using this tilt mirror multiple reflection type radiation thermometer.

また、焼きなまし装置と傾斜ミラー多重反射型温度計と組み合わせて焼きなましシステムとすることも好ましい。例えば、高輝度ステンレス鋼板の製造プロセスでは内部応力除去や結晶組織調整などのために連続焼きなまし処理が施されるが、高輝度ステンレスの放射率は低く、かつプロセスの際にステンレス鋼板の表面の酸化膜生成により放射率が大きく変化する。傾斜ミラー多重反射型放射温度計は、このような対象であっても見かけの放射率を大きくすることで精度よく対象の温度測定を行うことができる。 It is also preferable to combine the annealing device and the tilt mirror multiple reflection type thermometer to form an annealing system. For example, in the manufacturing process of high-brightness stainless steel sheet, continuous annealing treatment is performed to remove internal stress and adjust the crystal structure, but the emissivity of high-brightness stainless steel is low and the surface of the stainless steel sheet is oxidized during the process. The emissivity changes greatly due to film formation. The tilted mirror multiple reflection type radiation thermometer can accurately measure the temperature of such an object by increasing the apparent emissivity.

また、圧延工程やCGL(Continuous Galvanized Line:連続溶融亜鉛メッキライン)などでの温度管理に好適に用いることが可能であり、それらのプロセスを行う装置とともに組み合わせることも好ましい。 Further, it can be suitably used for temperature control in a rolling process or a CGL (Continuous Galvanized Line), and it is also preferable to combine it with an apparatus for performing those processes.

なお、種々の装置とともに本実施形態の傾斜ミラー多重反射型放射温度計を組み合わせてシステムを構成する好適な態様を示したが、後述する実施形態2の傾斜ミラー多重反射型放射温度計についても同様に種々の装置とともにシステムを構成することができる。
<効果>
It should be noted that although a preferred embodiment in which the system is configured by combining the tilted mirror multiple reflection type radiation thermometer of the present embodiment with various devices is shown, the same applies to the tilted mirror multiple reflection type radiation thermometer of the second embodiment described later. The system can be configured with various devices.
<Effect>

本実施形態により、従来の傾斜ミラー多重反射型放射温度計に比較して見かけの放射率を大きくすることができ、温度測定の精度を向上し得る傾斜ミラー多重反射型放射温度計を提供することができる。
<実施形態2>
<概要>
The present embodiment provides a tilted mirror multiple reflection type radiation thermometer capable of increasing the apparent emissivity as compared with a conventional tilted mirror multiple reflection type radiation thermometer and improving the accuracy of temperature measurement. Can be done.
<Embodiment 2>
<Overview>

本実施形態は、実施形態1を基本とし、放射温度計の放射光取込口の前面にP偏光子を配置することで、P偏光のみが放射光取込口に取込まれるように構成するものである。
<構成>
This embodiment is based on the first embodiment, and by arranging a P-polarizer in front of the synchrotron radiation intake port of the radiation thermometer, only the P-polarized light is taken into the synchrotron radiation intake port. It is a thing.
<Composition>

図7は、本実施形態の傾斜ミラー多重反射型放射温度計を示す概念図である。図示するように、P偏光子0701を放射温度計の放射光取込口0702の前面に配置することで、半球状ミラー0703の穴0704を通る測定対象0705からの放射光のP偏光のみを取込むように構成している。 FIG. 7 is a conceptual diagram showing the tilted mirror multiple reflection type radiation thermometer of the present embodiment. As shown in the figure, by arranging the P-polarizer 0701 in front of the synchrotron radiation intake port 0702 of the radiation thermometer, only the P-polarized light of the radiation from the measurement target 0705 passing through the hole 0704 of the hemispherical mirror 0703 is taken. It is configured to be crowded.

放射率の放射方向についての特性として、物質表面の法線に対する角度θが大きくなるにつれて、P偏光放射率は高くなり、θ=85°付近でピークを迎え、θ=90°でゼロに収れんする。図8は、アルミニウムを例とした放射率特性を示す図であり、波長λ=1.55μmでのP偏光放射率ελ,p(θ)、無偏光放射率ελ(θ)、S偏光放射率ελ,s(θ)を示している。 As a characteristic of the emissivity in the radiation direction, as the angle θ with respect to the normal of the material surface increases, the P-polarized emissivity increases, peaks near θ = 85 °, and converges to zero at θ = 90 °. .. FIG. 8 is a diagram showing emissivity characteristics using aluminum as an example, and shows P-polarized emissivity ε λ, p (θ) at a wavelength λ = 1.55 μm, unpolarized emissivity ε λ (θ), and S-polarized light. It shows the emissivity ε λ, s (θ).

図示するように、P偏光放射率は80°付近で垂直方向(θ=0°)の放射率に対して著しく大きくなり、無偏光放射率やS偏光放射率に対して大きくなっている。それでも、80°でのP偏光放射率は0.108に過ぎない。 As shown in the figure, the P-polarized emissivity is significantly larger than the vertical (θ = 0 °) emissivity near 80 °, and is larger than the unpolarized emissivity and the S-polarized emissivity. Still, the P-polarized emissivity at 80 ° is only 0.108.

このようなアルミニウムのように極めて放射率の小さい物質を、傾斜ミラーと半球状ミラーの多重反射を用い、かつ、P偏光のみを受光することにより、見かけの放射率がどれほど大きくなるかをシミュレーションした。なお、アルミニウムの他に、冷延鋼板、ステンレス鋼板、シリコンウェハについても併せてシミュレーションした。計算は、各試料の複素屈折率からP偏光放射率ελ,p(2nβ)を具体的に数値解して、これを上記の(式6)と(式7)に導入して見かけの放射率εaと実効放射率εeffを求めた。複素屈折率から偏光放射率への計算手法は、以下の参考文献による。
(参考文献)井内徹、石井啓貴、偏光輝度を利用した常温付近における光沢金属の放射測温法、計測自動制御学会論文集、36,395/401(2000)
We simulated how large the apparent emissivity of such a substance with extremely low emissivity, such as aluminum, by using multiple reflections of a tilted mirror and a hemispherical mirror and receiving only P-polarized light. .. In addition to aluminum, cold-rolled steel sheets, stainless steel sheets, and silicon wafers were also simulated. In the calculation, the P-polarized emissivity ε λ, p (2nβ) is concretely numerically solved from the complex refractive index of each sample, and this is introduced into the above (Equation 6) and (Equation 7) to obtain the apparent emissivity. The rate ε a and the effective emissivity ε eff were obtained. The calculation method from the complex refractive index to the polarized emissivity is based on the following references.
(Reference) Toru Inuchi, Hiroki Ishii, Radiation temperature measurement method for glossy metals near room temperature using polarized brightness, Proceedings of the Society of Instrument and Control Engineers, 36,395/401 (2000)

図9に、その結果を示す。なお、傾斜ミラーでの反射回数n=8の場合である。アルミニウムのように方向放射率がきわめて低い試料(垂直〜40°で 0.021~0.028、80°で 0.108)であっても、実効P偏光放射率εeffを0.908まで大きくなっており、きわめて効果的であることが明らかである。
<効果>
The result is shown in FIG. It should be noted that this is the case where the number of reflections by the tilt mirror is n = 8. Even for samples with extremely low directional emissivity such as aluminum (0.021 to 0.028 at vertical to 40 °, 0.108 at 80 °), the effective P polarized emissivity ε eff is increased to 0.908, which is extremely effective. It is clear that there is.
<Effect>

P偏光のみを放射温度計にて取込むことで、実効放射率より大きくすることができ、放射率の極めて低い物質の温度測定を精度よく行うことが可能となる。 By capturing only P-polarized light with a radiation thermometer, it is possible to make it larger than the effective emissivity, and it is possible to accurately measure the temperature of a substance with an extremely low emissivity.

0101 測定対象
0102 傾斜ミラー
0103 放射光取込口
0104 放射温度計
0105 半球状ミラー
0106 穴
0101 Measurement target 0102 Tilt mirror 0103 Synchrotron radiation intake 0104 Radiation thermometer 0105 Hemispherical mirror 0106 Hole

Claims (6)

平面的に広がりをもち、所定範囲が略同一温度である測定対象の前記所定範囲上に傾斜ミラーを配置して傾斜ミラーと測定対象との間での測定対象からの放射光(赤外光を含む)の多重反射により測定対象の温度を測定する傾斜ミラー多重反射型放射温度計であって、
傾斜ミラーと、
傾斜ミラーの広く開いた側に傾斜ミラーの面又は/及び測定対象の前記所定範囲の面に放射光取込口の光軸を向けた放射温度計と、
放射温度計の放射光取込口に入射する傾斜ミラー又は/及び測定対象からの放射光を遮らないような穴をあけ放射温度計の前方に配置され、前記放射光取込口側を凸側とする半球状ミラーと、
からなる傾斜ミラー多重反射型放射温度計。
A tilt mirror is placed on the predetermined range of the measurement target, which has a planar spread and the predetermined range is substantially the same temperature, and the radiation light (infrared light) from the measurement target between the tilt mirror and the measurement target is emitted. It is a tilted mirror multiple reflection type radiation thermometer that measures the temperature of the object to be measured by multiple reflections (including).
Tilt mirror and
A radiation thermometer with the optical axis of the synchrotron radiation intake pointed toward the wide open side of the tilted mirror and / or the surface of the predetermined range to be measured.
A tilted mirror incident on the synchrotron radiation intake of the radiation thermometer and / and a hole that does not block the synchrotron radiation from the measurement target are made and placed in front of the radiation thermometer, and the synchrotron radiation intake side is convex. Hemispherical mirror and
Inclined mirror consisting of multiple reflection type radiation thermometer.
前記放射光取込口の光軸と測定対象の前記所定範囲の面の法線となす角度は、傾斜ミラーと測定対象とがなす角度の偶数倍である請求項1に記載の傾斜ミラー多重反射型放射温度計。 The tilted mirror multiple reflection according to claim 1, wherein the angle formed by the optical axis of the synchrotron radiation intake port and the normal of the surface of the predetermined range of the measurement target is an even multiple of the angle formed by the tilt mirror and the measurement target. Type radiation thermometer. 放射温度計の放射光取込口の前面にP偏光子を配置して、P偏光のみが放射光取込口に取り込まれるように構成した請求項1又は請求項2に記載の傾斜ミラー多重反射型放射温度計。 The tilted mirror multiple reflection according to claim 1 or 2, wherein a P-polarized light is arranged in front of the synchrotron radiation intake of the radiation thermometer so that only P-polarized light is taken into the synchrotron radiation intake. Type radiation thermometer. 所定範囲の測定対象をアニールするアニール装置と、
請求項1から請求項3のいずれか一に記載の傾斜ミラー多重反射型放射温度計と、
からなるアニールシステム。
An annealing device that anneals a measurement target in a predetermined range,
The tilted mirror multiple reflection type radiation thermometer according to any one of claims 1 to 3.
Annealing system consisting of.
前記アニール装置は、半導体ウエハアニール装置である請求項4に記載のアニールシステム。 The annealing system according to claim 4, wherein the annealing device is a semiconductor wafer annealing device. 所定範囲の測定対象を焼きなましする焼きなまし装置と、
請求項1から請求項3のいずれか一に記載の傾斜ミラー多重反射型放射温度計と、
からなる焼きなましシステム。
An annealing device that annealates the measurement target in a predetermined range,
The tilted mirror multiple reflection type radiation thermometer according to any one of claims 1 to 3.
Annealing system consisting of.
JP2019066341A 2019-03-29 2019-03-29 Inclined mirror multiple reflection type radiation thermometer Pending JP2020165794A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019066341A JP2020165794A (en) 2019-03-29 2019-03-29 Inclined mirror multiple reflection type radiation thermometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019066341A JP2020165794A (en) 2019-03-29 2019-03-29 Inclined mirror multiple reflection type radiation thermometer

Publications (1)

Publication Number Publication Date
JP2020165794A true JP2020165794A (en) 2020-10-08

Family

ID=72714887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019066341A Pending JP2020165794A (en) 2019-03-29 2019-03-29 Inclined mirror multiple reflection type radiation thermometer

Country Status (1)

Country Link
JP (1) JP2020165794A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5750629A (en) * 1980-09-12 1982-03-25 Kawasaki Steel Corp Method and device for measuring surface temperature and emissivity
JPS5987329A (en) * 1982-11-10 1984-05-19 Nippon Kokan Kk <Nkk> Method for measuring temperature of steel
JPH02208527A (en) * 1989-02-08 1990-08-20 Sumitomo Metal Ind Ltd Measurement of temperature
JP2000091258A (en) * 1998-09-08 2000-03-31 Dainippon Screen Mfg Co Ltd Heat treatment device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5750629A (en) * 1980-09-12 1982-03-25 Kawasaki Steel Corp Method and device for measuring surface temperature and emissivity
JPS5987329A (en) * 1982-11-10 1984-05-19 Nippon Kokan Kk <Nkk> Method for measuring temperature of steel
JPH02208527A (en) * 1989-02-08 1990-08-20 Sumitomo Metal Ind Ltd Measurement of temperature
JP2000091258A (en) * 1998-09-08 2000-03-31 Dainippon Screen Mfg Co Ltd Heat treatment device

Similar Documents

Publication Publication Date Title
US8152365B2 (en) Method and system for determining optical properties of semiconductor wafers
TWI630384B (en) X-ray thin film inspection apparatus
TWI638996B (en) X-ray thin film inspection apparatus
EP0612862A1 (en) Measuring wafer temperatures
KR20190108653A (en) System and method to determine depth for optical wafer inspection
Henke et al. Identification and suppression of thermal reflections in infrared thermal imaging
JP2008541133A (en) Mirror surface remote temperature measuring method and apparatus
US11248904B2 (en) Systems and methods for real time measurement of surface curvature and thermal expansion of small samples
US20180283957A1 (en) Apparatus and method to measure temperature of 3d semiconductor structures via laser diffraction
JP6952033B2 (en) Non-contact thermal measurement of VUV optics
TW473891B (en) In-situ ion implant activation and measurement apparatus
JP4909480B2 (en) Layer and surface property optical measurement method and apparatus
JP2020165794A (en) Inclined mirror multiple reflection type radiation thermometer
EP0708318A1 (en) Radiance measurement by angular filtering for use in temperature determination of radiant object
JP2011080790A (en) Reference light source device for radiation thermometer
CN104303275A (en) Melt depth determination using infrared interferometric technique in pulsed laser annealing
Dunn et al. Ellipsoidal mirror reflectometer
JP6765327B2 (en) Radiation temperature measuring device and radiation temperature measuring method
JP7350672B2 (en) Radiation thermometer using multiple reflections between mirrors
US7685557B2 (en) Radiation mask with spatially variable transmissivity
JPH10123075A (en) Thermal-diffusivity measuring method by hemispherical mirror-type laser flash system
Tsai et al. ITS-90 Calibration of Radiometers using Wire/Thin-Film Thermocouples in the NIST RTP Tool: Effective Emissivity Modeling
JP3291781B2 (en) Method and apparatus for measuring temperature of steel sheet
JPS6014193Y2 (en) Simultaneous measurement device for metal surface temperature and emissivity
US20200219739A1 (en) Substrate temperature measurement device and an apparatus having substrate temperature measurement device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230601