[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2020165579A - Heat exchanger flow divider - Google Patents

Heat exchanger flow divider Download PDF

Info

Publication number
JP2020165579A
JP2020165579A JP2019065600A JP2019065600A JP2020165579A JP 2020165579 A JP2020165579 A JP 2020165579A JP 2019065600 A JP2019065600 A JP 2019065600A JP 2019065600 A JP2019065600 A JP 2019065600A JP 2020165579 A JP2020165579 A JP 2020165579A
Authority
JP
Japan
Prior art keywords
refrigerant
pipe
flat
header pipe
flows
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019065600A
Other languages
Japanese (ja)
Inventor
立慈 川端
Tatsuji Kawabata
立慈 川端
良美 林
Yoshimi Hayashi
良美 林
広田 正宣
Masanori Hirota
正宣 広田
松井 大
Masaru Matsui
大 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2019065600A priority Critical patent/JP2020165579A/en
Priority to CN202010074741.XA priority patent/CN111750730A/en
Priority to EP20153958.2A priority patent/EP3715761B1/en
Publication of JP2020165579A publication Critical patent/JP2020165579A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05375Assemblies of conduits connected to common headers, e.g. core type radiators with particular pattern of flow, e.g. change of flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/22Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • F28F9/0204Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0278Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of stacked distribution plates or perforated plates arranged over end plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

To solve a problem that a refrigerant unevenly flows to a plurality of flat tubes, as in an evaporation downstream-side header pipe in which the refrigerant of a small ratio of liquid refrigerant (gas rich) flows, energy lost by pressure loss and head difference is large as a flowing distance of the refrigerant from an inlet of a heat exchanger is long, that is, inertia force of the refrigerant rising in the header pipe is small as kinematic energy of the refrigerant is lowered, thus the liquid refrigerant hardly reaches an upper part of the header pipe, and deviates to a lower part of a heat exchange section.SOLUTION: A header pipe 3b has a partition plate 15 for defining a space 13 at connection side of the flat tubes 2 and a space 14 at a non-connection-side of the flat tubes 2 in a refrigerant outflow section 11 in which the refrigerant flows out to a plurality of flat tubes 2 in being functioned as an evaporator, the partition plate 15 has a plurality of communication holes 16a, 16b arranged in a vertical direction, and the communication hole 16a is constituted to be larger than an opening area of the communication hole 16b directly below the same.SELECTED DRAWING: Figure 2

Description

本発明は、一対のヘッダーパイプと、複数の冷媒流路をもつ複数の扁平管と、で構成され、複数の扁平管の間を流れる空気と、扁平管の冷媒流路の中を流れる冷媒とで熱交換を行う熱交換器に関するものである。 The present invention is composed of a pair of header pipes and a plurality of flat pipes having a plurality of refrigerant flow paths, and an air flowing between the plurality of flat pipes and a refrigerant flowing in the refrigerant flow paths of the flat pipes. It is related to a heat exchanger that exchanges heat with.

従来から、水平方向の左右に対峙する一対のヘッダーパイプと、複数の冷媒流路をもつ複数の扁平管と、扁平管同士の間に設けられる伝熱フィンと、で構成され、複数の扁平管の間を流れる空気と、扁平管の冷媒流路の中を流れる冷媒とで熱交換を行う熱交換器が知られている。 Conventionally, it has been composed of a pair of header pipes facing each other in the horizontal direction, a plurality of flat pipes having a plurality of refrigerant flow paths, and heat transfer fins provided between the flat pipes, and a plurality of flat pipes. A heat exchanger is known that exchanges heat between the air flowing between them and the refrigerant flowing in the refrigerant flow path of the flat pipe.

この種の熱交換器において、複数の扁平管をさらにその中で複数本ずつグループ化し、各グループが一対のヘッダーパイプの一方から他方へと冷媒を流す1ターンの熱交換区間を構成するものであって、1ターンの熱交換区間を構成する扁平管の本数の上限および下限を、空気調和機の定格能力、扁平管の冷媒流路の断面積、水力直径を用いた規定式により定めることで、熱交換区間の扁平管本数を最適化し、偏流を抑制することができる熱交換器分流器が開示されている。(例えば、特許文献1参照)。 In this type of heat exchanger, a plurality of flat tubes are further grouped in each group, and each group constitutes a one-turn heat exchange section in which a refrigerant flows from one of the pair of header pipes to the other. Therefore, the upper and lower limits of the number of flat pipes that make up the heat exchange section of one turn are determined by the specified formula using the rated capacity of the air conditioner, the cross-sectional area of the refrigerant flow path of the flat pipe, and the hydraulic diameter. , A heat exchanger diversion device that can optimize the number of flat tubes in the heat exchange section and suppress the drift flow is disclosed. (See, for example, Patent Document 1).

図6は、特許文献1に記載された従来の熱交換器である。 FIG. 6 is a conventional heat exchanger described in Patent Document 1.

図6に示すように、熱交換器100は、複数の冷媒流路で形成された複数の扁平管101と、扁平管101の両端部をそれぞれ接続する一対のヘッダーパイプ102a、102bで構成され、ヘッダーパイプ102a、102bには、複数の扁平管2を複数の熱交換区間103a、103b、103c、103dに分けるように仕切板104a、104b、104cが設けられ、一方のヘッダーパイプ102aには、冷媒配管105a、105bが接続されている。 As shown in FIG. 6, the heat exchanger 100 is composed of a plurality of flat pipes 101 formed by a plurality of refrigerant flow paths and a pair of header pipes 102a and 102b connecting both ends of the flat pipes 101, respectively. The header pipes 102a and 102b are provided with partition plates 104a, 104b and 104c so as to divide the plurality of flat pipes 2 into a plurality of heat exchange sections 103a, 103b, 103c and 103d, and one header pipe 102a is provided with a refrigerant. The pipes 105a and 105b are connected.

熱交換区間103a、103bは仕切板104aで、熱交換区間103b、103cは仕切板104bで、熱交換区間103c、103dは仕切板104cで、それぞれ区切られている。 The heat exchange sections 103a and 103b are separated by a partition plate 104a, the heat exchange sections 103b and 103c are separated by a partition plate 104b, and the heat exchange sections 103c and 103d are separated by a partition plate 104c.

各熱交換区間103a、103b、103c、103dを構成する扁平管101の本数は、熱交換器100を空気調和機の室外機に用いる場合、暖房定格能力、一本の扁平管101の冷媒流路の断面積および水力直径を用いた規定式より求めた上限本数、下限本数内としている。 The number of flat pipes 101 constituting each heat exchange section 103a, 103b, 103c, 103d is the heating rated capacity when the heat exchanger 100 is used as the outdoor unit of the air conditioner, and the refrigerant flow path of one flat pipe 101. It is within the upper limit number and the lower limit number obtained from the specified formula using the cross-sectional area and hydraulic diameter of.

蒸発器として機能する場合、冷媒配管105bから一方のヘッダーパイプ102aに流入した冷媒が、熱交換区間103dを通り、他方のヘッダーパイプ102bへ流れ、他方のヘッダーパイプ102b内を上昇し、熱交換区間103cを通り、一方のヘッダーパイプ102aに流出する。 When functioning as an evaporator, the refrigerant flowing from the refrigerant pipe 105b into one header pipe 102a passes through the heat exchange section 103d, flows to the other header pipe 102b, rises in the other header pipe 102b, and heat exchange section. It passes through 103c and flows out to one of the header pipes 102a.

さらに、一方のヘッダーパイプ102aに流れた冷媒は、一方のヘッダーパイプ102a内を上昇し、熱交換区間103bを通り、他方のヘッダーパイプ102bへ流れ、他方のヘッダーパイプ102b内を上昇し、熱交換区間103aを通り、一方のヘッダーパイプ102aへ流れる。 Further, the refrigerant flowing through one header pipe 102a rises in one header pipe 102a, passes through the heat exchange section 103b, flows to the other header pipe 102b, rises in the other header pipe 102b, and heat exchanges. It passes through the section 103a and flows to one of the header pipes 102a.

ヘッダーパイプ102a、102bから、複数の扁平管101に流れる際において、偏
流を生じることない扁平管101の本数に設定されているため、各扁平管101に均等に冷媒を分流させることができる。
Since the number of flat pipes 101 that do not cause drift when flowing from the header pipes 102a and 102b to the plurality of flat pipes 101 is set, the refrigerant can be evenly distributed to each flat pipe 101.

特開2014−48028号公報Japanese Unexamined Patent Publication No. 2014-48028

蒸発器として機能する場合、冷媒は各熱交換区間を流れる度に蒸発していき、熱交換器の入口から出口に流れるに従い、液状態(液リッチ)からガス状態(ガスリッチ)へと変化していくため、各熱交換区間へ分流させなければならない冷媒状態が異なってくる。冷媒状態が異なることで、冷媒の流動状態も異なってくるが、従来の構成では、冷媒状態の違いが考慮されていないため、分流改善としては不十分である。 When functioning as an evaporator, the refrigerant evaporates each time it flows through each heat exchange section, and changes from a liquid state (liquid rich) to a gas state (gas rich) as it flows from the inlet to the outlet of the heat exchanger. Therefore, the state of the refrigerant that must be split into each heat exchange section differs. The flow state of the refrigerant differs depending on the refrigerant state, but the conventional configuration does not take into consideration the difference in the refrigerant state, so that it is insufficient for improving the diversion.

特に、密度の大きい液冷媒の割合が少ない(ガスリッチ)冷媒が流れる蒸発下流側のヘッダーパイプ内において、熱交換器の入口からの冷媒の流動距離が長くなることで、圧力損失やヘッド差によって失われるエネルギーが大きく、熱交換器に流入した状態から運動エネルギーが低下するため、ヘッダーパイプ内を上昇する慣性力が小さく、液密度の大きい液冷媒が上方まで到達しにくくなり、熱交換区間の下方に偏流し、複数の扁平管に不均一に冷媒が流れるという課題を有していた。 In particular, in the header pipe on the downstream side of evaporation where a low proportion of high-density liquid refrigerant (gas rich) flows, the flow distance of the refrigerant from the inlet of the heat exchanger becomes long, resulting in loss due to pressure loss and head difference. Since the energy generated is large and the kinetic energy decreases from the state of flowing into the heat exchanger, the inertial force rising in the header pipe is small, and it becomes difficult for the liquid refrigerant with high liquid density to reach the upper part, and the lower part of the heat exchange section. There was a problem that the refrigerant flowed unevenly to a plurality of flat tubes and the refrigerant flowed unevenly.

本発明は、前記従来の課題を解決するもので、複数の冷媒流路で形成された複数の扁平管と、扁平管の両端部をそれぞれ接続する一対のヘッダーパイプと、で構成された熱交換器において、複数の扁平管に均一に冷媒を流入させることを目的とする。 The present invention solves the above-mentioned conventional problems, and is a heat exchange composed of a plurality of flat pipes formed by a plurality of refrigerant flow paths and a pair of header pipes connecting both ends of the flat pipes. The purpose of the vessel is to allow the refrigerant to flow uniformly into a plurality of flat tubes.

前記従来の課題を解決するために、本発明の熱交換器は、複数の冷媒流路を有する複数の扁平管と、扁平管の両端部をそれぞれ接続する一対のヘッダーパイプと、で構成された熱交換器において、ヘッダーパイプは、複数の扁平管を複数の熱交換区間に分ける仕切板を備え、熱交換器が蒸発器として機能する場合に、冷媒が流出する第1の冷媒配管を一方のヘッダーパイプの上方に、冷媒が流入する第2の冷媒配管を一方のヘッダーパイプの下方に設け、他方のヘッダーパイプは、複数の扁平管へ冷媒が流出する冷媒流出区間において、扁平管の接続側空間と、扁平管の非接続側空間と、を区切る隔壁板を有し、隔壁板は、冷媒流出区間の鉛直方向中間位置より上方に、鉛直方向に並んだ複数の連通孔を備え、連通孔は、直下の連通孔の開口面積よりも大きくするように設けるものである。 In order to solve the above-mentioned conventional problems, the heat exchanger of the present invention is composed of a plurality of flat pipes having a plurality of refrigerant flow paths and a pair of header pipes connecting both ends of the flat pipes. In the heat exchanger, the header pipe includes a partition plate that divides a plurality of flat pipes into a plurality of heat exchange sections, and one of the first refrigerant pipes through which the refrigerant flows out when the heat exchanger functions as an evaporator. A second refrigerant pipe into which the refrigerant flows is provided above the header pipe and below the one header pipe, and the other header pipe is connected to the flat pipe in the refrigerant outflow section in which the refrigerant flows out to a plurality of flat pipes. It has a partition plate that separates the space from the space on the non-connecting side of the flat pipe, and the partition plate is provided with a plurality of communication holes arranged in the vertical direction above the intermediate position in the vertical direction of the refrigerant outflow section. Is provided so as to be larger than the opening area of the communication hole directly below.

これにより、複数の扁平管からヘッダーパイプに流入した冷媒は、冷媒流出区間の扁平管の非接続側空間へ流れ込んで上昇する。特に液冷媒の割合が少ない(ガスリッチ)冷媒が流れる蒸発下流側のヘッダーパイプでは、第2の冷媒配管からの冷媒の流動距離が長く、圧力損失やヘッド差によって失われるエネルギーが大きく、熱交換器に流入した状態から運動エネルギーが低下することで、ヘッダーパイプ内を上昇する冷媒の慣性力が小さくなり、密度の大きい液冷媒はヘッダーパイプ上方まで到達しにくく、上側の連通孔よりも下側の連通孔から扁平管の接続側空間へ流れ込みやすくなるが、下側の連通孔は開口面積が小さいため、流路抵抗が大きくなり、冷媒が流れにくくなる。 As a result, the refrigerant that has flowed into the header pipe from the plurality of flat pipes flows into the non-connecting side space of the flat pipes in the refrigerant outflow section and rises. Especially in the header pipe on the downstream side of evaporation where the ratio of liquid refrigerant is small (gas rich) flows, the flow distance of the refrigerant from the second refrigerant pipe is long, the energy lost due to pressure loss and head difference is large, and the heat exchanger Since the kinetic energy decreases from the state of flowing into the header pipe, the inertial force of the refrigerant rising in the header pipe becomes smaller, and it is difficult for the high-density liquid refrigerant to reach the upper part of the header pipe, and it is lower than the upper communication hole. It becomes easy to flow from the communication hole into the connection side space of the flat pipe, but since the opening area of the lower communication hole is small, the flow path resistance becomes large and the refrigerant becomes difficult to flow.

上側の連通孔は開口面積が大きいため、流路抵抗が小さくなり、扁平管の接続側空間へ冷媒が流れやすくなる。 Since the upper communication hole has a large opening area, the flow path resistance becomes small, and the refrigerant easily flows into the connection side space of the flat pipe.

本発明の熱交換器は、特に液冷媒の割合が少ない(ガスリッチ)冷媒が流れる場合において、複数の扁平管からヘッダーパイプに流入した冷媒が、ヘッダーパイプ内を上昇する際、到達しにくいヘッダーパイプの上方まで流れる前に、下側の連通孔からのみ扁平管の接続側空間に流れこみ、ヘッダーパイプの下方に冷媒が偏流することを抑制しつつ、上側の連通孔から扁平管の接続側空間に流れ易くなることで、上段の扁平管まで冷媒を流すことができるため、複数の扁平管に均一に冷媒を流すことができる。 In the heat exchanger of the present invention, especially when a refrigerant having a small proportion of liquid refrigerant (gas rich) flows, the refrigerant flowing into the header pipe from a plurality of flat pipes is difficult to reach when rising in the header pipe. Before flowing to the upper part of the pipe, it flows into the connection side space of the flat pipe only from the lower communication hole, and while suppressing the uneven flow of the refrigerant below the header pipe, the connection side space of the flat pipe from the upper communication hole. Since the refrigerant can easily flow to the upper flat pipe, the refrigerant can be uniformly flowed to the plurality of flat pipes.

本発明の実施の形態1の熱交換器の斜視図Perspective view of the heat exchanger according to the first embodiment of the present invention. 本発明の実施の形態1のヘッダーパイプのx−y平面の断面図Sectional drawing of the xy plane of the header pipe of Embodiment 1 of this invention 熱交換器を適用した室外機の内部構造を示すx−z正面図Xz front view showing the internal structure of the outdoor unit to which the heat exchanger is applied 熱交換器を適用した室外機の内部構造を示すx−y正面図XY front view showing the internal structure of the outdoor unit to which the heat exchanger is applied 本発明の実施の形態2のヘッダーパイプのx−y平面の断面図Sectional drawing of the xy plane of the header pipe of Embodiment 2 of this invention 従来の熱交換器のx−y平面の断面図Sectional view of the xy plane of a conventional heat exchanger

第1の発明は、複数の冷媒流路を有する複数の扁平管と、扁平管の両端部をそれぞれ接続する一対のヘッダーパイプと、で構成された熱交換器において、ヘッダーパイプは、複数の扁平管を複数の熱交換区間に分ける仕切板を備え、熱交換器が蒸発器として機能する場合に、冷媒が流出する第1の冷媒配管を一方のヘッダーパイプの上方に、冷媒が流入する第2の冷媒配管を一方のヘッダーパイプの下方に設け、他方のヘッダーパイプは、複数の扁平管へ冷媒が流出する冷媒流出区間において、扁平管の接続側空間と、扁平管の非接続側空間と、を区切る隔壁板を有し、隔壁板は、冷媒流出区間の鉛直方向中間位置より上方に、鉛直方向に並んだ複数の連通孔を備え、連通孔は、直下の連通孔の開口面積よりも大きくするように設けた構造とする。 The first invention is in a heat exchanger composed of a plurality of flat pipes having a plurality of refrigerant flow paths and a pair of header pipes connecting both ends of the flat pipes, wherein the header pipe is a plurality of flat pipes. A partition plate for dividing the pipe into a plurality of heat exchange sections is provided, and when the heat exchanger functions as an evaporator, the first refrigerant pipe from which the refrigerant flows out is placed above one header pipe, and the second refrigerant flows into the pipe. The refrigerant pipe is provided below one header pipe, and the other header pipe has a flat pipe connecting side space and a flat pipe non-connecting side space in a refrigerant outflow section in which the refrigerant flows out to a plurality of flat pipes. The partition plate is provided with a plurality of communication holes arranged in the vertical direction above the intermediate position in the vertical direction of the refrigerant outflow section, and the communication holes are larger than the opening area of the communication holes directly below. The structure is provided so as to be used.

これにより、複数の扁平管からヘッダーパイプに流入した冷媒は、冷媒流出区間の扁平管の非接続側空間へ流れ込んで上昇する。特に液冷媒の割合が少ない(ガスリッチ)冷媒が流れる蒸発下流側のヘッダーパイプでは、第2の冷媒配管からの冷媒の流動距離が長く、圧力損失やヘッド差によって失われるエネルギーが大きく、熱交換器に流入した状態から運動エネルギーが低下することで、ヘッダーパイプ内を上昇する冷媒の慣性力が小さくなり、密度の大きい液冷媒はヘッダーパイプ上方まで到達しにくく、上側の連通孔よりも下側の連通孔から扁平管の接続側空間へ流れ込みやすくなるが、下側の連通孔は開口面積が小さいため、流路抵抗が大きくなり、冷媒が流れにくくなる。 As a result, the refrigerant that has flowed into the header pipe from the plurality of flat pipes flows into the non-connecting side space of the flat pipes in the refrigerant outflow section and rises. Especially in the header pipe on the downstream side of evaporation where the ratio of liquid refrigerant is small (gas rich) flows, the flow distance of the refrigerant from the second refrigerant pipe is long, the energy lost due to pressure loss and head difference is large, and the heat exchanger Since the kinetic energy decreases from the state of flowing into the header pipe, the inertial force of the refrigerant rising in the header pipe becomes smaller, and it is difficult for the high-density liquid refrigerant to reach the upper part of the header pipe, and it is lower than the upper communication hole. It becomes easy to flow from the communication hole into the connection side space of the flat pipe, but since the opening area of the lower communication hole is small, the flow path resistance becomes large and the refrigerant becomes difficult to flow.

上側の連通孔は開口面積が大きいため、流路抵抗が小さくなり、扁平管の接続側空間へ冷媒が流れやすくなる。 Since the upper communication hole has a large opening area, the flow path resistance becomes small, and the refrigerant easily flows into the connection side space of the flat pipe.

従って、特に液冷媒の割合が少ない(ガスリッチ)冷媒が流れる場合において、複数の扁平管からヘッダーパイプに流入した冷媒が、ヘッダーパイプ内を上昇する際、到達しにくいヘッダーパイプの上方まで流れる前に、下側の連通孔からのみ扁平管の接続側空間に流れこみ、ヘッダーパイプの下方に冷媒が偏流することを抑制しつつ、上側の連通孔から扁平管の接続側空間に流れ易くなることで、上段の扁平管まで冷媒を流すことができるため、複数の扁平管に均一に冷媒を流すことができる。 Therefore, especially when a refrigerant having a small proportion of liquid refrigerant (gas rich) flows, the refrigerant flowing into the header pipe from a plurality of flat pipes before flowing to the upper part of the header pipe which is difficult to reach when ascending in the header pipe. By flowing into the connection side space of the flat pipe only from the lower communication hole and suppressing the uneven flow of the refrigerant below the header pipe, it becomes easier to flow from the upper communication hole to the connection side space of the flat pipe. Since the refrigerant can flow to the upper flat pipe, the refrigerant can be uniformly flowed to the plurality of flat pipes.

第2の発明は、非接続側空間において、ヘッダーパイプの壁面から、複数の連通孔の内、最上段に存在する連通孔の上端に向かって、上り勾配をもつ流れ調整部を設けた構造とする。 The second invention has a structure in which a flow adjusting portion having an upward gradient is provided from the wall surface of the header pipe toward the upper end of the communication hole existing at the uppermost stage among the plurality of communication holes in the non-connection side space. To do.

これにより、扁平管の非接続側空間を上昇する冷媒の一部が、流れ調整部に沿って最上
段の連通孔から、扁平管の接続側空間へ流れ込む。
As a result, a part of the refrigerant rising in the non-connecting side space of the flat pipe flows into the connecting side space of the flat pipe from the uppermost communication hole along the flow adjusting portion.

従って、特に冷媒循環量が多く、冷媒流速が速くなる過負荷運転時において、扁平管の非接続側空間を液冷媒が勢いよく上昇し、非接続側空間の上面に衝突することで運動エネルギーが減少し、連通孔から接続側空間に落下しながら流れ込むことが抑制されることで、非接続側空間を上昇した液冷媒の運動エネルギーを落とすことなく、接続側空間の上方に流すことができ、上段の扁平管まで冷媒を流すことができるため、複数の扁平管に均一に冷媒を流すことができる。 Therefore, especially during overload operation in which the amount of refrigerant circulation is large and the flow velocity of the refrigerant is high, the liquid refrigerant vigorously rises in the space on the non-connection side of the flat tube and collides with the upper surface of the space on the non-connection side, so that kinetic energy is generated. By reducing the number and suppressing the flow of the liquid refrigerant from the communication hole into the connection side space while falling, the liquid refrigerant that has risen in the non-connection side space can flow above the connection side space without dropping the kinetic energy. Since the refrigerant can flow to the upper flat pipe, the refrigerant can be uniformly flowed to the plurality of flat pipes.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって、本発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to this embodiment.

(実施の形態1)
図1は、本発明の実施の形態1の熱交換器の斜視図であり、x方向は扁平管の流路を流れる冷媒の流動方向、y方向はヘッダーパイプ軸方向、z方向は空気流れ方向である。図2は、図1のA−A断面図(本発明の実施の形態1の熱交換器のx−y平面の断面図)である。
(Embodiment 1)
FIG. 1 is a perspective view of the heat exchanger according to the first embodiment of the present invention. The x direction is the flow direction of the refrigerant flowing through the flow path of the flat pipe, the y direction is the axial direction of the header pipe, and the z direction is the air flow direction. Is. FIG. 2 is a cross-sectional view taken along the line AA of FIG. 1 (cross-sectional view taken along the xy plane of the heat exchanger according to the first embodiment of the present invention).

図1、図2において、熱交換器1は、複数の扁平管2と、一対のヘッダーパイプ3a、3bと、を備えている。 In FIGS. 1 and 2, the heat exchanger 1 includes a plurality of flat tubes 2 and a pair of header pipes 3a and 3b.

複数の扁平管2は、ヘッダーパイプ3a、3bの軸方向(y方向)に沿って、互いが平行になるように、それぞれ水平方向(x方向)に配置されている。 The plurality of flat pipes 2 are arranged in the horizontal direction (x direction) along the axial direction (y direction) of the header pipes 3a and 3b so as to be parallel to each other.

複数の扁平管2同士の間には、上下に連続する波状に形成された複数のフィン4が構成されており、複数のフィン4の間を流れる空気と、複数の扁平管2の中を流れる冷媒と、で熱交換を行う。 A plurality of fins 4 formed in a wavy shape that are continuous vertically are formed between the plurality of flat tubes 2, and the air flowing between the plurality of fins 4 and the air flowing through the plurality of flat tubes 2 flow. Heat exchange with the refrigerant.

なお、冷媒としては、例えば、R410A、R32およびR32を含む混合冷媒などが用いられる。 As the refrigerant, for example, a mixed refrigerant containing R410A, R32 and R32 is used.

扁平管2内に設けられた複数の冷媒流路5は、ヘッダーパイプ3a、3bの内部に連通されている。 A plurality of refrigerant flow paths 5 provided in the flat pipe 2 communicate with the inside of the header pipes 3a and 3b.

ヘッダーパイプ3a、3bは、例えば、アルミニウムなどの金属材料を押出成型することにより、円筒状に形成されている。 The header pipes 3a and 3b are formed into a cylindrical shape by extrusion-molding a metal material such as aluminum.

一方のヘッダーパイプ3aには、第1の冷媒配管6と、第2の冷媒配管7が接続されている。第1の冷媒配管6は、一方のヘッダーパイプ3aの上方に、第2の冷媒配管7は、一方のヘッダーパイプ3aの下方に接続され、冷媒の流入口または流出口として機能するように構成されている。 A first refrigerant pipe 6 and a second refrigerant pipe 7 are connected to one header pipe 3a. The first refrigerant pipe 6 is connected above one header pipe 3a, and the second refrigerant pipe 7 is connected below one header pipe 3a, and is configured to function as an inlet or outlet of the refrigerant. ing.

ヘッダーパイプ3a、3b内には、第1の冷媒配管6と、第2の冷媒配管7と、の高さ方向(y方向)の間の位置に、複数の扁平管2を複数の熱交換区間8a、8b、8c、8dに分ける仕切板9a、9b、9cが設けられている。 In the header pipes 3a and 3b, a plurality of flat pipes 2 are provided in a plurality of heat exchange sections at positions between the first refrigerant pipe 6 and the second refrigerant pipe 7 in the height direction (y direction). Partition plates 9a, 9b, 9c for dividing into 8a, 8b, 8c, and 8d are provided.

熱交換区間8a、8bは仕切板9aで、熱交換区間8b、8cは仕切板9bで、熱交換区間8c、8dは仕切板9cで、それぞれ区切られている。 The heat exchange sections 8a and 8b are separated by a partition plate 9a, the heat exchange sections 8b and 8c are separated by a partition plate 9b, and the heat exchange sections 8c and 8d are separated by a partition plate 9c, respectively.

他方のヘッダーパイプ3b内の仕切板9bで区切られた上方の空間には、蒸発器として
機能する場合に、熱交換区間8bから冷媒が流入する冷媒流入区間10と、熱交換区間8aへ冷媒が流出する冷媒流出区間11と、を区切る分割板12と、冷媒流出区間11の扁平管2の接続側空間13と、扁平管2の非接続側空間14と、を区切る他方のヘッダーパイプ3bの軸方向(y方向)に延びた隔壁板15と、が設けられている。
In the space above the other header pipe 3b separated by the partition plate 9b, the refrigerant flows into the refrigerant inflow section 10 in which the refrigerant flows from the heat exchange section 8b and the heat exchange section 8a when functioning as an evaporator. The shaft of the other header pipe 3b that separates the dividing plate 12 that separates the outflowing refrigerant outflow section 11, the connecting side space 13 of the flat pipe 2 of the refrigerant outflow section 11, and the non-connecting side space 14 of the flat pipe 2. A partition plate 15 extending in the direction (y direction) is provided.

分割板12は、一方のヘッダーパイプ3a内に設けられた仕切板9aとy方向の同一高さ位置に設置している。 The dividing plate 12 is installed at the same height position in the y direction as the partition plate 9a provided in one of the header pipes 3a.

隔壁板15は、鉛直方向(y方向)中間位置より上方に、鉛直方向(y方向)に並んだ複数の連通孔16a、16bを備えており、連通孔16aは、直下の連通孔16bの開口面積よりも大きくなるように構成されている。 The partition plate 15 is provided with a plurality of communication holes 16a and 16b arranged in the vertical direction (y direction) above the intermediate position in the vertical direction (y direction), and the communication holes 16a are openings of the communication holes 16b directly below. It is configured to be larger than the area.

以上のように構成された熱交換器について、蒸発器として機能する場合には、第2の冷媒配管7から一方のヘッダーパイプ3aに流入した冷媒が、熱交換区間8dを+x方向に通り、他方のヘッダーパイプ3bへ流れ、他方のヘッダーパイプ3b内を+y方向に上昇し、熱交換区間8cを−x方向に通り、一方のヘッダーパイプ3aに流出する。 When the heat exchanger configured as described above functions as an evaporator, the refrigerant flowing from the second refrigerant pipe 7 into one header pipe 3a passes through the heat exchange section 8d in the + x direction and the other. Flows into the header pipe 3b of the above, rises in the other header pipe 3b in the + y direction, passes through the heat exchange section 8c in the −x direction, and flows out to one header pipe 3a.

さらに、一方のヘッダーパイプ3aに流れた冷媒は、熱交換区間8bを+x方向に通り、他方のヘッダーパイプ3bの冷媒流入区間10へ流れる。冷媒流入区間10内の冷媒は冷媒流出区間11へ向かい、非接続側空間14を+y方向に上昇する。上昇した冷媒は、隔壁板15に設けられた複数の連通孔16a、16bを通り、接続側空間13に流れ込み、熱交換区間8aを−x方向に通り、一方のヘッダーパイプ3aへ流れる。 Further, the refrigerant flowing through one header pipe 3a passes through the heat exchange section 8b in the + x direction and flows into the refrigerant inflow section 10 of the other header pipe 3b. The refrigerant in the refrigerant inflow section 10 goes toward the refrigerant outflow section 11 and rises in the non-connecting side space 14 in the + y direction. The raised refrigerant passes through the plurality of communication holes 16a and 16b provided in the partition plate 15, flows into the connection side space 13, passes through the heat exchange section 8a in the −x direction, and flows to one header pipe 3a.

次に、本実施形態の利用について、本実施形態の熱交換器1を空気調和装置の室外機20に利用した場合を例に説明する。 Next, the use of the present embodiment will be described by taking as an example the case where the heat exchanger 1 of the present embodiment is used for the outdoor unit 20 of the air conditioner.

図3は、本実施形態の熱交換器1を適用した室外機20の内部構造を示すx−z平面図であり、図4は、本実施形態の熱交換器1を適用した室外機20の内部構造を示すx−y平面図である。 FIG. 3 is an xz plan view showing the internal structure of the outdoor unit 20 to which the heat exchanger 1 of the present embodiment is applied, and FIG. 4 is a plan view of the outdoor unit 20 to which the heat exchanger 1 of the present embodiment is applied. It is a xy plan view which shows the internal structure.

図3、図4に示すように、室外機20は、圧縮機21と、切替弁22と、室外膨張弁23と、送風機24と、熱交換器1と、を備えている。室外機20と室内機(図示せず)は、液管25と、ガス管26とで接続している。 As shown in FIGS. 3 and 4, the outdoor unit 20 includes a compressor 21, a switching valve 22, an outdoor expansion valve 23, a blower 24, and a heat exchanger 1. The outdoor unit 20 and the indoor unit (not shown) are connected by a liquid pipe 25 and a gas pipe 26.

熱交換器1のヘッダーパイプ3a、3bは、第1の冷媒配管6を介して切替弁22と、第2の冷媒配管7を介して、室外膨張弁23と、それぞれ接続している。 The header pipes 3a and 3b of the heat exchanger 1 are connected to the switching valve 22 via the first refrigerant pipe 6 and to the outdoor expansion valve 23 via the second refrigerant pipe 7, respectively.

まず、冷房運転を行う場合は、熱交換器1は凝縮器として機能する。 First, when the cooling operation is performed, the heat exchanger 1 functions as a condenser.

室外機20の圧縮機21から送られるガス冷媒は、切替弁22を介して、第1の冷媒配管6から、一方のヘッダーパイプ3aの中に流入される。このガス冷媒は、仕切板9aによって区切られた第1の冷媒配管6の接続側の一方のヘッダーパイプ3aの内部を通り、複数の扁平管2内の複数の冷媒流路5に流入され、熱交換区間8aを水平方向(+x方向、+z方向)に流れ、他方のヘッダーパイプ3bに流出する。流出した冷媒は、接続側空間13から、隔壁板15に設けられた複数の連通孔16a、16bを通り、非接続側空間14に流れ込み、他方のヘッダーパイプ3b内を鉛直方向(−y方向)に下降し、熱交換区間8bへ流入し、水平方向(−z方向、−x方向)に流れ、一方のヘッダーパイプ3aへ流出する。 The gas refrigerant sent from the compressor 21 of the outdoor unit 20 flows into one of the header pipes 3a from the first refrigerant pipe 6 via the switching valve 22. This gas refrigerant passes through the inside of one header pipe 3a on the connecting side of the first refrigerant pipe 6 separated by the partition plate 9a, flows into a plurality of refrigerant flow paths 5 in the plurality of flat pipes 2, and heats. It flows in the exchange section 8a in the horizontal direction (+ x direction, + z direction) and flows out to the other header pipe 3b. The outflowing refrigerant flows from the connection side space 13 through the plurality of communication holes 16a and 16b provided in the partition plate 15 into the non-connection side space 14, and flows in the other header pipe 3b in the vertical direction (−y direction). It descends to the heat exchange section 8b, flows in the horizontal direction (−z direction, −x direction), and flows out to one of the header pipes 3a.

また、一方のヘッダーパイプ3aへ流出した冷媒は、一方のヘッダーパイプ3a内を鉛
直方向(−y方向)に下降し、熱交換区間8cへ流入し、水平方向(+z方向、+x方向)に流れ、他方のヘッダーパイプ3bへ流出する。流出した冷媒は、他方のヘッダーパイプ3b内を鉛直方向(−y方向)に下降し、熱交換区間8dへ流入し、水平方向(−z方向、−x方向)に流れる。
Further, the refrigerant flowing out to one header pipe 3a descends in the one header pipe 3a in the vertical direction (−y direction), flows into the heat exchange section 8c, and flows in the horizontal direction (+ z direction, + x direction). , Outflows to the other header pipe 3b. The outflowing refrigerant descends in the other header pipe 3b in the vertical direction (−y direction), flows into the heat exchange section 8d, and flows in the horizontal direction (−z direction, −x direction).

冷媒は、扁平管2において、送風機24により送られた空気と熱交換をすることで放熱し凝縮される。 The refrigerant dissipates heat and is condensed in the flat pipe 2 by exchanging heat with the air sent by the blower 24.

凝縮した冷媒は、仕切板9cによって区切られた第2の冷媒配管7の接続側のヘッダーパイプ3aの空間に流出し、第2の冷媒配管7から室外膨張弁23、液管25を通り、室内機に流出される。 The condensed refrigerant flows out into the space of the header pipe 3a on the connection side of the second refrigerant pipe 7 separated by the partition plate 9c, passes through the outdoor expansion valve 23 and the liquid pipe 25 from the second refrigerant pipe 7, and is indoors. It is leaked to the machine.

室内機に流れた凝縮した冷媒は、室内熱交換器(図示せず)で空気と熱交換をすることで吸熱し蒸発する。蒸発した冷媒は、ガス管26を通り、切替弁22を介して、圧縮機21に循環する。 The condensed refrigerant flowing into the indoor unit absorbs heat and evaporates by exchanging heat with air in an indoor heat exchanger (not shown). The evaporated refrigerant passes through the gas pipe 26 and circulates to the compressor 21 via the switching valve 22.

暖房運転を行う場合は、熱交換器1は蒸発器として機能する。 When performing a heating operation, the heat exchanger 1 functions as an evaporator.

室外機20の圧縮機21から送られるガス冷媒は、切替弁22を介して、ガス管26を通り、室内機に流出される。 The gas refrigerant sent from the compressor 21 of the outdoor unit 20 passes through the gas pipe 26 via the switching valve 22 and flows out to the indoor unit.

室内機に流れたガス冷媒は、室内機に設けられた室内熱交換器で空気と熱交換をすることで放熱し凝縮する。 The gas refrigerant flowing into the indoor unit dissipates heat and condenses by exchanging heat with air in the indoor heat exchanger provided in the indoor unit.

凝縮した冷媒は、液管25、室外膨張弁23を通り、気液二相冷媒となり、第2の冷媒配管7から、仕切板9cによって区切られた第2の冷媒配管7の接続側の一方のヘッダーパイプ3aの内部を通り、複数の扁平管2内の複数の冷媒流路5に流入され、熱交換区間8dを水平方向(+x方向、+z方向)に流れ、他方のヘッダーパイプ3bへ流出する。流出した冷媒は、他方のヘッダーパイプ3b内を鉛直方向(+y方向)に上昇し、熱交換区間8cへ流入し、水平方向(−z方向、−x方向)に流れ、一方のヘッダーパイプ3aへ流出する。 The condensed refrigerant passes through the liquid pipe 25 and the outdoor expansion valve 23 to become a gas-liquid two-phase refrigerant, and is one of the connection sides of the second refrigerant pipe 7 separated by the partition plate 9c from the second refrigerant pipe 7. It passes through the inside of the header pipe 3a, flows into a plurality of refrigerant flow paths 5 in the plurality of flat pipes 2, flows in the heat exchange section 8d in the horizontal direction (+ x direction, + z direction), and flows out to the other header pipe 3b. .. The outflowing refrigerant rises in the other header pipe 3b in the vertical direction (+ y direction), flows into the heat exchange section 8c, flows in the horizontal direction (−z direction, −x direction), and goes to one header pipe 3a. leak.

また、一方のヘッダーパイプ3aへ流出した冷媒は、一方のヘッダーパイプ3a内を鉛直方向(+y方向)に上昇し、熱交換区間8bへ流入し、水平方向(+x方向、+z方向)に流れ、他方のヘッダーパイプ3b内の冷媒流入区間10に流れる。 Further, the refrigerant flowing out to one header pipe 3a rises in the one header pipe 3a in the vertical direction (+ y direction), flows into the heat exchange section 8b, and flows in the horizontal direction (+ x direction, + z direction). It flows into the refrigerant inflow section 10 in the other header pipe 3b.

流れてきた液冷媒の割合が少ない(ガスリッチ)冷媒は、第2の冷媒配管7からの冷媒の流動距離が長く、圧力損失やヘッド差によって失われるエネルギーが大きく、熱交換器1に流入した状態から運動エネルギーが低下することで、他方のヘッダーパイプ3b内を上昇する冷媒の慣性力が小さくなり、密度の大きい液冷媒はヘッダーパイプ上方まで到達しにくくなる。 A state in which the proportion of the liquid refrigerant that has flowed is small (gas rich) has a long flow distance of the refrigerant from the second refrigerant pipe 7, and a large amount of energy is lost due to pressure loss or head difference, and has flowed into the heat exchanger 1. As the kinetic energy decreases, the inertial force of the refrigerant rising in the other header pipe 3b becomes smaller, and it becomes difficult for the liquid refrigerant having a high density to reach the upper part of the header pipe.

冷媒は、上側の連通孔16aよりも下側の連通孔16bから扁平管2の接続側空間13へ流れ込みやすくなるが、下側の連通孔16bは開口面積が小さいため、流路抵抗が大きくなり、冷媒が流れにくく、上側の連通孔16aは開口面積が大きいため、流路抵抗が小さくなり、上側の連通孔16aから接続側空間13へ冷媒が流れ込む。 The refrigerant easily flows from the communication hole 16b below the upper communication hole 16a into the connection side space 13 of the flat pipe 2, but the lower communication hole 16b has a small opening area, so that the flow path resistance becomes large. Since the refrigerant does not easily flow and the upper communication hole 16a has a large opening area, the flow path resistance becomes smaller, and the refrigerant flows from the upper communication hole 16a into the connection side space 13.

接続側空間13に流れ込んだ冷媒は、熱交換区間8aへ流入し、水平方向(−z方向、−x方向)に流れる。 The refrigerant that has flowed into the connection side space 13 flows into the heat exchange section 8a and flows in the horizontal direction (−z direction, −x direction).

冷媒は、扁平管2において、送風機24により送られた空気と熱交換をすることで吸熱し蒸発される。 The refrigerant absorbs heat and evaporates in the flat pipe 2 by exchanging heat with the air sent by the blower 24.

蒸発した冷媒は、仕切板9aによって区切られた第1の冷媒配管6の接続側のヘッダーパイプ3aの空間に流出し、第1の冷媒配管6から切替弁22を介して、圧縮機21に循環する。 The evaporated refrigerant flows out into the space of the header pipe 3a on the connection side of the first refrigerant pipe 6 separated by the partition plate 9a, and circulates from the first refrigerant pipe 6 to the compressor 21 via the switching valve 22. To do.

以上のように、本実施の形態において、熱交換器1は、複数の冷媒流路5を有する扁平管2と、複数の扁平管2を水平方向に設置し、扁平管2の両端部をそれぞれ接続する一対のヘッダーパイプ3a、3bと、を備え、複数の扁平管2を、ヘッダーパイプ3a、3bの軸方向に沿って、互いに平行に接続される。 As described above, in the present embodiment, in the heat exchanger 1, a flat pipe 2 having a plurality of refrigerant flow paths 5 and a plurality of flat pipes 2 are installed in the horizontal direction, and both ends of the flat pipe 2 are respectively installed. A pair of header pipes 3a and 3b to be connected are provided, and a plurality of flat pipes 2 are connected in parallel to each other along the axial direction of the header pipes 3a and 3b.

ヘッダーパイプ3a、3bは、複数の扁平管2を複数の熱交換区間8a、8b、8c、8dに分ける仕切板9a、9b、9cを備え、熱交換器1が蒸発器として機能する場合に、冷媒が流出する第1の冷媒配管6を一方のヘッダーパイプ3aの上方に、冷媒が流入する第2の冷媒配管7を一方のヘッダーパイプ3bの下方に設け、他方のヘッダーパイプ3b内の冷媒流出区間11において、扁平管2の接続側空間13と、扁平管2の非接続側空間14と、を区切る隔壁板15を有し、隔壁板15は、鉛直方向(y方向)中間位置より上方に、鉛直方向(y方向)に並んだ複数の連通孔16a、16bを備え、連通孔16aは、直下の連通孔16bの開口面積よりも大きくするように構成されている。 The header pipes 3a and 3b include partition plates 9a, 9b, 9c for dividing the plurality of flat pipes 2 into a plurality of heat exchange sections 8a, 8b, 8c, 8d, and when the heat exchanger 1 functions as an evaporator, A first refrigerant pipe 6 through which the refrigerant flows is provided above one header pipe 3a, and a second refrigerant pipe 7 through which the refrigerant flows is provided below one header pipe 3b, and the refrigerant flows out in the other header pipe 3b. In the section 11, the partition plate 15 that separates the connecting side space 13 of the flat pipe 2 and the non-connecting side space 14 of the flat pipe 2 is provided, and the partition plate 15 is above the intermediate position in the vertical direction (y direction). , A plurality of communication holes 16a and 16b arranged in the vertical direction (y direction) are provided, and the communication holes 16a are configured to be larger than the opening area of the communication holes 16b directly below.

これにより、複数の扁平管2から他方のヘッダーパイプ3bに流入した冷媒は、冷媒流出区間11の扁平管2の非接続側空間14へ流れ込んで上昇する。特に液冷媒の割合が少ない(ガスリッチ)冷媒が流れる蒸発下流側の他方のヘッダーパイプ3bでは、第2の冷媒配管7からの冷媒の流動距離が長く、圧力損失やヘッド差によって失われるエネルギーが大きく、熱交換器に流入した状態から運動エネルギーが低下することで、他方のヘッダーパイプ3b内を上昇する冷媒の慣性力が小さくなり、密度の大きい液冷媒は他方のヘッダーパイプ3bの上方まで到達しにくく、上側の連通孔16aよりも下側の連通孔16bから扁平管2の接続側空間13へ流れ込みやすくなるが、下側の連通孔16bは開口面積が小さいため、流路抵抗が大きくなり、冷媒が流れにくくなる。 As a result, the refrigerant that has flowed into the other header pipe 3b from the plurality of flat pipes 2 flows into the non-connecting side space 14 of the flat pipes 2 in the refrigerant outflow section 11 and rises. In particular, in the other header pipe 3b on the downstream side of evaporation where a small proportion of liquid refrigerant (gas rich) flows, the flow distance of the refrigerant from the second refrigerant pipe 7 is long, and the energy lost due to pressure loss and head difference is large. As the kinetic energy decreases from the state of flowing into the heat exchanger, the inertial force of the refrigerant rising in the other header pipe 3b becomes smaller, and the high-density liquid refrigerant reaches above the other header pipe 3b. It is difficult, and it is easy to flow from the communication hole 16b below the upper communication hole 16a into the connection side space 13 of the flat pipe 2, but since the lower communication hole 16b has a small opening area, the flow path resistance becomes large. Refrigerant does not flow easily.

上側の連通孔16aは開口面積が大きいため、流路抵抗が小さくなり、扁平管2の接続側空間13へ冷媒が流れやすくなる。 Since the upper communication hole 16a has a large opening area, the flow path resistance becomes small, and the refrigerant easily flows into the connection side space 13 of the flat pipe 2.

従って、特に液冷媒の割合が少ない(ガスリッチ)冷媒が流れる場合において、複数の扁平管2から他方のヘッダーパイプ3bに流入した冷媒が、他方のヘッダーパイプ3b内を上昇する際、下側の連通孔16bからのみ扁平管2の接続側空間13に流れこみ、他方のヘッダーパイプ3bの下方に冷媒が偏流することを抑制しつつ、上側の連通孔16aから扁平管2の接続側空間13に流れ易くなることで、上段の扁平管2まで冷媒を流すことができるため、複数の扁平管2に均一に冷媒を流すことができる。 Therefore, especially when a refrigerant having a small proportion of liquid refrigerant (gas rich) flows, the refrigerant flowing into the other header pipe 3b from the plurality of flat pipes 2 communicates with the lower side when rising in the other header pipe 3b. It flows into the connection side space 13 of the flat pipe 2 only from the hole 16b, and flows from the upper communication hole 16a to the connection side space 13 of the flat pipe 2 while suppressing the uneven flow of the refrigerant below the other header pipe 3b. By facilitating the flow, the refrigerant can flow to the upper flat pipe 2, so that the refrigerant can flow uniformly to the plurality of flat pipes 2.

また、熱交換区間8bから熱交換区間8aへ冷媒を流す際に、他方のヘッダーパイプ3bに別部材として接続管を接続することなく、他方のヘッダーパイプ3b内において液冷媒を優先的に流すことが可能となるため、他方のヘッダーパイプ3bの内容積の増大を抑制でき、必要な冷媒量を削減することができる。 Further, when the refrigerant flows from the heat exchange section 8b to the heat exchange section 8a, the liquid refrigerant is preferentially flowed in the other header pipe 3b without connecting the connecting pipe as a separate member to the other header pipe 3b. Therefore, an increase in the internal volume of the other header pipe 3b can be suppressed, and the required amount of refrigerant can be reduced.

(実施の形態2)
図5は、本発明の実施の形態2のx−y平面の断面図である。
(Embodiment 2)
FIG. 5 is a cross-sectional view of the xy plane of the second embodiment of the present invention.

図5に示すように、非接続側空間14において、他方のヘッダーパイプ3bの壁面から
、複数の連通孔16a、16bの内、最上段に存在する連通孔16aの上端に向かって、上り勾配をもつ流れ調整部17を設ける。
As shown in FIG. 5, in the non-connecting side space 14, an ascending slope is formed from the wall surface of the other header pipe 3b toward the upper end of the communication holes 16a existing at the uppermost stage among the plurality of communication holes 16a and 16b. A flow adjusting unit 17 is provided.

これにより、扁平管2の非接続側空間14を上昇する冷媒の一部が、流れ調整部17に沿って最上段の連通孔16aから、扁平管2の接続側空間13へ流れ込む。 As a result, a part of the refrigerant rising in the non-connecting side space 14 of the flat pipe 2 flows into the connecting side space 13 of the flat pipe 2 from the uppermost communication hole 16a along the flow adjusting portion 17.

従って、特に冷媒循環量が多く、冷媒流速が速くなる過負荷運転時において、扁平管2の非接続側空間14を液冷媒が勢いよく上昇し、非接続側空間14の上面に衝突することで運動エネルギーが減少し、上側の連通孔16aから接続側空間13に落下しながら流れ込むことが抑制されることで、非接続側空間14を上昇した液冷媒の運動エネルギーを落とすことなく、接続側空間13の上方に流すことができ、上段の扁平管2まで冷媒を流すことができるため、複数の扁平管2に均一に冷媒を流すことができる。 Therefore, especially during overload operation in which the amount of refrigerant circulating is large and the flow velocity of the refrigerant is high, the liquid refrigerant vigorously rises in the non-connecting side space 14 of the flat tube 2 and collides with the upper surface of the non-connecting side space 14. The kinetic energy is reduced, and the flow from the upper communication hole 16a into the connecting side space 13 while falling is suppressed, so that the kinetic energy of the liquid refrigerant that has risen in the non-connecting side space 14 is not reduced, and the connecting side space is not reduced. Since the refrigerant can flow above the 13 and the refrigerant can flow to the upper flat tube 2, the refrigerant can be uniformly flowed to the plurality of flat tubes 2.

また、流れ調整部17の他方のヘッダーパイプ3bの壁面接続位置は、最上段の連通孔16aの鉛直方向(y方向)中間位置以下とすることが望ましい。 Further, it is desirable that the wall surface connection position of the other header pipe 3b of the flow adjusting unit 17 is equal to or less than the vertical (y direction) intermediate position of the uppermost communication hole 16a.

これにより、扁平管2の非接続側空間14を上昇する冷媒が、流れ調整部17の面に対して、より斜めから接触し、液冷媒が上昇する勢いを落とすことなく、扁平管2の接続側空間13へ流れ込むため、より接続側空間13の上方に流すことが可能となり、上段の扁平管2まで冷媒を流すことができ、複数の扁平管2に均一に冷媒を流すことができる。 As a result, the refrigerant rising in the non-connecting side space 14 of the flat pipe 2 comes into contact with the surface of the flow adjusting unit 17 more obliquely, and the liquid refrigerant is connected to the flat pipe 2 without losing the rising momentum. Since it flows into the side space 13, it can flow further above the connecting side space 13, the refrigerant can flow to the upper flat pipe 2, and the refrigerant can flow uniformly to the plurality of flat pipes 2.

また、複数の連通孔16a、16bは、冷媒流出区間11に接続されている扁平管2の本数を連通孔16a、16bの数で等分し区切り、区切られた複数の扁平管2の内、少なくとも、最上段に存在する扁平管2のy方向高さ位置を含むように設けることが望ましい。例えば、冷媒流出区間11に8本の扁平管2が接続され、2つの連通孔16a、16bを設けた場合は、上側の連通孔16aは8本の扁平管2の内、最上段の扁平管2のy方向高さ位置、下側の連通孔16bは8本の扁平管2の内、上から5本目の扁平管2のy方向高さ位置を含むようにする。 Further, the plurality of communication holes 16a and 16b divide the number of the flat pipes 2 connected to the refrigerant outflow section 11 into equal parts by the number of the communication holes 16a and 16b, and among the plurality of flat pipes 2 separated, It is desirable to provide at least the height position of the flat tube 2 existing at the uppermost stage in the y direction. For example, when eight flat pipes 2 are connected to the refrigerant outflow section 11 and two communication holes 16a and 16b are provided, the upper communication hole 16a is the uppermost flat pipe among the eight flat pipes 2. The y-direction height position of 2 and the lower communication hole 16b include the y-direction height position of the fifth flat pipe 2 from the top among the eight flat pipes 2.

これにより、各連通孔16a、16bに対応する複数の扁平管2において、それぞれ最もy方向高さが高い位置に存在する扁平管2へ冷媒が流れる流路を確保できるため、冷媒流出区間11の上方から下方へ均一に冷媒を流し易くなり、複数の扁平管2に均一に冷媒を流すことができる。 As a result, in the plurality of flat pipes 2 corresponding to the communication holes 16a and 16b, it is possible to secure a flow path through which the refrigerant flows to the flat pipe 2 existing at the position where the height in the y direction is highest, so that the refrigerant outflow section 11 It becomes easy to flow the refrigerant uniformly from the upper side to the lower side, and the refrigerant can flow uniformly through the plurality of flat pipes 2.

なお、実施例では、熱交換器1を1列設置しているが、例えば、空気流れ方向(z方向)に2つ以上でもよく、また、重力方向(y方向)に2つ以上の熱交換器1を重ねた構成を用いた場合でも、同様の効果を得られる事は言うまでもない。 In the embodiment, one row of heat exchangers 1 is installed, but for example, two or more heat exchangers may be installed in the air flow direction (z direction), and two or more heat exchangers may be exchanged in the gravity direction (y direction). Needless to say, the same effect can be obtained even when the configuration in which the vessels 1 are stacked is used.

また、実施例では、複数のフィン4が、複数の扁平管2同士の間に上下に連続する波状に形成された構成としているが、互いが平行になるように、複数の扁平管2に直角に挿入されるよう板状に形成された構成とした場合でも、同様の効果を得られる事は言うまでもない。 Further, in the embodiment, the plurality of fins 4 are formed in a wavy shape that is continuous vertically between the plurality of flat tubes 2, but are perpendicular to the plurality of flat tubes 2 so as to be parallel to each other. Needless to say, the same effect can be obtained even when the structure is formed in a plate shape so as to be inserted into.

また、実施例では、隔壁板15に、鉛直方向(y方向)に2つ並んだ連通孔16a、16bを設けているが、2つ以上設けた場合でも、同様の効果を得られる事は言うまでもない。 Further, in the embodiment, the partition plate 15 is provided with two communication holes 16a and 16b arranged in the vertical direction (y direction), but it goes without saying that the same effect can be obtained even when two or more communication holes 16a and 16b are provided. No.

また、実施例では、流れ調整部17を平面で構成しているが、上方に凸形状とした曲面で構成した場合でも、同様の効果を得られる事は言うまでもない。 Further, in the embodiment, the flow adjusting portion 17 is formed of a flat surface, but it goes without saying that the same effect can be obtained even when the flow adjusting portion 17 is formed of a curved surface having a convex shape upward.

本発明は、扁平管利用の熱交換器において、ヘッダーパイプ内を密度の大きい液冷媒の割合が少ない(ガスリッチ)冷媒が流れる場合に、液冷媒が下方に偏り、熱交換区間の下方に偏流することを抑制できる熱交換器分流器であり、冷凍機、空気調和装置、給湯空調複合装置などの用途に適用できる。 According to the present invention, in a heat exchanger using a flat tube, when a refrigerant having a high density and a small proportion of liquid refrigerant (gas rich) flows in the header pipe, the liquid refrigerant is biased downward and flows downward in the heat exchange section. It is a heat exchanger / refrigerant that can suppress this, and can be applied to applications such as refrigerators, air conditioners, and hot water supply / air conditioning combined devices.

1 熱交換器
2 扁平管
3a、3b ヘッダーパイプ
4 フィン
5 冷媒流路
6 第1の冷媒配管
7 第2の冷媒配管
8a、8b、8c、8d 熱交換区間
9a、9b、9c 仕切板
10 冷媒流入区間
11 冷媒流出区間
12 分割板
13 接続側空間
14 非接続側空間
15 隔壁板
16a、16b 連通孔
17 流れ調整部
20 室外機
21 圧縮機
22 切替弁
23 室外膨張弁
24 送風機
25 液管
26 ガス管
100 熱交換器
101 扁平管
102a、102b ヘッダーパイプ
103a、103b、103c、103d 熱交換区間
104a、104b、104c 仕切板
105a、105b 冷媒配管
1 Heat exchanger 2 Flat pipe 3a, 3b Header pipe 4 Fin 5 Refrigerant flow path 6 First refrigerant pipe 7 Second refrigerant pipe 8a, 8b, 8c, 8d Heat exchange section 9a, 9b, 9c Partition plate 10 Refrigerant inflow Section 11 Refrigerant outflow section 12 Dividing plate 13 Connection side space 14 Non-connection side space 15 Partition plate 16a, 16b Communication hole 17 Flow adjustment unit 20 Outdoor unit 21 Compressor 22 Switching valve 23 Outdoor expansion valve 24 Blower 25 Liquid pipe 26 Gas pipe 100 Heat exchanger 101 Flat pipe 102a, 102b Header pipe 103a, 103b, 103c, 103d Heat exchange section 104a, 104b, 104c Partition plate 105a, 105b Refrigerant piping

Claims (2)

複数の冷媒流路を有する複数の扁平管と、前記扁平管の両端部をそれぞれ接続する一対のヘッダーパイプと、で構成された熱交換器において、前記ヘッダーパイプは、複数の前記扁平管を複数の熱交換区間に分ける仕切板を備え、前記熱交換器が蒸発器として機能する場合に、冷媒が流出する第1の冷媒配管を一方の前記ヘッダーパイプの上方に、冷媒が流入する第2の冷媒配管を一方の前記ヘッダーパイプの下方に設け、他方の前記ヘッダーパイプは、前記複数の扁平管へ冷媒が流出する冷媒流出区間において、前記扁平管の接続側空間と、前記扁平管の非接続側空間と、を区切る隔壁板を有し、前記隔壁板は、前記冷媒流出区間の鉛直方向中間位置より上方に、鉛直方向に並んだ複数の連通孔を備え、前記連通孔は、直下の前記連通孔の開口面積よりも大きいことを特徴とした熱交換器分流器。 In a heat exchanger composed of a plurality of flat pipes having a plurality of refrigerant flow paths and a pair of header pipes connecting both ends of the flat pipes, the header pipe includes a plurality of the flat pipes. When the heat exchanger functions as an evaporator, the first refrigerant pipe from which the refrigerant flows is provided above the one header pipe, and the second refrigerant flows into the heat exchange section. A refrigerant pipe is provided below one of the header pipes, and the other header pipe is not connected to the connection side space of the flat pipes in the refrigerant outflow section where the refrigerant flows out to the plurality of flat pipes. The partition plate has a partition plate separating the side space, and the partition plate has a plurality of communication holes arranged in the vertical direction above the intermediate position in the vertical direction of the refrigerant outflow section, and the communication holes are directly below the above. A heat exchanger diversion device characterized by being larger than the opening area of the communication hole. 前記非接続側空間において、前記ヘッダーパイプの壁面から、複数の前記連通孔の内、最上段に存在する前記連通孔の上端に向かって、上り勾配をもつ流れ調整部を設けることを特徴とした請求項1に記載の熱交換器分流器。 In the non-connection side space, a flow adjusting portion having an upward gradient is provided from the wall surface of the header pipe toward the upper end of the communication hole existing at the uppermost stage among the plurality of communication holes. The heat exchanger shunt according to claim 1.
JP2019065600A 2019-03-29 2019-03-29 Heat exchanger flow divider Pending JP2020165579A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019065600A JP2020165579A (en) 2019-03-29 2019-03-29 Heat exchanger flow divider
CN202010074741.XA CN111750730A (en) 2019-03-29 2020-01-22 Heat exchanger flow divider
EP20153958.2A EP3715761B1 (en) 2019-03-29 2020-01-27 Heat exchanger shunt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019065600A JP2020165579A (en) 2019-03-29 2019-03-29 Heat exchanger flow divider

Publications (1)

Publication Number Publication Date
JP2020165579A true JP2020165579A (en) 2020-10-08

Family

ID=69374150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019065600A Pending JP2020165579A (en) 2019-03-29 2019-03-29 Heat exchanger flow divider

Country Status (3)

Country Link
EP (1) EP3715761B1 (en)
JP (1) JP2020165579A (en)
CN (1) CN111750730A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005127630A (en) * 2003-10-24 2005-05-19 Sanden Corp Heat exchanger
JP2014533819A (en) * 2011-11-18 2014-12-15 エルジー エレクトロニクス インコーポレイティド Heat exchanger

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19918616C2 (en) * 1998-10-27 2001-10-31 Valeo Klimatechnik Gmbh Condenser for condensing the internal refrigerant of an automotive air conditioning system
JP2004177041A (en) * 2002-11-28 2004-06-24 Matsushita Electric Ind Co Ltd Heat exchanger
US20080023185A1 (en) * 2006-07-25 2008-01-31 Henry Earl Beamer Heat exchanger assembly
JP2010112580A (en) * 2008-11-04 2010-05-20 Daikin Ind Ltd Heat exchanger
KR101826365B1 (en) * 2012-05-04 2018-03-22 엘지전자 주식회사 A heat exchanger
JP5858478B2 (en) 2012-09-04 2016-02-10 シャープ株式会社 Parallel flow type heat exchanger and air conditioner equipped with the same
JP6070685B2 (en) * 2014-12-26 2017-02-01 ダイキン工業株式会社 Heat exchanger and air conditioner
JP6583141B2 (en) * 2016-05-24 2019-10-02 日本軽金属株式会社 Parallel flow heat exchanger
JP2018091503A (en) * 2016-11-30 2018-06-14 ダイキン工業株式会社 Heat exchanger
JP2018162900A (en) * 2017-03-24 2018-10-18 日立ジョンソンコントロールズ空調株式会社 Heat exchanger and air conditioner including the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005127630A (en) * 2003-10-24 2005-05-19 Sanden Corp Heat exchanger
JP2014533819A (en) * 2011-11-18 2014-12-15 エルジー エレクトロニクス インコーポレイティド Heat exchanger

Also Published As

Publication number Publication date
CN111750730A (en) 2020-10-09
EP3715761B1 (en) 2022-08-24
EP3715761A1 (en) 2020-09-30

Similar Documents

Publication Publication Date Title
US9651317B2 (en) Heat exchanger and air conditioner
CN113330268B (en) Heat exchanger and air conditioner provided with same
JP6419882B2 (en) Air conditioner
US10041710B2 (en) Heat exchanger and air conditioner
WO2018173356A1 (en) Heat exchanger and air conditioner using same
KR20170067351A (en) Heat exchanger
JP2012163313A (en) Heat exchanger, and air conditioner
JP2018162900A (en) Heat exchanger and air conditioner including the same
JP6120978B2 (en) Heat exchanger and air conditioner using the same
JP2018194251A (en) Heat exchanger
JP2018091503A (en) Heat exchanger
WO2022264348A1 (en) Heat exchanger and refrigeration cycle device
WO2018154650A1 (en) Heat exchanger
JP2014137177A (en) Heat exchanger and refrigerator
JP6383942B2 (en) Heat exchanger
JP2020165578A (en) Heat exchanger flow divider
JP2014066502A (en) Heat exchanger and freezer
JP2020112274A (en) Heat exchanger
JP2020165579A (en) Heat exchanger flow divider
JP2014137172A (en) Heat exchanger and refrigerator
JP2020115070A (en) Heat exchanger
JP2020115069A (en) Heat exchanger
JP2020085268A (en) Heat exchanger
JP2020085267A (en) Heat exchanger
WO2021214849A1 (en) Air conditioner, freezer, and distributor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211213

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20221020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230523