[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2020163291A - Portable minute bubble generation device - Google Patents

Portable minute bubble generation device Download PDF

Info

Publication number
JP2020163291A
JP2020163291A JP2019066245A JP2019066245A JP2020163291A JP 2020163291 A JP2020163291 A JP 2020163291A JP 2019066245 A JP2019066245 A JP 2019066245A JP 2019066245 A JP2019066245 A JP 2019066245A JP 2020163291 A JP2020163291 A JP 2020163291A
Authority
JP
Japan
Prior art keywords
gas
portable
liquid
push
press
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019066245A
Other languages
Japanese (ja)
Inventor
隆行 大橋
Takayuki Ohashi
隆行 大橋
宮嶋 圭太
Keita Miyajima
圭太 宮嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritake Co Ltd
Original Assignee
Noritake Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritake Co Ltd filed Critical Noritake Co Ltd
Priority to JP2019066245A priority Critical patent/JP2020163291A/en
Publication of JP2020163291A publication Critical patent/JP2020163291A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a portable minute bubble generation device which is portable and can generate minute bubbles in store liquid.SOLUTION: A portable minute bubble generation device 1, 101 which generates minute bubbles BB in liquid LQ stored in a container CP includes: a cylinder mounting part 11, 111, 111X which detachably mounts a portable gas cylinder PS with gas AR filled and leads out the gas; a porous body 21, 121 which has a gas press-in surface 21A, 121A formed of a porous material having fine pores 21P, 121P communicating in a three-dimensional mesh shape and pressing the gas in, and a gas emission surface 21B, 121B which is brought into contact with the stored liquid and emits the gas, which has been pressed in the fine pores of the porous material from the gas press-in surface, into the liquid as fine bubbles BB; and gas flow channel members 13, 15, 16, 17, 18a, 18b, 18c, 18d, 30, 130 which form a gas flow channel ARW for guiding the gas from the cylinder mounting part to the porous body.SELECTED DRAWING: Figure 1

Description

本発明は、可搬性を有し、液体中に微小気泡を生成するポータブル微小気泡生成装置に関する。 The present invention relates to a portable microbubble generator that is portable and generates microbubbles in a liquid.

従来、真水、海水、各種水溶液、油、有機溶媒などの液体中に、空気などの気体を吹き込んで、微小気泡を生成することが行われている。特に近年では、ファインバブル、マイクロバブル、ナノバブルと呼ばれる微小気泡を生成した液体を利用する技術の有用性が注目されている。これと共に、液中に微小気泡を生成する装置も開発されている。 Conventionally, a gas such as air is blown into a liquid such as fresh water, seawater, various aqueous solutions, oil, and an organic solvent to generate fine bubbles. Particularly in recent years, the usefulness of technology that uses a liquid that has generated microbubbles called fine bubbles, microbubbles, and nanobubbles has attracted attention. Along with this, a device for generating fine bubbles in the liquid has also been developed.

例えば、多孔質材の微細気孔に気体を圧入し、この多孔質体に接する液中に微小気泡を生成する静止型の装置では、多孔質体の微細気孔内に浸入する液体に抗して気体を通過させるので、微細気孔の大きさ(平均細孔径)にもよるが、気圧を高めた気体を要する。また、産業用途では、長時間の連続運転や大流量に対応するべく、コンプレッサーで得た圧縮空気や高圧のボンベに貯蔵した圧縮気体を利用する装置とすることが多くなる(特許文献1の図1参照)。 For example, in a stationary device that presses a gas into the fine pores of a porous material and generates microbubbles in the liquid in contact with the porous body, the gas opposes the liquid that invades the fine pores of the porous body. Although it depends on the size of the fine pores (average pore diameter), a gas with an increased pressure is required. Further, in industrial applications, in order to cope with continuous operation for a long time and a large flow rate, it is often used as a device that uses compressed air obtained by a compressor or compressed gas stored in a high-pressure cylinder (Fig. 1 of Patent Document 1). 1).

特許第4505560号公報Japanese Patent No. 4505560

しかしながら、このような高圧のボンベやコンプレッサーを用いる装置では、ポータブルとすることは難しい。
本発明は、かかる現状に鑑みてなされたものであって、ポータブルでありながら、貯留している液体に微小気泡を生成できるポータブル微小気泡生成装置を提供するものである。
However, it is difficult to make it portable in a device using such a high-pressure cylinder or compressor.
The present invention has been made in view of the present situation, and provides a portable microbubble generator capable of generating microbubbles in a stored liquid while being portable.

上記課題を解決するための本発明の一態様は、容器に貯留した液体中に微小気泡を生成するポータブル微小気泡生成装置であって、気体を充填したポータブルガスボンベを着脱可能に装着して、上記気体を導出するボンベ装着部と、三次元網目状に連通した微細気孔を有する多孔質材からなり、上記気体を圧入する気体圧入面、及び、貯留された上記液体に接触させると共に、上記気体圧入面から上記多孔質材の上記微細気孔に圧入された上記気体を上記微小気泡として上記液体中に放出する気体放出面、を有する多孔質体と、上記ボンベ装着部から上記多孔質体まで上記気体を導く気体流路をなす気体流路部材と、を備えるポータブル微小気泡生成装置である。 One aspect of the present invention for solving the above-mentioned problems is a portable micro-bubble generator that generates micro-bubbles in a liquid stored in a container, and a portable gas bomb filled with gas is detachably attached and described above. It is composed of a cylinder mounting part that draws out gas and a porous material having fine pores that communicate in a three-dimensional network, and is brought into contact with the gas press-fitting surface for press-fitting the gas and the stored liquid, and the gas press-fitting. A porous body having a gas release surface that releases the gas pressed into the fine pores of the porous material as fine bubbles into the liquid from the surface, and the gas from the bomb mounting portion to the porous body. It is a portable microbubble generation device including a gas flow path member forming a gas flow path for guiding the gas.

このポータブル微小気泡生成装置では、ボンベ装着部にポータブルガスボンベを装着でき、装置そのものがポータブルであるので、使用する場所の制約が少なく、容器に貯留した液体中に微小気泡を生成して、簡易に、微小気泡を含む液体を得ることができる。 In this portable micro-bubble generator, a portable gas cylinder can be mounted on the cylinder mounting part, and since the device itself is portable, there are few restrictions on where to use it, and micro-bubbles are generated in the liquid stored in the container, making it easy. , A liquid containing microbubbles can be obtained.

なお、微小気泡を生成する液体としては、例えば、水(飲料水、水道水、蒸留水、イオン交換水、純水など)のほか、海水、河川水、メタノール、エタノール、IPAなどのアルコールが挙げられる。日本酒、ワインなどの酒、メタノールなどのアルコール、塩酸、酢酸などの酸、水酸化ナトリウム、水酸化カリウム、炭酸水素ナトリウム(重曹)、アンモニアなどのアルカリ、香料、各種の水溶成分を含む水溶液、混合液、各種の培養液なども挙げられる。また、トルエン、キシレンなどの有機溶媒や、ガソリン、灯油などの油類なども挙げられる。
また、ポータブルガスボンベとしては、可搬性のガスボンベであれば含まれるが、ガス容量は小さくとも、簡易に運搬できる軽量の小型のガスボンベを用いるのが良い。例えば、高圧ガス保安法の適用を受けない、プッシュ缶など、気圧1MPa未満のガスを収容したガスボンベが挙げられる。
また、ポータブルガスボンベに充填され、微小気泡とする気体としては、例えば、空気、水素、窒素、酸素、二酸化炭素、一酸化炭素、メタン、プロパン、窒素と酸素の混合ガス、ヘリウム、アルゴンなどの不活性ガスなど各種の気体が挙げられる。
Examples of the liquid that generates microbubbles include water (drinking water, tap water, distilled water, ion-exchanged water, pure water, etc.), seawater, river water, methanol, ethanol, and alcohols such as IPA. Be done. Sake such as Japanese sake and wine, alcohol such as methanol, acid such as hydrochloric acid and acetic acid, sodium hydroxide, potassium hydroxide, sodium hydrogen carbonate (baking soda), alkali such as ammonia, fragrance, aqueous solution containing various water-soluble components, mixed Liquids, various culture liquids and the like can also be mentioned. Examples thereof include organic solvents such as toluene and xylene, and oils such as gasoline and kerosene.
Further, the portable gas cylinder is included as long as it is a portable gas cylinder, but it is preferable to use a lightweight and small gas cylinder that can be easily transported even if the gas capacity is small. For example, a gas cylinder containing a gas having an atmospheric pressure of less than 1 MPa, such as a push can, which is not subject to the High Pressure Gas Safety Act, can be mentioned.
In addition, as the gas filled in the portable gas cylinder and made into microbubbles, for example, air, hydrogen, nitrogen, oxygen, carbon dioxide, carbon monoxide, methane, propane, mixed gas of nitrogen and oxygen, helium, argon and the like are not used. Various gases such as active gas can be mentioned.

多孔質体の材質としては、アルミナ、チタニア、ジルコニア、ムライト、シリカなどの酸化物セラミックスや、窒化ケイ素などの窒化物セラミックス、炭化ケイ素などの炭化物セラミックスなどからなる多孔質セラミック、多孔質ガラスが挙げられる。また、ステンレス、チタン、チタン合金、ニッケル、ニッケル合金、銅、銅合金、アルミニウムなどからなる多孔質金属、PTFEなどのフッ素樹脂、ポリエチレン、ポリプロピレン、ポリメチルメタクリレートなどの樹脂からなる多孔質樹脂も挙げられる。
また、気体流路部材は、ボンベ装着部から多孔質体まで気体を導く部材であり、減圧弁などの所定の機能を果たす機能部材のほか、各部材を結ぶのに、例えば、気体の圧力(気圧)に耐えられる強度を有する管(金属管、樹脂管)を用いることができる。
Examples of the material of the porous body include oxide ceramics such as alumina, titania, zirconia, mullite, and silica, nitride ceramics such as silicon nitride, porous ceramics composed of carbide ceramics such as silicon carbide, and porous glass. Be done. In addition, porous metals made of stainless steel, titanium, titanium alloys, nickel, nickel alloys, copper, copper alloys, aluminum, etc., fluororesins such as PTFE, and porous resins made of resins such as polyethylene, polypropylene, and polymethylmethacrylate are also mentioned. Be done.
Further, the gas flow path member is a member that guides gas from the cylinder mounting portion to the porous body, and is a member that performs a predetermined function such as a pressure reducing valve, and for connecting each member, for example, a gas pressure ( A tube (metal tube, resin tube) having a strength that can withstand (atmospheric pressure) can be used.

更に、上述のポータブル微小気泡生成装置であって、前記ボンベ装着部は、前記ポータブルガスボンベであるプッシュ缶を装着するプッシュ缶装着部であるポータブル微小気泡生成装置とすると良い。 Further, in the above-mentioned portable microbubble generating device, the cylinder mounting portion may be a portable microbubble generating device which is a push can mounting portion for mounting the push can which is the portable gas cylinder.

この装置では、ポータブルガスボンベであるプッシュ缶を用い、これをプッシュ缶装着部に装着して用いる。プッシュ缶は、充填した気体(ガス)のガス圧が低く、高圧ガス保安法の規制を受けないなど、小型、軽量で簡単にガスを取扱うことができる。このため、プッシュ缶と、これを装着したポータブル微小気泡生成装置の可搬性を向上するのに、より好ましい。 In this device, a push can, which is a portable gas cylinder, is used, and this is attached to the push can mounting portion for use. Push cans are small, lightweight, and easy to handle because the gas pressure of the filled gas is low and they are not regulated by the High Pressure Gas Safety Act. Therefore, it is more preferable to improve the portability of the push can and the portable microbubble generator equipped with the push can.

また、上述のいずれかに記載のポータブル微小気泡生成装置であって、前記気体流路内に、前記多孔質体の前記気体圧入面に供給する前記気体の供給圧力を調整する減圧弁を備えるポータブル微小気泡生成装置とすると良い。 Further, the portable microbubble generating device according to any one of the above, the portable microbubble generator including a pressure reducing valve for adjusting the supply pressure of the gas supplied to the gas press-fitting surface of the porous body in the gas flow path. It is preferable to use a microbubble generator.

この装置では、減圧弁により、多孔質体の気体圧入面に供給される気体の供給圧力を調整できる。このため、供給圧力を所望の値にすることで、生成される微小気泡の量や気泡径を調整することができる。例えば、ポータブルガスボンベにおける気圧に拘わらず、供給圧力を所定値に調整することにより、供給圧力の変動にともなって、多孔質体の気体放出面から液体中に放出させる微小気泡の大きさが変動するのを抑制し、同様な大きさの微小気泡を安定して生成することができる。 In this device, the pressure reducing valve can adjust the supply pressure of the gas supplied to the gas injection surface of the porous body. Therefore, by setting the supply pressure to a desired value, the amount of generated microbubbles and the bubble diameter can be adjusted. For example, by adjusting the supply pressure to a predetermined value regardless of the air pressure in the portable gas cylinder, the size of the microbubbles released into the liquid from the gas release surface of the porous body changes with the fluctuation of the supply pressure. It is possible to stably generate microbubbles of the same size.

さらに、上述のいずれか1項に記載のポータブル微小気泡生成装置であって、無電源で動作可能としてなるポータブル微小気泡生成装置とすると良い。 Further, it is preferable that the portable microbubble generating device according to any one of the above items is a portable microbubble generating device that can be operated without a power source.

この装置では、無電源で動作させることができるので、更に場所を選ばず、容易に液体中に微小気泡を生成することができる。 Since this device can be operated without a power source, it is possible to easily generate fine bubbles in the liquid at any place.

実施形態1に係るポータブル微小気泡生成装置の構成及び微小気泡の生成を説明する説明図である。It is explanatory drawing explaining the structure of the portable microbubble generation apparatus which concerns on Embodiment 1, and the generation of microbubbles. 実施形態2に係るポータブル微小気泡生成装置の構成を説明する説明図である。It is explanatory drawing explaining the structure of the portable microbubble generation apparatus which concerns on Embodiment 2. 実施形態2に係るポータブル微小気泡生成装置を用いて、容器に貯留した液体中に微小気泡を生成する様子を説明する説明図である。It is explanatory drawing explaining the mode that the microbubbles are generated in the liquid stored in a container by using the portable microbubble generation apparatus which concerns on Embodiment 2.

(実施形態1)
以下、実施形態1に係るポータブル微小気泡生成装置1(以下、単に「生成装置」ともいう)を、図1を参照して説明する。図1は、本実施形態1に係る生成装置1の構成及び液体LQ中への微小気泡BBの生成を説明する説明図である。
本実施形態1の生成装置1は、下部にキャスター10Cを有する可搬の装置本体10と、容器CP内に貯留された液体LQ(本実施形態1では、例えば海水)中に投入される気泡発生部20と、装置本体10から延びて気泡発生部20に接続する外部気体流路部材30とからなり、容易に運搬、移動可能となっている。
(Embodiment 1)
Hereinafter, the portable microbubble generation device 1 (hereinafter, also simply referred to as “generation device”) according to the first embodiment will be described with reference to FIG. FIG. 1 is an explanatory diagram illustrating the configuration of the generator 1 according to the first embodiment and the generation of microbubbles BB in the liquid LQ.
The generation device 1 of the first embodiment is a portable device body 10 having a caster 10C at the lower part, and bubble generation to be thrown into a liquid LQ (for example, seawater in the first embodiment) stored in the container CP. The unit 20 is composed of an external gas flow path member 30 extending from the device main body 10 and connecting to the bubble generating unit 20, and can be easily transported and moved.

このうち、装置本体10には、気体AR(本実施形態1では、例えば酸素)を充填したプッシュ缶PSが着脱可能に保持されている。このほか装置本体10には、このプッシュ缶PSの開栓ヘッド部PSHに装着して、プッシュ缶PS内の気体ARを外部に導出するプッシュ缶装着部11のほか、減圧弁13、流量調整弁15、流量計16、ストップ弁17、これらの間を結んで気体ARを流通させる内部気体流路部材18a,18b,18c,18dを有している。これら減圧弁13、流量調整弁15、流量計16、ストップ弁17、内部気体流路部材18a,18b,18c,18d、及び、前述の外部気体流路部材30で、プッシュ缶装着部11から気泡発生部20(後述する多孔質部材21)まで、気体ARを導く気体流路ARWをなしている。
また、内部気体流路部材18aには、一次圧計12が接続されており、気体ARの一次圧P1を計測可能となっている。また、内部気体流路部材18bには、二次圧計14が接続されており、気体ARの二次圧P2を計測可能となっている。
Of these, a push can PS filled with gas AR (for example, oxygen in the first embodiment) is detachably held in the apparatus main body 10. In addition to the push can mounting portion 11 that is mounted on the opening head portion PSH of the push can PS to lead the gas AR in the push can PS to the outside, the pressure reducing valve 13 and the flow rate adjusting valve are mounted on the apparatus main body 10. It has 15, a flow meter 16, a stop valve 17, and internal gas flow path members 18a, 18b, 18c, 18d connecting between them to allow gas AR to flow. In these pressure reducing valve 13, flow rate adjusting valve 15, flow meter 16, stop valve 17, internal gas flow path members 18a, 18b, 18c, 18d, and the above-mentioned external gas flow path member 30, air bubbles are generated from the push can mounting portion 11. A gas flow path ARW that guides the gas AR to the generating portion 20 (the porous member 21 described later) is formed.
Further, a primary pressure gauge 12 is connected to the internal gas flow path member 18a so that the primary pressure P1 of the gas AR can be measured. Further, a secondary pressure gauge 14 is connected to the internal gas flow path member 18b so that the secondary pressure P2 of the gas AR can be measured.

気体流路ARW内に設けられた減圧弁13は、内部気体流路部材18aを通じてプッシュ缶装着部11から届いた気体ARの気圧(一次圧)P1を、所望の大きさの気圧(二次圧)P2に減圧調整して、この減圧弁13の下流側(図中右側)の内部気体流路部材18bに送出する。これにより、多孔質部材21の気体圧入面21Aに供給される気体ARの供給圧力(二次圧)P2を所望の値に調整できる。このため、この減圧弁13で二次圧(供給圧力)P2を所定の値として、二次圧P2の変動を抑制することで、二次圧P2の変動にともなって、多孔質部材21の気体放出面21Bから液体LQ中に放出させる微小気泡BBの大きさが変動するのを抑制でき、同様な大きさの微小気泡BBを安定して生成することができる。 The pressure reducing valve 13 provided in the gas flow path ARW sets the atmospheric pressure (primary pressure) P1 of the gas AR reached from the push can mounting portion 11 through the internal gas flow path member 18a to the atmospheric pressure (secondary pressure) of a desired magnitude. ) The pressure is adjusted to P2 and sent to the internal gas flow path member 18b on the downstream side (right side in the drawing) of the pressure reducing valve 13. Thereby, the supply pressure (secondary pressure) P2 of the gas AR supplied to the gas press-fitting surface 21A of the porous member 21 can be adjusted to a desired value. Therefore, by setting the secondary pressure (supply pressure) P2 as a predetermined value in the pressure reducing valve 13 and suppressing the fluctuation of the secondary pressure P2, the gas of the porous member 21 is accompanied by the fluctuation of the secondary pressure P2. It is possible to suppress fluctuations in the size of the microbubbles BB discharged from the discharge surface 21B into the liquid LQ, and it is possible to stably generate microbubbles BB having the same size.

また、流量調整弁15は、二次圧P2で流れる気体ARの流量を所望の量に調整する。
この流量調整弁15の下流側(図中右側)のうち、内部気体流路部材18cと18dとの間には、気体ARの流量を検知する流量計16が設けられている。内部気体流路部材18dの下流側(図中右側)には、ストップ弁17が設けられている。ストップ弁17の下流側(図中右側)には、外部気体流路部材30が接続されている。このストップ弁17は、外部気体流路部材30を介して、気泡発生部20への気体ARの供給を断続する。
Further, the flow rate adjusting valve 15 adjusts the flow rate of the gas AR flowing at the secondary pressure P2 to a desired amount.
On the downstream side (right side in the figure) of the flow rate adjusting valve 15, a flow meter 16 for detecting the flow rate of the gas AR is provided between the internal gas flow path members 18c and 18d. A stop valve 17 is provided on the downstream side (right side in the drawing) of the internal gas flow path member 18d. An external gas flow path member 30 is connected to the downstream side (right side in the drawing) of the stop valve 17. The stop valve 17 interrupts the supply of the gas AR to the bubble generating portion 20 via the external gas flow path member 30.

外部気体流路部材30は、気体ARの二次圧P2に耐えられる強度を有しながらも、可撓性を有する樹脂ホースである。 The external gas flow path member 30 is a resin hose having strength that can withstand the secondary pressure P2 of the gas AR, but also having flexibility.

一方、気泡発生部20は、円筒状の多孔質部材21と、この多孔質部材21の基端側(図中左側)から結合している基端接続部材22と、多孔質部材21の先端側(図中右側)に結合して、多孔質部材21の内側を先端側(図中右側)から閉塞する先端閉塞部材23とからなる。このうち、多孔質部材21は、三次元網目状に連結した微細気孔21Pを有するアルミナ系セラミックの多孔質体からなる。本実施形態1では、この円筒状の多孔質部材21のうち、内周面が気体圧入面21Aとなる。一方、この気体圧入面21Aと径方向に対向する外周面が気体放出面21Bとなる。 On the other hand, the bubble generating portion 20 is formed by the cylindrical porous member 21, the proximal end connecting member 22 bonded from the proximal end side (left side in the drawing) of the porous member 21, and the distal end side of the porous member 21. It is composed of a tip closing member 23 that is coupled to (right side in the figure) and closes the inside of the porous member 21 from the tip side (right side in the figure). Of these, the porous member 21 is made of an alumina-based ceramic porous body having fine pores 21P connected in a three-dimensional network. In the first embodiment, the inner peripheral surface of the cylindrical porous member 21 is the gas press-fitting surface 21A. On the other hand, the outer peripheral surface facing the gas press-fitting surface 21A in the radial direction is the gas discharging surface 21B.

多孔質部材21の先端側(図中左側)に結合した基端接続部材22には、外部気体流路部材30が接続されており、外部気体流路部材30に導かれた気体ARが、基端接続部材22を通じて、多孔質部材21内に供給され、気体圧入面21Aから多孔質部材21の微細気孔21Pに圧入される。すると、液体LQに接する気泡放出面21Bからは、微細気孔21Pに圧入された気体ARが微小気泡BBとして液体LQ中に放出される。 An external gas flow path member 30 is connected to the base end connecting member 22 connected to the tip end side (left side in the drawing) of the porous member 21, and the gas AR guided to the external gas flow path member 30 is used as a base. It is supplied into the porous member 21 through the end connecting member 22 and is press-fitted into the fine pores 21P of the porous member 21 from the gas press-fitting surface 21A. Then, the gas AR press-fitted into the fine pores 21P is discharged into the liquid LQ as microbubbles BB from the bubble discharge surface 21B in contact with the liquid LQ.

かくして、本実施形態1の生成装置1では、プッシュ缶装着部11にプッシュ缶(ポータブルガスボンベ)PSを装着でき、生成装置1そのものがポータブルであるので、使用する場所の制約が少なく、容器CPに貯留した液体LQ中に微小気泡BBを生成して、簡易に、微小気泡BBを含む液体LQを得ることができる。 Thus, in the generator 1 of the first embodiment, the push can (portable gas cylinder) PS can be mounted on the push can mounting portion 11, and since the generator 1 itself is portable, there are few restrictions on the place of use, and the container CP can be used. Microbubbles BB can be generated in the stored liquid LQ to easily obtain a liquid LQ containing the microbubbles BB.

しかもこの生成装置1では、ポータブルガスボンベとしてプッシュ缶PSを用い、これをプッシュ缶装着部11に装着して用いる。このため、高圧ガス保安法の規制を受けないなど、小型、軽量で簡単にガスを取扱うことができ、装着したプッシュ缶PSを含めて生成装置1の可搬性をより向上させることができる。 Moreover, in this generator 1, a push can PS is used as a portable gas cylinder, and this is mounted on the push can mounting portion 11 for use. Therefore, the gas can be easily handled with a small size and light weight without being regulated by the High Pressure Gas Safety Act, and the portability of the generator 1 including the attached push can PS can be further improved.

加えてこの生成装置1では、減圧弁13により、多孔質部材21の気体圧入面21Aに供給される気体ARの二次圧(供給圧力)P2を調整できる。このため、二次圧P2を所望の値にすることで、生成される微小気泡BBの量や気泡径(気泡の大きさ)を調整することができる。プッシュ缶PSにおける一次圧P1が低下するなど変動しても、二次圧P2を所定値に調整することにより、二次圧P2の変動にともなって、多孔質部材21の気体放出面21Bから液体LQ中に放出させる微小気泡BBの大きさが変動するのを抑制し、同様な大きさの微小気泡BBを安定して生成することができる。 In addition, in this generation device 1, the secondary pressure (supply pressure) P2 of the gas AR supplied to the gas press-fitting surface 21A of the porous member 21 can be adjusted by the pressure reducing valve 13. Therefore, by setting the secondary pressure P2 to a desired value, the amount of microbubbles BB generated and the bubble diameter (size of bubbles) can be adjusted. Even if the primary pressure P1 in the push can PS fluctuates, such as a decrease, by adjusting the secondary pressure P2 to a predetermined value, the liquid is released from the gas release surface 21B of the porous member 21 as the secondary pressure P2 fluctuates. It is possible to suppress fluctuations in the size of the microbubbles BB released into the LQ and stably generate microbubbles BB of the same size.

その上この生成装置1では、無電源で動作させることができるので、更に場所を選ばず、容易に液体LQ中に微小気泡BBを生成することができる。 Moreover, since the generator 1 can be operated without a power source, it is possible to easily generate microbubbles BB in the liquid LQ at any place.

(実施形態2)
次いで、実施形態2に係るポータブル微小気泡生成装置101(以下、単に「生成装置」ともいう)を、図2,図3を参照して説明する。図2は、本実施形態2に係る生成装置101の構成を説明する説明図である、また、図3は、この生成装置101を用いて、容器CPに貯留した液体LQ中に微小気泡BBを生成する様子を説明する説明図である。
本実施形態2の生成装置101は、プッシュ缶装着部111と、容器CP内に貯留された液体LQ(本実施形態2では、例えばコーヒー)中に一部または全体が没入するようにされる気泡発生部120と、プッシュ缶装着部111から延びて気泡発生部120に接続する外部気体流路部材130とからなり、特に容易に運搬、移動可能となっている。
(Embodiment 2)
Next, the portable microbubble generation device 101 (hereinafter, also simply referred to as “generation device”) according to the second embodiment will be described with reference to FIGS. 2 and 3. FIG. 2 is an explanatory diagram for explaining the configuration of the generator 101 according to the second embodiment, and FIG. 3 shows the microbubbles BB in the liquid LQ stored in the container CP using the generator 101. It is explanatory drawing explaining the state of generating.
The generator 101 of the second embodiment is a bubble that is partially or wholly immersed in the push can mounting portion 111 and the liquid LQ (for example, coffee in the second embodiment) stored in the container CP. It is composed of a generating unit 120 and an external gas flow path member 130 extending from the push can mounting unit 111 and connected to the bubble generating unit 120, and is particularly easily transportable and movable.

このうちプッシュ缶装着部111は、気体AR(本実施形態2では、例えば窒素ガス)を充填したプッシュ缶PSの開栓ヘッド部PSHに着脱可能に装着して、プッシュ缶PS内の気体ARを外部に導出する部材である。 Of these, the push can mounting portion 111 is detachably mounted on the opening head portion PSH of the push can PS filled with gas AR (for example, nitrogen gas in the second embodiment) to attach the gas AR in the push can PS. It is a member to be derived to the outside.

一方、外部気体流路部材130は、気体ARの二次圧P2に耐えられる強度を有する、金属製やセラミックス製の送気管である。この外部気体流路部材130は、一端がプッシュ缶装着部111に接続する一方、他端が気泡発生部120の保持部材122に基端側(図2中、左側)から接続して、プッシュ缶装着部111から気泡発生部120(多孔質部材121)まで気体ARを導く気体流路ARWをなしている。 On the other hand, the external gas flow path member 130 is an air supply tube made of metal or ceramics having a strength capable of withstanding the secondary pressure P2 of the gas AR. One end of the external gas flow path member 130 is connected to the push can mounting portion 111, while the other end is connected to the holding member 122 of the bubble generating portion 120 from the base end side (left side in FIG. 2) to push the can. A gas flow path ARW that guides the gas AR from the mounting portion 111 to the bubble generating portion 120 (porous member 121) is formed.

また、気泡発生部120は、円柱状の多孔質部材121と、この多孔質部材121の外周、基端側(図中左側)及び先端側の周縁部分を覆って、多孔質部材121を内部に保持する保持部122H、及び外部気体流路部材130に接続する接続部122Sを有する保持部材122とからなる。多孔質部材121は、三次元網目状に連結した微細気孔21Pを有するフッ素樹脂系の多孔質体からなる。本実施形態2では、この円柱状の多孔質部材121のうち、基端側(図2中、左側)の主面が気体圧入面121Aとなる。一方、この気体圧入面121Aと軸線方向に対向する先端側(図2中、右側)の主面が気体放出面121Bとなる。従って、気体圧入面121Aは、保持部材122に覆われる一方、気泡放出面122Bは、周縁部分を除き、保持部材122の保持部122Hから露出している。 Further, the bubble generating portion 120 covers the columnar porous member 121 and the outer peripheral portion, the proximal end side (left side in the drawing), and the peripheral edge portion on the distal end side of the porous member 121, and the porous member 121 is inside. It is composed of a holding portion 122H for holding and a holding member 122 having a connecting portion 122S connected to the external gas flow path member 130. The porous member 121 is made of a fluororesin-based porous body having fine pores 21P connected in a three-dimensional network. In the second embodiment, the main surface of the columnar porous member 121 on the proximal end side (left side in FIG. 2) is the gas press-fitting surface 121A. On the other hand, the main surface on the tip side (right side in FIG. 2) facing the gas press-fitting surface 121A in the axial direction is the gas release surface 121B. Therefore, the gas press-fitting surface 121A is covered with the holding member 122, while the bubble emission surface 122B is exposed from the holding portion 122H of the holding member 122 except for the peripheral portion.

この生成装置101は、以下のようにして用いる。即ち、保持部材122には、外部気体流路部材30が接続されている。そこで、図3に矢印POで示すように、プッシュ缶装着部111を押下すると、プッシュ缶PSの開栓ヘッド部PSHから気体ARが放出される。外部気体流路部材130に導かれた気体ARは、保持部材122の接続部122Sを通じて、多孔質部材121のうち、気体圧入面121Aに供給され、この気体圧入面121Aから多孔質部材121の微細気孔121Pに圧入される。そこで、気泡発生部120のうち、少なくとも気泡放出面21Bを液体LQ中に没するようにすると(図3では、気泡発生部120全体が液体LQ中に没するようにした)、液体LQに接する気泡放出面21Bからは、微細気孔21Pに圧入された気体ARが微小気泡BBとして液体LQ中に放出される。 This generator 101 is used as follows. That is, the external gas flow path member 30 is connected to the holding member 122. Therefore, as shown by the arrow PO in FIG. 3, when the push can mounting portion 111 is pressed, the gas AR is released from the opening head portion PSH of the push can PS. The gas AR guided to the external gas flow path member 130 is supplied to the gas press-fitting surface 121A of the porous member 121 through the connecting portion 122S of the holding member 122, and the fine particles of the porous member 121 are supplied from the gas press-fitting surface 121A. It is press-fitted into the pore 121P. Therefore, when at least the bubble emission surface 21B of the bubble generating section 120 is submerged in the liquid LQ (in FIG. 3, the entire bubble generating section 120 is submerged in the liquid LQ), it comes into contact with the liquid LQ. From the bubble release surface 21B, the gas AR press-fitted into the fine pores 21P is released into the liquid LQ as microbubbles BB.

かくして、本実施形態2の生成装置101でも、プッシュ缶装着部111にプッシュ缶(ポータブルガスボンベ)PSを装着でき、生成装置101そのものがポータブルであるので場所の制約が少なく、容器CPに貯留した液体LQ中に微小気泡BBを生成して、簡易に、微小気泡BBを含む液体LQを得ることができる。
その上この生成装置101でも、無電源で動作させることができるので、更に場所を選ばず、容易に液体LQ中に微小気泡BBを生成することができる。
Thus, even in the generator 101 of the second embodiment, the push can (portable gas cylinder) PS can be mounted on the push can mounting portion 111, and since the generator 101 itself is portable, there are few restrictions on the location, and the liquid stored in the container CP. The microbubbles BB can be generated in the LQ to easily obtain a liquid LQ containing the microbubbles BB.
Moreover, since the generator 101 can also be operated without a power source, it is possible to easily generate microbubbles BB in the liquid LQ at any place.

しかもこの生成装置101でも、ポータブルガスボンベとしてプッシュ缶PSを用い、これをプッシュ缶装着部111に装着して用いる。このため、小型、軽量で簡単にガスを取扱うことができ、装着したプッシュ缶PSを含めて生成装置101の可搬性をより向上させることができる。 Moreover, also in this generator 101, a push can PS is used as a portable gas cylinder, and this is mounted on the push can mounting portion 111 for use. Therefore, the gas can be easily handled with a small size and light weight, and the portability of the generator 101 including the attached push can PS can be further improved.

以上において、本発明を実施形態1,2に即して説明したが、本発明は上述の実施形態1,2に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることは言うまでもない。
例えば、実施形態1では、装置本体10に、一次圧計12,二次圧計14,流量計16をも設けた例を示したが、これらの一部または全部を設けないようにしても良い。
Although the present invention has been described above with reference to the first and second embodiments, the present invention is not limited to the above-described first and second embodiments, and is appropriately modified and applied without departing from the gist thereof. It goes without saying that you can do it.
For example, in the first embodiment, the device main body 10 is provided with the primary pressure gauge 12, the secondary pressure gauge 14, and the flow meter 16, but some or all of them may not be provided.

また実施形態2では、プッシュ缶PSの開栓ヘッド部PSHに、プッシュ缶装着部111を装着し、このプッシュ缶装着部111を押下力POで押し下げた場合に、プッシュ缶PSの開栓ヘッド部PSHが開栓し、送気管である外部気体流路部材130に気体ARが送られるように構成した例を示した。
しかし、プッシュ缶PSの開栓ヘッド部PSHに設けられたネジ部(図示しない)を利用して、開栓ヘッド部PSHに、減圧弁機能やスピードコントローラ機能などの機能を有するプッシュ缶装着部111Xを装着し、外部気体流路部材130を通じて気泡発生部120に送られる気体ARの圧力や流量などを制御するようにしても良い(図2,図3参照)。
また、実施形態2では、押下力POによるプッシュ缶装着部111の押し下げで開栓した(図3参照)。しかし、ストップバルブ機能あるいは圧力計付きストップバルブ機能などの機能を有するプッシュ缶装着部111Xをプッシュ缶PSの開栓ヘッド部PSHにネジ装着しても良い。この場合には、プッシュ缶装着部111Xに設けたツマミ部の回転やレバー部の移動などによって、外部気体流路部材130を通じた気体ARの放出をオンオフすることができる。なお、圧力計付きストップバルブ機能を有するプッシュ缶装着部111Xを用いた場合には、加えて、圧力計でプッシュ缶PSの圧力を確認しながら使用することができる。
Further, in the second embodiment, when the push can mounting portion 111 is attached to the opening head portion PSH of the push can PS and the push can mounting portion 111 is pushed down by the pressing force PO, the opening head portion of the push can PS An example is shown in which the PSH is opened and the gas AR is sent to the external gas flow path member 130, which is an air supply tube.
However, the push can mounting portion 111X having functions such as a pressure reducing valve function and a speed controller function in the opening head portion PSH by utilizing a screw portion (not shown) provided in the opening head portion PSH of the push can PS. May be attached to control the pressure and flow rate of the gas AR sent to the bubble generating unit 120 through the external gas flow path member 130 (see FIGS. 2 and 3).
Further, in the second embodiment, the stopper was opened by pushing down the push can mounting portion 111 with the pushing force PO (see FIG. 3). However, the push can mounting portion 111X having a function such as a stop valve function or a stop valve function with a pressure gauge may be screw-mounted to the opening head portion PSH of the push can PS. In this case, the release of the gas AR through the external gas flow path member 130 can be turned on and off by rotating the knob portion provided on the push can mounting portion 111X or moving the lever portion. When the push can mounting portion 111X having a stop valve function with a pressure gauge is used, it can be used while checking the pressure of the push can PS with the pressure gauge.

1,101 ポータブル微小気泡発生装置
11,111,111X プッシュ缶装着部(ボンベ装着部)
P1 (気体の)一次圧
13 減圧弁
P2 (気体の)二次圧(供給圧力)
18a,18b,18c,18d 内部気体流路部材(気体流路部材)
20,120 気泡発生部
21,121 多孔質部材(多孔質体,セラミック多孔質体)
21P,121P 微細気孔
21A,121A 気体圧入面
21B,121B 気体放出面
30,130 外部気体流路部材(気体流路部材)
AR 気体
ARW 気体流路
PS プッシュ缶(ポータブルガスボンベ)
LQ 液体
BB 微小気泡
1,101 Portable micro bubble generator 11,111,111X Push can mounting part (cylinder mounting part)
P1 (gas) primary pressure 13 Pressure reducing valve P2 (gas) secondary pressure (supply pressure)
18a, 18b, 18c, 18d Internal gas flow path member (gas flow path member)
20,120 Bubble generating part 21,121 Porous member (porous body, ceramic porous body)
21P, 121P Fine pores 21A, 121A Gas press-fitting surface 21B, 121B Gas release surface 30,130 External gas flow path member (gas flow path member)
AR gas ARW gas flow path PS push can (portable gas cylinder)
LQ liquid BB microbubbles

Claims (4)

容器に貯留した液体中に微小気泡を生成するポータブル微小気泡生成装置であって、
気体を充填したポータブルガスボンベを着脱可能に装着して、上記気体を導出するボンベ装着部と、
三次元網目状に連通した微細気孔を有する多孔質材からなり、
上記気体を圧入する気体圧入面、及び、
貯留された上記液体に接触させると共に、上記気体圧入面から上記多孔質材の上記微細気孔に圧入された上記気体を上記微小気泡として上記液体中に放出する気体放出面、を有する
多孔質体と、
上記ボンベ装着部から上記多孔質体まで上記気体を導く気体流路をなす気体流路部材と、を備える
ポータブル微小気泡生成装置。
A portable micro-bubble generator that generates micro-bubbles in the liquid stored in a container.
A portable gas cylinder filled with gas can be attached and detached, and the cylinder mounting part that derives the gas and the cylinder mounting part
It is made of a porous material with fine pores that communicate in a three-dimensional network.
The gas press-fitting surface into which the gas is press-fitted, and
With a porous body having a gas release surface that is brought into contact with the stored liquid and releases the gas that has been press-fitted into the fine pores of the porous material from the gas press-fit surface into the liquid as the microbubbles. ,
A portable microbubble generating device including a gas flow path member forming a gas flow path for guiding the gas from the cylinder mounting portion to the porous body.
請求項1に記載のポータブル微小気泡生成装置であって、
前記ボンベ装着部は、
前記ポータブルガスボンベであるプッシュ缶を装着する
プッシュ缶装着部である
ポータブル微小気泡生成装置。
The portable microbubble generator according to claim 1.
The cylinder mounting portion is
A portable microbubble generator that is a push can mounting portion that mounts a push can that is a portable gas cylinder.
請求項1または請求項2に記載のポータブル微小気泡生成装置であって、
前記気体流路内に、前記多孔質体の前記気体圧入面に供給する前記気体の供給圧力を調整する減圧弁を備える
ポータブル微小気泡生成装置。
The portable microbubble generator according to claim 1 or 2.
A portable microbubble generating device including a pressure reducing valve for adjusting the supply pressure of the gas supplied to the gas press-fitting surface of the porous body in the gas flow path.
請求項1〜請求項3のいずれか1項に記載のポータブル微小気泡生成装置であって、
無電源で動作可能としてなる
ポータブル微小気泡生成装置。
The portable microbubble generator according to any one of claims 1 to 3.
A portable micro bubble generator that can operate without a power source.
JP2019066245A 2019-03-29 2019-03-29 Portable minute bubble generation device Pending JP2020163291A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019066245A JP2020163291A (en) 2019-03-29 2019-03-29 Portable minute bubble generation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019066245A JP2020163291A (en) 2019-03-29 2019-03-29 Portable minute bubble generation device

Publications (1)

Publication Number Publication Date
JP2020163291A true JP2020163291A (en) 2020-10-08

Family

ID=72714765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019066245A Pending JP2020163291A (en) 2019-03-29 2019-03-29 Portable minute bubble generation device

Country Status (1)

Country Link
JP (1) JP2020163291A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023190519A1 (en) * 2022-03-31 2023-10-05 株式会社ノリタケカンパニーリミテド Production apparatus for calcium carbonate and production method for calcium carbonate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4505560B2 (en) * 2003-12-15 2010-07-21 宮崎県 Generation method of monodisperse bubbles
JP3171269U (en) * 2011-08-11 2011-10-20 株式会社リラインス Carbonate spring generator
US20110297006A1 (en) * 2010-04-21 2011-12-08 Tfb Consultants, Ltd Liquid Decanting Method and Apparatus
US20150343400A1 (en) * 2014-06-03 2015-12-03 Robert A. Stevenson Wine bottle aerator
JP2016140801A (en) * 2015-01-30 2016-08-08 株式会社ノリタケカンパニーリミテド Microbubble generating tool and generator of microbubble-containing liquid

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4505560B2 (en) * 2003-12-15 2010-07-21 宮崎県 Generation method of monodisperse bubbles
US20110297006A1 (en) * 2010-04-21 2011-12-08 Tfb Consultants, Ltd Liquid Decanting Method and Apparatus
JP3171269U (en) * 2011-08-11 2011-10-20 株式会社リラインス Carbonate spring generator
US20150343400A1 (en) * 2014-06-03 2015-12-03 Robert A. Stevenson Wine bottle aerator
JP2016140801A (en) * 2015-01-30 2016-08-08 株式会社ノリタケカンパニーリミテド Microbubble generating tool and generator of microbubble-containing liquid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023190519A1 (en) * 2022-03-31 2023-10-05 株式会社ノリタケカンパニーリミテド Production apparatus for calcium carbonate and production method for calcium carbonate

Similar Documents

Publication Publication Date Title
US8205862B2 (en) Device for mixing water and gas
EP1750777A4 (en) Essential oil atomiser
CN102215778B (en) Liquid droplet interproximal cleaning apparatus with gas stream limitation
JP2020163291A (en) Portable minute bubble generation device
EP1538107A3 (en) One-way degassing valve for airtight containers
RU2651010C1 (en) Pump-free spray of metal and combustion by creation of reduced pressure and related control of material flow
JP5540298B2 (en) Fuel supply device mixer and fuel supply system
WO2015169263A2 (en) Water jet machining device
JPWO2019207651A1 (en) Fine bubble generating method and fine bubble generating apparatus
JP2008036531A (en) Bubble discharger
JP2018030094A (en) Fine bubble generation device
WO2003052046A3 (en) Individual means for producing oxygen cocktail and the oxygen cylinder therefor
JP7437857B2 (en) Liquid atomizer and bubble generator for liquid atomizer
JP2012024719A (en) Device for supplying microscopic bubble-containing liquid
RU2342597C1 (en) Acoustic nozzle for spraying of liquids
JP2010202222A (en) Re-filling apparatus for spray can
JP5001327B2 (en) Gas dissolving device
EP1284516A3 (en) Supply device for use with a hydrogen source
JP7025828B2 (en) Liquid atomizer
JP2011011699A (en) Microscopic bubble generator in hull
US20220387948A1 (en) Ultra fine bubble production apparatus
JP2009112975A (en) Fine bubble generator and fine bubble generating method
JP2011025203A (en) Functional mist generator
JP2006272091A (en) Fine bubble producing apparatus
JP2007216371A (en) Sand blasting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230404

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20231003