[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2020150101A - Working machine and diagnostic method of working machine - Google Patents

Working machine and diagnostic method of working machine Download PDF

Info

Publication number
JP2020150101A
JP2020150101A JP2019045526A JP2019045526A JP2020150101A JP 2020150101 A JP2020150101 A JP 2020150101A JP 2019045526 A JP2019045526 A JP 2019045526A JP 2019045526 A JP2019045526 A JP 2019045526A JP 2020150101 A JP2020150101 A JP 2020150101A
Authority
JP
Japan
Prior art keywords
light
abnormality
light receiving
belt
optical sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019045526A
Other languages
Japanese (ja)
Inventor
伸一 宮本
Shinichi Miyamoto
伸一 宮本
三惠 千々和
Mie Chijiwa
三惠 千々和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2019045526A priority Critical patent/JP2020150101A/en
Publication of JP2020150101A publication Critical patent/JP2020150101A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Controlling Sheets Or Webs (AREA)
  • Supply And Installment Of Electrical Components (AREA)

Abstract

To provide a work machine and a diagnostic method for the work machine that can accurately grasp the cause when a work erroneous detection occurs by an optical sensor and can quickly take measures to eliminate the erroneous detection.SOLUTION: A light receiving amount Q of a light receiving element is monitored, and the abnormality of an optical sensor and the abnormality of a belt are detected on the basis of the value of the light receiving amount Q to be monitored and the change of the light receiving amount Q (step ST3, step ST5, and step ST7). When the abnormality of the optical sensor or the abnormality of the belt is detected, the abnormality of the optical sensor and the abnormality of the belt are distinguished and notified to an operator (step ST4, step ST6, and step ST8).SELECTED DRAWING: Figure 13

Description

本発明は、ベルトを走行させてワークを搬送する搬送機構を備えた作業機およびその作業機の診断方法に関する。 The present invention relates to a work machine provided with a transport mechanism for carrying a work by running a belt, and a method for diagnosing the work machine.

従来、ベルトを走行させてワークを搬送する搬送機構を備え、搬送機構によって搬送して位置決めしたワークに対して所定の作業を行う作業機が知られている。このような作業機の例としては、例えば、搬送機構によってワークとしての基板を搬送して位置決めし、部品供給部が供給する部品を装着ヘッドによってピックアップして基板に装着する部品実装装置が挙げられる。このような作業機ではベルト上の基板の位置を検出する光センサを備えており、光センサでワークの位置を検出しながらベルトを作動させることで、ワークの位置制御を行うようになっている(例えば、下記の特許文献1参照)。 Conventionally, there is known a working machine provided with a transport mechanism for transporting a work by running a belt, and performing a predetermined work on a workpiece transported and positioned by the transport mechanism. An example of such a working machine is a component mounting device in which a substrate as a work is transported and positioned by a transport mechanism, and a component supplied by a component supply unit is picked up by a mounting head and mounted on the board. .. Such a work machine is equipped with an optical sensor that detects the position of the substrate on the belt, and the position of the workpiece is controlled by operating the belt while detecting the position of the workpiece with the optical sensor. (For example, see Patent Document 1 below).

光センサは、ベルトの幅方向の一方の端部側から他方の端部側に向けて検査光を投光する投光素子と、投光素子が投光する検査光を他方の端部側で受光する受光素子とを備えている。そして、ワークによって検査光が遮られると受光素子が受光する光量(受光量)が低下することを利用して、ワークが検査光を遮る位置(遮光位置)に位置した状態を検出するようになっている。 The optical sensor is a light projecting element that projects inspection light from one end side in the width direction of the belt toward the other end side, and an inspection light that is projected by the light projecting element on the other end side. It is equipped with a light receiving element that receives light. Then, when the inspection light is blocked by the work, the amount of light received by the light receiving element (light receiving amount) decreases, and the state where the work is located at the position where the inspection light is blocked (light blocking position) is detected. ing.

特開2010−87136号公報JP-A-2010-87136

しかしながら、従来の作業機では、投光素子或いは受光素子の動作が正常でない場合は勿論、受光素子の受光面が汚れているために受光量が低下している場合や、投光素子が投光する検査光の光軸が正規の光路からずれているような場合、その他光センサに異常がある場合には、受光量が閾値を下回ってワークが誤検出される可能性があった。また、光センサに異常がない場合であっても、ベルトに異常がある場合、例えば、ベルトの表面が摩耗して毛羽立ちが起きている場合には、ベルトの表面の毛羽が検査光を遮ることでワークが誤検出される可能性があった。 However, in a conventional working machine, not only when the operation of the light emitting element or the light receiving element is not normal, but also when the light receiving surface of the light receiving element is dirty and the amount of light received is reduced, or when the light emitting element emits light. If the optical axis of the inspection light is deviated from the normal optical path, or if there is an abnormality in the optical sensor, the amount of received light may fall below the threshold value and the workpiece may be erroneously detected. Even if there is no abnormality in the optical sensor, if there is an abnormality in the belt, for example, if the surface of the belt is worn and fluffed, the fluff on the surface of the belt blocks the inspection light. There was a possibility that the work was erroneously detected.

光センサによってワークが誤検出されるとベルトの作動制御が不正確となり、ワークの位置制御が非正常となる。作業者は、ワークの誤検出が生じたときにはその原因を追究して除去する必要があるが、誤検出を生じさせる原因が光センサにあるのかベルトにあるのかを判断するのは困難であり、迅速な対応をとりにくいという問題点があった。 If the work is erroneously detected by the optical sensor, the belt operation control becomes inaccurate and the position control of the work becomes abnormal. When a false detection of a work occurs, the operator needs to investigate and eliminate the cause, but it is difficult to determine whether the cause of the false detection is the optical sensor or the belt. There was a problem that it was difficult to take prompt action.

そこで本発明は、光センサによるワークの誤検出が生じたときにその原因を的確に把握でき、誤検出を解消するための対応を迅速にとることができる作業機および作業機の診断方法を提供することを目的とする。 Therefore, the present invention provides a work machine and a method for diagnosing the work machine, which can accurately grasp the cause when an erroneous detection of a work by an optical sensor occurs and can quickly take measures to eliminate the erroneous detection. The purpose is to do.

本発明の作業機は、ベルトを走行させてワークを搬送する搬送機構と、前記ベルトの幅方向の一方の端部側から他方の端部側に向けて検査光を投光する投光素子および投光素子が投光する検査光を前記他方の端部側で受光する受光素子から成り、前記ワークが前記検査光を遮る遮光位置に位置した状態を検出する光センサと、前記受光素子が受光する光量
である受光量を監視する受光量監視部と、前記受光量監視部が監視する前記受光量の値および前記受光量の変化に基づいて前記光センサと前記ベルトの異常を検出する異常検出部と、前記異常検出部により前記光センサの異常または前記ベルトの異常が検出された場合に、前記光センサの異常と前記ベルトの異常とを区別して報知する検出結果報知手段とを備えた。
The working machine of the present invention includes a transport mechanism for traveling a belt to transport a work, a light projecting element for projecting inspection light from one end side in the width direction of the belt toward the other end side, and a light projecting element. It consists of a light receiving element that receives the inspection light projected by the light projecting element on the other end side, and detects a state in which the work is located at a light-shielding position that blocks the inspection light, and the light receiving element receives light. An abnormality detection unit that monitors the amount of light received, which is the amount of light to be received, and an abnormality detection that detects an abnormality in the optical sensor and the belt based on the value of the amount of light received and the change in the amount of light received monitored by the light receiving amount monitoring unit. The unit and the detection result notification means for distinguishing between the abnormality of the optical sensor and the abnormality of the belt when the abnormality of the optical sensor or the abnormality of the belt is detected by the abnormality detecting unit.

本発明の作業機の診断方法は、ベルトを走行させてワークを搬送する搬送機構と、前記ベルトの幅方向の一方の端部側から他方の端部側に向けて検査光を投光する投光素子および投光素子が投光する検査光を前記他方の端部側で受光する受光素子から成り、前記ワークが前記検査光を遮る遮光位置に位置した状態を検出する光センサとを備えた作業機の診断方法であって、前記受光素子が受光する光量である受光量を監視し、その監視する前記受光量の値および前記受光量の変化に基づいて前記光センサの異常と前記ベルトの異常を検出する異常検出工程と、前記異常検出工程で前記光センサの異常または前記ベルトの異常を検出した場合に、前記光センサの異常と前記ベルトの異常とを区別して報知する検出結果報知工程とを含む。 The method for diagnosing a working machine of the present invention includes a transport mechanism that runs a belt to transport a work, and casts inspection light from one end side in the width direction of the belt toward the other end side. It is composed of an optical element and a light receiving element that receives the inspection light emitted by the light projecting element on the other end side, and includes an optical sensor that detects a state in which the work is located at a light-shielding position that blocks the inspection light. A method for diagnosing a working machine, in which a light receiving amount, which is the amount of light received by the light receiving element, is monitored, and an abnormality of the optical sensor and an abnormality of the belt are found based on the value of the monitored light receiving amount and the change in the light receiving amount. An abnormality detection step for detecting an abnormality, and a detection result notification step for separately notifying the abnormality of the optical sensor and the abnormality of the belt when the abnormality of the optical sensor or the abnormality of the belt is detected in the abnormality detection step. And include.

本発明によれば、光センサによるワークの誤検出が生じたときにその原因を的確に把握でき、誤検出を解消するための対応を迅速にとることができる。 According to the present invention, when an erroneous detection of a work by an optical sensor occurs, the cause can be accurately grasped, and measures for eliminating the erroneous detection can be swiftly taken.

本発明の一実施の形態における作業機の平面図Top view of the working machine according to the embodiment of the present invention 本発明の一実施の形態における作業機が備える搬送機構の斜視図Perspective view of the transport mechanism included in the working machine according to the embodiment of the present invention. 本発明の一実施の形態における作業機が備える搬送機構の平面図Top view of the transport mechanism included in the working machine according to the embodiment of the present invention. 本発明の一実施の形態における作業機の制御系統を示すブロック図A block diagram showing a control system of a working machine according to an embodiment of the present invention. (a)(b)本発明の一実施の形態における作業機が備える光センサの受光素子の受光量の時間に対する変化の例を示すグラフ(A) (b) A graph showing an example of a change in the amount of light received by a light receiving element of an optical sensor included in a working machine according to an embodiment of the present invention with time. (a)(b)(c)本発明の一実施の形態における作業機が備える搬送機構が基板を搬送する状況を示す図(A) (b) (c) The figure which shows the situation which the transport mechanism provided in the working machine in one Embodiment of this invention conveys a substrate. 本発明の一実施の形態における作業機が備える光センサの受光素子の受光量の変化の例を示すグラフA graph showing an example of a change in the amount of light received by a light receiving element of an optical sensor included in a working machine according to an embodiment of the present invention. (a)(b)(c)(d)本発明の一実施の形態における作業機が備える搬送機構による基板の搬送手順を説明する図(A) (b) (c) (d) The figure explaining the transfer procedure of the substrate by the transfer mechanism provided in the working machine in one Embodiment of this invention. (a)(b)本発明の一実施の形態における作業機が備える光センサの受光素子の受光量の変化の例を示すグラフ(A) (b) A graph showing an example of a change in the amount of light received by a light receiving element of an optical sensor included in a working machine according to an embodiment of the present invention. (a)(b)本発明の一実施の形態における作業機が備える光センサの受光素子の受光量の変化の例を示すグラフ(A) (b) A graph showing an example of a change in the amount of light received by a light receiving element of an optical sensor included in a working machine according to an embodiment of the present invention. 本発明の一実施の形態における作業機が備える搬送機構のベルトに毛羽立ちが生じている場合の搬送機構の(a)側面図(b)拡大側面図(A) Side view (b) Enlarged side view of the transport mechanism when the belt of the transport mechanism provided in the working machine according to the embodiment of the present invention is fluffed. 本発明の一実施の形態における作業機が備える光センサの受光素子の受光量の変化の例を示すグラフA graph showing an example of a change in the amount of light received by a light receiving element of an optical sensor included in a working machine according to an embodiment of the present invention. 本発明の一実施の形態における作業機が行う診断作業の実行手順を示すフローチャートA flowchart showing an execution procedure of a diagnostic work performed by a working machine according to an embodiment of the present invention.

以下、図面を参照して本発明の実施の形態について説明する。図1は本発明の一実施の形態における作業機1の一例を示している。ここに示す作業機1は、ワークとしての基板KBを上流工程側から搬入して位置決めし、その基板KBに部品(図示せず)を装着して下流工程側に搬出する部品実装装置である。本実施の形態では、基板KBの搬送方向を(図1の作業者OPから見た左右方向)をX軸方向とし、X軸方向と直交する水平面内方向
(作業者OPから見た前後方向)をY軸方向とする。また、上下方向をZ軸方向とする。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows an example of a working machine 1 according to an embodiment of the present invention. The working machine 1 shown here is a component mounting device that carries in a substrate KB as a work from the upstream process side, positions it, mounts a component (not shown) on the substrate KB, and carries it out to the downstream process side. In the present embodiment, the transport direction of the substrate KB is the X-axis direction (the left-right direction seen from the worker OP in FIG. 1), and the horizontal in-plane direction orthogonal to the X-axis direction (the front-back direction seen from the worker OP). Is the Y-axis direction. Further, the vertical direction is the Z-axis direction.

図1において、作業機1は、基台11、搬送機構12、部品供給部13、装着ヘッド14およびヘッド移動機構15を備えている。搬送機構12は基台11上をX軸方向に延びて設けられており、上流側から送られてきた基板KBを受け取り、所定の位置に位置させる。 In FIG. 1, the working machine 1 includes a base 11, a transport mechanism 12, a component supply unit 13, a mounting head 14, and a head moving mechanism 15. The transport mechanism 12 is provided so as to extend on the base 11 in the X-axis direction, receives the substrate KB sent from the upstream side, and positions the substrate KB at a predetermined position.

図2および図3において、搬送機構12は、X軸方向に延びてY軸方向に対向して配置された前後の2つのフレーム21の間に前後の2つのコンベア22を備えた構成となっている。各コンベア22は、作業者OPから見た左側に位置する上流側の駆動プーリ31a、右側に位置する下流側の従動プーリ31bおよび駆動プーリ31aと従動プーリ31bの間に掛け渡された輪状のベルト32を備えて構成されている。 In FIGS. 2 and 3, the conveyor 12 has a configuration in which two front and rear conveyors 22 are provided between two front and rear frames 21 extending in the X-axis direction and arranged to face each other in the Y-axis direction. There is. Each conveyor 22 has an upstream drive pulley 31a located on the left side as seen from the operator OP, a downstream driven pulley 31b located on the right side, and a ring-shaped belt spanned between the driving pulley 31a and the driven pulley 31b. It is configured to include 32.

図2において、前後のフレーム21のそれぞれには、コンベア22を駆動する駆動モータ33が取り付けられている。駆動モータ33はコンベア22の駆動プーリ31aを回転させることによってベルト32をX軸方向に走行させる。前後の駆動モータ33は、前後の2つのベルト32が同速度で走行するように前後の駆動プーリ31aを駆動する。これにより基板KBはそのY軸方向の両端部が前後のベルト32によって下方から支持された状態で、ベルト32の搬送方向(図1、図2および図3中に示す矢印Aの方向)に搬送される。搬送機構12におけるベルト32の作動制御については後述する。 In FIG. 2, a drive motor 33 for driving the conveyor 22 is attached to each of the front and rear frames 21. The drive motor 33 causes the belt 32 to travel in the X-axis direction by rotating the drive pulley 31a of the conveyor 22. The front and rear drive motors 33 drive the front and rear drive pulleys 31a so that the two front and rear belts 32 travel at the same speed. As a result, the substrate KB is transported in the transport direction of the belt 32 (direction of arrow A shown in FIGS. 1, 2 and 3) with both ends in the Y-axis direction supported from below by the front and rear belts 32. Will be done. The operation control of the belt 32 in the transport mechanism 12 will be described later.

図1において、部品供給部13は所定の部品供給位置13Kに部品を供給する複数のパーツフィーダ13Fを備えて構成されている。装着ヘッド14は下方に延びたノズル(図示せず)を備えており、ヘッド移動機構15は装着ヘッド14を水平面内で移動させる。ノズルの下端には真空吸着力を発生させて部品を吸着させることができる。 In FIG. 1, the component supply unit 13 is configured to include a plurality of component feeders 13F for supplying components to a predetermined component supply position 13K. The mounting head 14 includes a nozzle (not shown) extending downward, and the head moving mechanism 15 moves the mounting head 14 in a horizontal plane. A vacuum suction force can be generated at the lower end of the nozzle to suck parts.

図4において、搬送機構12の各コンベア22、部品供給部13の各パーツフィーダ13F、装着ヘッド14およびヘッド移動機構15の各動作は、作業機1が備える制御装置40によって制御される。制御装置40は前後のコンベア22を作動させて基板KBの搬送と位置決め動作を行い、各パーツフィーダ13Fを作動させて部品を部品供給位置13Kに供給させる。また、制御装置40はヘッド移動機構15を作動させて装着ヘッド14を移動させ、装着ヘッド14を作動させてノズルに部品を吸着させる。 In FIG. 4, each operation of each conveyor 22 of the transport mechanism 12, each part feeder 13F of the parts supply unit 13, the mounting head 14, and the head moving mechanism 15 is controlled by the control device 40 included in the work machine 1. The control device 40 operates the front and rear conveyors 22 to convey and position the substrate KB, and operates each part feeder 13F to supply parts to the part supply position 13K. Further, the control device 40 operates the head moving mechanism 15 to move the mounting head 14, and operates the mounting head 14 to attract the parts to the nozzle.

図1に示すように、基台11にはタッチパネル41が取り付けられている。タッチパネル41は制御装置40と電気的に繋がっており(図4)、作業者OPが作業機1に対して入力を行う入力手段として機能する。また、タッチパネル41は、作業機1が作業者OPに対して所要の指示や種々の作業結果を表示する表示手段としても機能し、作業者OPに対して所要の報知を行う報知手段としても機能する。 As shown in FIG. 1, a touch panel 41 is attached to the base 11. The touch panel 41 is electrically connected to the control device 40 (FIG. 4), and functions as an input means for the worker OP to input to the work machine 1. In addition, the touch panel 41 also functions as a display means for the work machine 1 to display necessary instructions and various work results to the worker OP, and also as a notification means for giving necessary notification to the worker OP. To do.

作業機1は、部品供給部13から部品を供給しつつ、ヘッド移動機構15によって装着ヘッド14を移動させて、基板KBに対する装着ターンを繰り返し実行する。装着ターンは、部品供給部13が供給する部品をノズルに吸着(ピックアップ)させる動作と、部品をピックアップした装着ヘッド14を基板KBの上方に移動させて、基板KB上の各パターンに部品を装着する動作とから成る。作業機1は下流側から送られてきた基板KBを搬送機構12によって搬入して作業位置に位置決めした後、装着ターンを繰り返し実行する。そして、必要な部品をすべて基板KBに装着したら、搬送機構12によって基板KBを下流側に搬出する。 The working machine 1 moves the mounting head 14 by the head moving mechanism 15 while supplying the parts from the component supply unit 13, and repeatedly executes the mounting turn on the substrate KB. In the mounting turn, the component supplied by the component supply unit 13 is attracted (picked up) to the nozzle, and the mounting head 14 that picks up the component is moved above the board KB to mount the component on each pattern on the board KB. It consists of actions to be taken. The work machine 1 carries in the substrate KB sent from the downstream side by the transport mechanism 12, positions it at the work position, and then repeatedly executes the mounting turn. Then, when all the necessary parts are mounted on the substrate KB, the substrate KB is carried out to the downstream side by the transport mechanism 12.

次に、搬送機構12による基板KBの搬送制御について説明する。図1、図2および図3において、搬送機構12が備える前後の2つのフレーム21のそれぞれには、ベルト3
2上における基板KBの位置を検出するための複数の光センサ50が設けられている。本実施の形態では、光センサ50は、搬送機構12による基板KBの搬送方向の最も上流側(基板KBの入口側)の端部、中間部および最も下流側(基板KBの出口側)の端部の3箇所に設けられている。
Next, the transfer control of the substrate KB by the transfer mechanism 12 will be described. In FIGS. 1, 2 and 3, a belt 3 is attached to each of the two front and rear frames 21 included in the transport mechanism 12.
A plurality of optical sensors 50 for detecting the position of the substrate KB on the 2 are provided. In the present embodiment, the optical sensor 50 has an end portion, an intermediate portion, and the most downstream side (outlet side of the substrate KB) of the substrate KB in the transport direction by the transport mechanism 12 in the transport direction. It is provided at three places in the section.

図1、図2および図3において、各光センサ50は、投光素子51と受光素子52から構成されている。投光素子51は前後のフレーム21のうちの一方のフレーム21(ここでは前側のフレーム21とする)の外側に取り付けられており、受光素子52は他方のフレーム21(ここでは後側のフレーム21とする)の外側に取り付けられている。投光素子51と受光素子52はベルト32の幅方向(Y軸方向)に対向して配置されている。 In FIGS. 1, 2 and 3, each optical sensor 50 is composed of a light projecting element 51 and a light receiving element 52. The light emitting element 51 is attached to the outside of one of the front and rear frames 21 (here, the front frame 21), and the light receiving element 52 is the other frame 21 (here, the rear frame 21). It is attached to the outside of). The light emitting element 51 and the light receiving element 52 are arranged so as to face each other in the width direction (Y-axis direction) of the belt 32.

各光センサ50の投光素子51と受光素子52はそれぞれ制御装置40によって動作が制御される(図4)。投光素子51は受光素子52に向けて検査光53を投光する。検査光53の光路は、図2に示すように、前側のフレーム21に設けられた開口21Kから前後のベルト32それぞれの上面のやや上方を通り、後側のフレーム21に設けられた開口21Kから受光素子52の受光面に至る直線経路に設定されている。ここで、検査光53の光路上に基板KBが位置していない場合には、投光素子51が投光した検査光53は基板KBによって遮られることなく受光素子52に受光されるが、検査光53の光路上に基板KBが位置しているときには、検査光53は基板KBの側面によって遮られるので、受光素子52に受光されない。 The operation of the light emitting element 51 and the light receiving element 52 of each optical sensor 50 is controlled by the control device 40 (FIG. 4). The light projecting element 51 projects the inspection light 53 toward the light receiving element 52. As shown in FIG. 2, the optical path of the inspection light 53 passes slightly above the upper surfaces of the front and rear belts 32 from the opening 21K provided in the front frame 21, and from the opening 21K provided in the rear frame 21. It is set to a linear path leading to the light receiving surface of the light receiving element 52. Here, when the substrate KB is not located on the optical path of the inspection light 53, the inspection light 53 projected by the light projecting element 51 is received by the light receiving element 52 without being blocked by the substrate KB, but the inspection is performed. When the substrate KB is located on the optical path of the light 53, the inspection light 53 is blocked by the side surface of the substrate KB and is not received by the light receiving element 52.

受光素子52は、受光面で受光する光量(受光素子52の受光量Qと称する)の情報を制御装置40に送信しており、制御装置40は、受光素子52の受光量Qに基づいて、検査光53の光路上に基板KBが位置しているか否かを判断する。具体的には、図5(a)の時間Tと受光量Qとの関係のグラフに示すように、受光素子52の受光量Qが予め定めた閾値Q0よりも大きい場合には、受光素子52は検査光53を受光していることになるので、制御装置40は、検査光53の光路上に基板KBが位置していないと判断する。一方、図5(b)の時間Tと受光量Qとの関係のグラフに示すように、受光素子52の受光量Qが閾値Q0よりも小さい場合には、受光素子52は検査光53を受光してないことになるので、制御装置40は、検査光53の光路上に基板KBが位置していると判断する。 The light receiving element 52 transmits information on the amount of light received on the light receiving surface (referred to as the light receiving amount Q of the light receiving element 52) to the control device 40, and the control device 40 is based on the light receiving amount Q of the light receiving element 52. It is determined whether or not the substrate KB is located on the optical path of the inspection light 53. Specifically, as shown in the graph of the relationship between the time T and the light receiving amount Q in FIG. 5A, when the light receiving amount Q of the light receiving element 52 is larger than the predetermined threshold value Q0, the light receiving element 52 Is receiving the inspection light 53, so the control device 40 determines that the substrate KB is not located on the optical path of the inspection light 53. On the other hand, as shown in the graph of the relationship between the time T and the light receiving amount Q in FIG. 5B, when the light receiving amount Q of the light receiving element 52 is smaller than the threshold value Q0, the light receiving element 52 receives the inspection light 53. Since this is not the case, the control device 40 determines that the substrate KB is located on the optical path of the inspection light 53.

図6(a),(b),(c)は、ベルト32の走行によって搬送される基板KBがひとつの光センサ50の検査光53を横切って進む場合の基板KBの位置を順に示したものである。図6(a)に示すように、基板KBの先頭部Eaが検査光53に近づきつつある状態では、検査光53は基板KBによって遮られていない。このため受光素子52は検査光53を受光しており、受光素子52の受光量Qは、閾値Q0を上回った値となっている。制御装置40は、このように受光量Qが閾値Q0を上回った状態が継続している間は(図7中に示す時間領域Ta)、検査光53の光路上に基板KBは位置していないと判断する。 6 (a), (b), and (c) show in order the positions of the substrate KB when the substrate KB conveyed by the traveling of the belt 32 travels across the inspection light 53 of one optical sensor 50. Is. As shown in FIG. 6A, the inspection light 53 is not blocked by the substrate KB when the head portion Ea of the substrate KB is approaching the inspection light 53. Therefore, the light receiving element 52 receives the inspection light 53, and the light receiving amount Q of the light receiving element 52 exceeds the threshold value Q0. In the control device 40, the substrate KB is not located on the optical path of the inspection light 53 while the light receiving amount Q continues to exceed the threshold value Q0 (time domain Ta shown in FIG. 7). Judge.

その後、搬送が進んで、基板KBの先頭部Eaが検査光53の光路を通過すると(図7中に示す時間T1)、図6(b)に示すように、検査光53は基板KBによって遮られ、受光素子52は検査光53を受光しなくなる。そうすると、受光量Qは閾値Q0を下回った状態となる。制御装置40は、このように受光量Qが閾値Q0を下回った状態が継続している間は(図7中に示す時間領域Tb)、検査光53の光路上に基板KBが位置していると判断する。 After that, when the transfer proceeds and the head portion Ea of the substrate KB passes through the optical path of the inspection light 53 (time T1 shown in FIG. 7), the inspection light 53 is blocked by the substrate KB as shown in FIG. 6 (b). Therefore, the light receiving element 52 does not receive the inspection light 53. Then, the received light amount Q is in a state of being below the threshold value Q0. In the control device 40, the substrate KB is located on the optical path of the inspection light 53 while the received light amount Q continues to be below the threshold value Q0 (time domain Tb shown in FIG. 7). Judge.

更に搬送が進み、基板KBの後尾部Ebが検査光53の光路を通過すると(図7中に示す時間T2)、図6(c))に示すように、検査光53は基板KBによって遮られなくなり、受光素子52は検査光53を再度受光するようになる。そうすると、受光量Qは閾値
Q0を上回った状態となる。制御装置40は、このように受光量Qが閾値Q0を上回った状態が継続している間は(図7中に示す時間領域Tc)、検査光53の光路上に基板KBは位置していないと判断する。
When the transfer further progresses and the tail portion Eb of the substrate KB passes through the optical path of the inspection light 53 (time T2 shown in FIG. 7), the inspection light 53 is blocked by the substrate KB as shown in FIG. 6 (c). The light receiving element 52 no longer receives the inspection light 53 again. Then, the received light amount Q is in a state of exceeding the threshold value Q0. In the control device 40, the substrate KB is not located on the optical path of the inspection light 53 while the light receiving amount Q continues to exceed the threshold value Q0 (time domain Tc shown in FIG. 7). Judge.

本実施の形態では、制御装置40は、搬送機構12に設けられた3つの光センサ50によって、ベルト32上の基板KBの位置を検出する。制御装置40は、搬送機構12に搬入され始めた基板KBの先頭部Eaが、搬送方向の最も上流側に設けられた光センサ50(第1の光センサ50と称する)の検査光53の光路を通過したことを検知したら(図8(a))、基板KBが搬送機構12に搬入され始めたと判断する。 In the present embodiment, the control device 40 detects the position of the substrate KB on the belt 32 by the three optical sensors 50 provided in the transport mechanism 12. In the control device 40, the head portion Ea of the substrate KB that has begun to be carried into the transport mechanism 12 is the optical path of the inspection light 53 of the optical sensor 50 (referred to as the first optical sensor 50) provided on the most upstream side in the transport direction. (FIG. 8A), it is determined that the substrate KB has begun to be carried into the transport mechanism 12.

制御装置40は、基板KBが搬送機構12に搬入され始めたと判断した後、基板KBの後尾部Ebが第1の光センサ50の検査光53の光路を通過したことを検知したら、基板KBが搬送機構12によって搬入され終えたと判断する。次いで、基板KBの先頭部Eaが搬送方向の中間部に位置する光センサ50(第2の光センサ50と称する)の検査光53の光路を通過したことを検知したら(図8(b))、制御装置40は基板KBが部品の装着作業位置に到達したと判断し、ベルト32の走行を停止させる。ベルト32の走行が停止された状態では、装着ヘッド14による基板KBに対する部品装着が行われる。 After determining that the substrate KB has begun to be carried into the transport mechanism 12, the control device 40 detects that the tail portion Eb of the substrate KB has passed through the optical path of the inspection light 53 of the first optical sensor 50, and then the substrate KB It is determined that the delivery has been completed by the transport mechanism 12. Next, when it is detected that the leading portion Ea of the substrate KB has passed through the optical path of the inspection light 53 of the optical sensor 50 (referred to as the second optical sensor 50) located in the middle portion in the transport direction (FIG. 8 (b)). , The control device 40 determines that the board KB has reached the mounting work position of the component, and stops the running of the belt 32. When the belt 32 is stopped, the mounting head 14 mounts the components on the substrate KB.

制御装置40は、部品装着が終了したらベルト32を走行させる。そして、基板KBの先頭部Eaが搬送方向の最も下流側に位置する光センサ(第3の光センサ50と称する)の検査光53の光路を通過したことを検知したら(図8(c))、基板KBが搬送機構12から搬出され始めたと判断する。制御装置40は、基板KBが搬送機構12から搬出され始めたと判断した後、基板KBの後尾部Ebが第3の光センサ50の検査光53の光路を通過したことを検知したら(図8(d))、基板KBが搬送機構12から搬出され終えたと判断する。 The control device 40 runs the belt 32 after the parts have been mounted. Then, when it is detected that the leading portion Ea of the substrate KB has passed through the optical path of the inspection light 53 of the optical sensor (referred to as the third optical sensor 50) located on the most downstream side in the transport direction (FIG. 8 (c)). , It is determined that the substrate KB has begun to be carried out from the transport mechanism 12. After determining that the substrate KB has begun to be carried out from the transport mechanism 12, the control device 40 detects that the tail portion Eb of the substrate KB has passed through the optical path of the inspection light 53 of the third optical sensor 50 (FIG. 8 (FIG. 8). d)), It is determined that the substrate KB has been carried out from the transport mechanism 12.

このように制御装置40は、搬送機構12による基板KBの搬送方向に沿って設けられた3つの光センサ50によって基板KBの先頭部Eaおよび後尾部Ebを検出しながらベルト32を作動させることで、ベルト32上における基板KBの位置を適切に制御できるようになっている。 In this way, the control device 40 operates the belt 32 while detecting the front portion Ea and the tail portion Eb of the substrate KB by the three optical sensors 50 provided along the transport direction of the substrate KB by the transport mechanism 12. , The position of the substrate KB on the belt 32 can be appropriately controlled.

ここで、各光センサ50における投光素子51は、一定の光量の検査光53を受光素子52に向けて投光するように制御されている。このため、受光素子52の受光量Qは、検査光53が基板KBによって遮られていない状態では、閾値Q0よりも大きい値であって、図5(a)に示す下限値Q1と上限値Q2との間の一定範囲内の値の光量を受光するようになっている。 Here, the light projecting element 51 in each optical sensor 50 is controlled so as to project a constant amount of inspection light 53 toward the light receiving element 52. Therefore, the light receiving amount Q of the light receiving element 52 is a value larger than the threshold value Q0 when the inspection light 53 is not blocked by the substrate KB, and the lower limit value Q1 and the upper limit value Q2 shown in FIG. 5A are shown. It is designed to receive light with a value within a certain range between and.

このことから、制御装置40は、検査光53が基板KBによって遮られていない状態において、受光素子52の受光量Qが上限値Q2を上回っていることを検知した場合には(図9(a))、隣接する他の光センサ50や他の装置等からの光(他の光)が検査光53に混入していると判断する。このような状況では、基板KBが検査光53の光路上に位置しているにも拘らず、受光素子52の受光量Qが閾値Q0を下回らない(図9(b))。このため、実際には検査光53の光路上に基板KBが位置しているにも拘らず、その基板KBが検出されないという基板KBの誤検出が生じ得る。このような誤検出が生じると、制御装置40によるベルト32の走行制御が不正確になるので、早急な対策が必要となる。 From this, when the control device 40 detects that the light receiving amount Q of the light receiving element 52 exceeds the upper limit value Q2 in a state where the inspection light 53 is not blocked by the substrate KB (FIG. 9 (a). )), It is determined that the light (other light) from the adjacent other optical sensor 50, other device, etc. is mixed in the inspection light 53. In such a situation, although the substrate KB is located on the optical path of the inspection light 53, the light receiving amount Q of the light receiving element 52 does not fall below the threshold value Q0 (FIG. 9B). Therefore, even though the substrate KB is actually located on the optical path of the inspection light 53, the substrate KB may be erroneously detected that the substrate KB is not detected. If such an erroneous detection occurs, the traveling control of the belt 32 by the control device 40 becomes inaccurate, and urgent measures are required.

また、制御装置40は、検査光53の光路上に基板KBが位置していないと判断している状態で、受光素子52の受光量Qが継続的に閾値Q0よりも小さくなっている状態を検出した場合(図10(a))や、受光素子52の受光量Qが徐々に低下している状態を検
出した場合(図10(b))には、光センサ50に異常が生じていると判断する。前者の異常の原因としては、受光素子52の受光面が汚れている場合、投光素子51が投光する検査光53の光軸が正規の光路からずれている場合、投光素子51が投光する検査光53の光量が予め設定した光量よりも小さい場合、受光素子52の受光の感度が低下している場合等が挙げられる。一方、後者の異常の原因としては、投光素子51が投光する検査光53の光量が徐々に減少している場合や、受光素子52の受光の感度が徐々に低下している場合等が挙げられる。
Further, the control device 40 determines that the substrate KB is not located on the optical path of the inspection light 53, and the light receiving amount Q of the light receiving element 52 is continuously smaller than the threshold value Q0. When it is detected (FIG. 10 (a)) or when it is detected that the light receiving amount Q of the light receiving element 52 is gradually decreasing (FIG. 10 (b)), an abnormality has occurred in the optical sensor 50. Judge. The cause of the former abnormality is that when the light receiving surface of the light receiving element 52 is dirty, when the optical axis of the inspection light 53 projected by the light emitting element 51 deviates from the normal optical path, the light emitting element 51 emits light. Examples include cases where the amount of light of the inspection light 53 to be lit is smaller than a preset amount of light, cases where the sensitivity of light reception by the light receiving element 52 is reduced, and the like. On the other hand, the cause of the latter abnormality is that the amount of light of the inspection light 53 projected by the light projecting element 51 is gradually decreasing, or the light receiving sensitivity of the light receiving element 52 is gradually decreasing. Can be mentioned.

検査光53の光路上に基板KBが位置していない状況において、受光素子52の受光量Qが継続的に閾値Q0よりも小さくなっている場合には、実際には基板KBが検査光53の光路上に位置していないにも拘らず、検査光53の光路上に基板KBが位置していると判断する基板KBの誤検出が生じ得る。また、受光素子52の受光量Qが徐々に低下している場合も、その後に受光量Qが閾値Q0よりも小さくなって基板KBの誤検出が生じることが予想される。これらの光センサ50に生じた異常によってもたらされる基板KBの誤検出は、ベルト32の走行制御を誤らせるものであるので、早急な対策が必要となる。 In a situation where the substrate KB is not located on the optical path of the inspection light 53, if the light receiving amount Q of the light receiving element 52 is continuously smaller than the threshold value Q0, the substrate KB is actually the inspection light 53. Although it is not located on the optical path, erroneous detection of the substrate KB that determines that the substrate KB is located on the optical path of the inspection light 53 may occur. Further, even when the light receiving amount Q of the light receiving element 52 gradually decreases, it is expected that the light receiving amount Q will become smaller than the threshold value Q0 thereafter and erroneous detection of the substrate KB will occur. Since the erroneous detection of the substrate KB caused by the abnormality generated in these optical sensors 50 causes the traveling control of the belt 32 to be erroneous, urgent measures are required.

図11(a)は、ベルト32の表面が摩耗等してベルト32の表面に毛羽KEが立っている(いわゆる毛羽立ちが生じている)状態を示している。図11(a)中の領域RDの拡大図である図11(b)に示すように、毛羽KEのベルト32の表面からの高さTが、ベルト32の表面からの検査光53の高さHKよりも高い場合には、その毛羽KEがベルト32の走行によって検査光53を遮る。このため光センサ50は、実際には基板KBでないものを基板KBと誤って検出することになり、基板KBの誤検出が生じ得る。 FIG. 11A shows a state in which the surface of the belt 32 is worn and fluff KE stands on the surface of the belt 32 (so-called fluffing occurs). As shown in FIG. 11 (b), which is an enlarged view of the region RD in FIG. 11 (a), the height T of the fluff KE from the surface of the belt 32 is the height of the inspection light 53 from the surface of the belt 32. If it is higher than HK, the fluff KE blocks the inspection light 53 by running the belt 32. Therefore, the optical sensor 50 mistakenly detects a substrate KB that is not actually a substrate KB, which may cause an erroneous detection of the substrate KB.

ベルト32の走行時に検査光53が毛羽KEによって遮られると、受光素子52の受光量Qは、閾値Q0を下回った直後に再び閾値を上回るようなノイズ的な変化をする(図12)。そして、ベルト32が継続して複数回周回する場合には、毛羽KEによる検査光53の遮光が周期的に繰り返されるため、受光量Qのノイズ的な変化が周期的に表れることになる(図12)。このようなベルト32の表面の毛羽立ち(すなわちベルト32の異常)による基板KBの誤検出は、光センサ50の異常によるものとは異なり、早急な対策は必ずしも必要ではない。 When the inspection light 53 is blocked by the fluff KE while the belt 32 is running, the light receiving amount Q of the light receiving element 52 changes like noise so as to exceed the threshold again immediately after falling below the threshold Q0 (FIG. 12). When the belt 32 continuously orbits a plurality of times, the light-shielding of the inspection light 53 by the fluff KE is periodically repeated, so that a noise-like change in the received light amount Q appears periodically (FIG. FIG. 12). Such erroneous detection of the substrate KB due to fluffing on the surface of the belt 32 (that is, abnormality of the belt 32) is different from that due to the abnormality of the optical sensor 50, and urgent measures are not always necessary.

図4において、制御装置40は、受光量監視部40a、異常検出部40bおよび報知制御部40cを備えている。受光量監視部40aは、各光センサ50の受光素子52が受光する光量(すなわち受光量Q)を監視する。異常検出部40bは、受光量監視部40aが監視する各光センサ50の受光素子52の受光量Qの値および受光量Qの変化に基づいて、光センサ50の異常とベルト32の異常を検出する。報知制御部40cは、異常検出部40bにより光センサ50の異常またはベルト32の異常が検出された場合に、タッチパネル41を通じて、これらの異常が生じている旨を作業者OPに報知する。 In FIG. 4, the control device 40 includes a light receiving amount monitoring unit 40a, an abnormality detection unit 40b, and a notification control unit 40c. The light receiving amount monitoring unit 40a monitors the light amount received by the light receiving element 52 of each optical sensor 50 (that is, the light receiving amount Q). The abnormality detection unit 40b detects an abnormality of the optical sensor 50 and an abnormality of the belt 32 based on the value of the light receiving amount Q of the light receiving element 52 of each optical sensor 50 monitored by the light receiving amount monitoring unit 40a and the change of the light receiving amount Q. To do. When the abnormality detection unit 40b detects an abnormality of the optical sensor 50 or an abnormality of the belt 32, the notification control unit 40c notifies the operator OP that these abnormalities have occurred through the touch panel 41.

図13に示すフローチャートは、作業機1が光センサ50またはベルト32に異常があるか否かを診断する診断作業の実行手順(診断方法)を示している。この診断作業は、ベルト32が走行しており、かつ、基板KBが検査の対象とする光センサ50の遮光位置に位置することがない状態において行われる。このため診断作業は、作業機1による生産の開始前やメンテナンス時等、搬送機構12による基板KBの搬送を行わない状況で実行されるのが好ましい。診断は、3つの光センサ50について同時に行ってもよいし、光センサ50ごとに別個に行ってもよい。 The flowchart shown in FIG. 13 shows an execution procedure (diagnosis method) of a diagnostic operation in which the working machine 1 diagnoses whether or not there is an abnormality in the optical sensor 50 or the belt 32. This diagnostic work is performed in a state where the belt 32 is running and the substrate KB is not located at the light-shielding position of the optical sensor 50 to be inspected. Therefore, it is preferable that the diagnostic work is performed in a situation where the substrate KB is not transported by the transport mechanism 12, such as before the start of production by the work machine 1 or during maintenance. The diagnosis may be performed on the three optical sensors 50 at the same time, or may be performed separately for each optical sensor 50.

制御装置40は、診断作業を行うときは先ず、駆動モータ33を作動させて、ベルト32の走行を開始する(図13におけるステップST1)。ベルト32の走行が開始されたら、受光量監視部40aが、光センサ50の受光素子52の受光量Qの監視を開始する(
ステップST2)。
When performing the diagnostic work, the control device 40 first operates the drive motor 33 to start the traveling of the belt 32 (step ST1 in FIG. 13). When the running of the belt 32 is started, the light receiving amount monitoring unit 40a starts monitoring the light receiving amount Q of the light receiving element 52 of the optical sensor 50 (
Step ST2).

受光量監視部40aが受光量Qの監視を開始したら、異常検出部40bは、受光量Qの値に基づいて、受光量Qが上限値Q2を上回っているか否かを判断する(ステップST3)。そして、受光量Qが上限値Q2を上回っていると判断した場合には、報知制御部40cが、タッチパネル41を通じて、受光素子52に検査光53とは異なる光が混入している可能性がある旨を報知する(ステップST4)。作業者OPは、ステップST4の報知を受けた場合には、隣接する他の光センサ50や他の装置からの光の有無を確認し、必要に応じて他の光が受光素子52に入ってくるのを防いだりフィルタを設置したりして対応する。 When the light receiving amount monitoring unit 40a starts monitoring the light receiving amount Q, the abnormality detecting unit 40b determines whether or not the light receiving amount Q exceeds the upper limit value Q2 based on the value of the light receiving amount Q (step ST3). .. When it is determined that the light receiving amount Q exceeds the upper limit value Q2, the notification control unit 40c may have mixed light different from the inspection light 53 into the light receiving element 52 through the touch panel 41. Notify that effect (step ST4). When the operator OP receives the notification in step ST4, it confirms the presence or absence of light from another adjacent optical sensor 50 or another device, and if necessary, other light enters the light receiving element 52. Correspond by preventing it from coming and installing a filter.

また、異常検出部40bは、受光量Qの値に基づいて、受光量Qが閾値Q0よりも小さいか否かを判断するとともに、受光量Qの値の変化に基づいて、受光量Qが徐々に低下しているか否かを判断する(ステップST5)。そして、受光量Qが閾値Q0よりも小さいと判断した場合、或いは受光量Qが徐々に低下していると判断した場合には、報知制御部40cは、タッチパネル41を通じて、光センサ50に異常が認められる旨を報知する(ステップST6)。作業者OPは、ステップST6の報知を受けた場合には、受光素子52の受光面の汚れの除去、検査光53の光軸の修正、投光素子51が投光する検査光53の光量の調整、受光素子52の受光に関する制御装置40側のソフトウェアの点検等を行って対応する。 Further, the abnormality detection unit 40b determines whether or not the light receiving amount Q is smaller than the threshold value Q0 based on the value of the light receiving amount Q, and the light receiving amount Q gradually increases based on the change in the value of the light receiving amount Q. It is determined whether or not the value has decreased to (step ST5). Then, when it is determined that the received light amount Q is smaller than the threshold value Q0, or when it is determined that the received light amount Q is gradually decreasing, the notification control unit 40c causes an abnormality in the optical sensor 50 through the touch panel 41. Notify that it is recognized (step ST6). When the operator OP receives the notification in step ST6, the operator OP removes dirt on the light receiving surface of the light receiving element 52, corrects the optical axis of the inspection light 53, and determines the amount of light of the inspection light 53 projected by the light projecting element 51. The adjustment and the inspection of the software on the control device 40 side regarding the light reception of the light receiving element 52 are performed.

また、異常検出部40bは、受光量Qの値の変化に基づいて、受光量Qがノイズ的な変化をするか否かを判断する(ステップST7)。そして、異常検出部40bが、受光量Qがノイズ的な変化をしたと判断した場合には、報知制御部40cは、タッチパネル41を通じてベルト32に異常が認められる旨を報知する(ステップST8)。作業者OPは、ステップST6の報知を受けた場合には、適切な時期に、ベルト32の交換や清掃等を行って対応する。 Further, the abnormality detection unit 40b determines whether or not the light receiving amount Q changes in a noise-like manner based on the change in the value of the light receiving amount Q (step ST7). Then, when the abnormality detection unit 40b determines that the received light amount Q has changed in a noise-like manner, the notification control unit 40c notifies through the touch panel 41 that the belt 32 has an abnormality (step ST8). When the worker OP receives the notification in step ST6, the worker OP responds by replacing or cleaning the belt 32 at an appropriate time.

制御装置40はベルト32の走行の開始後、規定の時間(ベルト32が少なくとも1回、好ましくは複数回周回する時間)が経過するまでのあいだ、上記ステップST3〜ステップST8を繰り返し実行する(ステップST9)。そして、ベルト32の走行の開始後、上記規定の時間が経過した場合には、制御装置40は受光量Qの監視を終了し(ステップST10)、ベルト32の走行も停止させる(ステップST11)。これにより診断作業が終了する。 The control device 40 repeatedly executes the above steps ST3 to ST8 until a predetermined time (time for the belt 32 to lap at least once, preferably a plurality of times) elapses after the start of traveling of the belt 32 (step). ST9). Then, when the specified time elapses after the start of the running of the belt 32, the control device 40 ends the monitoring of the light receiving amount Q (step ST10) and stops the running of the belt 32 (step ST11). This completes the diagnostic work.

これまで説明したように、本実施の形態における作業機1およびその診断作業(診断方法)では、ベルト32が走行しており、かつ、基板KBが光センサ50の検査光53を遮る遮光位置に位置することがない状態において、受光量監視部40aが受光素子52の受光量Qを監視し、その監視する受光量Qの値および受光量Qの変化に基づいて異常検出部40bが、光センサ50の異常とベルト32の異常を検出する異常検出工程(ステップST3、ステップST5およびステップST7)を実行するようになっている。そして、異常検出部40b(異常検出工程)で光センサ50の異常またはベルト32の異常を検出した場合には、報知制御部40cが、タッチパネル41を通じて、光センサ50の異常とベルト32の異常とを区別して報知する検出結果報知工程(ステップST4、ステップST6およびステップST8)を実行するようになっている。このとき制御装置40の報知制御部40cとタッチパネル41は、異常検出部40bにより光センサ50の異常またはベルト32の異常が検出された場合に、光センサ50の異常とベルト32の異常とを区別して報知する検出結果報知手段60して機能する(図4)。 As described above, in the work machine 1 and its diagnostic work (diagnosis method) in the present embodiment, the belt 32 is running and the substrate KB is in a light-shielding position that blocks the inspection light 53 of the optical sensor 50. The light receiving amount monitoring unit 40a monitors the light receiving amount Q of the light receiving element 52 in a state where the light receiving amount is not located, and the abnormality detecting unit 40b monitors the light receiving amount Q of the monitored light receiving amount Q and changes in the light receiving amount Q. An abnormality detection step (step ST3, step ST5, and step ST7) for detecting the abnormality of 50 and the abnormality of the belt 32 is executed. Then, when the abnormality detection unit 40b (abnormality detection step) detects an abnormality of the optical sensor 50 or an abnormality of the belt 32, the notification control unit 40c detects the abnormality of the optical sensor 50 and the abnormality of the belt 32 through the touch panel 41. The detection result notification step (step ST4, step ST6, and step ST8) for distinguishing and notifying the above is executed. At this time, when the notification control unit 40c and the touch panel 41 of the control device 40 detect an abnormality of the optical sensor 50 or an abnormality of the belt 32 by the abnormality detection unit 40b, the abnormality of the optical sensor 50 and the abnormality of the belt 32 are separated. It functions as a detection result notification means 60 for separately notifying (FIG. 4).

以上説明したように、本実施の形態における作業機1および作業機1の診断方法では、
光センサ50の異常またはベルト32の異常がある場合に、光センサ50の異常とベルト32の異常とが区別して報知されるので、作業者OPは、光センサ50またはベルト32に異常があるか否かだけでなく、異常がある場合にはその異常の原因も即座に把握することができる。よって、作業者OPは誤検出に対する迅速な対応をとることができる。
As described above, in the method of diagnosing the working machine 1 and the working machine 1 in the present embodiment,
When there is an abnormality in the optical sensor 50 or an abnormality in the belt 32, the abnormality in the optical sensor 50 and the abnormality in the belt 32 are notified separately, so that the worker OP has an abnormality in the optical sensor 50 or the belt 32. Not only whether or not, but if there is an abnormality, the cause of the abnormality can be immediately grasped. Therefore, the worker OP can take a quick response to the false detection.

これまで本発明の実施の形態について説明してきたが、本発明は上述したものに限定されず、種々の変形等が可能である。例えば、上述の実施の形態では、受光量Qの監視を行う規定の時間の間、ステップST3〜ステップST8の工程を繰り返し実行するようになっていたが、規定の時間が過ぎるまでの間の受光量Qの値の変化を記録しておき、規定の時間が経過した後で、ステップST3〜ステップST8をまとめて実行するようにしてもよい。 Although the embodiments of the present invention have been described so far, the present invention is not limited to those described above, and various modifications and the like are possible. For example, in the above-described embodiment, the steps of steps ST3 to ST8 are repeatedly executed during the specified time for monitoring the received light amount Q, but the received light is received until the specified time has passed. A change in the value of the quantity Q may be recorded, and steps ST3 to ST8 may be collectively executed after a predetermined time has elapsed.

また、上述の実施の形態では、診断作業は、ベルト32が走行しており、かつ、基板KBが検査の対象とする光センサ50の遮光位置に位置することがない状態において行われるとしたが、光センサ50の異常のみを検出しようとする場合には、ベルト32の走行が行われていない状況でも診断作業を行うことができる。また、診断作業を行うのは、作業機1による生産の開始前やメンテナンス時等、搬送機構12による基板KBの搬送を行わない状況で実行されるのが好ましいとしていたが、作業機1による生産の途中であっても、診断対象とする光センサ50の検査光53が基板KBによって遮られることがないことが分っている状況に限定すれば、基板KBが光センサ50の遮光位置に位置することがあっても、診断を行うことができる。 Further, in the above-described embodiment, the diagnostic work is performed in a state where the belt 32 is running and the substrate KB is not located at the light-shielding position of the optical sensor 50 to be inspected. When only the abnormality of the optical sensor 50 is to be detected, the diagnostic work can be performed even when the belt 32 is not running. Further, it was said that the diagnostic work is preferably performed before the start of production by the work machine 1 or during maintenance, etc., in a situation where the substrate KB is not carried by the transport mechanism 12, but the production by the work machine 1 is performed. The substrate KB is located at the light-shielding position of the optical sensor 50 as long as it is known that the inspection light 53 of the optical sensor 50 to be diagnosed is not blocked by the substrate KB even in the middle of the process. Even if there is something to do, the diagnosis can be made.

また、上述の実施の形態において、異常検出部40b(或いは異常検出工程)では、受光量Qが所定の閾値Q0を継続的に下回っている状態或いは受光量Qが徐々に低下している状態に基づいて光センサ50の異常を検出するようになっていたが、受光素子52が受光する受光量Qを監視し、その監視する受光量Qの値および受光量Qの変化に基づいて光センサ50の異常を検出するのであれば、このような動作(手順)によるものに限定されない。また、上述の実施の形態において、異常検出部40b(或いは異常検出工程)は、受光量Qが閾値Q0を下回った直後に再びQが閾値を上回るようなノイズ的な変化をする状態に基づいてベルト32の異常を検出するようになっていたが、受光素子52の受光量Qを監視し、その監視する受光量Qの変化に基づいてベルト32の異常を検出するのであれば、このような動作(手順)によるものに限定されない。 Further, in the above-described embodiment, in the abnormality detection unit 40b (or the abnormality detection step), the light receiving amount Q is continuously below a predetermined threshold value Q0, or the light receiving amount Q is gradually decreasing. The abnormality of the optical sensor 50 is detected based on this, but the light receiving element 52 monitors the light receiving amount Q, and the optical sensor 50 is based on the value of the monitored light receiving amount Q and the change in the light receiving amount Q. If the abnormality is detected, the operation (procedure) is not limited to this. Further, in the above-described embodiment, the abnormality detection unit 40b (or the abnormality detection step) is based on a state in which a noise-like change such that Q exceeds the threshold value again immediately after the received light amount Q falls below the threshold value Q0. The abnormality of the belt 32 has been detected, but if the light receiving amount Q of the light receiving element 52 is monitored and the abnormality of the belt 32 is detected based on the change of the monitored light receiving amount Q, such an abnormality is detected. It is not limited to the operation (procedure).

また、本実施の形態における診断方法は、前述したように、作業機1による生産開始前に行うことが好ましく、これにより、実際に基板KBの誤検出が生じて作業機1の稼動が強制停止される等の事態を防ぐことができるが、実際に基板KBの誤検出が生じたときに実行するようにしても、勿論構わない。 Further, as described above, the diagnostic method in the present embodiment is preferably performed before the start of production by the working machine 1, which actually causes an erroneous detection of the substrate KB and forcibly stops the operation of the working machine 1. It is possible to prevent such a situation, but of course, it may be executed when an erroneous detection of the substrate KB actually occurs.

また、上述の実施の形態では、作業機1が部品実装装置であり、搬送機構12が搬送するワークは基板KBであったが、これは一例であり、作業機1は必ずしも部品実装装置に限られず、ワークも基板KBに限られない。 Further, in the above-described embodiment, the working machine 1 is a component mounting device, and the work transported by the transport mechanism 12 is a substrate KB, but this is an example, and the working machine 1 is not necessarily limited to the component mounting device. The work is not limited to the substrate KB.

光センサによるワークの誤検出が生じたときにその原因を的確に把握でき、誤検出を解消するための対応を迅速にとることができる作業機および作業機の診断方法を提供する。 Provided are a work machine and a method for diagnosing the work machine, which can accurately grasp the cause when an erroneous detection of a work by an optical sensor occurs and can promptly take measures to eliminate the erroneous detection.

1 作業機
12 搬送機構
32 ベルト
40a 受光量監視部
40b 異常検出部
50 光センサ
51 投光素子
52 受光素子
53 検査光
60 検出結果報知手段
Q0 閾値
KB 基板(ワーク)
1 Work equipment 12 Conveyance mechanism 32 Belt 40a Light receiving amount monitoring unit 40b Abnormality detection unit 50 Optical sensor 51 Light emitting element 52 Light receiving element 53 Inspection light 60 Detection result notification means Q0 Threshold KB board (work)

Claims (8)

ベルトを走行させてワークを搬送する搬送機構と、
前記ベルトの幅方向の一方の端部側から他方の端部側に向けて検査光を投光する投光素子および投光素子が投光する検査光を前記他方の端部側で受光する受光素子から成り、前記ワークが前記検査光を遮る遮光位置に位置した状態を検出する光センサと、
前記受光素子が受光する光量である受光量を監視する受光量監視部と、
前記受光量監視部が監視する前記受光量の値および前記受光量の変化に基づいて前記光センサと前記ベルトの異常を検出する異常検出部と、
前記異常検出部により前記光センサの異常または前記ベルトの異常が検出された場合に、前記光センサの異常と前記ベルトの異常とを区別して報知する検出結果報知手段とを備えた作業機。
A transport mechanism that runs the belt to transport the work,
A light projecting element that emits inspection light from one end side in the width direction of the belt toward the other end side, and a light receiving light that receives the inspection light emitted by the light projecting element on the other end side. An optical sensor composed of elements and detecting a state in which the work is located at a light-shielding position that blocks the inspection light, and
A light receiving amount monitoring unit that monitors the light receiving amount, which is the amount of light received by the light receiving element,
An abnormality detection unit that detects an abnormality in the optical sensor and the belt based on a value of the light reception amount monitored by the light reception amount monitoring unit and a change in the light reception amount.
A working machine provided with a detection result notification means that distinguishes between the abnormality of the optical sensor and the abnormality of the belt when the abnormality of the optical sensor or the abnormality of the belt is detected by the abnormality detection unit.
前記異常検出部は、前記受光量が所定の閾値を継続的に下回っている状態或いは前記受光量が徐々に低下している状態に基づいて前記光センサの異常を検出する請求項1に記載の作業機。 The first aspect of the present invention, wherein the abnormality detecting unit detects an abnormality of the optical sensor based on a state in which the received light amount is continuously below a predetermined threshold value or a state in which the received light amount is gradually decreased. Working machine. 前記異常検出部は、前記受光量が所定の閾値を下回った直後に再び前記閾値を上回るようなノイズ的な変化をする状態に基づいて前記ベルトの異常を検出する請求項1に記載の作業機。 The working machine according to claim 1, wherein the abnormality detecting unit detects an abnormality of the belt based on a state in which a noise-like change is made so that the amount of received light falls below a predetermined threshold value and then exceeds the threshold value again. .. 前記受光量監視部は、前記ベルトが走行しており、かつ、前記ワークが前記遮光位置に位置することがない状態において前記受光量を監視する請求項1〜3のいずれかに記載の作業機。 The working machine according to any one of claims 1 to 3, wherein the light receiving amount monitoring unit monitors the light receiving amount in a state where the belt is running and the work is not located at the light shielding position. .. ベルトを走行させてワークを搬送する搬送機構と、前記ベルトの幅方向の一方の端部側から他方の端部側に向けて検査光を投光する投光素子および投光素子が投光する検査光を前記他方の端部側で受光する受光素子から成り、前記ワークが前記検査光を遮る遮光位置に位置した状態を検出する光センサとを備えた作業機の診断方法であって、
前記受光素子が受光する光量である受光量を監視し、その監視する前記受光量の値および前記受光量の変化に基づいて前記光センサの異常と前記ベルトの異常を検出する異常検出工程と、
前記異常検出工程で前記光センサの異常または前記ベルトの異常を検出した場合に、前記光センサの異常と前記ベルトの異常とを区別して報知する検出結果報知工程とを含む作業機の診断方法。
The transport mechanism that runs the belt to transport the work, and the light projecting element and the light projecting element that project the inspection light from one end side in the width direction of the belt toward the other end side are projected. A method for diagnosing a working machine, which comprises a light receiving element that receives inspection light on the other end side, and includes an optical sensor that detects a state in which the work is located at a light-shielding position that blocks the inspection light.
An abnormality detection step of monitoring a light receiving amount, which is the amount of light received by the light receiving element, and detecting an abnormality of the optical sensor and an abnormality of the belt based on the value of the monitored light receiving amount and a change in the light receiving amount.
A method for diagnosing a working machine including a detection result notification step of distinguishing between an abnormality of the optical sensor and an abnormality of the belt when an abnormality of the optical sensor or an abnormality of the belt is detected in the abnormality detection step.
前記異常検出工程において、前記受光量が所定の閾値を継続的に下回っている状態或いは前記受光量が徐々に低下している状態に基づいて前記光センサの異常を検出する請求項5に記載の作業機の診断方法。 The fifth aspect of the present invention, wherein in the abnormality detection step, an abnormality of the optical sensor is detected based on a state in which the light receiving amount is continuously below a predetermined threshold value or a state in which the light receiving amount is gradually decreasing. How to diagnose the work equipment. 前記異常検出工程において、前記受光量が、所定の閾値を下回った直後に再び前記閾値を上回るようなノイズ的な変化をする状態に基づいて前記ベルトの異常を検出する請求項5に記載の作業機の診断方法。 The operation according to claim 5, wherein in the abnormality detection step, an abnormality of the belt is detected based on a state in which the amount of light received falls below a predetermined threshold value and immediately after that, the noise-like change causes the belt to exceed the threshold value again. How to diagnose the machine. 前記異常検出工程を、前記ベルトが走行しており、かつ、前記ワークが前記遮光位置に位置することがない状態において実行する請求項5〜7のいずれかに記載の作業機の診断方法。 The method for diagnosing a working machine according to any one of claims 5 to 7, wherein the abnormality detection step is executed in a state where the belt is running and the work is not located at the light-shielding position.
JP2019045526A 2019-03-13 2019-03-13 Working machine and diagnostic method of working machine Pending JP2020150101A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019045526A JP2020150101A (en) 2019-03-13 2019-03-13 Working machine and diagnostic method of working machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019045526A JP2020150101A (en) 2019-03-13 2019-03-13 Working machine and diagnostic method of working machine

Publications (1)

Publication Number Publication Date
JP2020150101A true JP2020150101A (en) 2020-09-17

Family

ID=72429847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019045526A Pending JP2020150101A (en) 2019-03-13 2019-03-13 Working machine and diagnostic method of working machine

Country Status (1)

Country Link
JP (1) JP2020150101A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024013934A1 (en) * 2022-07-14 2024-01-18 株式会社Fuji Substrate conveyance device and substrate detection method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001130779A (en) * 1999-11-05 2001-05-15 Fuji Xerox Co Ltd Belt conveying device and image forming device having it
JP2007173531A (en) * 2005-12-22 2007-07-05 Dainippon Screen Mfg Co Ltd Substrate processing apparatus
JP2008300201A (en) * 2007-05-31 2008-12-11 Sunx Ltd Multi-optical-axis photoelectric sensor
JP2010010238A (en) * 2008-06-25 2010-01-14 Fuji Mach Mfg Co Ltd Component packaging tape type discriminator and control device of component mounter
JP2013131546A (en) * 2011-12-20 2013-07-04 Fuji Mach Mfg Co Ltd Conveyance object detecting device
JP2015225968A (en) * 2014-05-28 2015-12-14 ハンファテクウィン株式会社Hanwha Techwin Co.,Ltd. Tape feeder and self-diagnosis method of sensor function therefor
WO2016035190A1 (en) * 2014-09-04 2016-03-10 富士機械製造株式会社 Substrate conveyance device and method for inspecting conveyor belt
JP2017152420A (en) * 2016-02-22 2017-08-31 パナソニックIpマネジメント株式会社 Electronic component mounting apparatus and electronic component mounting method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001130779A (en) * 1999-11-05 2001-05-15 Fuji Xerox Co Ltd Belt conveying device and image forming device having it
JP2007173531A (en) * 2005-12-22 2007-07-05 Dainippon Screen Mfg Co Ltd Substrate processing apparatus
JP2008300201A (en) * 2007-05-31 2008-12-11 Sunx Ltd Multi-optical-axis photoelectric sensor
JP2010010238A (en) * 2008-06-25 2010-01-14 Fuji Mach Mfg Co Ltd Component packaging tape type discriminator and control device of component mounter
JP2013131546A (en) * 2011-12-20 2013-07-04 Fuji Mach Mfg Co Ltd Conveyance object detecting device
JP2015225968A (en) * 2014-05-28 2015-12-14 ハンファテクウィン株式会社Hanwha Techwin Co.,Ltd. Tape feeder and self-diagnosis method of sensor function therefor
WO2016035190A1 (en) * 2014-09-04 2016-03-10 富士機械製造株式会社 Substrate conveyance device and method for inspecting conveyor belt
JP2017152420A (en) * 2016-02-22 2017-08-31 パナソニックIpマネジメント株式会社 Electronic component mounting apparatus and electronic component mounting method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024013934A1 (en) * 2022-07-14 2024-01-18 株式会社Fuji Substrate conveyance device and substrate detection method

Similar Documents

Publication Publication Date Title
CN110431930B (en) Installation system and notification control device
JP6831925B2 (en) Component mounting line
JP6846350B2 (en) Feeder maintenance device and its control method
JP6522670B2 (en) Mounting work machine
JP5998356B2 (en) Substrate transport apparatus and transport belt maintenance inspection method
CN106912193B (en) Electronic component mounting device and electronic component mounting system
JPWO2018142604A1 (en) Work management device
JP2020150101A (en) Working machine and diagnostic method of working machine
WO2016113864A1 (en) Feeder maintenance device, and method for controlling feeder maintenance device
CN112166657B (en) Component mounting line
JP6697468B2 (en) Feeder maintenance device and its control method
WO2016035190A1 (en) Substrate conveyance device and method for inspecting conveyor belt
JP6986148B2 (en) Component mounting system
JP7241788B2 (en) Management device
JP7217377B2 (en) Component mounting system
JP5224374B2 (en) Component mounter
JP7213418B2 (en) Component mounting system and substrate delivery method
JP2008210981A (en) Component mounter
JP7700252B2 (en) Working device and mounting system
JP7572043B2 (en) X-ray inspection system, X-ray inspection device, and X-ray inspection method
JP7588347B2 (en) Method for determining whether component mounting device and component imaging device require cleaning
JP7223180B2 (en) production management system
CN107872946B (en) Feeder maintenance device
JP2023157055A (en) Substrate work device
JP7105306B2 (en) inspection equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220111

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20221020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230516