JP2020144100A - Method for measuring ceramide in keratin - Google Patents
Method for measuring ceramide in keratin Download PDFInfo
- Publication number
- JP2020144100A JP2020144100A JP2019179308A JP2019179308A JP2020144100A JP 2020144100 A JP2020144100 A JP 2020144100A JP 2019179308 A JP2019179308 A JP 2019179308A JP 2019179308 A JP2019179308 A JP 2019179308A JP 2020144100 A JP2020144100 A JP 2020144100A
- Authority
- JP
- Japan
- Prior art keywords
- keratin
- ceramide
- base material
- measuring
- collecting tool
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 102000011782 Keratins Human genes 0.000 title claims abstract description 123
- 108010076876 Keratins Proteins 0.000 title claims abstract description 123
- 229940106189 ceramide Drugs 0.000 title claims abstract description 111
- YDNKGFDKKRUKPY-JHOUSYSJSA-N C16 ceramide Natural products CCCCCCCCCCCCCCCC(=O)N[C@@H](CO)[C@H](O)C=CCCCCCCCCCCCCC YDNKGFDKKRUKPY-JHOUSYSJSA-N 0.000 title claims abstract description 110
- CRJGESKKUOMBCT-VQTJNVASSA-N N-acetylsphinganine Chemical compound CCCCCCCCCCCCCCC[C@@H](O)[C@H](CO)NC(C)=O CRJGESKKUOMBCT-VQTJNVASSA-N 0.000 title claims abstract description 110
- ZVEQCJWYRWKARO-UHFFFAOYSA-N ceramide Natural products CCCCCCCCCCCCCCC(O)C(=O)NC(CO)C(O)C=CCCC=C(C)CCCCCCCCC ZVEQCJWYRWKARO-UHFFFAOYSA-N 0.000 title claims abstract description 110
- VVGIYYKRAMHVLU-UHFFFAOYSA-N newbouldiamide Natural products CCCCCCCCCCCCCCCCCCCC(O)C(O)C(O)C(CO)NC(=O)CCCCCCCCCCCCCCCCC VVGIYYKRAMHVLU-UHFFFAOYSA-N 0.000 title claims abstract description 110
- 238000000034 method Methods 0.000 title claims abstract description 64
- 239000000463 material Substances 0.000 claims abstract description 69
- 239000012790 adhesive layer Substances 0.000 claims abstract description 39
- 238000005259 measurement Methods 0.000 claims abstract description 22
- 239000000758 substrate Substances 0.000 claims abstract description 11
- 210000003491 skin Anatomy 0.000 claims description 46
- 239000002537 cosmetic Substances 0.000 claims description 26
- 229920005989 resin Polymers 0.000 claims description 21
- 239000011347 resin Substances 0.000 claims description 21
- 238000001000 micrograph Methods 0.000 claims description 19
- 210000000434 stratum corneum Anatomy 0.000 claims description 17
- 229920001971 elastomer Polymers 0.000 claims description 14
- 229920003051 synthetic elastomer Polymers 0.000 claims description 13
- 229920003002 synthetic resin Polymers 0.000 claims description 13
- 239000000057 synthetic resin Substances 0.000 claims description 13
- 239000005061 synthetic rubber Substances 0.000 claims description 13
- 244000043261 Hevea brasiliensis Species 0.000 claims description 12
- 229920003052 natural elastomer Polymers 0.000 claims description 12
- 229920001194 natural rubber Polymers 0.000 claims description 12
- 229920002803 thermoplastic polyurethane Polymers 0.000 claims description 11
- 239000000470 constituent Substances 0.000 claims description 10
- 239000004433 Thermoplastic polyurethane Substances 0.000 claims description 9
- 229920002678 cellulose Polymers 0.000 claims description 9
- 239000000806 elastomer Substances 0.000 claims description 9
- 150000007529 inorganic bases Chemical class 0.000 claims description 7
- 238000000879 optical micrograph Methods 0.000 abstract description 2
- 238000011088 calibration curve Methods 0.000 description 11
- 206010040844 Skin exfoliation Diseases 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- 238000012360 testing method Methods 0.000 description 9
- 238000004128 high performance liquid chromatography Methods 0.000 description 7
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 7
- 230000003287 optical effect Effects 0.000 description 7
- 239000000523 sample Substances 0.000 description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 6
- 238000011002 quantification Methods 0.000 description 6
- 229920002284 Cellulose triacetate Polymers 0.000 description 5
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 5
- 239000000853 adhesive Substances 0.000 description 5
- 230000001070 adhesive effect Effects 0.000 description 5
- 239000003153 chemical reaction reagent Substances 0.000 description 5
- 230000010287 polarization Effects 0.000 description 5
- 239000005060 rubber Substances 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 241001340526 Chrysoclista linneella Species 0.000 description 4
- 239000004840 adhesive resin Substances 0.000 description 4
- 229920006223 adhesive resin Polymers 0.000 description 4
- 239000012488 sample solution Substances 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 229920000178 Acrylic resin Polymers 0.000 description 3
- 239000004925 Acrylic resin Substances 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 150000002632 lipids Chemical class 0.000 description 3
- 235000019557 luminance Nutrition 0.000 description 3
- 238000000691 measurement method Methods 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- 229920008347 Cellulose acetate propionate Polymers 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 229920006217 cellulose acetate butyrate Polymers 0.000 description 2
- 238000002316 cosmetic surgery Methods 0.000 description 2
- 238000009223 counseling Methods 0.000 description 2
- 229920005994 diacetyl cellulose Polymers 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 230000003020 moisturizing effect Effects 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000010187 selection method Methods 0.000 description 2
- 229920002379 silicone rubber Polymers 0.000 description 2
- 239000004945 silicone rubber Substances 0.000 description 2
- 230000036555 skin type Effects 0.000 description 2
- 108010078209 sphingolipid ceramide N-deacylase Proteins 0.000 description 2
- 150000003410 sphingosines Chemical class 0.000 description 2
- 229920003048 styrene butadiene rubber Polymers 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 239000000341 volatile oil Substances 0.000 description 2
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 description 1
- JTXMVXSTHSMVQF-UHFFFAOYSA-N 2-acetyloxyethyl acetate Chemical compound CC(=O)OCCOC(C)=O JTXMVXSTHSMVQF-UHFFFAOYSA-N 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- 229920000623 Cellulose acetate phthalate Polymers 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 1
- 239000004713 Cyclic olefin copolymer Substances 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- 206010013786 Dry skin Diseases 0.000 description 1
- 229920001499 Heparinoid Polymers 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 239000002174 Styrene-butadiene Substances 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 229920006311 Urethane elastomer Polymers 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- FJWGYAHXMCUOOM-QHOUIDNNSA-N [(2s,3r,4s,5r,6r)-2-[(2r,3r,4s,5r,6s)-4,5-dinitrooxy-2-(nitrooxymethyl)-6-[(2r,3r,4s,5r,6s)-4,5,6-trinitrooxy-2-(nitrooxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-3,5-dinitrooxy-6-(nitrooxymethyl)oxan-4-yl] nitrate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O)O[C@H]1[C@@H]([C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@@H](CO[N+]([O-])=O)O1)O[N+]([O-])=O)CO[N+](=O)[O-])[C@@H]1[C@@H](CO[N+]([O-])=O)O[C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O FJWGYAHXMCUOOM-QHOUIDNNSA-N 0.000 description 1
- 229920000800 acrylic rubber Polymers 0.000 description 1
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 1
- 229920005549 butyl rubber Polymers 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 210000003850 cellular structure Anatomy 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- HKQOBOMRSSHSTC-UHFFFAOYSA-N cellulose acetate Chemical compound OC1C(O)C(O)C(CO)OC1OC1C(CO)OC(O)C(O)C1O.CC(=O)OCC1OC(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C1OC1C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C(COC(C)=O)O1.CCC(=O)OCC1OC(OC(=O)CC)C(OC(=O)CC)C(OC(=O)CC)C1OC1C(OC(=O)CC)C(OC(=O)CC)C(OC(=O)CC)C(COC(=O)CC)O1 HKQOBOMRSSHSTC-UHFFFAOYSA-N 0.000 description 1
- 229940081734 cellulose acetate phthalate Drugs 0.000 description 1
- 150000001783 ceramides Chemical class 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 229960005188 collagen Drugs 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 230000035618 desquamation Effects 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 230000037336 dry skin Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 210000002615 epidermis Anatomy 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000002554 heparinoid Substances 0.000 description 1
- 229940025770 heparinoids Drugs 0.000 description 1
- BTUSGZZCQZACPT-YYZTVXDQSA-N hexadecasphing-4-enine Chemical compound CCCCCCCCCCC\C=C\[C@@H](O)[C@@H](N)CO BTUSGZZCQZACPT-YYZTVXDQSA-N 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- 229920002674 hyaluronan Polymers 0.000 description 1
- 229960003160 hyaluronic acid Drugs 0.000 description 1
- 230000002757 inflammatory effect Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 229920003049 isoprene rubber Polymers 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 230000000414 obstructive effect Effects 0.000 description 1
- ZWLUXSQADUDCSB-UHFFFAOYSA-N phthalaldehyde Chemical compound O=CC1=CC=CC=C1C=O ZWLUXSQADUDCSB-UHFFFAOYSA-N 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920001084 poly(chloroprene) Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- WWUZIQQURGPMPG-KRWOKUGFSA-N sphingosine Chemical compound CCCCCCCCCCCCC\C=C\[C@@H](O)[C@@H](N)CO WWUZIQQURGPMPG-KRWOKUGFSA-N 0.000 description 1
- 239000011115 styrene butadiene Substances 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 230000005068 transpiration Effects 0.000 description 1
- 125000005591 trimellitate group Chemical group 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Landscapes
- Investigating Or Analysing Biological Materials (AREA)
Abstract
Description
本発明は、角質中のセラミドの測定方法、及びその測定方法に用いられる角質採取具に関する。 The present invention relates to a method for measuring ceramide in keratin and a keratin collecting tool used in the measuring method.
皮膚状態を客観的に評価するための手法が種々開発されており、化粧品研究、化粧品販売、皮膚科又はエステティックサロンにおける問診等に適用されている。 Various methods for objectively evaluating the skin condition have been developed and applied to cosmetics research, cosmetics sales, dermatology or aesthetic salon interviews.
皮膚状態を評価する方法の例として、生体の皮膚表面に対し非接触的又は接触的に分析機器を用いて測定する方法が挙げられる。例えば、小型カメラを用いて皮膚表面の組織を拡大観察し、キメやシワなどの皮膚表面形状を評価する方法、皮膚に電極を接触させて電気抵抗から水分量を測定する方法が挙げられる。 As an example of the method for evaluating the skin condition, there is a method of measuring the skin surface of a living body in a non-contact or contact-like manner using an analytical instrument. For example, a method of magnifying and observing the tissue on the skin surface using a small camera to evaluate the shape of the skin surface such as texture and wrinkles, and a method of contacting an electrode with the skin and measuring the water content from the electrical resistance can be mentioned.
また、肌状態を評価する方法の他の例として、テープストリッピングで採取した角質(角層)を用いる方法が挙げられる。例えば、角層が皮膚内部の状態を反映しているという考えのもと、採取した角層について、角層形状の評価、角層細胞の組織学的評価、角層バリア能の評価(非特許文献1〜3)、角層剥離パターンの数量化に基づく保湿状態の評価(非特許文献4)等を行う方法が挙げられる。また、採取した角層から炎症性サイトカイン(IL-1α)を抽出単離し、その定量結果に基づいて肌質を評価する方法(特許文献1)も挙げられる。 In addition, as another example of the method for evaluating the skin condition, there is a method using the stratum corneum (stratum corneum) collected by tape stripping. For example, based on the idea that the stratum corneum reflects the condition inside the skin, the sampled stratum corneum is evaluated for stratum corneum shape, histological evaluation of stratum corneum cells, and evaluation of stratum corneum barrier ability (non-patented). Documents 1 to 3), a method of evaluating a moisturizing state based on the quantification of the stratum corneum peeling pattern (Non-Patent Document 4), and the like can be mentioned. In addition, there is also a method of extracting and isolating an inflammatory cytokine (IL-1α) from the collected stratum corneum and evaluating the skin quality based on the quantification result (Patent Document 1).
これまでの皮膚状態を評価する方法のうち、生体の皮膚表面に対し非接触的又は接触的に分析機器を用いて測定する方法は、簡便である点で好ましい。しかし、このような方法は物理的な情報から皮膚の状態を間接的に推定するものであり、皮膚の状態を正確に評価することは困難である。 Among the conventional methods for evaluating the skin condition, the method of measuring the skin surface of a living body in a non-contact or contact-like manner using an analytical instrument is preferable in that it is simple. However, such a method indirectly estimates the skin condition from physical information, and it is difficult to accurately evaluate the skin condition.
また、テープストリッピングで採取した角質を用いる方法において、特許文献1〜4に記載されるような方法も、簡便である点で好ましい。しかし、このような方法は採取した角質の外形的情報を基礎とした情報から皮膚の状態を間接的に推定するものであり、やはり、皮膚の状態を正確に評価することは困難である。 Further, in the method using the keratin collected by tape stripping, the methods described in Patent Documents 1 to 4 are also preferable in that they are simple. However, such a method indirectly estimates the skin condition from the information based on the external information of the collected keratin, and it is still difficult to accurately evaluate the skin condition.
一方、テープストリッピングで採取した角質を用いる方法において、特許文献1に記載されるような方法は、角質に含まれる成分を直接的に測定するため、皮膚の状態を正確に評価することができる点で好ましい。しかし、このような方法では、角質に含まれる成分を定量するために角質から当該成分を抽出単離する必要があり、非常に手間がかかる。 On the other hand, in the method using the keratin collected by tape stripping, the method described in Patent Document 1 directly measures the components contained in the keratin, so that the skin condition can be accurately evaluated. Is preferable. However, in such a method, in order to quantify the component contained in the keratin, it is necessary to extract and isolate the component from the keratin, which is very time-consuming.
仮に、角質に含まれる成分を抽出単離することなく測定しようとした場合、テープストリッピングで粘着層に付着した状態の角質に対し、当該成分と特異的に反応する試薬を加え、さらに反応生成物と特異的に反応するシグナル試薬を加え、シグナル強度に基づいて当該成分を定量するという方法が考えられる。しかしながらこの方法は、試薬が必要である点、複雑な反応系を構築しなければならない点で、到底簡易であるとは言えない。また、複雑な反応系を構築させる割に試料自体が生体組織そのものであることから、所定の反応を起こすためには、予め、余分な細胞成分又は細胞間成分に対する前処理が更に必要となることも考えられる。そうすると、このような方法は簡便さから一層遠のくこととなる。 If a component contained in the keratin is to be measured without extraction and isolation, a reagent that specifically reacts with the component is added to the keratin in a state of being attached to the adhesive layer by tape stripping, and a reaction product is further produced. A method of adding a signal reagent that specifically reacts with and quantifying the component based on the signal intensity can be considered. However, this method cannot be said to be very simple in that reagents are required and a complicated reaction system must be constructed. In addition, since the sample itself is a living tissue itself for constructing a complicated reaction system, further pretreatment for excess cell components or intercellular components is required in advance in order to cause a predetermined reaction. Is also possible. Then, such a method is far from simple.
そこで本発明は、皮膚の状態を直接的に且つ簡便に測定できる技術を提供することを目的とする。 Therefore, an object of the present invention is to provide a technique capable of directly and easily measuring the condition of the skin.
本発明者は、皮膚のバリア機能の主役となるセラミドが光学異方性を有していることに着目し、テープストリッピングで採取した角質をそのまま偏光顕微鏡で観察するという斬新な発想に至った。さらに、角質の偏光顕微鏡像において観察される、セラミドに由来する白光の多寡が、実際のセラミド含有量に相関することを見出した。本発明は、この知見に基づいてさらに検討を重ねることにより完成したものである。 The present inventor focused on the fact that ceramide, which plays a major role in the barrier function of the skin, has optical anisotropy, and came up with a novel idea of observing the keratin collected by tape stripping as it is with a polarizing microscope. Furthermore, it was found that the amount of white light derived from ceramide observed in the polarized light microscope image of the keratin correlates with the actual ceramide content. The present invention has been completed by further studies based on this finding.
即ち、本発明は、下記に掲げる態様の発明を提供する。
項1. 透明基材と、前記透明基材上に積層された接着性層とを含む角質採取具を用いて付着採取させた角質検体を、前記角質採取具に付着した状態で偏光顕微鏡観察に供し、偏光顕微鏡像の白光を測定する工程を含む、角質中のセラミドの測定方法。
項2. 前記接着性層がエラストマーを含む、項1に記載の角質中のセラミドの測定方法。
項3. 前記接着性層中の構成樹脂が、実質的に合成ゴム及び/又は天然ゴムからなる、項1又は2に記載の角質中のセラミドの測定方法。
項4. 前記透明基材が、合成樹脂のキャスト基材又は無機基材である、項1〜3のいずれかに記載の角質中のセラミドの測定方法。
項5. 前記透明基材の材料が、セルロースエステル及び熱可塑性ポリウレタンからなる群より選択される、項1〜3のいずれかに記載の角質中のセラミドの測定方法。
項6. 透明基材と、前記透明基材上に積層された接着性層とを含み、偏光顕微鏡下で角質中のセラミドを測定するために用いられる、角質採取具。
項7. 前記接着性層がエラストマーを含む、項6に記載の角質採取具。
項8. 前記接着性層中の構成樹脂が、実質的に合成ゴム及び/又は天然ゴムからなる、項6又は7に記載の角質採取具。
項9. 前記透明基材が、合成樹脂のキャスト基材又は無機基材である、項6〜8のいずれかに記載の角質採取具。
項10. 前記透明基材の材料が、セルロースエステル及び熱可塑性ポリウレタンからなる群より選択される、項6〜8のいずれかに記載の角質採取具。
項11. 項1〜4のいずれかに記載のセラミドの測定方法を行う工程と、
得られたセラミド測定結果に基づいて、顧客の肌状態に応じた化粧品を選択する工程とを含む、化粧品の選択方法。
That is, the present invention provides the inventions of the following aspects.
Item 1. A keratin sample adhered and collected using a keratin collecting tool containing a transparent base material and an adhesive layer laminated on the transparent base material is subjected to polarization microscope observation in a state of being attached to the keratin collecting tool and polarized. A method for measuring ceramide in a keratin, which comprises a step of measuring the white light of a microscope image.
Item 2. Item 2. The method for measuring ceramide in a stratum corneum, wherein the adhesive layer contains an elastomer.
Item 3. Item 2. The method for measuring ceramide in keratin according to Item 1 or 2, wherein the constituent resin in the adhesive layer is substantially composed of synthetic rubber and / or natural rubber.
Item 4. Item 3. The method for measuring ceramide in keratin according to any one of Items 1 to 3, wherein the transparent base material is a cast base material of a synthetic resin or an inorganic base material.
Item 5. Item 8. The method for measuring ceramide in keratin according to any one of Items 1 to 3, wherein the material of the transparent base material is selected from the group consisting of cellulose ester and thermoplastic polyurethane.
Item 6. A keratin collecting tool that includes a transparent substrate and an adhesive layer laminated on the transparent substrate, and is used for measuring ceramide in keratin under a polarizing microscope.
Item 7. Item 6. The keratin collecting tool according to Item 6, wherein the adhesive layer contains an elastomer.
Item 8. Item 6. The keratin collecting tool according to Item 6 or 7, wherein the constituent resin in the adhesive layer is substantially composed of synthetic rubber and / or natural rubber.
Item 9. Item 2. The keratin collecting tool according to any one of Items 6 to 8, wherein the transparent base material is a cast base material made of a synthetic resin or an inorganic base material.
Item 10. Item 2. The keratin collecting tool according to any one of Items 6 to 8, wherein the material of the transparent base material is selected from the group consisting of cellulose ester and thermoplastic polyurethane.
Item 11. The step of performing the ceramide measuring method according to any one of Items 1 to 4 and
A method for selecting cosmetics, which comprises a step of selecting cosmetics according to a customer's skin condition based on the obtained ceramide measurement result.
本発明によれば、皮膚の状態(具体的には角質に含まれるセラミドの多寡)を直接的に且つ簡便に測定できる技術が提供される。 According to the present invention, there is provided a technique capable of directly and easily measuring the condition of the skin (specifically, the amount of ceramide contained in the keratin).
1.角質中のセラミドの測定方法
本発明の角質中のセラミドの測定方法は、所定の角質採取具を用いて付着採取させた角質検体を、角質採取具に付着した状態で偏光顕微鏡観察に供し、偏光顕微鏡像の白光を測定する工程を含むことを特徴とする。以下、本発明の角質中のセラミドの測定方法について詳述する。
1. 1. Method for measuring ceramide in keratin In the method for measuring ceramide in keratin of the present invention, a keratin sample adhered and collected using a predetermined keratin collecting tool is subjected to a polarizing microscope observation in a state of being attached to the keratin collecting tool, and polarized. It is characterized by including a step of measuring the white light of a microscope image. Hereinafter, the method for measuring ceramide in the keratin of the present invention will be described in detail.
角質採取具
角質採取具は、透明基材と、前記透明基材上に積層された接着性層とを含む。透明基材は接着性層を保持し、接着性層は表面に角質を付着させることで、生体表皮からの角質採取を可能にする。角質採取具は、透明基材及び接着性層以外に、他の層が積層されていてもよい。また、透明基材及び接着性層は、それぞれ単層であってもよいし、複層であってもよい。
Keratin collecting tool The keratin collecting tool includes a transparent base material and an adhesive layer laminated on the transparent base material. The transparent substrate retains the adhesive layer, and the adhesive layer attaches keratin to the surface, thereby enabling keratin collection from the biological epidermis. In the keratin collecting tool, other layers may be laminated in addition to the transparent base material and the adhesive layer. Further, the transparent base material and the adhesive layer may be a single layer or a plurality of layers, respectively.
接着性層は、透明基材の表面全体に積層されていてもよいし、透明基材の表面の一部に積層されていてもよい。透明基材上で接着性層が占める面積としては特に限定されないが、セラミドの測定が容易となる必要十分の角質を採取する観点から、例えば1.0〜50.0cm2が挙げられる。接着性層が透明基材の表面の一部に積層される場合、接着性層が積層されていない透明基材の部分は、角質採取具の把持部及び/又は角質を採取する対象に関する情報の記録欄として用いることができる。 The adhesive layer may be laminated on the entire surface of the transparent base material, or may be laminated on a part of the surface of the transparent base material. The area occupied by the adhesive layer on the transparent substrate is not particularly limited, but from the viewpoint of collecting the necessary and sufficient keratin that facilitates the measurement of ceramide, for example, 1.0 to 50.0 cm 2 can be mentioned. When the adhesive layer is laminated on a part of the surface of the transparent base material, the part of the transparent base material on which the adhesive layer is not laminated is the grip portion of the keratin collecting tool and / or the information regarding the target for collecting the keratin. It can be used as a recording field.
透明基材の形状としては、接着性層を保持できる限りにおいて特に限定されず、例えば、平板状(硬質基材)及びシート状(軟質基剤)が挙げられる。 The shape of the transparent base material is not particularly limited as long as the adhesive layer can be retained, and examples thereof include a flat plate shape (hard base material) and a sheet shape (soft base material).
透明基材の材料としては、透光性を有するものであれば特に限定されず、角質中のセラミドを偏光顕微鏡下で測定可能とすることを損なわない程度の光学的特性を有するものが適宜選択される。具体的な光学的特性としては、具体的には、セラミドよりも低複屈折であること、より好ましくは光学等方性であることが挙げられる。これによって、角質に付着した角質が偏光下に供された場合に、白光強度の大きいシグナルを角質中のセラミドとして容易に認識することができる。 The material of the transparent base material is not particularly limited as long as it has translucency, and a material having optical characteristics that does not impair the measurement of ceramide in the keratin under a polarizing microscope is appropriately selected. Will be done. Specific optical properties include lower birefringence than ceramide, and more preferably optical isotropic properties. As a result, when the keratin attached to the keratin is subjected to polarized light, a signal having a high white light intensity can be easily recognized as a ceramide in the keratin.
このような光学的特性の観点から、透明基材の材料の好ましい例としては、合成樹脂のキャスト基材及び無機基材が挙げられる。これらの基剤の中でも、入手容易性及びハンドリング容易性の観点から、好ましくは合成樹脂のキャスト基材が挙げられる。 From the viewpoint of such optical properties, preferable examples of the material of the transparent base material include a cast base material made of a synthetic resin and an inorganic base material. Among these bases, a cast base material made of a synthetic resin is preferably used from the viewpoint of easy availability and handling.
合成樹脂のキャスト基材は、合成樹脂の配向が起らないように成形された基材をいう。合成樹脂の配向自体が起らないように成形する方法としては公知である。例えば平板状基材を作製する場合は、射出成形において、樹脂の溶融温度を上げる、及び/又は、金型内部で溶融樹脂を比較的高い温度で保つ時間を長くする等の手法により作製することができる。また、シート状基材を作製する場合は、樹脂を溶媒に溶解して得られた樹脂溶液を基板上に展開し、溶媒を乾燥除去すること(溶液流延製膜法)により作製することができる。 The cast base material of the synthetic resin is a base material molded so that the orientation of the synthetic resin does not occur. It is known as a method of molding so that the orientation of the synthetic resin itself does not occur. For example, in the case of producing a flat base material, in injection molding, the melting temperature of the resin should be raised and / or the time for keeping the molten resin at a relatively high temperature inside the mold should be lengthened. Can be done. When producing a sheet-like base material, the resin solution obtained by dissolving the resin in a solvent is developed on a substrate, and the solvent is dried and removed (solution casting film forming method). it can.
透明基材の材料となる合成樹脂の具体的な例としては、例えば、ポリカーボネート、アクリル系樹脂(好ましくは、ポリメチルメタクリレート)、セルロースエステル、環状オレフィンコポリマー、熱可塑性ポリウレタン(TPU)等が挙げられる。また、セルロースエステルとしては、トリアセチルセルロース(TAC)、ジアセチルセルロース(DAC)、セルロースアセテートプロピオネート(CAP)、セルロースアセテートブチレート(CAB)、セルロースアセテートフタレート、セルロースアセテートトリメリテート、硝酸セルロース等が挙げられる。これらの合成樹脂は、1種を単独で、又は複数種を組み合わせて用いることができる。 Specific examples of the synthetic resin used as the material of the transparent base material include polycarbonate, acrylic resin (preferably polymethylmethacrylate), cellulose ester, cyclic olefin copolymer, thermoplastic polyurethane (TPU) and the like. .. Examples of the cellulose ester include triacetyl cellulose (TAC), diacetyl cellulose (DAC), cellulose acetate propionate (CAP), cellulose acetate butyrate (CAB), cellulose acetate phthalate, cellulose acetate trimellitate, cellulose nitrate and the like. Can be mentioned. These synthetic resins may be used alone or in combination of two or more.
これらの合成樹脂の中でも、低複屈折性によりセラミド測定の感度を良好に確保する観点から、好ましくはセルロースエステル及び熱可塑性ポリウレタン(TPU)が挙げられ、より好ましくはセルロースエステルが挙げられ、更に好ましくはトリアセチルセルロース(TAC)が挙げられる。 Among these synthetic resins, cellulose ester and thermoplastic polyurethane (TPU) are preferable, cellulose ester is more preferable, and cellulose ester is more preferable, from the viewpoint of ensuring good sensitivity of ceramide measurement due to low compound refractive property. Includes triacetyl cellulose (TAC).
無機基材としては、それ自体が光学等方性を有する材料が特に限定されることなく選択され、具体的には、ガラス、石英、塩化ナトリウム結晶等が挙げられ、入手容易性及びハンドリング容易性の観点から、好ましくはガラスが挙げられる。 As the inorganic base material, a material having optical isotropic property itself is selected without particular limitation, and specific examples thereof include glass, quartz, sodium chloride crystal and the like, which are easily available and easy to handle. From this point of view, glass is preferable.
透明基材の厚みとしては特に限定されず、材料が有する複屈折性にもよるが、取扱い性及び低リタデーションによるセラミド測定の感度をより良好に確保する観点から、例えば0.005〜5mm、好ましくは0.01〜3mm、より好ましくは0.05〜1mmが挙げられる。また、透明基材の材料が合成樹脂である場合は、透明基材の厚みは、さらに好ましくは0.05〜0.5mm、一層好ましくは0.07〜0.12mmが挙げられ透明基材が無機基材である場合は、透明基材の厚みは、さらに好ましくは0.5〜1mm、一層好ましくは0.8〜1mmが挙げられる。 The thickness of the transparent substrate is not particularly limited and depends on the birefringence of the material, but is preferably 0.005 to 5 mm, for example, from the viewpoint of ensuring better handling and sensitivity of ceramide measurement due to low retardation. Is 0.01 to 3 mm, more preferably 0.05 to 1 mm. When the material of the transparent base material is a synthetic resin, the thickness of the transparent base material is more preferably 0.05 to 0.5 mm, still more preferably 0.07 to 0.12 mm, and the transparent base material can be used. In the case of an inorganic base material, the thickness of the transparent base material is more preferably 0.5 to 1 mm, still more preferably 0.8 to 1 mm.
接着性層の材料としては特に限定されず、透光性であり、角質中のセラミドを偏光顕微鏡下で測定可能とすることを損なわない程度の光学的特性を有するものが適宜選択される。接着性層は、樹脂及び溶剤を含む接着性樹脂組成物で構成される。 The material of the adhesive layer is not particularly limited, and a material that is translucent and has optical properties that do not impair the measurement of ceramide in the stratum corneum under a polarizing microscope is appropriately selected. The adhesive layer is composed of an adhesive resin composition containing a resin and a solvent.
接着性層中の構成樹脂、つまり接着性樹脂組成物中に含まれる樹脂としては、例えば、合成ゴム及び天然ゴム等のエラストマー、変性シリコーン樹脂、ウレタン樹脂、アクリル系樹脂、酢酸ビニル樹脂、エチレン酢酸ビニル樹脂等が挙げられる。これらの樹脂は、1種を単独で、又は複数種を組み合わせて用いることができる。 Examples of the constituent resin in the adhesive layer, that is, the resin contained in the adhesive resin composition include elastomers such as synthetic rubber and natural rubber, modified silicone resin, urethane resin, acrylic resin, vinyl acetate resin, and ethylene acetate. Examples include vinyl resin. These resins may be used alone or in combination of two or more.
これらの樹脂の中でも、透光性の観点から、好ましくは、エラストマー、変性シリコーン、ウレタン樹脂が挙げられる。また、低複屈折性の観点から、好ましくは、エラストマー、アクリル系樹脂が挙げられる。つまり、透光性及び低複屈折性の観点から、好ましくはエラストマーが挙げられ、より好ましくは合成ゴム及び天然ゴムが挙げられる。より具体的には、合成ゴムとしては、スチレンブタジエンゴム、ブタジエンゴム、イソプレンゴム、アクリルゴム、クロロプレンゴム、二トリルゴム、ブチルゴム、シリコーンゴム、変性シリコーンゴム、ウレタンゴムが挙げられ、好ましくは、スチレンブタジエンゴムが挙げられる。さらに、接着性層中の構成樹脂としてエラストマーが含まれている場合、透光性の観点から、構成樹脂は、実質的に合成ゴム及び/又は天然ゴムからなることがより好ましい。構成樹脂が実質的に合成ゴム及び/又は天然ゴムからなるとは、構成樹脂が合成ゴム及び/又は天然ゴムのみを含むことと、合成ゴム及び天然ゴム以外の他の樹脂が含まれる場合にあっては、他の樹脂が、合成ゴム及び天然ゴムによる透光性及び低屈折率性に影響を与えない程度の量(例えば、合成ゴム及び天然ゴムの合計量100重量部に対して1重量部以下、好ましくは0.1重量部以下)で含まれることと含む意である。 Among these resins, elastomers, modified silicones, and urethane resins are preferable from the viewpoint of translucency. Further, from the viewpoint of low birefringence, elastomers and acrylic resins are preferable. That is, from the viewpoint of translucency and low birefringence, elastomers are preferable, and synthetic rubbers and natural rubbers are more preferable. More specifically, examples of the synthetic rubber include styrene butadiene rubber, butadiene rubber, isoprene rubber, acrylic rubber, chloroprene rubber, ditryl rubber, butyl rubber, silicone rubber, modified silicone rubber, and urethane rubber, and styrene butadiene is preferable. Rubber is mentioned. Further, when an elastomer is contained as the constituent resin in the adhesive layer, it is more preferable that the constituent resin is substantially composed of synthetic rubber and / or natural rubber from the viewpoint of translucency. The constituent resin is substantially composed of synthetic rubber and / or natural rubber when the constituent resin contains only synthetic rubber and / or natural rubber and contains other resins other than synthetic rubber and natural rubber. Is an amount that does not affect the translucency and low refractive index of synthetic rubber and natural rubber by other resins (for example, 1 part by weight or less with respect to 100 parts by weight of the total amount of synthetic rubber and natural rubber). , Preferably 0.1 parts by weight or less).
接着性層中の構成溶媒、つまり接着性樹脂組成物中の溶媒としては特に限定されず、例えば、シクロヘキサン、n−ヘキサン、n−ヘプタン、アセトン、酢酸ブチル、石油ナフサ、ゴム揮発油、水等が挙げられ、好ましくは、シクロヘキサン、n−ヘキサン、n−ヘプタン、アセトン、石油ナフサ、ゴム揮発油が挙げられる。 The constituent solvent in the adhesive layer, that is, the solvent in the adhesive resin composition is not particularly limited, and for example, cyclohexane, n-hexane, n-heptane, acetone, butyl acetate, naphtha petroleum, rubber volatile oil, water and the like. Included, preferably cyclohexane, n-hexane, n-heptane, acetone, petroleum naphtha, rubber volatile oil.
接着性層の厚みとしては特に限定されないが、ストリッピングによる角質採取を容易にし、かつ、良好な透光性を備える観点から、例えば0.1〜1.2mm、好ましくは0.3〜0.8mm、より好ましくは0.4〜0.6mmが挙げられる。 The thickness of the adhesive layer is not particularly limited, but from the viewpoint of facilitating the collection of keratin by stripping and having good translucency, for example, 0.1 to 1.2 mm, preferably 0.3 to 0. 8 mm, more preferably 0.4 to 0.6 mm.
更に、角質採取具は、偏光顕微鏡測定に供される部分(つまり、透明基材及び接着性層が積層されている部分)のリタデーションが、低複屈折性によりセラミド測定の感度を良好に確保する観点から、好ましくは200nm以下、より好ましくは100nm以下、更に好ましくは50nm以下、一層好ましくは20nm以下、特に好ましくは5nm以下、最も好ましくは1nm以下が挙げられる。本発明においてリタデーションとは面内リタデーションを意味しており、具体的には、523、543、及び575nmの波長それぞれを用いて上記部分の面方向のリタデーションイメージングを行い、1cm2の範囲内のリタデーション面分布におけるリタデーションの平均値MR525nm、MR543nm、MR575nmを求め、更に、平均値MR525nm、MR543nm、MR575nmの平均値を求めることで得られる。リタデーション測定は、例えばWPA−200(フォトニックラティス社製複屈折計測装置)を用いて測定することができる。なお、本発明において、リタデーションは小さければ小さいほど好ましいため、その下限値としては特に限定されず、好ましくは、1以下が挙げられる。上記のようにして得られるリタデーションが1以下の小さな値となる場合、測定誤差に鑑みると、リタデーションはほぼ0であるとみなすことができる。 Further, in the keratin sampling tool, the retardation of the portion to be subjected to the polarizing microscope measurement (that is, the portion where the transparent base material and the adhesive layer are laminated) ensures good sensitivity of the ceramide measurement due to the low birefringence. From the viewpoint, it is preferably 200 nm or less, more preferably 100 nm or less, further preferably 50 nm or less, still more preferably 20 nm or less, particularly preferably 5 nm or less, and most preferably 1 nm or less. In the present invention, retardation means in-plane retardation. Specifically, retardation imaging of the above portion in the plane direction is performed using wavelengths of 523, 543, and 575 nm, respectively, and retardation within the range of 1 cm 2. It can be obtained by finding the average values of MR 525nm , MR 543nm , and MR 575nm in the surface distribution, and then finding the average values of MR 525nm , MR 543nm , and MR 575nm . The retardation measurement can be performed using, for example, WPA-200 (birefringence measuring device manufactured by Photonic Lattice). In the present invention, the smaller the retardation, the more preferable it is. Therefore, the lower limit value thereof is not particularly limited, and preferably 1 or less. When the retardation obtained as described above is a small value of 1 or less, the retardation can be regarded as almost 0 in view of the measurement error.
角質採取具を作製する方法としては特に限定されない。例えば、基材の片面に接着性層を構成するための接着性樹脂組成物を塗布し、乾燥させた後、所定の大きさに分割することで作製することができる。 The method for producing the keratin collecting tool is not particularly limited. For example, it can be produced by applying an adhesive resin composition for forming an adhesive layer on one side of a base material, drying it, and then dividing it into predetermined sizes.
角質検体の付着採取
角質の採取法としては、角質採取具の接着性層に角質を付着させることができれば、どのような方法であってもよい。通常、角質採取具の接着性層を皮膚表面に貼って剥がすことで、角質を容易に剥がす(ストリッピング)ことができる。このようにして、角質検体を付着採取することができる。
Adhesive collection of keratin sample As a method for collecting keratin, any method may be used as long as keratin can be attached to the adhesive layer of the keratin collecting tool. Usually, the keratin can be easily peeled off (stripping) by sticking the adhesive layer of the keratin collecting tool on the skin surface and peeling it off. In this way, the keratin sample can be adhered and collected.
偏光顕微鏡観察
本発明の角質中のセラミドの測定方法においては、採取した角質中のセラミドを抽出単離することを行わず、角質採取具に付着した状態で直接、偏光顕微鏡観察に供する。生体内のセラミドはラメラ構造を有しているため、偏光顕微鏡像において、角質中のセラミドは白光シグナルを呈する。このため、白光シグナルを測定することで、角質中のセラミドを測定することができる。このように、本発明では、採取した角質から測定対象成分を抽出単離することなく、さらに、測定対象成分に対する反応試薬もシグナル試薬も用いないため、極めて簡便な測定が可能である。
Observation with a polarizing microscope In the method for measuring ceramide in the keratin of the present invention, the ceramide in the collected keratin is not extracted and isolated, but is directly subjected to the observation with a polarizing microscope in a state of being attached to the keratin collecting tool. Since the ceramide in the living body has a lamellar structure, the ceramide in the stratum corneum exhibits a white light signal in the polarizing microscope image. Therefore, ceramide in the stratum corneum can be measured by measuring the white light signal. As described above, in the present invention, the measurement target component is not extracted and isolated from the collected keratin, and neither the reaction reagent nor the signal reagent for the measurement target component is used, so that extremely simple measurement is possible.
角質中のセラミドの定量
セラミドに由来する白光シグナル強度は、実際のセラミド含有量と良好に相関している。従って、白光シグナル強度の多寡に基づいて、角質中のセラミドを定量することができる。セラミドの定量を行うために、偏光顕微鏡像において、白光シグナルの数量化を行うことができる。
Quantification of ceramide in keratin The intensity of the white light signal derived from ceramide correlates well with the actual ceramide content. Therefore, ceramide in the keratin can be quantified based on the amount of white light signal intensity. In order to quantify ceramide, the white light signal can be quantified in the polarizing microscope image.
白光シグナルの数量化を行う方法の一例として、偏光顕微鏡像をグレースケール化し、ピクセルごとに付される0(暗)〜255(明)の輝度Lkを積算した値(Σ[k=0→
255]Lk)をセラミド含有量の相対値として得る方法が挙げられる。この場合、閾値法等で画像処理して白色シグナル部分を抽出選択し、抽出選択された白色シグナル部分のピクセルにおける輝度を積算することができる。白色強度が高いほど、積算値が高くなるため、このようにして得られるセラミド含有量の相対値は、実際のセラミド含有量と相関する。
As an example of the method of quantifying the white light signal, the polarizing microscope image is grayscaled, and the value obtained by integrating the luminance Lk of 0 (dark) to 255 (bright) assigned to each pixel (Σ [k = 0 → →).
255] A method of obtaining L k ) as a relative value of the ceramide content can be mentioned. In this case, the white signal portion can be extracted and selected by image processing by the threshold method or the like, and the brightness of the extracted and selected white signal portion in the pixels can be integrated. The higher the white intensity, the higher the integrated value. Therefore, the relative value of the ceramide content thus obtained correlates with the actual ceramide content.
また、白光シグナルの数量化を行う方法の他の例として、偏光顕微鏡像をグレースケール化し、ピクセルごとに付される0(暗)〜255(明)の輝度Lkと、それぞれの輝度を呈するピクセルの数Pとを掛け合わせ、LkとPとの積をすべての輝度について積算した値(Σ[k=0→255]Lk・P)(以下において、CIA: Ceramides Index of A
mountと記載する場合がある。)を、セラミド含有量の相対値として得る方法も挙げられる。白色強度が高いほど、輝度が高いピクセルが多く存在することで積算値が高くなるため、このようにして得られるセラミド含有量の相対値は、実際のセラミド含有量と相関する。
As another example of how to do quantification of white light signal exhibits a brightness L k of the polarization microscope image to grayscale, subjected per pixel 0 (dark) to 255 (light), each luminance Multiplying the number of pixels P and multiplying the product of L k and P for all luminances (Σ [k = 0 → 255] L k · P) (CIA: Ceramides Index of A below)
It may be described as mount. ) Can be obtained as a relative value of the ceramide content. The higher the white intensity, the higher the integrated value due to the presence of many pixels with higher brightness. Therefore, the relative value of the ceramide content thus obtained correlates with the actual ceramide content.
これらのセラミド含有量の相対値を、実際にHPLC等の生理学的測定法で定量した結果に基づく検量線と突き合わせることで、当該生理学的測定法で定量した場合に想定されるセラミド含有量に換算することができる。 By comparing the relative values of these ceramide contents with the calibration curve based on the results actually quantified by a physiological measurement method such as HPLC, the ceramide content expected when quantified by the physiological measurement method is obtained. Can be converted.
セラミドは、皮膚のバリア機能の主役を担っている。本発明は、角質中のセラミドの多寡を直接的に評価できるため、皮膚の状態の評価に利用することもできる。 Ceramide plays a leading role in the barrier function of the skin. Since the present invention can directly evaluate the amount of ceramide in the stratum corneum, it can also be used for evaluating the condition of the skin.
皮膚の状態を評価する方法としては、例えば、定量された白光シグナル量を剥離角質量で除することで算出される、剥離角質量当たりの白色シグナル強度を利用する方法が挙げられる。剥離角質量のパラメータとしては、既存のDIA:Desquamation Index of Amount(J. Soc. Cosmet. Chem. Japan. Vol. 32, No. 1, 33-42(1998))を用いることができる。さらに、剥離角質量当たりの白色シグナル強度に対応させた水分蒸散値(TEWL値)のモデルデータを予め作成しておき、剥離角質量当たりの白色シグナル強度の算出結果を当該モデルデータに当てはめることで、皮膚の水分蒸散値(TEWL値)を予測し、皮膚の状態の評価に利用することができる。さらに、剥離角質量当たりの白色シグナル強度が0.00以上0.03未満では「×」(皮膚状態が悪い)、0.03以上0.05未満では「△」(皮膚状態が普通)、0.05以上では「○」(皮膚状態が良好)といったように評価することができる。 Examples of the method for evaluating the skin condition include a method using the white signal intensity per peeling angle mass, which is calculated by dividing the quantified amount of white light signal by the peeling angle mass. As a parameter of the peeling angle mass, the existing DIA: Desquamation Index of Amount (J. Soc. Cosmet. Chem. Japan. Vol. 32, No. 1, 33-42 (1998)) can be used. Furthermore, model data of the water transpiration value (TEWL value) corresponding to the white signal intensity per peeling angle mass is created in advance, and the calculation result of the white signal intensity per peeling angle mass is applied to the model data. , The water evaporation value (TEWL value) of the skin can be predicted and used for evaluating the condition of the skin. Furthermore, when the white signal intensity per peeling angle mass is 0.00 or more and less than 0.03, "x" (skin condition is poor), and when 0.03 or more and less than 0.05, "△" (skin condition is normal), 0. If it is .05 or higher, it can be evaluated as "○" (skin condition is good).
なお、本発明においては、セラミド量について上述のような具体的な定量値を得る場合だけでなく、セラミド量の具体的な定量値を得ず単にセラミド量の多寡の評価を行う場合も含まれる。セラミド量の多寡の評価は、セラミドに由来する白光シグナルの強弱の視認結果に基づいて行うことができる。具体的には、偏光顕微鏡像において、白色シグナルが強いほどセラミド量が多いと判断することができる。また、予め、セラミドに由来する白光シグナルの強弱の視認結果に対応させたセラミドの多寡を分類(例えば、セラミドが多い・普通・少ない、とする分類;セラミド量の多い方からレベル4・レベル3・レベル2・レベル1、とする分類等)したモデルを作成しておき、視認結果を当該モデルに当てはめることで、セラミド量の多寡を評価することができる。 The present invention includes not only the case where a specific quantitative value as described above is obtained for the amount of ceramide, but also the case where the amount of ceramide is simply evaluated without obtaining a specific quantitative value for the amount of ceramide. .. The amount of ceramide can be evaluated based on the visual result of the intensity of the white light signal derived from ceramide. Specifically, in the polarizing microscope image, it can be determined that the stronger the white signal, the larger the amount of ceramide. In addition, the amount of ceramide corresponding to the visual result of the intensity of the white light signal derived from ceramide is classified in advance (for example, classification as high / normal / low ceramide; level 4 / level 3 from the one with the highest amount of ceramide. -By creating a model classified as level 2 or level 1 and applying the visual results to the model, the amount of ceramide can be evaluated.
適用形態
本発明の角質中のセラミドの測定方法が適用される場合としては、皮膚の状態を評価する場合であれば特に限定されない。例えば、外用組成物の開発において皮膚への有効性評価を行う場合、化粧品の販売において顧客の肌状態に応じた商品の提案を行う場合、皮膚科の問診において外用医薬品を処方する場合、美容外科又はエステティックサロンのカウンセリングにおいて施術計画を立案する場合等が挙げられる。
Applicable form The case where the method for measuring ceramide in the keratin of the present invention is applied is not particularly limited as long as it evaluates the condition of the skin. For example, when evaluating the effectiveness of an external composition on the skin, when proposing a product according to the customer's skin condition in the sale of cosmetics, when prescribing an external drug in a dermatological interview, cosmetic surgery Alternatively, there is a case where a treatment plan is made in counseling at an esthetic salon.
2.化粧品の選択方法
上述の角質中のセラミドの測定方法は、皮膚の状態(具体的には角質に含まれるセラミドの多寡)を直接的に且つ簡便に測定できるため、化粧品の適用対象に対し、その肌の状態に応じた化粧品を選択する方法に使用することができる。つまり、本発明は、上記のセラミドの測定方法を行う工程と、得られたセラミド測定結果に基づいて、顧客の肌状態に応じた化粧品を選択する工程とを含む、化粧品の選択方法も提供する。
2. 2. Method of selecting cosmetics Since the above-mentioned method of measuring ceramide in keratin can directly and easily measure the condition of the skin (specifically, the amount of ceramide contained in keratin), it can be applied to cosmetics. It can be used as a method of selecting cosmetics according to the condition of the skin. That is, the present invention also provides a cosmetic selection method including a step of performing the above-mentioned ceramide measurement method and a step of selecting a cosmetic according to the customer's skin condition based on the obtained ceramide measurement result. ..
本発明の化粧品の選択方法が化粧品の販売において用いられる場合、顧客から採取した角質を用いて得られたセラミド測定結果に基づいて、販売用化粧品の中から、顧客の肌状態(角質中のセラミド量)に応じた化粧品を選択して顧客に提供することができる。 When the method for selecting cosmetics of the present invention is used in the sale of cosmetics, the skin condition of the customer (ceramide in the keratin) is selected from the cosmetics for sale based on the ceramide measurement result obtained by using the keratin collected from the customer. Cosmetics can be selected and provided to customers according to the quantity).
販売形態としては、店頭販売及びインターネット販売を問わない。店頭販売においては、店頭で顧客から上記の角質採取具で角質を採取してセラミドを測定することで、顧客はその場で速やかに肌状態を知ることができるとともに、テーラーメイドに近い形でより肌質に適合するように選択された化粧品を購入することができる。また、インターネット販売では、顧客が自宅等で上記の角質採取具で角質を採取し、採取後の角質採取具を郵送して適切な施設がセラミドを測定し、その結果を顧客にフィードバックするとともにその結果に応じた化粧品を郵送で受け取ることができるため、自宅等に居ながらにして、テーラーメイドに近い形でより肌質に適合するように選択された化粧品を購入することができる。 The sales form may be over-the-counter sales or Internet sales. In over-the-counter sales, by collecting keratin from the customer with the above-mentioned keratin collecting tool and measuring ceramide at the store, the customer can quickly know the skin condition on the spot and the skin is more like tailor-made. You can buy cosmetics that are selected to suit the quality. In Internet sales, customers collect keratin at home with the above keratin collecting tools, mail the collected keratin collecting tools, and an appropriate facility measures ceramide, and feeds the results back to the customer. Since cosmetics can be received by mail according to the results, it is possible to purchase cosmetics selected to be more suitable for the skin type in a form close to tailor-made while staying at home or the like.
また、本発明の化粧品の選択方法が美容外科又はエステティックサロンのカウンセリングにおいて用いられる場合、顧客から採取した角質を用いて得られたセラミド測定結果に基づいて、施術用化粧品の中から、顧客の肌状態(角質中のセラミド量)に応じた化粧品を選択して顧客に施術することができる。顧客は、テーラーメイドに近い形でより肌質に適合するように選択された化粧品による施術を受けることができるため、より高い施術効果を期待できる。 In addition, when the cosmetic selection method of the present invention is used in counseling in cosmetic surgery or an aesthetic salon, the customer's skin is selected from among the cosmetics for treatment based on the ceramide measurement result obtained using the keratin collected from the customer. It is possible to select cosmetics according to the condition (amount of ceramide in the keratin) and treat the customer. Customers can expect a higher treatment effect because they can receive treatment with cosmetics selected to be more suitable for the skin type in a form close to tailor-made.
なお、本発明の化粧品の選択方法における選択の基準としては特に限定されず、当業者によって適宜選択される。一例として、セラミド量が少ない人に対してはセラミドが配合された化粧品を選択することができ、セラミド量が十分であっても乾燥肌である人に対してはヘパリン類似物質、ヒアルロン酸、コラーゲン、尿素等のセラミド以外の保湿成分が配合された化粧品を選択することができる。 The selection criteria in the method for selecting cosmetics of the present invention are not particularly limited, and are appropriately selected by those skilled in the art. As an example, cosmetics containing ceramide can be selected for people with low ceramide content, and heparinoids, hyaluronic acid, collagen for people with dry skin even with sufficient ceramide content. , Cosmetics containing moisturizing ingredients other than ceramide such as urea can be selected.
以下に実施例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。 The present invention will be described in more detail with reference to Examples below, but the present invention is not limited thereto.
試験例1
(角質採取具の作製)
透明基材片面に、表1に記載する組成の接着性組成物を厚さ0.5mmとなるように塗布し、3時間乾燥させ、接着性層を得た。スライドガラス上で接着性層が占める面積は、15.9cm2であった。なお、実施例1及び2で用いた透明基材は武藤化学社製スターフロストスライドグラス水縁磨ホワイト5116(厚さ1.0mm)であり、実施例3で用いた透明基材は名村大成堂社製トリアセチルセルロース(A4サイズ、厚さ0.1mm)であり、実施例4で用いた透明基材は大倉工業社製熱可塑性ポリウレタンSNY97(厚さ0.08mm)である。また、実施例1で用いた接着性組成物はコニシ(株)製ボンドGクリヤーであり、実施例2、3、4で用いた接着性組成物はマルニ工業(株)製ゴムノリである。このようにして作製された角質採取具の接着面を両腕上腕部の皮膚表面に1回貼り付けてストリッピングすることにより、角質を採取した。
Test Example 1
(Making a keratin collecting tool)
An adhesive composition having the composition shown in Table 1 was applied to one side of the transparent substrate so as to have a thickness of 0.5 mm, and dried for 3 hours to obtain an adhesive layer. The area occupied by the adhesive layer on the slide glass was 15.9 cm 2 . The transparent base material used in Examples 1 and 2 was Star Frost Slide Glass Water Edge Polishing White 5116 (thickness 1.0 mm) manufactured by Muto Chemical Co., Ltd., and the transparent base material used in Example 3 was Taisei Namura. It is triacetyl cellulose (A4 size, thickness 0.1 mm) manufactured by Dosha, and the transparent base material used in Example 4 is thermoplastic polyurethane SNY97 (thickness 0.08 mm) manufactured by Okura Industrial Co., Ltd. The adhesive composition used in Example 1 is Bond G Clear manufactured by Konishi Co., Ltd., and the adhesive composition used in Examples 2, 3 and 4 is rubber paste manufactured by Maruni Industries Co., Ltd. The keratin was collected by attaching the adhesive surface of the keratin collecting tool thus produced to the skin surface of both arms and upper arms once and stripping.
(角質採取具のリタデーション及び複屈折性)
角質が付着採取される前の角質採取具の、透明基材と接着性層との積層部分におけるリタデーションを、WPA−200(フォトニックラティス社製複屈折計測装置、384×288ピクセル)を用いて測定した。具体的には、角質採取具の上記積層部分の面方向のリタデーションイメージングを、25℃で、523、543、及び575nmの波長にて行い、四方末端から少なくとも0.5cm内側に位置する1cm2の範囲内のリタデーション面分布における、リタデーションの平均値MR525nm、MR543nm、MR575nmを求め、更に、平均値MR525nm、MR543nm、MR575nmの平均値を、採取具のリタデーションとして得た。結果を表1に示す。なお、表1中、「≦1」は、リタデーションの平均値が1以下であり、測定誤差を鑑みるとほぼ0とみなすことができることを示す。
(Retention and birefringence of keratin collector)
Using WPA-200 (birefringence measuring device manufactured by Photonic Lattice, 384 x 288 pixels), the retardation of the laminated portion of the transparent base material and the adhesive layer of the keratin collecting tool before the keratin is adhered and collected is performed. It was measured. Specifically, surface retardation imaging of the laminated portion of the keratin collector was performed at 25 ° C. at wavelengths of 523, 543, and 575 nm, and 1 cm 2 located at least 0.5 cm inward from the four ends. in retardation plane distribution within the range, the average value MR 525 nm retardation, MR 543 nm, determine the MR 575 nm, further, the average value MR 525 nm, MR 543 nm, a mean value of MR 575 nm, was obtained as a retardation of collecting tool. The results are shown in Table 1. In Table 1, "≦ 1" indicates that the average value of retardation is 1 or less and can be regarded as almost 0 in consideration of the measurement error.
また、角質が付着採取される前の角質採取具の、透明基材と接着性層との積層部分を、オリンパス(株)製BX53−Pを用い、直行ニコル(偏光板)条件下、シャッタースピード100ms、ISO200にて撮影し、偏光顕微鏡像1を得た。得られた偏光顕微鏡像1(角質採取具単独の像)について、以下の基準で低複屈折性の判定を行った。結果を表1に示す。 Further, the laminated portion of the transparent base material and the adhesive layer of the keratin collecting tool before the keratin is adhered and collected is subjected to the shutter speed under the condition of orthogonal Nicol (polarizing filter) using BX53-P manufactured by Olympus Corporation. The image was taken at ISO200 for 100 ms to obtain a polarizing microscope image 1. The obtained polarizing microscope image 1 (an image of the keratin collecting tool alone) was judged to have low birefringence according to the following criteria. The results are shown in Table 1.
<偏光顕微鏡像1(低複屈折性)>
×:セラミド由来の偏光と区別が困難となる程度に角質採取具自体から障害となる偏光が観察された。
△:角質採取具自体から偏光は若干確認されたが、障害となる程度ではなかった。
○:角質採取具自体から偏光がほとんど確認されなかった。
<Polarizing microscope image 1 (low birefringence)>
X: An obstructive polarized light was observed from the keratin collecting tool itself to the extent that it was difficult to distinguish it from the polarized light derived from ceramide.
Δ: Polarization was slightly confirmed from the keratin collecting tool itself, but it was not an obstacle.
◯: Polarization was hardly confirmed from the keratin collecting tool itself.
(角質中のセラミド測定)
角質が付着採取された角質採取具を、オリンパス(株)製BX53−Pを用い、直行ニコル(偏光板)条件下、シャッタースピード100ms、ISO200にて撮影し、偏光顕微鏡像2を得た。得られた偏光顕微鏡像2(角質採取具及びそれに付着採取した角質の像)について、以下の基準で透光性の判定を行った。結果を表1に示す。
(Measurement of ceramide in keratin)
The keratin collecting tool on which the keratin was adhered was photographed using a BX53-P manufactured by Olympus Corporation under orthogonal Nicol (polarizing filter) conditions at a shutter speed of 100 ms and ISO 200 to obtain a polarizing microscope image 2. The light transmittance of the obtained polarizing microscope image 2 (the image of the keratin collecting tool and the keratin attached to the keratin collecting tool) was determined according to the following criteria. The results are shown in Table 1.
<偏光顕微鏡像2(透光性)>
×:偏光観察が困難となる程度に角質採取具による遮光の程度が大きい。
△:角質採取具による遮光は若干確認されたが、偏光観察の障害となる程度ではなかった。
○:透光性が良好で容易に偏光観察できた。
<Polarizing microscope image 2 (translucency)>
X: The degree of shading by the keratin collecting tool is large enough to make it difficult to observe polarized light.
Δ: Some light shielding by the keratin collecting tool was confirmed, but it did not interfere with the polarization observation.
◯: The translucency was good and polarized light could be easily observed.
表1に示すとおり、実施例1〜4の角質採取具は、低複屈折性で透光性に優れる。そして、実施例1〜4の偏光顕微鏡像2においては、セラミドに由来する白光(偏光)が確認された。つまり、本発明の角質採取具によって皮膚表面から角質をストリッピングし、採取した角質を角質採取具に付着させたまま偏光顕微鏡観察に供することで、角質中のセラミドを測定できることが分かった。更に、実施例1〜3の角質採取具によると、セラミド由来の白光とバックグラウンドとのコントラストが特に明瞭であったため、より一層感度良くセラミドを測定できることが推察される。 As shown in Table 1, the keratin collecting tools of Examples 1 to 4 have low birefringence and excellent translucency. Then, in the polarizing microscope images 2 of Examples 1 to 4, white light (polarized light) derived from ceramide was confirmed. That is, it was found that the ceramide in the keratin can be measured by stripping the keratin from the skin surface with the keratin collecting tool of the present invention and subjecting the collected keratin to the polarizing microscope observation while adhering to the keratin collecting tool. Furthermore, according to the keratin collecting tools of Examples 1 to 3, the contrast between the white light derived from ceramide and the background was particularly clear, so it is presumed that the ceramide can be measured with even higher sensitivity.
試験例2
(検量線の作成)
まず、実施例2の角質採取具を用いて、被験者17名それぞれの両腕上腕部の皮膚表面から角質を試験例1と同様にストリッピングし、1名の片腕当たり5サンプルの角質検体を採取した。各サンプルを試験例1と同様の条件で観察し、偏光顕微鏡像(拡大倍率100倍)を得た、得られた偏光顕微鏡像を、画像処理ソフトウェアImage Jを用いて処理した。処理の方法としては以下の(i)及び(ii)の2パターン行った。
Test Example 2
(Creation of calibration curve)
First, using the keratin collecting tool of Example 2, the keratin was stripped from the skin surface of the upper arm of both arms of each of the 17 subjects in the same manner as in Test Example 1, and 5 keratin samples were collected per arm of each subject. did. Each sample was observed under the same conditions as in Test Example 1, and a polarizing microscope image (magnification of 100 times) was obtained. The obtained polarizing microscope image was processed using image processing software Image J. As the processing method, the following two patterns (i) and (ii) were performed.
(i)偏光顕微鏡像をモノクロ画像(グレースケール)に変換し、閾値法(Triangle法)を用いた画像処理によって白光シグナル部分を抽出選択した。白光シグナル部分のピクセルごとに付される0〜255の輝度Lkを積算した値(Σ[k=0→255]L
k)を、セラミド含有量の相対値として得た。被験者1名の片腕から採取した5サンプルごとに、得られたセラミド含有量の相対値を総計した。このようにして得られたセラミド相対値を、セラミド相対値1と記載する。
(I) The polarizing microscope image was converted into a monochrome image (grayscale), and the white light signal portion was extracted and selected by image processing using the threshold method (Triangle method). A value obtained by integrating the brightness L k of 0 to 255 attached to each pixel of the white light signal portion (Σ [k = 0 → 255] L).
k ) was obtained as a relative value of the ceramide content. The relative values of the ceramide contents obtained were totaled for each of the five samples collected from one arm of one subject. The ceramide relative value thus obtained is described as a ceramide relative value 1.
(ii)偏光顕微鏡像をモノクロ画像(グレースケール)に変換し、ピクセルごとに付される0〜255の輝度Lkと、それぞれの輝度を呈するピクセルの数Pとを掛け合わせ、LkとPとの積をすべての輝度について積算したCIA値(Σ[k=0→255]Lk・P
)を、セラミド含有量の相対値として得た。被験者1名の片腕から採取した5サンプルごとに、得られたセラミド含有量の相対値を総計した。このようにして得られたセラミド相対値を、セラミド相対値2と記載する。
(Ii) A polarizing microscope image is converted into a monochrome image (grayscale), and the brightness L k of 0 to 255 assigned to each pixel is multiplied by the number P of pixels exhibiting each brightness, and L k and P are multiplied. CIA value (Σ [k = 0 → 255] L k · P, which is the sum of the product of and for all brightness
) Was obtained as a relative value of the ceramide content. The relative values of the ceramide contents obtained were totaled for each of the five samples collected from one arm of one subject. The ceramide relative value thus obtained is referred to as ceramide relative value 2.
次に、ヘキサンを用いてサンプルから角質ごと接着性層を回収し、角質を含む試料液を得た。試料液を遠心分離し、沈殿物を得た。沈殿物を、クロロホルム:メタノール=2:1(体積比)の混合溶媒を用いた抽出に供し、セラミドを含む脂質を得た。得られた脂質をSphingolipid ceramide N-deacylase(SCDase;タカラバイオ株式会社製)と反応させ、脂質中のセラミドをスフィンゴイド塩基と脂肪酸とに分解し、さらに、オルトフタルアルデヒド溶液と反応させてスフィンゴイド塩基を蛍光修飾し、定量用試料液を得た。得られた定量用試料液を以下の条件でHPLCに供し、セラミドを定量した。定量値は、内部標準10μMに対する相対量(以下、実際のセラミド定量値と記載する。)として得た。 Next, the adhesive layer together with the stratum corneum was recovered from the sample using hexane to obtain a sample solution containing the stratum corneum. The sample solution was centrifuged to obtain a precipitate. The precipitate was subjected to extraction using a mixed solvent of chloroform: methanol = 2: 1 (volume ratio) to obtain a lipid containing ceramide. The obtained lipid is reacted with Sphingolipid ceramide N-deacylase (SCDase; manufactured by Takara Bio Co., Ltd.), ceramide in the lipid is decomposed into sphingoid base and fatty acid, and further reacted with orthophthalaldehyde solution to sphingoid. The base was fluorescently modified to obtain a sample solution for quantification. The obtained sample solution for quantification was subjected to HPLC under the following conditions to quantify ceramide. The quantitative value was obtained as a relative amount with respect to the internal standard of 10 μM (hereinafter, referred to as an actual ceramide quantitative value).
カラム: CAPCELLPAK C18 5μL、4.6×150mm
流速: 1mL/min
移動相: A:0.1v/v%酢酸 B:メタノール
B比率:80v/v%(0〜20分)、100v/v%(20〜40分)
80v/v%(40〜50分)
カラム温度:40℃
波長: 励起:335nm 蛍光:440nm
注入量: 5μL
内部標準: C16スフィンゴシン(スフィンゴイド塩基)10μM
Column: CAPCELLLPAK C18 5 μL, 4.6 × 150 mm
Flow velocity: 1 mL / min
Mobile phase: A: 0.1v / v% acetic acid B: methanol
B ratio: 80v / v% (0 to 20 minutes), 100v / v% (20 to 40 minutes)
80v / v% (40-50 minutes)
Column temperature: 40 ° C
Wavelength: Excitation: 335nm Fluorescence: 440nm
Injection volume: 5 μL
Internal standard: C16 sphingosine (sphingoid base) 10 μM
図1に、(i)の方法で得られたセラミド相対値1(x)と、HPLCで得られた実際のセラミド定量値(y)との相関及び当該相関から得られた検量線を示す。図1では、相関係数は0.6126、ピアソンの相対係数の検定結果はp<0.01、検量線の方程式はy=(6.9858×10-6)x+1.2853であった。また、図2に、(ii)の方法で得られたセラミド相対値2(x)と、HPLCで得られた実際のセラミド定量値(y)との相関及び当該相関から得られた検量線を示す。図2では、相関係数は0.5894、ピアソンの相対係数の検定結果はp<0.01、検量線の方程式はy=(1.8118×10-10)x+2.0054であった。 FIG. 1 shows the correlation between the ceramide relative value 1 (x) obtained by the method (i) and the actual ceramide quantitative value (y) obtained by HPLC, and the calibration curve obtained from the correlation. In FIG. 1, the correlation coefficient was 0.6126, the test result of Pearson's relative coefficient was p <0.01, and the equation of the calibration curve was y = (6.9858 × 10 -6 ) x + 1.2853. Further, FIG. 2 shows the correlation between the ceramide relative value 2 (x) obtained by the method (ii) and the actual ceramide quantitative value (y) obtained by HPLC, and the calibration curve obtained from the correlation. Shown. In FIG. 2, the correlation coefficient was 0.5894, the test result of Pearson's relative coefficient was p <0.01, and the equation of the calibration curve was y = (1.8118 × 10 -10 ) x + 2.0054.
(検量線からのセラミド含有量の導出)
検量線作成に用いた被験者とは別の被験者a〜cから、それぞれ、両腕上腕部の皮膚表面から角質を試験例1と同様にストリッピングし、1名の片腕当たり5サンプルの角質検体を採取した。採取した角質について、上述と同様にしてセラミド相対値1及びセラミド相対値2を算出し、それぞれ、図1及び図2の検量線に基づいて、HPLC測定した場合に想定されるセラミド量を導出した。さらに、採取した角質について、上述と同様にしてセラミド含有量をHPLCで定量し、実際のセラミド定量値も得た。結果を表2及び表3に示す。
(Derivation of ceramide content from the calibration curve)
From the subjects a to c different from the subjects used for preparing the calibration curve, the keratin was stripped from the skin surface of the upper arm of both arms in the same manner as in Test Example 1, and 5 keratin samples were prepared for each arm. It was collected. For the collected keratin, the ceramide relative value 1 and the ceramide relative value 2 were calculated in the same manner as described above, and the amount of ceramide expected in the case of HPLC measurement was derived based on the calibration curves of FIGS. 1 and 2, respectively. .. Furthermore, the ceramide content of the collected keratin was quantified by HPLC in the same manner as described above, and the actual ceramide quantitative value was also obtained. The results are shown in Tables 2 and 3.
表2及び表3から明らかなとおり、本発明の角質採取具を用いたセラミドの測定結果とHPLCで測定した実際のセラミド定量値とは良好な一致を示していることが分かった。つまり、本発明によって、皮膚の状態を直接的に且つ簡便に、しかも精度良く測定できることが分かった。 As is clear from Tables 2 and 3, it was found that the measurement results of ceramide using the keratin collecting tool of the present invention and the actual ceramide quantitative values measured by HPLC showed good agreement. That is, it was found that the present invention can directly, easily, and accurately measure the condition of the skin.
Claims (11)
得られたセラミド測定結果に基づいて、顧客の肌状態に応じた化粧品を選択する工程とを含む、化粧品の選択方法。 The step of performing the ceramide measuring method according to any one of claims 1 to 4 and
A method for selecting cosmetics, which comprises a step of selecting cosmetics according to a customer's skin condition based on the obtained ceramide measurement result.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019036022 | 2019-02-28 | ||
JP2019036022 | 2019-02-28 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020144100A true JP2020144100A (en) | 2020-09-10 |
JP7345340B2 JP7345340B2 (en) | 2023-09-15 |
Family
ID=72354060
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019179308A Active JP7345340B2 (en) | 2019-02-28 | 2019-09-30 | How to measure ceramide in stratum corneum |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7345340B2 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63113358A (en) * | 1986-06-13 | 1988-05-18 | Pola Chem Ind Inc | Keratin layer inspection |
US20050191709A1 (en) * | 2004-02-26 | 2005-09-01 | The Procter & Gamble Company | Methods for determining the relative benefits and/or evaluating quantitative changes of products on epithelial tissue |
JP2007514951A (en) * | 2003-12-16 | 2007-06-07 | スリーエム イノベイティブ プロパティズ カンパニー | Analysis of chemically crosslinked cell samples |
JP2008076249A (en) * | 2006-09-21 | 2008-04-03 | Kurabo Ind Ltd | Slice piece sample manufacturing apparatus and slice piece sample manufacturing method |
JP2012206971A (en) * | 2011-03-29 | 2012-10-25 | Kose Corp | Oil-in-water type emulsified composition |
WO2018043636A1 (en) * | 2016-08-31 | 2018-03-08 | 株式会社ヤクルト本社 | Method for preparing specimen for analysis or observation of skin |
WO2018228576A1 (en) * | 2017-06-15 | 2018-12-20 | Sunstone Scientific Limited. | Process record slide for special staining |
-
2019
- 2019-09-30 JP JP2019179308A patent/JP7345340B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63113358A (en) * | 1986-06-13 | 1988-05-18 | Pola Chem Ind Inc | Keratin layer inspection |
JP2007514951A (en) * | 2003-12-16 | 2007-06-07 | スリーエム イノベイティブ プロパティズ カンパニー | Analysis of chemically crosslinked cell samples |
US20050191709A1 (en) * | 2004-02-26 | 2005-09-01 | The Procter & Gamble Company | Methods for determining the relative benefits and/or evaluating quantitative changes of products on epithelial tissue |
JP2008076249A (en) * | 2006-09-21 | 2008-04-03 | Kurabo Ind Ltd | Slice piece sample manufacturing apparatus and slice piece sample manufacturing method |
JP2012206971A (en) * | 2011-03-29 | 2012-10-25 | Kose Corp | Oil-in-water type emulsified composition |
WO2018043636A1 (en) * | 2016-08-31 | 2018-03-08 | 株式会社ヤクルト本社 | Method for preparing specimen for analysis or observation of skin |
WO2018228576A1 (en) * | 2017-06-15 | 2018-12-20 | Sunstone Scientific Limited. | Process record slide for special staining |
Also Published As
Publication number | Publication date |
---|---|
JP7345340B2 (en) | 2023-09-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI454736B (en) | Method for discriminating lines or wrinkles of skin and discriminating apparatus, discriminating program, and method for selecting external preparation for skin | |
Meador et al. | The regional-dependent biaxial behavior of young and aged mouse skin: A detailed histomechanical characterization, residual strain analysis, and constitutive model | |
Longo et al. | Evaluating ex vivo fluorescence confocal microscopy images of basal cell carcinomas in Mohs excised tissue | |
Gao et al. | Acute skin barrier disruption with repeated tape stripping: an in vivo model for damage skin barrier | |
JP4805794B2 (en) | Method for detecting stratum corneum protein, method for evaluating epidermal turnover and method for evaluating skin condition using the same | |
Dulińska-Molak et al. | Age-related changes in the mechanical properties of human fibroblasts and its prospective reversal after anti-wrinkle tripeptide treatment | |
JP2016538825A (en) | Method and system for skin care consultation | |
Franzen et al. | Advanced chemical imaging and comparison of human and porcine hair follicles for drug delivery by confocal Raman microscopy | |
Masuda et al. | Three‐dimensional morphological characterization of the skin surface micro‐topography using a skin replica and changes with age | |
Kuwazuru et al. | Skin wrinkling morphology changes suddenly in the early 30s | |
JP6499823B2 (en) | Skin condition discrimination method based on fibrous structure analysis | |
JP2024054325A (en) | Estimation method of hair, facial properties, etc. using stratum corneum cell properties of scalp skin | |
JP2011101738A (en) | Method of discriminating skin internal structure | |
JPWO2013153959A1 (en) | Skin condition discrimination method based on nipple structure analysis | |
JP7345340B2 (en) | How to measure ceramide in stratum corneum | |
AU2016274659B2 (en) | In vitro method for quantifying nano-objects of mammalian skin cells | |
JP6703218B1 (en) | How to assess skin condition | |
JP2003315331A (en) | Discrimination method of honey cell | |
JP4818704B2 (en) | Image color adjustment method | |
Lee et al. | Quantitative morphological and biochemical studies on human downy hairs using 3-D quantitative phase imaging | |
JPH11299792A (en) | Estimation of skin age | |
Musa | Computational optical biomedical spectroscopy and imaging | |
TW201526873A (en) | Evaluating method for skin texture | |
JP7148939B1 (en) | Estimation method, skin condition evaluation method | |
Asada et al. | Evaluation of intercellular lipid lamellae in the stratum corneum by polarized microscopy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220816 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230531 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230606 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230724 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230829 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230905 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7345340 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |