[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2020142222A - Metal molded body, and method for manufacture thereof - Google Patents

Metal molded body, and method for manufacture thereof Download PDF

Info

Publication number
JP2020142222A
JP2020142222A JP2019042543A JP2019042543A JP2020142222A JP 2020142222 A JP2020142222 A JP 2020142222A JP 2019042543 A JP2019042543 A JP 2019042543A JP 2019042543 A JP2019042543 A JP 2019042543A JP 2020142222 A JP2020142222 A JP 2020142222A
Authority
JP
Japan
Prior art keywords
metal
metal member
molded body
axial direction
joined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019042543A
Other languages
Japanese (ja)
Inventor
智恵 出口
Chie Deguchi
智恵 出口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Filter Manufacturing Co Ltd
Original Assignee
Fuji Filter Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Filter Manufacturing Co Ltd filed Critical Fuji Filter Manufacturing Co Ltd
Priority to JP2019042543A priority Critical patent/JP2020142222A/en
Publication of JP2020142222A publication Critical patent/JP2020142222A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Filtering Materials (AREA)
  • Forging (AREA)

Abstract

To join both metallic components while taking advantage of functions of the metallic components.SOLUTION: A metal molded body 1 is produced in such a manner that an end part 10a of a first metallic component 10 is inserted in a reception part 21a provided at one end of a second metallic component 20, and both metallic components are joined at an overlapping part 30 where one end parts 10a, 20a are overlapped. The first metallic component 10 and the second metallic component 20 are joined in such a manner that any one of swaging, welding and sintering or plural processing selected from those processing is executed for the overlapping part 30 in a prescribed order.SELECTED DRAWING: Figure 1

Description

本発明は、複数の金属製部材を接合した金属成形体及びその製造方法に関し、特に、両金属製部材の接合部位において各金属製部材がそれぞれ有する機能を活かすことが可能な金属成形体及びその製造方法に関する。 The present invention relates to a metal molded body obtained by joining a plurality of metal members and a method for manufacturing the same, and in particular, a metal molded body capable of utilizing the functions of each metal member at a joint portion between the two metal members and the metal molded body thereof. Regarding the manufacturing method.

特許文献1には、焼結金属から構成された筒状フィルタが記載されており、金属粉末に樹脂等を混練した混練物を円筒状に押出成形し、該成形体を焼結することにより筒状のフィルタユニットを得る旨が記載されている。押出成形では長尺の筒状フィルタを作製できないため、短尺のフィルタユニットの端面同士をTig溶接により接合して長尺の筒状フィルタを作製している。 Patent Document 1 describes a tubular filter made of sintered metal. A kneaded product obtained by kneading a metal powder with a resin or the like is extruded into a cylindrical shape, and the molded product is sintered to form a cylinder. It is described that a filter unit in the shape of a filter unit is obtained. Since a long tubular filter cannot be manufactured by extrusion molding, the end faces of short filter units are joined by TIG welding to manufacture a long tubular filter.

特開昭63−185421号公報Japanese Unexamined Patent Publication No. 63-185421

しかし、特許文献1においては、円周方向の全体に連続して形成される溶接ビード部分は濾過能力を有していない。即ち、溶接ビード部分は、夫々のフィルタユニットが本来有する機能を発揮できない部分である。
本発明は上述の事情に鑑みてなされたものであり、金属部材が有する機能を活かしつつ両金属部材を接合する新規な手法を提供することを目的とする。
However, in Patent Document 1, the weld bead portion continuously formed in the entire circumferential direction does not have a filtering ability. That is, the weld bead portion is a portion in which the original function of each filter unit cannot be exhibited.
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a novel method for joining both metal members while utilizing the functions of the metal members.

上記の課題を解決するために、本発明は、金属材料から構成されて、少なくとも軸方向の一端部に中空穴部が形成された第二部材と、金属材料から構成されて、少なくとも軸方向の一端部に、前記中空穴部に挿入可能な外形を有する挿入部を有する第一部材と、を備え、前記第一部材と前記第二部材の少なくとも一方は、多孔性の部材であり、前記第一部材の前記挿入部は、前記第二部材の一端開口から前記中空穴部内に挿入されており、前記第一部材と前記第二部材とは、両部材が重なるオーバーラップ部において接合されていることを特徴とする。 In order to solve the above problems, the present invention is composed of a second member made of a metal material and having a hollow hole formed at least at one end in the axial direction, and a metal material, at least in the axial direction. At one end, a first member having an insertion portion having an outer shape that can be inserted into the hollow hole portion is provided, and at least one of the first member and the second member is a porous member, and the first member. The insertion portion of one member is inserted into the hollow hole portion from one end opening of the second member, and the first member and the second member are joined at an overlapping portion where both members overlap. It is characterized by that.

本発明によれば、金属製の第一部材と第二部材が有する機能を活かしつつ両部材を接合することができる。 According to the present invention, both members can be joined while taking advantage of the functions of the first and second metal members.

本発明の一実施形態に係る金属成形体を示す図であり、(a)は外観図であり、(b)は(a)のA−A断面図である。It is a figure which shows the metal molded body which concerns on one Embodiment of this invention, (a) is an external view, (b) is the AA sectional view of (a). 金属成形体の作製手順の一例を示すフローチャートである。It is a flowchart which shows an example of the manufacturing procedure of a metal molded body. (a)、(b)は、ステップS2に相当する金属成形体の作成例を模式的に示す断面図である。(A) and (b) are cross-sectional views schematically showing a production example of a metal molded body corresponding to step S2. 第一金属部材と第二金属部材とをスウェージング処理によって接合する例を説明する模式図であり、(a)は図1(a)のA−A断面に相当する縦断面図であり、(b)は(a)のC1−C1断面に相当する図である。It is a schematic diagram explaining an example of joining a 1st metal member and a 2nd metal member by a swaging process, and FIG. 1A is a vertical sectional view corresponding to the AA cross section of FIG. 1A. b) is a diagram corresponding to the C1-C1 cross section of (a). (a)、(b)は、第一金属部材と第二金属部材とを溶接処理によって接合する例を説明する模式図である。(A) and (b) are schematic views explaining an example of joining a 1st metal member and a 2nd metal member by a welding process. (a)、(b)は、本発明の接合方法を用いて接合される金属部材の端部形状の一例を説明する図である。(A) and (b) are diagrams for explaining an example of the end shape of a metal member to be joined by using the joining method of the present invention. (a)〜(c)は、本発明の接合方法を用いて接合可能な金属部材の組み合わせ例を説明する図である。(A)-(c) is a figure explaining the combination example of the metal member which can be joined using the joining method of this invention. (a)〜(d)は、表面にコーティング層を形成した金属成形体を示す図である。(A) to (d) are views showing a metal molded body having a coating layer formed on its surface. (a)、(b)は、接合される金属部材を構成する中空筒状部材の外観構成を示す斜視図である。(A) and (b) are perspective views which show the appearance structure of the hollow tubular member which constitutes the metal member to be joined. 中空筒状部材の製造方法の一例を示す模式図である。It is a schematic diagram which shows an example of the manufacturing method of a hollow tubular member. 図9に示す中空筒状部材を形成する線材層の部分拡大斜視図である。FIG. 9 is a partially enlarged perspective view of a wire rod layer forming the hollow tubular member shown in FIG. 接合される金属部材を構成する中空筒状部材の外観構成例を示す斜視図である。It is a perspective view which shows the appearance composition example of the hollow tubular member which comprises the metal member to be joined. (a)〜(c)は、接合される金属部材を構成する中空筒状部材の製造方法の一例を示す模式図である。(A) to (c) are schematic views showing an example of a method of manufacturing a hollow tubular member constituting a metal member to be joined. 接合される金属部材を構成する中空筒状部材の外観構成例を示す斜視図である。It is a perspective view which shows the appearance composition example of the hollow tubular member which comprises the metal member to be joined. 接合される金属部材を構成する中空筒状部材の製造方法の一例を示す模式図である。It is a schematic diagram which shows an example of the manufacturing method of the hollow tubular member which comprises the metal member to be joined. (a)、(b)は、接合される金属部材を構成する中空筒状部材の製造方法の一例を示す模式図である。(A) and (b) are schematic views showing an example of a method of manufacturing a hollow tubular member constituting a metal member to be joined.

以下、本発明を図に示した実施形態を用いて詳細に説明する。但し、この実施形態に記載される構成要素、種類、組み合わせ、形状、その相対配置などは特定的な記載がない限り、この発明の範囲をそれのみに限定する主旨ではなく単なる説明例に過ぎない。
本発明では、例えば金属材料から構成される複数の短尺な金属部材を軸方向に順次接合することにより、一本の長尺な金属成形体を作製する。ここで金属部材には、軸方向に貫通した中空穴部を有する中空筒状部材、一端部に中空穴部を有し他部に中実部を有する有底筒状部材、軸方向の全体が中実状の中実棒状部材を含む。
Hereinafter, the present invention will be described in detail using the embodiments shown in the drawings. However, unless otherwise specified, the components, types, combinations, shapes, relative arrangements, etc. described in this embodiment are merely explanatory examples, not the purpose of limiting the scope of the present invention to that alone. ..
In the present invention, for example, a single long metal molded body is produced by sequentially joining a plurality of short metal members made of a metal material in the axial direction. Here, the metal member includes a hollow tubular member having a hollow hole portion penetrating in the axial direction, a bottomed tubular member having a hollow hole portion at one end and a solid portion at the other portion, and the entire axial direction. Includes solid solid rod-shaped members.

〔形状の概要〕
図1は、本発明の一実施形態に係る金属成形体を示す図であり、(a)は外観図であり、(b)は(a)のA−A断面図である。
図示する金属成形体1は、第一金属部材10(10A)と第二金属部材20(20A)とを接合して、一体化することにより作製されている。
第二金属部材20は金属材料から構成されており、少なくとも軸方向の一端部20aに、所定の軸方向長を有する中空穴部21(受容部21a)が形成されている。第一金属部材10は金属材料から構成されており、少なくとも軸方向の一端部10aは、中空穴部21(受容部21a)に挿入可能な外形を有した挿入部であり、第一金属部材10のうち挿入部として機能する部位は所定の軸方向長を有している。ここで所定の軸方向長とは、第一金属部材10と第二金属部材20とを接合して一体化することが可能な長さを意味する。
[Outline of shape]
1A and 1B are views showing a metal molded body according to an embodiment of the present invention, FIG. 1A is an external view, and FIG. 1B is a sectional view taken along the line AA of FIG. 1A.
The illustrated metal molded body 1 is manufactured by joining and integrating the first metal member 10 (10A) and the second metal member 20 (20A).
The second metal member 20 is made of a metal material, and a hollow hole portion 21 (reception portion 21a) having a predetermined axial length is formed at least at one end portion 20a in the axial direction. The first metal member 10 is made of a metal material, and at least one end portion 10a in the axial direction is an insertion portion having an outer shape that can be inserted into the hollow hole portion 21 (reception portion 21a), and the first metal member 10 Of these, the portion that functions as the insertion portion has a predetermined axial length. Here, the predetermined axial length means a length capable of joining and integrating the first metal member 10 and the second metal member 20.

第一金属部材10と第二金属部材20の一方、又は双方は、所定の肉厚を有する肉厚部(外周壁)12、22内に多数の気孔を有する多孔性の部材である。
金属成形体1において第一金属部材10の一端部10aは、第二金属部材20の一端開口から中空穴部21(受容部21a)内に挿入されており、第一金属部材10と第二金属部材20とは、両部材が重なるオーバーラップ部30において接合され、一体化されている。
図示する第一金属部材10Aと第二金属部材20Aは、それぞれ軸方向に貫通した中空穴部11、21を有する中空筒状体である。第一金属部材10と第二金属部材20は円筒形状でも、角筒形状でも、星形筒形状でも、その他の形状でもよい。
One or both of the first metal member 10 and the second metal member 20 is a porous member having a large number of pores in the thick portions (outer peripheral walls) 12 and 22 having a predetermined wall thickness.
In the metal molded body 1, one end portion 10a of the first metal member 10 is inserted into the hollow hole portion 21 (reception portion 21a) from one end opening of the second metal member 20, and the first metal member 10 and the second metal. The member 20 is joined and integrated at an overlapping portion 30 in which both members overlap.
The first metal member 10A and the second metal member 20A shown in the figure are hollow tubular bodies having hollow holes 11 and 21 penetrating in the axial direction, respectively. The first metal member 10 and the second metal member 20 may have a cylindrical shape, a square tubular shape, a star-shaped tubular shape, or any other shape.

第一金属部材10と第二金属部材20は、外周壁を構成する肉厚部12、22の肉厚内に多数の気孔(空隙)を有する多孔性部材である。第一金属部材10と第二金属部材20が有する気孔は、隣接する気孔同士が互いに順次連結した貫通気孔(又は連通気孔)であってもよいし、隣接する気孔同士が連結していない独立気孔でもよい。前者の場合、第一金属部材10と第二金属部材20は、液体、気体等の各種の流体から不純物等の特定の物質を分離するフィルタとして機能する。
なお、第一金属部材10と第二金属部材20の少なくとも一方が多孔性部材であればよく、第一金属部材10と第二金属部材20の他方が肉厚部12、22内に気孔を有さない非多孔性の部材であってもよい。また、互いに接合される第一金属部材10の一端部10aと第二金属部材20の一端部20aのみが多孔性であってもよい。
The first metal member 10 and the second metal member 20 are porous members having a large number of pores (voids) in the wall thicknesses of the wall thickness portions 12 and 22 forming the outer peripheral wall. The pores of the first metal member 10 and the second metal member 20 may be through pores (or continuous vent holes) in which adjacent pores are sequentially connected to each other, or independent pores in which adjacent pores are not connected to each other. It may be. In the former case, the first metal member 10 and the second metal member 20 function as filters for separating specific substances such as impurities from various fluids such as liquids and gases.
It is sufficient that at least one of the first metal member 10 and the second metal member 20 is a porous member, and the other of the first metal member 10 and the second metal member 20 has pores in the thick portions 12 and 22. It may be a non-porous member. Further, only one end portion 10a of the first metal member 10 and one end portion 20a of the second metal member 20 to be joined to each other may be porous.

第一金属部材10と第二金属部材20を構成する金属の種類、性状、及び作製方法等については後述する。 The types, properties, manufacturing methods, and the like of the metals constituting the first metal member 10 and the second metal member 20 will be described later.

接続される2つの金属部材のうち、一方の第一金属部材10の軸方向の一端部10aは、他方の第二金属部材20は受容部21a内に受け容れられている。即ち、第一金属部材10の軸方向の一端部10aは第二金属部材20の軸方向の一端部20aによって周方向の全体を被覆(又は包囲)されている。 Of the two metal members to be connected, one end portion 10a of the first metal member 10 in the axial direction and the other second metal member 20 are received in the receiving portion 21a. That is, one end portion 10a in the axial direction of the first metal member 10 is entirely covered (or surrounded) in the circumferential direction by one end portion 20a in the axial direction of the second metal member 20.

金属成形体1は軸方向の中間部に第一金属部材10の一端部10aと第二金属部材20の一端部20aとが径方向に重なったオーバーラップ部30を有しており、第一金属部材10と第二金属部材20はオーバーラップ部30において接合され、一体化されている。
オーバーラップ部30の軸方向長L1、及び肉厚部12、22の厚さは、第一金属部材10と第二金属部材20を接合可能、且つ、製品としての金属成形体1に想定される通常の使用条件下において容易には分離しない長さに設定される。例えば、第一金属部材10と第二金属部材20の内外径にも因るが、オーバーラップ部30の軸方向長L1は1mm〜50mm程度に設定することができ、肉厚部12、22の厚さは0.2mm以上に設定することができる。
The metal molded body 1 has an overlapping portion 30 in which one end portion 10a of the first metal member 10 and one end portion 20a of the second metal member 20 overlap in the radial direction in the intermediate portion in the axial direction. The member 10 and the second metal member 20 are joined and integrated at the overlap portion 30.
The axial length L1 of the overlapping portion 30 and the thicknesses of the thick portions 12 and 22 are assumed to be a metal molded body 1 as a product in which the first metal member 10 and the second metal member 20 can be joined. It is set to a length that does not easily separate under normal operating conditions. For example, although it depends on the inner and outer diameters of the first metal member 10 and the second metal member 20, the axial length L1 of the overlapping portion 30 can be set to about 1 mm to 50 mm, and the thick portions 12 and 22 can be set. The thickness can be set to 0.2 mm or more.

〔作成手順の概要〕
図2は、金属成形体の作製手順の一例を示すフローチャートである。
金属成形体1は、接合する第一金属部材10と第二金属部材20を準備する工程(ステップS1)と、第二金属部材20の一端部20aに第一金属部材10の一端部10aを挿入する工程(ステップS2)と、第一金属部材10と第二金属部材20を接合する工程(ステップS3)と、を含む。上記手順により作製された金属成形体は、検査工程(ステップS4)、及び洗浄・乾燥工程(ステップS5)を経て、製品として完成される。
[Outline of creation procedure]
FIG. 2 is a flowchart showing an example of a procedure for manufacturing a metal molded body.
In the metal molded body 1, the step of preparing the first metal member 10 and the second metal member 20 to be joined (step S1) and the one end portion 10a of the first metal member 10 are inserted into the one end portion 20a of the second metal member 20. The step (step S2) and the step of joining the first metal member 10 and the second metal member 20 (step S3) are included. The metal molded product produced by the above procedure is completed as a product through an inspection step (step S4) and a cleaning / drying step (step S5).

ステップS1において準備される第一金属部材10と第二金属部材20の例については後述する。 An example of the first metal member 10 and the second metal member 20 prepared in step S1 will be described later.

図3(a)、(b)は、ステップS2に相当する金属成形体の作成例を模式的に示す断面図である。図3(a)は、第一金属部材10が第二金属部材20に挿入される前の状態を示している。
第一金属部材10は、軸方向に一定の内径(内形状)を有する中空穴部11を備える。中空穴部11には、軸方向の他端開口から心棒100が挿入される。心棒100は、第一金属部材10の一端を越えて第一金属部材10の外部に突出するように配置される。
3 (a) and 3 (b) are cross-sectional views schematically showing an example of producing a metal molded body corresponding to step S2. FIG. 3A shows a state before the first metal member 10 is inserted into the second metal member 20.
The first metal member 10 includes a hollow hole portion 11 having a constant inner diameter (inner shape) in the axial direction. The mandrel 100 is inserted into the hollow hole portion 11 from the other end opening in the axial direction. The mandrel 100 is arranged so as to extend beyond one end of the first metal member 10 to the outside of the first metal member 10.

第二金属部材20は中空穴部21として、軸方向の一端部20aに第一金属部材10の一端部10aを受け容れ可能、且つ後段の接合工程において一端部10aを接合可能な内径(内形状)を有する受容部(大径部)21aを備え、軸方向の他部に受容部21aよりも内径が小さい小径部21bを備えている。小径部21bは、第一金属部材10の中空穴部11の内径(内形状)と同一である。
第二金属部材20を矢印Bにて示す軸方向に移動させて、第一金属部材10から突出した心棒100の端部を一端開口から中空穴部11内に受け容れると共に、一端部10aを受容部21a内に受け容れる。このようにして、一端部10a、20a同士が重なったオーバーラップ部30が形成される。
The second metal member 20 is a hollow hole portion 21, and has an inner diameter (inner shape) capable of receiving one end portion 10a of the first metal member 10 at one end portion 20a in the axial direction and joining one end portion 10a in a subsequent joining step. ) Is provided, and a small diameter portion 21b having an inner diameter smaller than that of the receiving portion 21a is provided in another portion in the axial direction. The small diameter portion 21b is the same as the inner diameter (inner shape) of the hollow hole portion 11 of the first metal member 10.
The second metal member 20 is moved in the axial direction indicated by the arrow B, and the end portion of the mandrel 100 protruding from the first metal member 10 is received from the opening at one end into the hollow hole portion 11, and the end portion 10a is received. Accepted in part 21a. In this way, the overlapping portion 30 in which the one ends 10a and 20a overlap each other is formed.

本図における心棒100は、中空穴部11と中空穴部21に挿入可能な外形状を有している。心棒100は、中空穴部11及び小径部21b内を摺動しつつ第一金属部材10と第二金属部材20の軸方向に沿って進退可能である。心棒100は、一端部10aを受容部21aに挿入する時に第一金属部材10と第二金属部材20の内外径方向における位置決めをする位置決め部材として機能する。心棒100を用いることにより、受容部21a内に一端部10aを挿入することが容易となる。
3本以上の金属部材を接続して1本の金属成形体を形成する場合は、例えば、一端部に受容部21aを備えた複数の第二金属部材20を軸方向に順次連結すればよい。
The mandrel 100 in this figure has an outer shape that can be inserted into the hollow hole portion 11 and the hollow hole portion 21. The mandrel 100 can move forward and backward along the axial direction of the first metal member 10 and the second metal member 20 while sliding in the hollow hole portion 11 and the small diameter portion 21b. The mandrel 100 functions as a positioning member that positions the first metal member 10 and the second metal member 20 in the inner and outer radial directions when the one end portion 10a is inserted into the receiving portion 21a. By using the mandrel 100, it becomes easy to insert the one end portion 10a into the receiving portion 21a.
When connecting three or more metal members to form one metal molded body, for example, a plurality of second metal members 20 having a receiving portion 21a at one end may be sequentially connected in the axial direction.

〔接合方法〕
第一金属部材10と第二金属部材20の接合方法について説明する。第一金属部材10と第二金属部材20は、オーバーラップ部30に施されたスウェージング処理、溶接処理、焼結処理により接合されている。第一金属部材10と第二金属部材20は、オーバーラップ部30に対して、スウェージング処理、溶接処理、焼結処理の何れかを実行することにより、又は、これらの中から選択された複数の処理を所定の順番で実行することにより接合されている。
[Joining method]
A method of joining the first metal member 10 and the second metal member 20 will be described. The first metal member 10 and the second metal member 20 are joined by a swaging treatment, a welding treatment, and a sintering treatment applied to the overlapping portion 30. A plurality of the first metal member 10 and the second metal member 20 are selected by performing any of a swaging treatment, a welding treatment, and a sintering treatment on the overlapping portion 30 or selected from these. It is joined by executing the processes of the above in a predetermined order.

<スウェージング処理>
図4は、第一金属部材と第二金属部材とをスウェージング処理によって接合する例を説明する模式図であり、(a)は図1(a)のA−A断面に相当する縦断面図であり、(b)は(a)のC1−C1断面に相当する図である。
<Swazing process>
FIG. 4 is a schematic view illustrating an example of joining a first metal member and a second metal member by a swaging process, and FIG. 4A is a vertical sectional view corresponding to the AA cross section of FIG. 1A. (B) is a diagram corresponding to the C1-C1 cross section of (a).

図4(a)に示すように、心棒100が第一金属部材10と第二金属部材20が重なるオーバーラップ部30に挿通されている状態にて、オーバーラップ部30に対して内径方向(矢印E1方向)へ圧縮して第一金属部材10と第二金属部材20を塑性変形させる外力を加えることにより、第一金属部材10と第二金属部材20とを接合することができる。また、オーバーラップ部30に対してスウェージング処理を施すことにより、第一金属部材10と第二金属部材20間にある表面の段差を除去し、図1に示すように第一金属部材10と第二金属部材20とを継ぎ目なく接合することができる。
ここで、心棒100の外形状は少なくとも一端部10aに位置する中空穴部11の内形状と略同一、即ち、心棒100は一端部10aに位置する中空穴部11と整合可能な形状であり、心棒100は中空穴部11内を摺動しつつ第一金属部材10の軸方向に沿って中空穴部11内を進退可能である。
As shown in FIG. 4A, in a state where the mandrel 100 is inserted through the overlapping portion 30 where the first metal member 10 and the second metal member 20 overlap, the inner diameter direction (arrow) with respect to the overlapping portion 30. The first metal member 10 and the second metal member 20 can be joined by applying an external force that compresses in the E1 direction and plastically deforms the first metal member 10 and the second metal member 20. Further, by performing a swaging treatment on the overlapping portion 30, the step on the surface between the first metal member 10 and the second metal member 20 is removed, and as shown in FIG. 1, the first metal member 10 and the first metal member 10 are removed. The second metal member 20 can be seamlessly joined.
Here, the outer shape of the mandrel 100 is substantially the same as the inner shape of the hollow hole portion 11 located at least at one end portion 10a, that is, the mandrel 100 has a shape that can be matched with the hollow hole portion 11 located at the one end portion 10a. The mandrel 100 can move forward and backward in the hollow hole portion 11 along the axial direction of the first metal member 10 while sliding in the hollow hole portion 11.

図4(b)に示すように、スウェージング処理をする装置には一例としてロータリースウェージングマシン110を用いることができる。
ロータリースウェージングマシン110は、形成する金属成形体1(図1参照)の外形状に応じた凹所111aが形成された複数の(本例では4つの)ダイス111、111…を備える。ダイス111、111…は、円周方向に沿って配置されており、周方向(矢印F方向)に順次移動しながら、内外径方向(矢印E1−E2方向)に進退する。
ダイス111、111…が矢印E1方向に移動したときに、凹所111aがオーバーラップ部30を内径方向に押圧して塑性変形させる。ロータリースウェージングマシン110は、装置内にセットされた第一金属部材10と第二金属部材20を、順次軸方向に送り出しつつ、オーバーラップ部30を塑性変形させて、両部材を接合する。
As shown in FIG. 4B, a rotary swaging machine 110 can be used as an example of the device for performing the swaging process.
The rotary swaging machine 110 includes a plurality of (four in this example) dies 111, 111, etc. in which recesses 111a corresponding to the outer shape of the metal molded body 1 (see FIG. 1) to be formed are formed. The dies 111, 111 ... Are arranged along the circumferential direction, and move back and forth in the inner and outer diameter directions (arrows E1-E2 direction) while sequentially moving in the circumferential direction (arrow F direction).
When the dies 111, 111 ... Move in the direction of the arrow E1, the recess 111a presses the overlapping portion 30 in the inner diameter direction to cause plastic deformation. In the rotary swaging machine 110, the first metal member 10 and the second metal member 20 set in the apparatus are sequentially sent out in the axial direction, and the overlapping portion 30 is plastically deformed to join the two members.

表面に通じている開放気孔が第一金属部材10の外表面と第二金属部材20の内表面に夫々存在する場合、金属同士が変形して噛み合うことにより、第一金属部材10と第二金属部材20が強固に接合される。
スウェージング処理をすることにより、接合箇所であるオーバーラップ部30の強度を高めることができる。また、一端部10a、20aを構成する金属材料同士の接触状況及び結びつきを向上させることができる。スウェージング処理は、オーバーラップ部30以外の部位にも施される。スウェージング処理を施すことにより、金属成形体1の外形寸法を軸方向の全体に亘って製品寸法の公差範囲内に収めることができる。
When open pores leading to the surface are present on the outer surface of the first metal member 10 and the inner surface of the second metal member 20, the metals are deformed and meshed with each other, so that the first metal member 10 and the second metal are engaged with each other. The members 20 are firmly joined.
By performing the swaging treatment, the strength of the overlapping portion 30 which is the joint portion can be increased. Further, it is possible to improve the contact state and the bond between the metal materials constituting the one end portions 10a and 20a. The swaging treatment is also applied to a portion other than the overlapping portion 30. By performing the swaging process, the external dimensions of the metal molded body 1 can be kept within the tolerance range of the product dimensions over the entire axial direction.

第一金属部材10と第二金属部材20がフィルタとして機能する部材である場合、スウェージング処理によって接合されたオーバーラップ部30もフィルタとして機能する。また、第一金属部材10と第二金属部材20が耐キンク性を有する部材である場合、スウェージング処理によって接合されたオーバーラップ部30も耐キンク性を発揮する。 When the first metal member 10 and the second metal member 20 are members that function as filters, the overlapping portion 30 joined by the swaging process also functions as a filter. Further, when the first metal member 10 and the second metal member 20 are members having kink resistance, the overlapping portion 30 joined by the swaging process also exhibits kink resistance.

<溶接処理>
図5(a)、(b)は、第一金属部材と第二金属部材とを溶接処理によって接合する例を説明する模式図である。図には、オーバーラップ部30に抵抗溶接の一種であるスポット溶接を施す例を示している。
スポット溶接は、図5(a)に示すように軸方向に沿って複数の溶接箇所31に施されていてもよいし、図5(b)に示すように第二金属部材20の一端寄りの周方向に沿って複数の溶接箇所31に施されていてもよい。
<Welding process>
5 (a) and 5 (b) are schematic views illustrating an example of joining a first metal member and a second metal member by a welding process. The figure shows an example in which spot welding, which is a type of resistance welding, is performed on the overlap portion 30.
Spot welding may be performed on a plurality of welded points 31 along the axial direction as shown in FIG. 5 (a), or as shown in FIG. 5 (b), near one end of the second metal member 20. It may be applied to a plurality of welded points 31 along the circumferential direction.

第一金属部材10と第二金属部材20がフィルタとして機能する部材である場合、スポット溶接によって接合されたオーバーラップ部30もフィルタとして機能する。また、第一金属部材10と第二金属部材20が耐キンク性を有する部材である場合、スポット溶接によって接合されたオーバーラップ部30も耐キンク性を発揮する。
溶接処理として抵抗溶接機を用いるスポット溶接を例示したが、その他の方式の溶接処理を採用してもよい。例えば、他の溶接方法としてろう材を用いたろう接を採用してもよい。或いは、溶接対象である金属部材に対して電子ビームやレーザビームを照射して溶融溶接を行う高エネルギービーム溶接処理を採用してもよい。或いは、溶接対象である金属部材に対して、加圧力を与えながら接合面に平行な超音波振動を印加して接合する超音波接合処理を施してもよい。
When the first metal member 10 and the second metal member 20 are members that function as filters, the overlapped portion 30 joined by spot welding also functions as a filter. Further, when the first metal member 10 and the second metal member 20 are members having kink resistance, the overlapping portion 30 joined by spot welding also exhibits kink resistance.
Although spot welding using a resistance welding machine has been exemplified as the welding process, other types of welding processes may be adopted. For example, brazing welding using a brazing material may be adopted as another welding method. Alternatively, a high-energy beam welding process may be adopted in which the metal member to be welded is irradiated with an electron beam or a laser beam to perform melt welding. Alternatively, an ultrasonic bonding process may be applied to a metal member to be welded by applying ultrasonic vibration parallel to the bonding surface while applying a pressing force.

<焼結処理>
第一金属部材10と第二金属部材20は、オーバーラップ部30に焼結処理を施すことにより接合することができる。
即ち、第一金属部材10と第二金属部材20を、これらを構成する金属材料の持つ融点よりも低い所定の温度及び所定の圧力条件下にて所定時間維持することにより、両金属部材を拡散接合させることができる。焼結処理は、真空雰囲気にて実施されてもよいし、金属材料の酸化を防止するための還元ガス雰囲気にて実施されてもよい。
第一金属部材10と第二金属部材20がフィルタとして機能する部材である場合、焼結処理によって接合されたオーバーラップ部30もフィルタとして機能する。また、第一金属部材10と第二金属部材20が耐キンク性を有する部材である場合、焼結処理によって接合されたオーバーラップ部30も焼結処理の条件に応じて耐キンク性を発揮する。
焼結処理は、溶接では接合が困難な異種金属からなる第一金属部材10と第二金属部材20同士を接合する場合に特に有効である。なお、焼結処理は、複数回実行されてもよい。
<Sintering>
The first metal member 10 and the second metal member 20 can be joined by subjecting the overlapping portion 30 to a sintering process.
That is, by maintaining the first metal member 10 and the second metal member 20 for a predetermined time under a predetermined temperature and a predetermined pressure condition lower than the melting point of the metal materials constituting them, both metal members are diffused. Can be joined. The sintering treatment may be carried out in a vacuum atmosphere or in a reducing gas atmosphere for preventing oxidation of the metal material.
When the first metal member 10 and the second metal member 20 are members that function as filters, the overlapped portion 30 joined by the sintering process also functions as a filter. Further, when the first metal member 10 and the second metal member 20 are members having kink resistance, the overlapping portion 30 joined by the sintering treatment also exhibits kink resistance depending on the conditions of the sintering treatment. ..
The sintering treatment is particularly effective when joining the first metal member 10 and the second metal member 20 made of dissimilar metals that are difficult to join by welding. The sintering process may be executed a plurality of times.

<接合方法のまとめ>
各接合方法は、金属成形体に求められる機能に応じて最適なものが選択される。例えば、耐キンク性を有する金属部材同士の接合には溶接処理を採用できるが、溶接箇所は、オーバーラップ部30が耐キンク性能を発揮できる位置及び数量に設定される。金属部材同士の性能を活かすために溶接に使用できる領域が微少な面積部分に限定される場合には、採用される溶接処理としては、スポット溶接処理又は高エネルギービーム溶接処理が好適である。
スウェージング処理後に焼結処理を実施する場合は、オーバーラップ部30における接合を確実にし、当該部位の接合強度を高めることができる。即ち、スウェージング処理により金属部材を加工硬化させることで焼結による接合を促進できる。スウェージング処理により金属部材同士を密着させることで焼結による接合を促進できる。スウェージング処理により金属部材表面の酸化皮膜を除去し、清浄な接合面を露出させることができるので、焼結による接合を促進できる。
<Summary of joining method>
The optimum joining method is selected according to the function required for the metal molded body. For example, a welding process can be adopted for joining metal members having kink resistance, but the welding location is set at a position and quantity at which the overlap portion 30 can exhibit the kink resistance performance. When the area that can be used for welding is limited to a small area in order to utilize the performance of the metal members, spot welding or high energy beam welding is preferable as the welding process to be adopted.
When the sintering treatment is performed after the swaging treatment, the bonding at the overlapping portion 30 can be ensured and the bonding strength of the portion can be increased. That is, joining by sintering can be promoted by work hardening the metal member by the swaging treatment. By bringing the metal members into close contact with each other by the swaging process, bonding by sintering can be promoted. Since the oxide film on the surface of the metal member can be removed by the swaging treatment and the clean joint surface can be exposed, bonding by sintering can be promoted.

本発明の実施形態に係る接合方法を用いれば、異なる性能又は機能を有する金属部材同士を軸方向に接合して1つの金属成形体とすることができる。例えば、金属部材がフィルタの場合、圧力損失が異なるフィルタ同士を接合し、目開きが異なるフィルタ同士を接合し、硬度が異なるフィルタ同士を接合して1つのフィルタとすることができる。また、濾過機能を有する金属部材に対して、外観は濾過機能を有する金属部材と同一であるが目開きがなく濾過機能を有さない金属部材を接合することもできる。また、異なる製造方法により作成された金属部材同士を接合して、一つの金属成形体とすることもできる。 By using the joining method according to the embodiment of the present invention, metal members having different performances or functions can be joined in the axial direction to form one metal molded body. For example, when the metal member is a filter, filters having different pressure losses can be joined to each other, filters having different openings can be joined to each other, and filters having different hardness can be joined to form one filter. Further, it is also possible to join a metal member having a filtration function to a metal member having the same appearance as the metal member having a filtration function but having no opening and having no filtration function. It is also possible to join metal members produced by different manufacturing methods to form one metal molded body.

〔オーバーラップ部の形状〕
図6(a)、(b)は、本発明の接合方法を用いて接合される金属部材の端部形状の一例を説明する図である。
図6(a)に示す第一金属部材10は、軸方向の一端側の外周部に段差部13が形成されており、一端部10aの外径(外形状)が他部の外径(外形状)に比べて小径である。第二金属部材20は、軸方向の一端側の内周部に段差部23が形成されており、一端部20aの内径(内形状)が他部の内径(内形状)に比べて大径である。段差部13、23の径方向長は夫々一端部20a、10aの肉厚に実質的に等しく、一端部10aと一端部20aは互いに嵌合する。
図6(b)に示す第一金属部材10は、一端部10aの外径(外形状)が一端に向かうに連れて漸減する形状である。第二金属部材20は、一端部20aの内径(内形状)が一端に向かうに連れて漸増する形状である。一端部10aの外径の漸減率と一端部20aの外径の漸増率は実質的に同一であり、一端部10aと一端部20aは互いに嵌合する。
[Shape of overlap]
6 (a) and 6 (b) are views for explaining an example of the end shape of the metal member to be joined by using the joining method of the present invention.
In the first metal member 10 shown in FIG. 6A, a step portion 13 is formed on the outer peripheral portion on one end side in the axial direction, and the outer diameter (outer shape) of the one end portion 10a is the outer diameter (outer shape) of the other portion. The diameter is smaller than the shape). The second metal member 20 has a stepped portion 23 formed on the inner peripheral portion on one end side in the axial direction, and the inner diameter (inner shape) of the one end portion 20a is larger than the inner diameter (inner shape) of the other portion. is there. The radial lengths of the step portions 13 and 23 are substantially equal to the wall thickness of the one end portions 20a and 10a, respectively, and the one end portion 10a and the one end portion 20a are fitted to each other.
The first metal member 10 shown in FIG. 6B has a shape in which the outer diameter (outer shape) of one end portion 10a gradually decreases toward one end. The second metal member 20 has a shape in which the inner diameter (inner shape) of one end portion 20a gradually increases toward one end. The gradual decrease rate of the outer diameter of the one end portion 10a and the gradual increase rate of the outer diameter of the one end portion 20a are substantially the same, and the one end portion 10a and the one end portion 20a are fitted to each other.

図6(a)、(b)に示す例とも、第一金属部材10の内径(内形状)と第二金属部材20の他部側の内径(内形状)は等しく、第一金属部材10の他部側の外径(外形状)と第二金属部材20の外径(外形状)は等しいため、両部材が接合された金属成形体は一定の内外径(内外形状)を有する。
本例によれば、図2のステップS2に示す挿入工程を経た段階において、内径(内形状)と外径(外形状)とが軸方向に一定の金属成形体の前駆体が形成される。従って、スウェージング処理以外の方法を用いて第一金属部材10と第二金属部材20を接合した場合であっても、内外形状が軸方向に一定の金属成形体を作製できる。
In both the examples shown in FIGS. 6A and 6B, the inner diameter (inner shape) of the first metal member 10 and the inner diameter (inner shape) of the second metal member 20 on the other side are equal, and the first metal member 10 has the same inner diameter. Since the outer diameter (outer shape) of the other portion side and the outer diameter (outer shape) of the second metal member 20 are equal, the metal molded body to which both members are joined has a constant inner / outer diameter (inner / outer shape).
According to this example, at the stage of passing through the insertion step shown in step S2 of FIG. 2, a precursor of a metal molded body having an inner diameter (inner shape) and an outer diameter (outer shape) constant in the axial direction is formed. Therefore, even when the first metal member 10 and the second metal member 20 are joined by a method other than the swaging treatment, a metal molded body having a constant inner and outer shape in the axial direction can be produced.

〔第一金属部材と第二金属部材の形状〕
図7(a)〜(c)は、本発明の接合方法を用いて接合可能な金属部材の組み合わせ例を説明する図である。
図7(a)に示すように、軸方向に貫通した中空穴部11を有する中空筒状体である第一金属部材10Aと、軸方向に伸びる中空穴部21が軸方向の一端部20aに形成され、軸方向の他部に中実部24を有する有底筒状体である第二金属部材20Bとを接合して金属成形体を作製することができる。
図7(b)に示すように、軸方向の全体が中実状の第一金属部材10Bと、軸方向に貫通した中空穴部21を有する中空筒状体である第二金属部材20Aとを接合して金属成形体を作製することができる。
図7(c)に示すように、軸方向の全体が中実状の第一金属部材10Bと、軸方向に伸びる中空穴部21が軸方向の一端部20aに形成され、軸方向の他部に中実部24を有する有底筒状体である第一金属部材10Bとを接合して金属成形体を作製することができる。
[Shape of first metal member and second metal member]
7 (a) to 7 (c) are views for explaining a combination example of metal members that can be joined by using the joining method of the present invention.
As shown in FIG. 7A, a first metal member 10A which is a hollow tubular body having a hollow hole portion 11 penetrating in the axial direction and a hollow hole portion 21 extending in the axial direction are formed at one end portion 20a in the axial direction. A metal molded body can be produced by joining the second metal member 20B, which is formed and has a solid portion 24 in another portion in the axial direction, which is a bottomed tubular body.
As shown in FIG. 7B, the first metal member 10B which is entirely solid in the axial direction and the second metal member 20A which is a hollow tubular body having a hollow hole portion 21 penetrating in the axial direction are joined. The metal molded body can be produced.
As shown in FIG. 7 (c), a first metal member 10B having a solid shape in the entire axial direction and a hollow hole portion 21 extending in the axial direction are formed at one end portion 20a in the axial direction and at the other portion in the axial direction. A metal molded body can be produced by joining the first metal member 10B, which is a bottomed tubular body having a solid portion 24.

第一金属部材10(10A、10B)は、肉厚部12の軸方向の全体、又は中実部14の軸方向の全体が、気孔を有する多孔性の部材であってもよいし、気孔を有さない非多孔性の部材であってもよい。第二金属部材20(20A、20B)は、肉厚部22の軸方向の全体、又は中実部24の軸方向の全体が、気孔を有する多孔性の部材であってもよいし、気孔を有さない非多孔性の部材であってもよい。 The first metal member 10 (10A, 10B) may be a porous member having pores in the entire axial direction of the thick portion 12 or the entire axial direction of the solid portion 14, or may have pores. It may be a non-porous member that does not have. The second metal member 20 (20A, 20B) may be a porous member having pores in the entire axial direction of the thick portion 22 or the entire axial direction of the solid portion 24, or may have pores. It may be a non-porous member that does not have.

第一金属部材10と第二金属部材20は、一端部10a、20aのみが気孔を有する多孔性部位であり、他部が気孔を有さない非多孔性部位であってもよい。
少なくとも第一金属部材10と第二金属部材20の一方が多孔性の部位を有していればよい。第一金属部材10と第二金属部材20うちの一方の一端部が多孔性であることが望ましく、第一金属部材10と第二金属部材20の双方の一端部が多孔性であることがより望ましい。
The first metal member 10 and the second metal member 20 may be a porous portion having pores only at one end portions 10a and 20a, and may be a non-porous portion having no pores at the other portion.
At least one of the first metal member 10 and the second metal member 20 may have a porous portion. It is desirable that one end of the first metal member 10 and the second metal member 20 is porous, and that one end of both the first metal member 10 and the second metal member 20 is porous. desirable.

〔コーティング〕
金属成形体1には、少なくとも第一金属部材10と第二金属部材20の各表面に跨がった部位に、樹脂コーティングが施されていてもよい。
図8(a)〜(d)は、表面にコーティング層を形成した金属成形体を示す図である。
上記各金属成形体1に対しては、表面に金属成形体1を被覆する樹脂コーティング層40を形成してコーティング付金属成形体2(2A〜2D)を作製してもよい。
〔coating〕
The metal molded body 1 may be coated with a resin at least on a portion straddling the surfaces of the first metal member 10 and the second metal member 20.
8 (a) to 8 (d) are views showing a metal molded body having a coating layer formed on its surface.
A resin coating layer 40 for coating the metal molded body 1 may be formed on the surface of each of the metal molded bodies 1 to produce coated metal molded bodies 2 (2A to 2D).

図8(a)は、金属成形体1の表面の全体に樹脂コーティング層40(41〜44)を形成したコーティング付金属成形体2Aを示している。即ち、樹脂コーティング層40は、金属成形体1の外周面をコーティングする外周部コーティング層41と、金属成形体1の内周面をコーティングする内周部コーティング層42と、金属成形体1の軸方向の端面をコーティングする端縁部コーティング層43とを備える。
図8(b)は、金属成形体1の外周部のみに樹脂コーティング層(外周部コーティング層41)を形成したコーティング付金属成形体2Bを示している。コーティング付金属成形体2Bには、更に端縁部コーティング層43を形成してもよい。
図8(c)は、金属成形体1の内周部のみに樹脂コーティング層(内周部コーティング層42)を形成したコーティング付金属成形体2Cを示している。コーティング付金属成形体2Cには、更に端縁部コーティング層43を形成してもよい。
図8(d)は、金属成形体1の繋ぎ目部分、言い換えれば、第一金属部材10と第二金属部材20とに跨がって部分的に樹脂コーティング層(部分コーティング層44)を形成したコーティング付金属成形体2Dを示している。
FIG. 8A shows a coated metal molded body 2A in which the resin coating layer 40 (41 to 44) is formed on the entire surface of the metal molded body 1. That is, the resin coating layer 40 includes an outer peripheral coating layer 41 that coats the outer peripheral surface of the metal molded body 1, an inner peripheral coating layer 42 that coats the inner peripheral surface of the metal molded body 1, and a shaft of the metal molded body 1. It includes an edge coating layer 43 that coats the end face in the direction.
FIG. 8B shows a coated metal molded body 2B in which a resin coating layer (outer peripheral coating layer 41) is formed only on the outer peripheral portion of the metal molded body 1. An edge coating layer 43 may be further formed on the coated metal molded body 2B.
FIG. 8C shows a coated metal molded body 2C in which a resin coating layer (inner peripheral coating layer 42) is formed only on the inner peripheral portion of the metal molded body 1. An edge coating layer 43 may be further formed on the coated metal molded body 2C.
FIG. 8D shows a joint portion of the metal molded body 1, in other words, a resin coating layer (partial coating layer 44) partially formed straddling the first metal member 10 and the second metal member 20. The coated metal molded body 2D is shown.

樹脂コーティング層40は、金属成形体1のうち樹脂コーティング層40を形成しない部分をマスクした状態にて金属成形体1をコーティング材料中に浸漬する、金属成形体1の表面のうち必要な箇所にコーティング材を塗布する、金属成形体1を型に入れてコーティング材を射出成形する、金属成形体1のうち必要な箇所を熱収縮チューブによって被覆した後に熱収縮チューブを加熱して収縮させる、金属成形体1のうち必要な箇所にテープ状のコーティング材を巻き付ける等、種々の方法により形成される。
樹脂コーティング層40を設けることにより、樹脂コーティング層40の形成部位においてコーティング付金属成形体2を形成する金属線材を露出させることなく被覆し、コーティング付金属成形体2の表面を滑らかにする。また、少なくとも第一金属部材10と第二金属部材20の各表面に跨がった部位、言い換えれば、第一金属部材10と第二金属部材20の切り替わる部位を被覆するので、両金属部材の接合部位を保護することができる。
The resin coating layer 40 is provided at a required portion on the surface of the metal molded body 1 in which the metal molded body 1 is immersed in the coating material while the portion of the metal molded body 1 that does not form the resin coating layer 40 is masked. Apply the coating material, put the metal molded body 1 in a mold and inject mold the coating material, cover the necessary part of the metal molded body 1 with a heat shrink tube, and then heat and shrink the heat shrink tube, metal It is formed by various methods such as wrapping a tape-shaped coating material around a necessary portion of the molded body 1.
By providing the resin coating layer 40, the metal wire rod forming the coated metal molded body 2 is covered at the forming portion of the resin coating layer 40 without being exposed, and the surface of the coated metal molded body 2 is smoothed. Further, at least the portion straddling the surfaces of the first metal member 10 and the second metal member 20, in other words, the portion where the first metal member 10 and the second metal member 20 are switched is covered, so that both metal members The joint site can be protected.

金属成形体1が自在に湾曲変形可能であり、耐キンク性を有するような場合(図9(b)参照)、樹脂コーティング層40を構成する樹脂は、金属成形体の変形に追従して変形可能な柔軟性を有したものを採用する。この場合には、例えばスチレン系樹脂、塩ビ系樹脂、オレフィン系樹脂、ウレタン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂等、を採用できる。
樹脂コーティング層40には上述の樹脂以外にも、エポキシ系樹脂、フッ素系樹脂等を用いてもよい。また、樹脂コーティング層40に使用する樹脂は合成樹脂であってもよいし、天然樹脂であってもよい。天然樹脂は植物由来のものであっても動物由来のものであってもよい。動物由来の樹脂にはタンパク質由来樹脂の一つであるゼラチンやコラーゲンが含まれる。
When the metal molded body 1 is freely curved and deformable and has kink resistance (see FIG. 9B), the resin constituting the resin coating layer 40 is deformed following the deformation of the metal molded body. Adopt one that has the flexibility possible. In this case, for example, a styrene resin, a vinyl chloride resin, an olefin resin, a urethane resin, a polyester resin, a polyamide resin, or the like can be adopted.
In addition to the above-mentioned resin, an epoxy resin, a fluororesin, or the like may be used for the resin coating layer 40. Further, the resin used for the resin coating layer 40 may be a synthetic resin or a natural resin. The natural resin may be of plant origin or animal origin. Animal-derived resins include gelatin and collagen, which are one of protein-derived resins.

金属成形体1が湾曲変形しない場合や、樹脂コーティング層40が金属成形体1の変形を阻止するために設けられる場合等には、硬質の樹脂を使用できる。この場合、例えば、非延伸型のPTFE(ポリテトラフルオロエチレン)やPEEK(ポリエーテルエーテルケトン)を使用できる。
樹脂コーティング層40には、金属成形体1の使用環境に応じて最適なものが使用される。
A hard resin can be used when the metal molded body 1 is not curved and deformed, or when the resin coating layer 40 is provided to prevent the metal molded body 1 from being deformed. In this case, for example, non-stretchable PTFE (polytetrafluoroethylene) or PEEK (polyetheretherketone) can be used.
As the resin coating layer 40, the most suitable one is used according to the usage environment of the metal molded body 1.

本実施形態によれば、焼結処理を経て得られる金属製多孔体の表面を樹脂によりコーティングするので、焼結処理により発現する金属の優れた特性を活かし、且つ金属製多孔体に対して樹脂の持つ特性を付与した金属成形体を得ることができる。
コーティング付金属成形体2は、フィルタ、センサーカバー、カテーテル、消音材、発泡・拡散材、ガイド部材等の用途に用いることができる。
According to the present embodiment, since the surface of the metal porous body obtained through the sintering treatment is coated with a resin, the excellent properties of the metal developed by the sintering treatment can be utilized, and the resin can be obtained with respect to the metal porous body. It is possible to obtain a metal molded body having the characteristics of.
The coated metal molded body 2 can be used for applications such as filters, sensor covers, catheters, sound deadening materials, foaming / diffusing materials, and guide members.

〔第一金属部材と第二金属部材の作製例〕
ステップS1において準備される、接合対象となる第一金属部材10と第二金属部材20の例について説明する。
互いに接合される第一金属部材10と第二金属部材20は、同一の材料(同一の金属、同一形態の金属材料)から同一の製造方法により作製された同種の金属部材でもよいし、材料(金属の種類、素材となる金属の形態)と製造方法の何れかが異なる異種の金属部材でもよい。
[Example of manufacturing first metal member and second metal member]
An example of the first metal member 10 and the second metal member 20 to be joined, which are prepared in step S1, will be described.
The first metal member 10 and the second metal member 20 to be joined to each other may be the same type of metal member manufactured from the same material (same metal, metal material having the same form) by the same manufacturing method, or the material ( It may be a different kind of metal member in which either the type of metal, the form of the metal used as the material) and the manufacturing method are different.

<金属線材巻き付けタイプ>
第一金属部材10と第二金属部材20は、その構成材料に金属線材を含み、且つ金属線材を多層状に且つ螺旋状に巻き付けることにより作製された部材であってもよい。
図9(a)、(b)は、接合される金属部材を構成する中空筒状部材の外観構成を示す斜視図である。図10は、中空筒状部材の製造方法の一例を示す模式図である。図11は、図9に示す中空筒状部材を形成する線材層の部分拡大斜視図である。第一金属部材10(10A)と第二金属部材20(20A)には、図9(a)(b)に示す中空筒状部材を用いることができる。なお、図9には軸方向の一端部に受容部21aを備えた第二金属部材20Aの例を示している。
<Metal wire winding type>
The first metal member 10 and the second metal member 20 may be members manufactured by including a metal wire rod in its constituent material and winding the metal wire rod in a multi-layered shape and in a spiral shape.
9 (a) and 9 (b) are perspective views showing an external configuration of a hollow tubular member constituting the metal member to be joined. FIG. 10 is a schematic view showing an example of a method for manufacturing a hollow tubular member. FIG. 11 is a partially enlarged perspective view of the wire rod layer forming the hollow tubular member shown in FIG. For the first metal member 10 (10A) and the second metal member 20 (20A), the hollow tubular member shown in FIGS. 9A and 9B can be used. Note that FIG. 9 shows an example of the second metal member 20A having a receiving portion 21a at one end in the axial direction.

第二金属部材20Aは、金属製の線材が網目状に組み合わせられた構成を有している。第二金属部材20Aは、一本の金属製の線材を螺旋状、且つ多層状に所定のピッチで巻き付けることにより形成される。
図10には、金属線材50を巻き付ける巻付装置120を示している。図示するように、矢印G方向に回転する心材121に対して、一本の金属製の金属線材50を心材121の軸線に対して所定の角度θ(θ1、θ2)となるように所定のピッチ53(軸方向における間隔)にて巻き付けることにより形成される。金属線材50が心材121に対して所定の角度となるように、金属線材を繰り出す線材ノズル122を軸方向(矢印H1、H2方向)に往復移動させることにより、形成される。
The second metal member 20A has a structure in which metal wire rods are combined in a mesh shape. The second metal member 20A is formed by winding a single metal wire rod spirally and in a multilayer shape at a predetermined pitch.
FIG. 10 shows a winding device 120 around which the metal wire rod 50 is wound. As shown in the figure, with respect to the core material 121 rotating in the arrow G direction, a single metal metal wire rod 50 has a predetermined pitch so as to have a predetermined angle θ (θ1, θ2) with respect to the axis of the core material 121. It is formed by winding at 53 (spacing in the axial direction). It is formed by reciprocating the wire rod nozzle 122 for feeding the metal wire rod in the axial direction (arrows H1 and H2 directions) so that the metal wire rod 50 has a predetermined angle with respect to the core material 121.

図示する心材121は第二金属部材20Aを作成するための心材であり、心材121は軸方向の一端部に受容部21aを形成する大径軸部121aを備え、軸方向の他部に小径部21bを形成する小径軸部121bを備える。なお、第一金属部材10Aの作製には、軸方向に一定の外径を有する心材が使用される。
第二金属部材20Aの肉厚は、金属線材50の巻き付け回数、即ち線材層の数により調整できる。従って、軸方向位置に応じて肉厚を可変させた第二金属部材20Aを作成することも可能である。
The illustrated core material 121 is a core material for producing the second metal member 20A, and the core material 121 includes a large-diameter shaft portion 121a forming a receiving portion 21a at one end in the axial direction and a small-diameter portion at the other portion in the axial direction. A small diameter shaft portion 121b forming 21b is provided. A core material having a constant outer diameter in the axial direction is used for manufacturing the first metal member 10A.
The wall thickness of the second metal member 20A can be adjusted by the number of times the metal wire rod 50 is wound, that is, the number of wire rod layers. Therefore, it is also possible to create the second metal member 20A having a variable wall thickness according to the axial position.

このようにして形成された第二金属部材20Aは、図11に示すように、金属線材50を第一の方向に傾斜させることにより形成された第一線材層51と、金属線材50を第一の方向と交差する第二の方向に傾斜させることにより形成された第二線材層52とが順次積層された構成を有する。なお、図11には線材層を2層分のみを示している。巻き付け処理が完了した後に心材121が抜き取られるが、心材121の抜き取り後に、各線材層間で隣接する金属線材50、50同士を焼結処理によって接合してもよい。
金属線材50の形状は特に問わない。例えば、金属線材50の横断面形状は、真円状、楕円状、平角状等でもよいし、横断面内に凹所を有している形状でもよい。また、金属線材50の横断面形状は、金属線材50の長手方向に一定でもよいし、長手方向位置に応じて変化するものでもよい。また、金属線材50は、長手方向に波状に変化する形状でもよい。
As shown in FIG. 11, the second metal member 20A formed in this way has the first wire rod layer 51 formed by inclining the metal wire rod 50 in the first direction and the metal wire rod 50 first. It has a structure in which the second wire rod layer 52 formed by inclining in the second direction intersecting the direction of the above is sequentially laminated. Note that FIG. 11 shows only two wire rod layers. The core material 121 is extracted after the winding treatment is completed, but after the core material 121 is extracted, the metal wires 50, 50 adjacent to each other between the wire rod layers may be joined by a sintering process.
The shape of the metal wire 50 is not particularly limited. For example, the cross-sectional shape of the metal wire 50 may be a perfect circle, an ellipse, a flat angle, or the like, or may have a recess in the cross section. Further, the cross-sectional shape of the metal wire rod 50 may be constant in the longitudinal direction of the metal wire rod 50, or may change depending on the position in the longitudinal direction. Further, the metal wire rod 50 may have a shape that changes in a wavy shape in the longitudinal direction.

また、第二金属部材20Aは、径方向の適所(肉厚部内の適所)に、金属製メッシュシート(金網)が挿入されたものでもよい。金属メッシュシートは、金属線材を平織り、綾織、畳織、綾畳織等することにより形成されたシートでもよいし、パンチングメタルや、エキスパンドメタルでもよい。或いは、金属メッシュシートは、金属線材を編み上げたものであってもよいし、金属製不織布であってもよい。
上記方法により作製される製品としては、富士フィルター工業株式会社製のフジロイ(Fujiloy)、フジ・ダンブロイ(Fuji Dumploy)を例示できる。
Further, the second metal member 20A may have a metal mesh sheet (wire mesh) inserted at an appropriate position in the radial direction (appropriate position in the thick portion). The metal mesh sheet may be a sheet formed by plain weave, twill weave, twill weave, twill tatami weave or the like of a metal wire rod, or may be punching metal or expanded metal. Alternatively, the metal mesh sheet may be a knitted metal wire rod or a metal non-woven fabric.
Examples of the products produced by the above method include Fujiloy and Fuji Dumploy manufactured by Fuji Filter Industry Co., Ltd.

軸方向の全体が中空筒状部である第二金属部材20Aは、図9(b)に示すように人の手でその軸線を湾曲させるように変形させてもキンクしないように作製された耐キンク性を有するものでもよい。ここでいう「キンク」とは、第二金属部材20Aに外力を加えたときに、第二金属部材20Aがつぶれてしまい、第二金属部材20Aから外力を除去してもつぶれてしまった第二金属部材20Aが元の状態に復元しない現象をいう。耐キンク性を有する第二金属部材20Aは、その軸線を湾曲させるように外力を加えたときに軸線方向の任意の位置における横断面形状を維持可能である。
このような耐キンク性を有する製品としては、富士フィルター工業株式会社製のフジ・フレープ(Fuji Frape)を例示できる。
As shown in FIG. 9B, the second metal member 20A, which has a hollow tubular portion as a whole in the axial direction, is manufactured so as not to be kinked even if its axis is deformed by a human hand so as to be curved. It may have a kink property. The term "kink" as used herein means that when an external force is applied to the second metal member 20A, the second metal member 20A is crushed, and even if the external force is removed from the second metal member 20A, the second metal member 20A is crushed. A phenomenon in which the metal member 20A is not restored to its original state. The second metal member 20A having kink resistance can maintain the cross-sectional shape at an arbitrary position in the axial direction when an external force is applied so as to bend the axis.
As a product having such kink resistance, Fuji Frape manufactured by Fuji Filter Industry Co., Ltd. can be exemplified.

耐キンク性を有する金属部材を接合した金属成形体は、狭くて入り組んだ構造体への配線誘導材としても使用可能である。特に、金属成形体は、樹脂製品では溶融するような高温雰囲気下における配線誘導材として使用可能である。また、耐キンク性を有する金属部材を接合した金属成形体は、人体の管状の臓器を代替し又は補強するための人工導管や、体液や薬液を体外へ導いたり体内に注入するために体内に挿入されるカニューレやカテーテル等の医療用チューブとしても使用可能である。 The metal molded body obtained by joining metal members having kink resistance can also be used as a wiring guide material for a narrow and intricate structure. In particular, the metal molded body can be used as a wiring guide material in a high temperature atmosphere that melts in a resin product. In addition, a metal molded body to which a metal member having kink resistance is joined is an artificial conduit for replacing or reinforcing a tubular organ of the human body, and an artificial conduit for guiding or injecting a body fluid or a drug solution into the body. It can also be used as a medical tube such as a cannula or catheter to be inserted.

上記方法により作製された金属部材同士は、スウェージング処理、溶接処理、焼結処理の何れか、又は、これらの中から選択された複数の処理を所定の順番で実行することにより接合される。
特に、耐キンク性を有する中空筒状体としての第一金属部材10と第二金属部材20を接合する場合、オーバーラップ部30(図1参照)に対してスウェージング処理及び焼結処理を施すことによって、オーバーラップ部30においても耐キンク性を残存させることができる。即ち、第一金属部材10と第二金属部材20が本来有する性能を活かしたままで、第一金属部材10と第二金属部材20を接合し、一体化することができる。スポット溶接により第一金属部材10と第二金属部材20を接合する場合は、スポット溶接を実施する箇所及びその数量を、必要な接合強度を確保し、且つオーバーラップ部30においても耐キンク性を発揮できるように設定する。
The metal members produced by the above method are joined by performing any one of a swaging treatment, a welding treatment, a sintering treatment, or a plurality of treatments selected from these in a predetermined order.
In particular, when the first metal member 10 and the second metal member 20 as a hollow tubular body having kink resistance are joined, the overlapping portion 30 (see FIG. 1) is subjected to a swaging treatment and a sintering treatment. As a result, the kink resistance can be maintained even in the overlap portion 30. That is, the first metal member 10 and the second metal member 20 can be joined and integrated while keeping the original performance of the first metal member 10 and the second metal member 20. When the first metal member 10 and the second metal member 20 are joined by spot welding, the location where the spot welding is to be performed and the quantity thereof are secured with the required joint strength, and the overlap portion 30 is also kink resistant. Set so that it can be demonstrated.

<金属線材巻き付け圧縮成形タイプ>
第一金属部材10と第二金属部材20は、その構成材料に金属線材を含み、且つ金属線材を多層状に且つ螺旋状に巻き付けることにより作製された部材であってもよい。また、第一金属部材10と第二金属部材20は、金属線材を巻き付けた後に、塑性変形により所定形状に成形されたものでもよい。
図12は、接合される金属部材を構成する中空筒状部材の外観構成例を示す斜視図である。図13(a)〜(c)は、接合される金属部材を構成する中空筒状部材の製造方法の一例を示す模式図である。
<Compression molding type with metal wire winding>
The first metal member 10 and the second metal member 20 may be members manufactured by including a metal wire rod in its constituent material and winding the metal wire rod in a multi-layered shape and in a spiral shape. Further, the first metal member 10 and the second metal member 20 may be formed into a predetermined shape by plastic deformation after winding a metal wire rod.
FIG. 12 is a perspective view showing an example of an external configuration of a hollow tubular member constituting the metal member to be joined. 13 (a) to 13 (c) are schematic views showing an example of a method of manufacturing a hollow tubular member constituting a metal member to be joined.

第一金属部材10と第二金属部材20には、図12に示す中空筒状部材を使用できる。なお、図12には、軸方向に貫通した中空穴部11を有し、且つ、内径及び外径が軸方向に一定である第一金属部材10Aを示している。
第一金属部材10Aは、凹部と凸部が長手方向に繰り返し現れる波状に成形された一本の金属線材60(60A、60B)を多層状に所定のピッチで巻き付けると共に、必要に応じて軸方向への圧縮成形と径方向への圧縮成形の少なくとも一方を施すことにより作製されている。第一金属部材10Aを構成する金属線材60は、その長手方向に沿って湾曲した凹凸が連続する金属線材60A(図12)でもよいし、その長手方向に沿って角U字状の凹部と逆角U字状の凸部とが連続する金属線材60B(図13(a))でもよい。
As the first metal member 10 and the second metal member 20, the hollow tubular member shown in FIG. 12 can be used. Note that FIG. 12 shows a first metal member 10A having a hollow hole portion 11 penetrating in the axial direction and having an inner diameter and an outer diameter constant in the axial direction.
In the first metal member 10A, one metal wire 60 (60A, 60B) formed in a wavy shape in which concave portions and convex portions repeatedly appear in the longitudinal direction is wound in a multi-layered manner at a predetermined pitch, and in the axial direction as necessary. It is manufactured by performing at least one of compression molding in the radial direction and compression molding in the radial direction. The metal wire 60 constituting the first metal member 10A may be a metal wire 60A (FIG. 12) having continuous irregularities curved along its longitudinal direction, or is opposite to a U-shaped concave portion along its longitudinal direction. The metal wire rod 60B (FIG. 13A) in which the convex portion having a U-shaped corner is continuous may be used.

図13(a)に示すように、第一金属部材10Aは、予め凹部と凸部とが長手方向に繰り返す波形状に整形された一本の金属材料からなる金属線材60を矢印G方向に回転する心材121に対して、心材121の軸方向(矢印H1、H2方向)に往復移動させながら、所定のピッチにて巻き付けることにより形成される。
図示する例では、同一の線材層を構成する金属線材60同士が互いに軸方向に接触するが重ならない程度のピッチにて心材121に巻き付けられる例を示している。また、異なる線材層を構成する金属線材60同士は、心材121の軸線に対して概ね同一の方向に傾斜した状態にて外径方向に順次積層される例を示している。
As shown in FIG. 13A, the first metal member 10A rotates a metal wire 60 made of a single metal material in which concave portions and convex portions repeat in the longitudinal direction in a wavy shape in the direction of arrow G. It is formed by winding the core material 121 around the core material 121 at a predetermined pitch while reciprocating in the axial direction (arrows H1 and H2 directions) of the core material 121.
In the illustrated example, the metal wire rods 60 constituting the same wire rod layer are wound around the core material 121 at a pitch such that they are in axial contact with each other but do not overlap each other. Further, an example is shown in which the metal wire rods 60 constituting different wire rod layers are sequentially laminated in the outer diameter direction in a state of being inclined in substantially the same direction with respect to the axis of the core material 121.

このようにして作製される中間体65(軸方向長X1、外径Y1)を、第一金属部材10Aとしてもよいし、中間体65に対して焼結処理を施すことにより隣接する金属線材60、60同士を拡散接合させて第一金属部材10Aを得てもよい。
また、中間体65には圧縮成形を施してもよい。即ち、図13(b)に示すように、中間体65に対して、心材121の軸方向に沿った矢印J方向への圧縮成形を施して、第一金属部材10A(軸方向長X2、外径Y2)を得てもよい。また、図13(c)に示すように、中間体65に対して、心材121の軸方向に沿った矢印J方向への圧縮成形と、内径方向に向かう矢印K方向への圧縮成形を施して、第一金属部材10A(軸方向長X3、外径Y3)を得てもよい。なお、図13(b)、(c)に示した中間体65の圧縮成型後に、更に焼結処理を経て第一金属部材10Aを得てもよい。
The intermediate body 65 (axial length X1, outer diameter Y1) produced in this manner may be used as the first metal member 10A, or the intermediate body 65 may be sintered to be adjacent to the metal wire 60. , 60 may be diffusion-bonded to obtain the first metal member 10A.
Further, the intermediate 65 may be compression-molded. That is, as shown in FIG. 13B, the intermediate body 65 is compression-molded in the direction of arrow J along the axial direction of the core member 121, and the first metal member 10A (axial length X2, outer) is subjected to compression molding. A diameter Y2) may be obtained. Further, as shown in FIG. 13C, the intermediate body 65 is subjected to compression molding in the arrow J direction along the axial direction of the core material 121 and compression molding in the arrow K direction toward the inner diameter direction. , The first metal member 10A (axial length X3, outer diameter Y3) may be obtained. After the intermediate 65 shown in FIGS. 13 (b) and 13 (c) is compression-molded, the first metal member 10A may be further subjected to a sintering process.

上記方法により作製される製品としては、富士フィルター工業株式会社製のフジ・マルチクリンプ(Fuji Multi Clamp)を例示できる。 As a product produced by the above method, Fuji Multi Clamp manufactured by Fuji Filter Industry Co., Ltd. can be exemplified.

第一金属部材10Aの肉厚は、金属線材60の巻き付け回数、即ち線材層の数により調整できる。第一金属部材10Aの内外形状は、圧縮成形用の型の形状により調整できる。従って、本例に示す方法を用いて、軸方向位置に応じて肉厚を可変させた金属部材を作成することも可能である。また、圧縮成形用の型の形状と圧縮成形手順によっては、中間体65から、有底筒状の金属部材を作製することも、軸方向の全体が中実状の金属部材を作製することも可能である。 The wall thickness of the first metal member 10A can be adjusted by the number of times the metal wire 60 is wound, that is, the number of wire layers. The inner and outer shapes of the first metal member 10A can be adjusted by the shape of the mold for compression molding. Therefore, it is also possible to create a metal member having a variable wall thickness according to the axial position by using the method shown in this example. Further, depending on the shape of the mold for compression molding and the compression molding procedure, it is possible to produce a bottomed tubular metal member from the intermediate 65 or a metal member having a solid shape in the entire axial direction. Is.

本例に示す方法により作製された金属部材同士は、スウェージング処理、溶接処理、焼結処理の何れか、又は、これらの中から選択された複数の処理を所定の順番で実行することにより接合される。 The metal members produced by the method shown in this example are joined by performing any one of a swaging treatment, a welding treatment, a sintering treatment, or a plurality of treatments selected from these in a predetermined order. Will be done.

<金網圧縮タイプ>
第一金属部材10と第二金属部材20は、その構成材料に金属線材を含み、且つ金属線材を織り上げるか、編み上げたものであってもよい。また、第一金属部材10と第二金属部材20は、金属線材を織り上げるか編み上げた後に、塑性変形により所定形状に成形されたものでもよい。
図14は、接合される金属部材を構成する中空筒状部材の外観構成例を示す斜視図である。図15、及び図16(a)、(b)は、接合される金属部材を構成する中空筒状部材の製造方法の一例を示す模式図である。
第一金属部材10と第二金属部材20には、図14に示す中空筒状部材を使用できる。なお、図14には、軸方向に貫通した中空穴部11を有し、且つ、内径及び外径が軸方向に一定である第一金属部材10Aを示している。
第一金属部材10Aは、図15、図16に示すように、一本の金属線材70を筒状に編み上げることにより形成された中間体としての筒状金網体72を、幾つかの工程を経て所定形状に成形することにより作製されている。
<Wire mesh compression type>
The first metal member 10 and the second metal member 20 may contain a metal wire rod as a constituent material thereof, and the metal wire rod may be woven or knitted. Further, the first metal member 10 and the second metal member 20 may be formed into a predetermined shape by plastic deformation after weaving or knitting a metal wire rod.
FIG. 14 is a perspective view showing an example of an external configuration of a hollow tubular member constituting the metal member to be joined. 15 and 16 (a) and 16 (b) are schematic views showing an example of a method for manufacturing a hollow tubular member constituting a metal member to be joined.
As the first metal member 10 and the second metal member 20, the hollow tubular member shown in FIG. 14 can be used. Note that FIG. 14 shows a first metal member 10A having a hollow hole portion 11 penetrating in the axial direction and having an inner diameter and an outer diameter constant in the axial direction.
As shown in FIGS. 15 and 16, the first metal member 10A is formed by knitting a single metal wire 70 into a tubular shape to form a tubular wire mesh body 72 as an intermediate through several steps. It is manufactured by molding into a predetermined shape.

筒状金網体72の作製には、図15に示すような編み機130を使用する。編み機130は、金属線材70を編み込むための円筒状の本体部131と、送り出された金属線材70を本体部131に案内するための複数の案内針132とを備えている。案内針132は、その先端が鉤状(概略逆J字状)であり、本体部131の周方向に複数個が配置されている。また、本体部131は、径方向の中央部に貫通穴133を有している。
金属線材70を編み機130に送り出して、金属線材70を各案内針132に順次引っ掛けて例えばメリヤス編みをすることにより、筒状の金網連続体71を形成する。金網連続体71を軸方向の適所にて切断して、所定の軸方向長を有する筒状金網体72を形成する。なお、編み機130により形成する編み目の構造はメリヤス編みによる編み目以外でもよい。
A knitting machine 130 as shown in FIG. 15 is used for producing the tubular wire mesh body 72. The knitting machine 130 includes a cylindrical main body 131 for knitting the metal wire 70, and a plurality of guide needles 132 for guiding the sent out metal wire 70 to the main body 131. The tip of the guide needle 132 has a hook shape (approximately inverted J shape), and a plurality of guide needles 132 are arranged in the circumferential direction of the main body 131. Further, the main body 131 has a through hole 133 at the center in the radial direction.
The metal wire 70 is sent out to the knitting machine 130, and the metal wire 70 is sequentially hooked on each guide needle 132 to perform knitting, for example, to form a tubular wire mesh continuum 71. The wire mesh continuum 71 is cut at an appropriate position in the axial direction to form a tubular wire mesh body 72 having a predetermined axial length. The structure of the stitches formed by the knitting machine 130 may be other than the stitches formed by the knitted fabric.

更に、図16(a)に示すように、筒状金網体72を軸方向(矢印J方向)に圧縮した後、図16(b)に示す内径方向に向かう矢印K方向への圧縮成形を施して、第一金属部材10Aを得る。なお、圧縮には、作製しようとする第一金属部材10と第二金属部材20の形状に応じた成形型を使用する。本例においても、圧縮成型後に焼結処理を実施してもよい。
このような製品としては、富士フィルター工業株式会社製のフジ・テヘール(Fuji Tejer)を例示できる。
Further, as shown in FIG. 16A, the tubular wire mesh 72 is compressed in the axial direction (arrow J direction), and then compression molding is performed in the arrow K direction toward the inner diameter direction shown in FIG. 16B. To obtain the first metal member 10A. For compression, a molding die corresponding to the shapes of the first metal member 10 and the second metal member 20 to be manufactured is used. In this example as well, the sintering process may be performed after compression molding.
As such a product, Fuji Tejer manufactured by Fuji Filter Industry Co., Ltd. can be exemplified.

第一金属部材10Aの内外形状は、圧縮成形用の型の形状により調整できる。従って、本例に示す方法を用いて、軸方向位置に応じて肉厚を可変させた金属部材を作成することも可能である。また、圧縮成形用の型の形状と圧縮成形手順によっては、筒状金網体72から、有底筒状の金属部材を作製することも、軸方向の全体が中実状の金属部材を作製することも可能である。
本例に示す方法により作製された金属部材同士は、スウェージング処理、溶接処理、焼結処理の何れか、又は、これらの中から選択された複数の処理を所定の順番で実行することにより接合される。
The inner and outer shapes of the first metal member 10A can be adjusted by the shape of the mold for compression molding. Therefore, it is also possible to create a metal member having a variable wall thickness according to the axial position by using the method shown in this example. Further, depending on the shape of the mold for compression molding and the compression molding procedure, a bottomed tubular metal member may be produced from the tubular wire mesh 72, or a metal member having a solid shape in the entire axial direction may be produced. Is also possible.
The metal members produced by the method shown in this example are joined by performing any one of a swaging treatment, a welding treatment, a sintering treatment, or a plurality of treatments selected from these in a predetermined order. Will be done.

<金属粉体焼結タイプ>
接合される金属部材は、金属粉体を焼結することにより作製された多孔性の部材であってもよい。
即ち、第一金属部材10と第二金属部材20は、金属を所定形状に製粉し、性状の異なる金属粉体を適宜混合して圧縮成形し、金属粉の持つ融点よりも低い所定の温度条件下及び所定の圧力条件下にて所定時間維持することにより、金属粉体を原子レベルで拡散接合させたものでもよい。
ここで、金属粉体は、球状、針状、繊維状、ブロック状、その他の形状とすることができる。
金属粉体を焼結することにより作製される金属部材の形状は、圧縮成形時(及び焼結時)の成形型によって決定されるため、この方法によれば、軸方向に貫通する中空穴部を有する筒状部材、軸方向の一端部に中空穴部を有する有底筒状部材、軸方向の全体が中実状の部材の何れをも作製可能である。また、中空穴部の肉厚等も自在に調整可能である。
上記方法により作製された金属部材同士は、スウェージング処理、溶接処理、焼結処理の何れか、又は、これらの中から選択された複数の処理を所定の順番で実行することにより接合される。
<Metal powder sintering type>
The metal member to be joined may be a porous member produced by sintering metal powder.
That is, the first metal member 10 and the second metal member 20 are formed by milling a metal into a predetermined shape, appropriately mixing metal powders having different properties, and compression-molding the metal powders under predetermined temperature conditions lower than the melting point of the metal powders. The metal powder may be diffusion-bonded at the atomic level by maintaining the metal powder under a predetermined pressure condition for a predetermined time.
Here, the metal powder can have a spherical shape, a needle shape, a fibrous shape, a block shape, or any other shape.
Since the shape of the metal member produced by sintering the metal powder is determined by the molding die during compression molding (and during sintering), according to this method, the hollow hole portion penetrating in the axial direction It is possible to manufacture any of a tubular member having a structure, a bottomed tubular member having a hollow hole at one end in the axial direction, and a member having a solid shape as a whole in the axial direction. Further, the wall thickness of the hollow hole portion can be freely adjusted.
The metal members produced by the above method are joined by performing any one of a swaging treatment, a welding treatment, a sintering treatment, or a plurality of treatments selected from these in a predetermined order.

<金属製不織布タイプ>
接合される金属部材は、金属製の不織布から構成された多孔性の部材であってもよい。
即ち、第一金属部材10と第二金属部材2は、例えば金属製不織布を心棒に巻き付けて筒状とした後に焼結処理を施されたものであってもよい。また、第一金属部材10と第二金属部材2は、金属製不織布を成形型により所定形状に圧縮成形したものでもよい。
上記方法により作製された金属部材同士は、スウェージング処理、溶接処理、焼結処理の何れか、又は、これらの中から選択された複数の処理を所定の順番で実行することにより接合される。
<Metal non-woven fabric type>
The metal member to be joined may be a porous member made of a metal non-woven fabric.
That is, the first metal member 10 and the second metal member 2 may be, for example, those obtained by winding a metal non-woven fabric around a mandrel to form a tubular shape and then performing a sintering process. Further, the first metal member 10 and the second metal member 2 may be made by compression molding a metal nonwoven fabric into a predetermined shape by a molding die.
The metal members produced by the above method are joined by performing any one of a swaging treatment, a welding treatment, a sintering treatment, or a plurality of treatments selected from these in a predetermined order.

〔金属の材質〕
第一金属部材10と第二金属部材20とを構成する金属には、SUS304、SUS304L、SUS310S、SUS316、SUS316L、SUS347、ハステロイ(登録商標)、モネル(登録商標)、インコネル(登録商標)、ニッケル、ニッケル合金、FeCrAl合金、銅、青銅、チタン、チタン合金、等の各金属から構成することができる。なお、使用する金属は、金属成形体の使用目的や作製方法に応じて最適なものを選定する。
[Metal material]
The metals constituting the first metal member 10 and the second metal member 20 include SUS304, SUS304L, SUS310S, SUS316, SUS316L, SUS347, Hasteroy (registered trademark), Monel (registered trademark), Inconel (registered trademark), and nickel. , Nickel alloy, FeCrAl alloy, copper, bronze, titanium, titanium alloy, etc. can be composed of each metal. The most suitable metal to be used is selected according to the purpose of use and the manufacturing method of the metal molded body.

〔金属部材の他の形状例〕
上記実施形態においては、金属部材が筒状又は中実棒状である場合の金属部材同士の接合例を示した。しかし、本発明は、金属部材が筒状又は中実棒状以外の形状である場合にも適用できる。例えば接合対象となる金属部材は平板状、シート状、その他の形状であってもよい。具体例を挙げれば、接合対象となる金属部材は、複数の金属製メッシュシートを積層して焼結したプレート状の多孔性の金属部材(例:富士フィルター工業株式会社製のフジプレート)であってもよい。また、接合対象となる金属部材は、金属繊維から構成されたフェルト地を積層した不織布(例:富士フィルター工業株式会社製のフジ・メタルファイバー)であってもよく、該不織布は焼結されたものでも未焼結のものでもよい。或いは、接合対象となる金属部材は金属粉体を焼結することにより作製された任意の形状の多孔性の部材であってもよい。
[Examples of other shapes of metal members]
In the above embodiment, an example of joining metal members to each other when the metal members have a tubular shape or a solid rod shape is shown. However, the present invention can also be applied when the metal member has a shape other than a tubular shape or a solid rod shape. For example, the metal member to be joined may have a flat plate shape, a sheet shape, or another shape. To give a specific example, the metal member to be joined is a plate-shaped porous metal member obtained by laminating and sintering a plurality of metal mesh sheets (example: Fuji plate manufactured by Fuji Filter Industry Co., Ltd.). You may. Further, the metal member to be bonded may be a non-woven fabric (eg, Fuji Metal Fiber manufactured by Fuji Filter Industry Co., Ltd.) in which felt fabric composed of metal fibers is laminated, and the non-woven fabric is sintered. It may be non-woven or unsintered. Alternatively, the metal member to be joined may be a porous member of any shape produced by sintering metal powder.

〔本発明の実施態様例と作用、効果のまとめ〕
<第一の実施態様>
本態様に係る金属成形体1は、金属材料から構成されて、少なくとも軸方向の一端部20aに、中空穴部(受容部21a)が形成された第二部材(第二金属部材20)と、金属材料から構成されて、少なくとも軸方向の一端部10aに、中空穴部に挿入可能な外形を有する挿入部を有する第二部材と、を備え、第一部材と第二部材の少なくとも一方は、多孔性の部材であり、第二部材の受容部は、第一部材の一端開口から中空穴部内に挿入されており、第一部材と第二部材とは、両部材が重なるオーバーラップ部30において接合されていることを特徴とする。
本態様によれば、金属製の第一部材と第二部材が有する機能を活かしつつ両部材を接合することができる。
[Summary of Examples of Embodiments of the Present Invention, Actions, and Effects]
<First embodiment>
The metal molded body 1 according to the present embodiment includes a second member (second metal member 20) made of a metal material and having a hollow hole portion (reception portion 21a) formed at least at one end portion 20a in the axial direction. A second member composed of a metal material and having an insertion portion having an outer shape that can be inserted into a hollow hole portion is provided at least at one end portion 10a in the axial direction, and at least one of the first member and the second member is provided. It is a porous member, and the receiving portion of the second member is inserted into the hollow hole portion from one end opening of the first member, and the first member and the second member are formed in an overlapping portion 30 in which both members overlap. It is characterized by being joined.
According to this aspect, both members can be joined while utilizing the functions of the metal first member and the second member.

<第二の実施態様>
本態様に係る金属成形体1は、金属材料から構成されて、少なくとも軸方向の一端部20aに中空穴部(受容部21a)が形成された第二部材(第二金属部材20)と、金属材料から構成されて、少なくとも軸方向の一端部10aに、中空穴部に挿入可能な外形を有する挿入部を有する第一部材(第一金属部材10)と、を備え、第一部材と第二部材は、多孔性の部材であり、第二部材の挿入部は、第一部材の一端開口から中空穴部内に挿入されており、第一部材と第二部材とは、両部材が重なるオーバーラップ部30において接合されていることを特徴とする。
本態様によれば、金属製の第一部材と第二部材が有する機能を活かしつつ両部材を接合することができる。
<Second embodiment>
The metal molded body 1 according to this embodiment includes a second member (second metal member 20) made of a metal material and having a hollow hole portion (reception portion 21a) formed at least at one end portion 20a in the axial direction, and a metal. A first member (first metal member 10) composed of a material and having an insertion portion having an outer shape that can be inserted into a hollow hole portion is provided at least at one end portion 10a in the axial direction, and the first member and the second member are provided. The member is a porous member, the insertion portion of the second member is inserted into the hollow hole portion from one end opening of the first member, and the first member and the second member overlap with each other. It is characterized in that it is joined in the portion 30.
According to this aspect, both members can be joined while utilizing the functions of the metal first member and the second member.

<第三の実施態様>
本態様に係る金属成形体1において、第一部材(第一金属部材10)と第二部材(第二金属部材20)は、オーバーラップ部に施されたスウェージング処理により接合されていることを特徴とする。
例えば、第一部材と第二部材が液体、気体等の各種の流体から不純物等の特定の物質を分離するフィルタである場合、両部材をスウェージング処理により接合すれば、オーバーラップ部は接合後においてもフィルタ機能を有する。また、第一部材と第二部材が耐キンク性を有する場合、両部材をスウェージング処理により接合すれば、オーバーラップ部は接合後においても耐キンク性を有する。
本態様によれば、金属製の第一部材と第二部材が有する機能を活かしつつ両部材を接合することができる。
<Third embodiment>
In the metal molded body 1 according to this aspect, the first member (first metal member 10) and the second member (second metal member 20) are joined by a swaging process applied to the overlapping portion. It is a feature.
For example, when the first member and the second member are filters that separate specific substances such as impurities from various fluids such as liquids and gases, if both members are joined by swaging treatment, the overlapped portion will be joined after joining. Also has a filter function. Further, when the first member and the second member have kink resistance, if both members are joined by a swaging process, the overlapped portion has kink resistance even after joining.
According to this aspect, both members can be joined while utilizing the functions of the metal first member and the second member.

<第四の実施態様>
本態様に係る金属成形体1において、第一部材(第一金属部材10)と第二部材(第二金属部材20)は、オーバーラップ部30に施された溶接処理により接合されていることを特徴とする。
溶接処理としては、抵抗溶接、ろう接、高エネルギービーム溶接、超音波接合等の各種処理を採用できる。
溶接箇所は、第一部材と第二部材の夫々が有する機能を活かすことができ、且つ必要な接合強度を確保できる位置及び数量に設定される。例えば、第一部材と第二部材が耐キンク性を有する場合、オーバーラップ部においても耐キンク性を発揮できるように、溶接処理が実施される。
本態様によれば、金属製の第一部材と第二部材が有する機能を活かしつつ両部材を接合することができる。
なお、オーバーラップ部には、溶接処理に加えてスウェージング処理が施されてもよい。
<Fourth embodiment>
In the metal molded body 1 according to this aspect, the first member (first metal member 10) and the second member (second metal member 20) are joined by a welding process applied to the overlap portion 30. It is a feature.
As the welding process, various processes such as resistance welding, brazing, high energy beam welding, and ultrasonic bonding can be adopted.
Welded points are set at positions and quantities that can utilize the functions of each of the first member and the second member and secure the required joint strength. For example, when the first member and the second member have kink resistance, a welding process is performed so that the kink resistance can be exhibited even in the overlapped portion.
According to this aspect, both members can be joined while utilizing the functions of the metal first member and the second member.
The overlapping portion may be subjected to a swaging treatment in addition to the welding treatment.

<第五の実施態様>
本態様に係る金属成形体1において、第一部材(第一金属部材10)と第二部材(第二金属部材20)は、オーバーラップ部30に施された焼結処理により接合されていることを特徴とする。
例えば、第一部材と第二部材が液体、気体等の各種の流体から不純物等の特定の物質を分離するフィルタである場合、両部材を焼結処理により接合すれば、フィルタの目開きが維持されることから、オーバーラップ部は接合後においてもフィルタ機能を有する。更に、焼結処理を施すことにより、第一部材と第二部材の接触部分を原子レベルで接合することができるので、金属成形体の強度を高めることができる。
また、例えば、第一部材と第二部材が耐キンク性を有する場合も、焼結処理条件を適切に設定すれば、耐キンク性を維持可能である。
本態様によれば、金属製の第一部材と第二部材が有する機能を活かしつつ両部材を接合することができる。
なお、オーバーラップ部には、スウェージング処理とスポット溶接の一方又は双方に加えて焼結処理が施されてもよい。スウェージング処理後に焼結処理を施す場合は、オーバーラップ部における接合を確実にし、当該部位の接合強度を高めることができる。
<Fifth embodiment>
In the metal molded body 1 according to this aspect, the first member (first metal member 10) and the second member (second metal member 20) are joined by a sintering process applied to the overlap portion 30. It is characterized by.
For example, when the first member and the second member are filters that separate specific substances such as impurities from various fluids such as liquids and gases, if both members are joined by sintering treatment, the opening of the filter is maintained. Therefore, the overlapped portion has a filter function even after joining. Further, by performing the sintering treatment, the contact portion between the first member and the second member can be joined at the atomic level, so that the strength of the metal molded body can be increased.
Further, for example, even when the first member and the second member have kink resistance, the kink resistance can be maintained if the sintering treatment conditions are appropriately set.
According to this aspect, both members can be joined while utilizing the functions of the metal first member and the second member.
The overlapping portion may be subjected to a sintering treatment in addition to one or both of the swaging treatment and the spot welding. When the sintering treatment is performed after the swaging treatment, the bonding at the overlapping portion can be ensured and the bonding strength of the portion can be increased.

<第六の実施態様>
本態様に係る金属成形体1において、第一部材(第一金属部材10)と第二部材(第二金属部材20)の少なくとも一方は、構成材料に金属線材50、60、70を含むことを特徴とする。
第一部材と第二部材の少なくとも一方は、金属線材を多層状に且つ螺旋状に巻き付けることにより作製された部材や、金属線材を織り上げることにより作製された部材や、金属線材を編み上げることにより作製された部材から構成できる。更に、第一部材と第二部材の少なくとも一方は、金属線材を巻き付け、織り上げ、編み上げた後に、塑性変形により所定形状に成形されたものでもよい。
上記態様に示した接合方法は、構成材料に金属線材を含む第一部材と第二部材が有する機能を活かしつつ両部材を接合する方法として好適である。
<Sixth Embodiment>
In the metal molded body 1 according to this embodiment, at least one of the first member (first metal member 10) and the second member (second metal member 20) includes metal wire rods 50, 60, 70 as constituent materials. It is a feature.
At least one of the first member and the second member is made by winding a metal wire in a multi-layered shape and spirally, a member made by weaving a metal wire, or knitting a metal wire. It can be composed of the members. Further, at least one of the first member and the second member may be formed into a predetermined shape by plastic deformation after winding, weaving and knitting a metal wire rod.
The joining method shown in the above aspect is suitable as a method of joining both members while taking advantage of the functions of the first member and the second member, which include a metal wire as a constituent material.

<第七の実施態様>
本態様に係る金属成形体1において、第一部材(第一金属部材10)と第二部材(第二金属部材20)の少なくとも一方は、金属線材50を螺旋状且つ多層状に巻き付けることとにより形成された中空筒状部を備え、該中空筒状部は、その軸線の湾曲変形に対する耐キンク性を有することを特徴とする。
上記態様に示した接合方法は、構成材料に金属線材を含む第一部材と第二部材が有する耐キンク性を活かしつつ両部材を接合する方法として好適である。
<Seventh Embodiment>
In the metal molded body 1 according to this embodiment, at least one of the first member (first metal member 10) and the second member (second metal member 20) is wound by winding the metal wire 50 in a spiral and multi-layered manner. The hollow tubular portion is provided with a formed hollow tubular portion, and the hollow tubular portion is characterized by having a kink resistance against bending deformation of its axis.
The joining method shown in the above aspect is suitable as a method of joining both members while taking advantage of the kink resistance of the first member and the second member, which include a metal wire as a constituent material.

<第八の実施態様>
本態様に係る金属成形体1において、第一部材(第一金属部材10)と第二部材(第二金属部材20)の少なくとも一方は、金属粉体を焼結することにより作製された多孔性の部材であることを特徴とする。
上記態様に示した接合方法は、金属粉体を焼結することにより作製された多孔性の第一部材と第二部材が有する機能を活かしつつ両部材を接合する方法として好適である。
<Eighth embodiment>
In the metal molded body 1 according to this embodiment, at least one of the first member (first metal member 10) and the second member (second metal member 20) is porous produced by sintering metal powder. It is characterized by being a member of.
The joining method shown in the above aspect is suitable as a method of joining both members while utilizing the functions of the porous first member and the second member produced by sintering the metal powder.

<第九の実施態様>
本態様に係る金属成形体1において、第一部材(第一金属部材10)と第二部材(第二金属部材20)の少なくとも一方は、構成材料に金属製不織布を含むことを特徴とする。
上記態様に示した接合方法は、構成材料に金属製不織布を含む第一部材と第二部材が有する機能を活かしつつ両部材を接合する方法として好適である。
<Ninth embodiment>
In the metal molded body 1 according to this embodiment, at least one of the first member (first metal member 10) and the second member (second metal member 20) is characterized in that the constituent material contains a metal non-woven fabric.
The joining method shown in the above aspect is suitable as a method of joining both members while taking advantage of the functions of the first member and the second member including the metal non-woven fabric as the constituent material.

<第十の実施態様>
本態様に係る金属成形体1は、少なくとも第一部材(第一金属部材10)と第二部材(第二金属部材20)の各表面に跨がった部位にコーティング(樹脂コーティング層40)が施されていることを特徴とする。
本態様によれば、コーティングを施すことにより、金属線材を露出させることなく被覆し、表面を滑らかにすることができる。
<10th embodiment>
The metal molded body 1 according to this embodiment has a coating (resin coating layer 40) at least on a portion straddling the surfaces of the first member (first metal member 10) and the second member (second metal member 20). It is characterized by being given.
According to this aspect, by applying the coating, the metal wire can be coated without being exposed and the surface can be smoothed.

1…金属成形体、2…コーティング付金属成形体、10…第一金属部材(第一部材)、10a…一端部(挿入部)、11…中空穴部、12…肉厚部、13…段差部、14…中実部、20…第二金属部材(第二部材)、20a…一端部、21…中空穴部、21a…受容部、21b…小径部、22…肉厚部、23…段差部、24…中実部、30…オーバーラップ部、31…溶接箇所、40…樹脂コーティング層、41…外周部コーティング層、42…内周部コーティング層、43…端縁部コーティング層、44…部分コーティング層、50…金属線材、51…第一線材層、52…第二線材層、53…ピッチ、60…金属線材、65…中間体、70…金属線材、71…金網連続体、72…筒状金網体、100…心棒、110…ロータリースウェージングマシン、111…ダイス、111a…凹所、120…巻付装置、121…心材、121a…大径軸部、121b…小径軸部、122…線材ノズル、130…編み機、131…本体部、132…案内針、133…貫通穴 1 ... Metal molded body, 2 ... Metal molded body with coating, 10 ... First metal member (first member), 10a ... One end (insertion part), 11 ... Hollow hole, 12 ... Thick part, 13 ... Step Part, 14 ... Solid part, 20 ... Second metal member (second member), 20a ... One end part, 21 ... Hollow hole part, 21a ... Receiving part, 21b ... Small diameter part, 22 ... Thick part, 23 ... Step Part, 24 ... Solid part, 30 ... Overlapping part, 31 ... Welded part, 40 ... Resin coating layer, 41 ... Outer peripheral coating layer, 42 ... Inner peripheral coating layer, 43 ... Edge coating layer, 44 ... Partial coating layer, 50 ... metal wire, 51 ... first wire layer, 52 ... second wire layer, 53 ... pitch, 60 ... metal wire, 65 ... intermediate, 70 ... metal wire, 71 ... wire mesh continuum, 72 ... Cylindrical wire mesh, 100 ... mandrel, 110 ... rotary swaging machine, 111 ... die, 111a ... recess, 120 ... winding device, 121 ... core material, 121a ... large diameter shaft, 121b ... small diameter shaft, 122 ... Wire mesh nozzle, 130 ... knitting machine, 131 ... main body, 132 ... guide needle, 133 ... through hole

Claims (12)

金属材料から構成されて、少なくとも軸方向の一端部に中空穴部が形成された第二部材と、
金属材料から構成されて、少なくとも軸方向の一端部に、前記中空穴部に挿入可能な外形を有する挿入部を有する第一部材と、を備え、
前記第一部材と前記第二部材の少なくとも一方は、多孔性の部材であり、
前記第一部材の前記挿入部は、前記第二部材の一端開口から前記中空穴部内に挿入されており、
前記第一部材と前記第二部材とは、両部材が重なるオーバーラップ部において接合されていることを特徴とする金属成形体。
A second member made of a metal material with a hollow hole formed at least at one end in the axial direction.
A first member composed of a metal material and having an insertion portion having an outer shape that can be inserted into the hollow hole portion is provided at least at one end in the axial direction.
At least one of the first member and the second member is a porous member.
The insertion portion of the first member is inserted into the hollow hole portion from one end opening of the second member.
A metal molded body characterized in that the first member and the second member are joined at an overlapping portion where both members overlap.
金属材料から構成されて、少なくとも軸方向の一端部に中空穴部が形成された第二部材と、
金属材料から構成されて、少なくとも軸方向の一端部に、前記中空穴部に挿入可能な外形を有する挿入部を有する第一部材と、を備え、
前記第一部材と前記第二部材は、多孔性の部材であり、
前記第一部材の挿入部は、前記第二部材の一端開口から前記中空穴部内に挿入されており、
前記第一部材と前記第二部材とは、両部材が重なるオーバーラップ部において接合されていることを特徴とする金属成形体。
A second member made of a metal material with a hollow hole formed at least at one end in the axial direction.
A first member composed of a metal material and having an insertion portion having an outer shape that can be inserted into the hollow hole portion is provided at least at one end in the axial direction.
The first member and the second member are porous members and are
The insertion portion of the first member is inserted into the hollow hole portion from one end opening of the second member.
A metal molded body characterized in that the first member and the second member are joined at an overlapping portion where both members overlap.
前記第一部材と前記第二部材は、前記オーバーラップ部に施されたスウェージング処理により接合されていることを特徴とする請求項1又は2に記載の金属成形体。 The metal molded body according to claim 1 or 2, wherein the first member and the second member are joined by a swaging process applied to the overlapping portion. 前記第一部材と前記第二部材は、前記オーバーラップ部に施された溶接処理により接合されていることを特徴とする請求項1乃至3の何れか一項に記載の金属成形体。 The metal molded body according to any one of claims 1 to 3, wherein the first member and the second member are joined by a welding process applied to the overlapping portion. 前記第一部材と前記第二部材は、前記オーバーラップ部に施された焼結処理により接合されていることを特徴とする請求項1乃至4の何れか一項に記載の金属成形体。 The metal molded body according to any one of claims 1 to 4, wherein the first member and the second member are joined by a sintering process applied to the overlapping portion. 前記第一部材と前記第二部材の少なくとも一方は、構成材料に金属線材を含むことを特徴とする請求項1乃至5の何れか一項に記載の金属成形体。 The metal molded body according to any one of claims 1 to 5, wherein at least one of the first member and the second member contains a metal wire rod as a constituent material. 前記第一部材と前記第二部材の少なくとも一方は、金属線材を螺旋状且つ多層状に巻き付けることにより形成された中空筒状部を備え、該中空筒状部は、その軸線の湾曲変形に対する耐キンク性を有することを特徴とする請求項1乃至5の何れか一項に記載の金属成形体。 At least one of the first member and the second member includes a hollow tubular portion formed by winding a metal wire in a spiral and multi-layered manner, and the hollow tubular portion is resistant to bending deformation of its axis. The metal molded product according to any one of claims 1 to 5, which has a kink property. 前記第一部材と前記第二部材の少なくとも一方は、金属粉体を焼結することにより作製された多孔性の部材であることを特徴とする請求項1乃至5の何れか一項に記載の金属成形体。 The invention according to any one of claims 1 to 5, wherein at least one of the first member and the second member is a porous member produced by sintering a metal powder. Metal molded body. 前記第一部材と前記第二部材の少なくとも一方は、構成材料に金属製不織布を含むことを特徴とする請求項1乃至5の何れか一項に記載の金属成形体。 The metal molded body according to any one of claims 1 to 5, wherein at least one of the first member and the second member contains a metallic non-woven fabric as a constituent material. 少なくとも前記第一部材と前記第二部材の各表面に跨がった部位にコーティングが施されていることを特徴とする請求項1乃至9の何れか一項に記載の金属成形体。 The metal molded body according to any one of claims 1 to 9, wherein at least a portion straddling the surfaces of the first member and the second member is coated. 金属材料から構成されて、少なくとも軸方向の一端部に中空穴部が形成された第二部材と、金属材料から構成されて、少なくとも軸方向の一端部に、前記中空穴部に挿入可能な外形を有する挿入部を有する第一部材と、を準備する工程と、
前記第一部材の挿入部を、前記第二部材の一端開口から前記中空穴部内に挿入する工程と、
前記第一部材と前記第二部材とが重なるオーバーラップ部において、前記第一部材と前記第二部材とを接合する工程と、を有し、
前記第一部材と前記第二部材の少なくとも一方は、多孔性の部材であることを特徴とする金属成形体の製造方法。
A second member composed of a metal material and having a hollow hole formed at least at one end in the axial direction, and an outer shape that is made of a metal material and can be inserted into the hollow hole at least at one end in the axial direction. The process of preparing the first member having the insertion part having the
A step of inserting the insertion portion of the first member into the hollow hole portion from one end opening of the second member, and
It has a step of joining the first member and the second member in an overlapping portion where the first member and the second member overlap.
A method for producing a metal molded body, wherein at least one of the first member and the second member is a porous member.
金属材料から構成されて、少なくとも軸方向の一端部に中空穴部が形成された第二部材と、金属材料から構成されて、少なくとも軸方向の一端部に、前記中空穴部に挿入可能な外形を有する挿入部を有する第一部材と、を準備する工程と、
前記第一部材の挿入部を、前記第二部材の一端開口から前記中空穴部内に挿入する工程と、
前記第一部材と前記第二部材とが重なるオーバーラップ部において、前記第一部材と前記第二部材とを接合する工程と、を有し、
前記第一部材と前記第二部材は、多孔性の部材であることを特徴とする金属成形体の製造方法。
A second member composed of a metal material and having a hollow hole formed at least at one end in the axial direction, and an outer shape that is made of a metal material and can be inserted into the hollow hole at least at one end in the axial direction. The process of preparing the first member having the insertion part having the
A step of inserting the insertion portion of the first member into the hollow hole portion from one end opening of the second member, and
It has a step of joining the first member and the second member in an overlapping portion where the first member and the second member overlap.
A method for producing a metal molded body, wherein the first member and the second member are porous members.
JP2019042543A 2019-03-08 2019-03-08 Metal molded body, and method for manufacture thereof Pending JP2020142222A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019042543A JP2020142222A (en) 2019-03-08 2019-03-08 Metal molded body, and method for manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019042543A JP2020142222A (en) 2019-03-08 2019-03-08 Metal molded body, and method for manufacture thereof

Publications (1)

Publication Number Publication Date
JP2020142222A true JP2020142222A (en) 2020-09-10

Family

ID=72355290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019042543A Pending JP2020142222A (en) 2019-03-08 2019-03-08 Metal molded body, and method for manufacture thereof

Country Status (1)

Country Link
JP (1) JP2020142222A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7269609B1 (en) 2021-12-21 2023-05-09 富士フィルター工業株式会社 Filter, filter manufacturing method, and gas generator

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63185421A (en) * 1986-09-11 1988-08-01 Micro Filter Kk Porous filter element
JPH06126478A (en) * 1992-10-09 1994-05-10 Olympus Optical Co Ltd Method for welding hollow member
JPH08266821A (en) * 1995-03-29 1996-10-15 Kirin Brewery Co Ltd Manufacture of filter and manufacturing device
US20040134850A1 (en) * 2002-10-24 2004-07-15 Boxall Ian Stuart Filters
JP2016221523A (en) * 2016-10-05 2016-12-28 富士フィルター工業株式会社 Manufacturing method of cylindrical filter, and the cylindrical filter
JP2017047445A (en) * 2015-09-01 2017-03-09 富士フィルター工業株式会社 Metallic porous body, metallic filter and manufacturing method of metallic porous body

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63185421A (en) * 1986-09-11 1988-08-01 Micro Filter Kk Porous filter element
JPH06126478A (en) * 1992-10-09 1994-05-10 Olympus Optical Co Ltd Method for welding hollow member
JPH08266821A (en) * 1995-03-29 1996-10-15 Kirin Brewery Co Ltd Manufacture of filter and manufacturing device
US20040134850A1 (en) * 2002-10-24 2004-07-15 Boxall Ian Stuart Filters
JP2017047445A (en) * 2015-09-01 2017-03-09 富士フィルター工業株式会社 Metallic porous body, metallic filter and manufacturing method of metallic porous body
JP2016221523A (en) * 2016-10-05 2016-12-28 富士フィルター工業株式会社 Manufacturing method of cylindrical filter, and the cylindrical filter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7269609B1 (en) 2021-12-21 2023-05-09 富士フィルター工業株式会社 Filter, filter manufacturing method, and gas generator
WO2023119894A1 (en) * 2021-12-21 2023-06-29 富士フィルター工業株式会社 Filter, method for manufacturing filter, and gas generator
JP2023092075A (en) * 2021-12-21 2023-07-03 富士フィルター工業株式会社 Filter, manufacturing method of filter and gas generator

Similar Documents

Publication Publication Date Title
US5334169A (en) Reinforced catheter with thin monolithic walls
JP3943572B2 (en) Preform precursor for fiber reinforced composite material, preform for fiber reinforced composite material and method for producing the same
JP6853123B2 (en) Manufacturing method of plain bearings and plain bearings
US8986284B2 (en) Catheter
JP5210914B2 (en) Absorber manufacturing apparatus and breathable member manufacturing method
JP2019048300A (en) Rolling device and manufacturing device of hollow cylindrical body
JP2020142222A (en) Metal molded body, and method for manufacture thereof
JP4776799B2 (en) Method for manufacturing wire wound filter device
CN110549641A (en) profiling prefabricated part puncturing method
EP2216569B1 (en) Hybrid seals
CN111936355B (en) Gas generator filter and gas generator
JP2022001164A (en) Coil body
JP3385044B2 (en) Method for manufacturing flexible tube of endoscope
JP6022275B2 (en) Cylindrical filter manufacturing method and cylindrical filter
JP2003301364A (en) Unidirectional filament three-dimensional structure by staple fiber interlacing
JP6279045B2 (en) Cylindrical filter manufacturing method and cylindrical filter
WO2020204184A1 (en) Method for providing basic product and mandrel covered with long body
JP2021138073A (en) Structure
EP2154402B1 (en) Multi-layer hose product and method for producing same
CN109014552A (en) The method for manufacturing annular element
JP5023884B2 (en) Fiber reinforced resin gear and method for manufacturing the same
JP4159962B2 (en) Stent and stent graft
JP7181624B2 (en) Filter element and method for manufacturing filter element
JP5842623B2 (en) Medical device manufacturing method
JP4194823B2 (en) Metal tubular body and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230808