[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2020140793A - Manufacturing method of electrode plate - Google Patents

Manufacturing method of electrode plate Download PDF

Info

Publication number
JP2020140793A
JP2020140793A JP2019033638A JP2019033638A JP2020140793A JP 2020140793 A JP2020140793 A JP 2020140793A JP 2019033638 A JP2019033638 A JP 2019033638A JP 2019033638 A JP2019033638 A JP 2019033638A JP 2020140793 A JP2020140793 A JP 2020140793A
Authority
JP
Japan
Prior art keywords
active material
particles
mixture
carbon
carbon nanoparticles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019033638A
Other languages
Japanese (ja)
Other versions
JP7074096B2 (en
Inventor
丈典 池田
Takenori Ikeda
丈典 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2019033638A priority Critical patent/JP7074096B2/en
Publication of JP2020140793A publication Critical patent/JP2020140793A/en
Application granted granted Critical
Publication of JP7074096B2 publication Critical patent/JP7074096B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

To provide a manufacturing method of electrode plate capable of forming a low resistance active material layer where decentralization of carbon nano particles and carbon black particles is good, while using a clay-like mixture containing active material particles, and the like.SOLUTION: A manufacturing method of an electrode plate 1 includes a step S1 of obtaining a first blend 17 by mixing carbon nano particles 12 and a disperse medium 15, a step S2 of obtaining a second blend 18 by mixing the first mixture 17 and carbon black particles 13, a step S3 of obtaining a third blend 19 by mixing the second blend 18 and active material particles 11, and then thick-kneading with shear stress τ=200 N/m2 or more, a step S4 of forming particle aggregate 22 of wet particles 21, a step S5 of forming an undried active material film 5x on a current collector foil 3, and a step S6 of forming an active material layer 5 by desiccating the undried active material film 5x.SELECTED DRAWING: Figure 2

Description

本発明は、活物質層を集電箔上に形成した電極板の製造方法に関する。 The present invention relates to a method for manufacturing an electrode plate in which an active material layer is formed on a current collecting foil.

電池やキャパシタ等の蓄電デバイスに用いられる電極板として、活物質粒子、カーボンブラック粒子等を含む活物質層を、集電箔上に形成した電極板が知られている。このような電極板は、例えば以下の手法によって製造する。まず、活物質粒子、カーボンブラック粒子等を分散媒に分散させて、液状の活物質ペーストを作製する。そして、この活物質ペーストを集電箔上に塗布して未乾燥活物質膜を形成し、その後、この未乾燥活物質膜を加熱乾燥させて活物質層を形成する。なお、関連する従来技術として、例えば特許文献1が挙げられる。 As an electrode plate used for a power storage device such as a battery or a capacitor, an electrode plate in which an active material layer containing active material particles, carbon black particles and the like is formed on a current collecting foil is known. Such an electrode plate is manufactured by, for example, the following method. First, active material particles, carbon black particles, and the like are dispersed in a dispersion medium to prepare a liquid active material paste. Then, this active material paste is applied onto the current collecting foil to form an undried active material film, and then the undried active material film is heated and dried to form an active material layer. In addition, as a related prior art, for example, Patent Document 1 can be mentioned.

特開2018−113188号公報JP-A-2018-13188

ところで、本発明者は、電極板の活物質層を低抵抗とするために、導電性が良好なカーボンナノチューブ及びカーボンナノファイバの少なくともいずれか(以下、「カーボンナノ粒子」ともいう)を、上述の活物質ペーストに加えて活物質層を形成することを検討した。 By the way, the present inventor has described at least one of carbon nanotubes and carbon nanoparticles having good conductivity (hereinafter, also referred to as “carbon nanoparticles”) in order to reduce the resistance of the active material layer of the electrode plate. It was examined to form an active material layer in addition to the active material paste of.

しかしながら、上述のカーボンナノ粒子は、サイズが小さくて凝集し易いため、活物質ペーストにおけるカーボンナノ粒子の分散が不十分となり、カーボンナノ粒子が大きな凝集粒を形成する傾向にある。また、カーボンブラック粒子も凝集し易い。そこで、カーボンナノ粒子及びカーボンブラック粒子の分散を良好にするために、比較的固形分率NVの低い液状或いは流動体状の活物質ペーストに対し超音波振動を付与すること、及び、活物質ペーストに更に分散剤を添加することを検討した。しかし、分散剤を添加すると、活物質層の抵抗が高くなり、カーボンナノ粒子を加えた効果が少なくなるため、分散剤の添加は好ましくないことが判ってきた。また、固形分率NVの高い粘土状の混合物では、超音波振動を加えても分散性を改善できない。 However, since the above-mentioned carbon nanoparticles are small in size and easily aggregate, the dispersion of the carbon nanoparticles in the active material paste is insufficient, and the carbon nanoparticles tend to form large aggregates. In addition, carbon black particles are also likely to aggregate. Therefore, in order to improve the dispersion of carbon nanoparticles and carbon black particles, ultrasonic vibration is applied to the liquid or fluid active material paste having a relatively low solid content NV, and the active material paste is applied. It was considered to add a dispersant to the paste. However, it has been found that the addition of the dispersant is not preferable because the resistance of the active material layer increases and the effect of adding the carbon nanoparticles decreases when the dispersant is added. Further, in a clay-like mixture having a high solid content NV, the dispersibility cannot be improved even if ultrasonic vibration is applied.

本発明は、かかる現状に鑑みてなされたものであって、活物質粒子、カーボンナノ粒子及びカーボンブラック粒子を含む粘土状の混合物を用いながらも、カーボンナノ粒子及びカーボンブラック粒子の分散が良好で、抵抗が低い活物質層を形成できる電極板の製造方法を提供するものである。 The present invention has been made in view of the present situation, and the dispersion of carbon nanoparticles and carbon black particles is good even though a clay-like mixture containing active material particles, carbon nanoparticles and carbon black particles is used. The present invention provides a method for producing an electrode plate capable of forming an active material layer having low resistance.

上記課題を解決するための本発明の一態様は、集電箔と、上記集電箔上に形成され、活物質粒子、カーボンナノチューブ及びカーボンナノファイバの少なくともいずれかであるカーボンナノ粒子、並びに、カーボンブラック粒子を含む活物質層と、を備える電極板の製造方法であって、上記カーボンナノ粒子及び分散媒を混合して、第1混合物を得る第1混合工程と、上記第1混合物及び上記カーボンブラック粒子を混合して、第2混合物を得る第2混合工程と、上記第2混合物及び上記活物質粒子を混ぜ、せん断応力τ=200N/m2以上で固練りして、粘土状の第3混合物を得る第3混合工程と、上記第3混合物からなる湿潤粒子が集合した粒子集合体を形成する粒子集合体形成工程と、上記粒子集合体を圧延した未乾燥活物質膜を、上記集電箔上に形成する未乾燥膜形成工程と、上記集電箔上の上記未乾燥活物質膜を乾燥させて、上記活物質層を形成する乾燥工程と、を備える電極板の製造方法である。 One aspect of the present invention for solving the above problems is a collection foil, carbon nanoparticles formed on the current collection foil and being at least one of an active material particle, a carbon nanotube and a carbon nanofiber, and a carbon nanoparticle. A method for producing an electrode plate including an active material layer containing carbon black particles, wherein the first mixing step of mixing the carbon nanoparticles and a dispersion medium to obtain a first mixture, the first mixture, and the above. The second mixing step of mixing carbon black particles to obtain a second mixture, the second mixture and the active material particles are mixed and kneaded with a shear stress of τ = 200 N / m 2 or more to form a clay-like electrode. The third mixing step of obtaining the three mixtures, the particle aggregate forming step of forming a particle aggregate in which the wet particles composed of the third mixture are aggregated, and the undried active material film obtained by rolling the particle aggregate are collected. It is a method for manufacturing an electrode plate including a step of forming an undried film formed on an electric foil and a step of drying the undried active material film on the current collecting foil to form the active material layer. ..

上述の電極板の製造方法では、第1混合工程で、最初に分散媒にカーボンナノ粒子を混合し、第2混合工程で、次にカーボンブラック粒子を混合し、第3混合工程で、活物質粒子を混合する。このような順序で混合することで、その他の順序で混合する場合に比べて、第3混合物においてカーボンナノ粒子及びカーボンブラック粒子と分散媒とを確実に混合できることが判ってきた。最初に、最も凝集し易いカーボンナノ粒子を分散媒に混合し、活物質粒子やカーボンブラック粒子に妨げられることなく、カーボンナノ粒子が分散媒に濡れるのを促すと共に、第1混合物を得る。その後、次に凝集し易いカーボンブラック粒子を第1混合物に混合し、活物質粒子に妨げられることなく、カーボンブラック粒子が分散媒に濡れるのを促すと共に、第2混合物を得る。そして、最後に活物質粒子を第2混合物に混ぜ固練りして第3混合物を得ることで、この第3混合物においてカーボンナノ粒子及びカーボンブラック粒子と分散媒とが確実に混合したと考えられる。
しかも、第3混合工程では、この第3混合物をせん断応力τ=200N/m2以上で固練りするので、凝集しているカーボンナノ粒子或いはカーボンブラック粒子を解砕し、第3混合物におけるカーボンナノ粒子及びカーボンブラック粒子の分散を良好にできると考えられる。
In the above-described electrode plate manufacturing method, in the first mixing step, carbon nanoparticles are first mixed with the dispersion medium, in the second mixing step, then carbon black particles are mixed, and in the third mixing step, the active material. Mix the particles. It has been found that by mixing in such an order, the carbon nanoparticles and carbon black particles and the dispersion medium can be reliably mixed in the third mixture as compared with the case of mixing in other orders. First, the most agglomerating carbon nanoparticles are mixed with the dispersion medium to help the carbon nanoparticles get wet with the dispersion medium without being hindered by the active material particles or the carbon black particles, and to obtain the first mixture. Then, the carbon black particles that easily aggregate next are mixed with the first mixture to promote the carbon black particles to get wet with the dispersion medium without being hindered by the active material particles, and to obtain a second mixture. Finally, it is considered that the carbon nanoparticles and the carbon black particles and the dispersion medium are surely mixed in the third mixture by mixing the active material particles with the second mixture and kneading them to obtain a third mixture.
Moreover, in the third mixing step, since the third mixture is kneaded with a shear stress of τ = 200 N / m 2 or more, the agglomerated carbon nanoparticles or carbon black particles are crushed and the carbon nanoparticles in the third mixture are crushed. It is considered that the particles and carbon black particles can be well dispersed.

その後、この第3混合物からなる湿潤粒子が集合した粒子集合体を形成し、この粒子集合体を用いて未乾燥活物質膜を形成することで、カーボンナノ粒子及びカーボンブラック粒子の分散が良好な未乾燥活物質膜を形成できる。更に、これを乾燥させることで、カーボンナノ粒子及びカーボンブラック粒子の分散が良好な活物質層を形成できる。従って、上述の製造方法では、カーボンナノ粒子及びカーボンブラック粒子の分散が良好で、抵抗が低い活物質層を形成できる。 After that, a particle aggregate composed of the wet particles composed of the third mixture is formed, and the undried active material film is formed by using the particle aggregate, so that the carbon nanoparticles and the carbon black particles are well dispersed. An undried active material film can be formed. Further, by drying this, it is possible to form an active material layer in which carbon nanoparticles and carbon black particles are well dispersed. Therefore, in the above-mentioned production method, an active material layer having good dispersion of carbon nanoparticles and carbon black particles and low resistance can be formed.

実施形態に係る正極板の斜視図である。It is a perspective view of the positive electrode plate which concerns on embodiment. 実施形態に係る電極板の製造方法のフローチャートである。It is a flowchart of the manufacturing method of the electrode plate which concerns on embodiment. ロールミルを用いて、第3混合物を固練りする様子を示す説明図である。It is explanatory drawing which shows the state of kneading a 3rd mixture by using a roll mill. ロールプレス装置を用いて、未乾燥活物質膜を集電箔上に形成する様子を示す説明図である。It is explanatory drawing which shows the state of forming the undried active material film on the current collector foil by using a roll press apparatus. 湿潤粒子の固形分率NVと湿潤粒子の展延性との関係を示すグラフである。It is a graph which shows the relationship between the solid content NV of a wet particle and the ductility of a wet particle. 湿潤粒子について行う展延性試験を示す説明図である。It is explanatory drawing which shows the ductility test performed on the wet particle. 正極板の活物質層の表面における材料色差(輝度)と画素数との関係を示すグラフである。It is a graph which shows the relationship between the material color difference (luminance) and the number of pixels on the surface of the active material layer of a positive electrode plate. 固練りの際に第3混合物に掛けるせん断応力τと、活物質層における導電材の分散指数との関係を示すグラフである。6 is a graph showing the relationship between the shear stress τ applied to the third mixture during kneading and the dispersion index of the conductive material in the active material layer. 湿潤粒子の固形分における第1カーボンナノ粒子の配合割合と、電池のIV抵抗比との関係を示すグラフである。It is a graph which shows the relationship between the compounding ratio of the 1st carbon nanoparticles in the solid content of a wet particle, and the IV resistance ratio of a battery. 湿潤粒子の固形分における第2カーボンナノ粒子の配合割合と、電池のIV抵抗比との関係を示すグラフである。It is a graph which shows the relationship between the compounding ratio of the 2nd carbon nanoparticles in the solid content of a wet particle, and the IV resistance ratio of a battery. 湿潤粒子の固形分における第3カーボンナノ粒子の配合割合と、電池のIV抵抗比との関係を示すグラフである。It is a graph which shows the relationship between the compounding ratio of 3rd carbon nanoparticles in the solid content of a wet particle, and the IV resistance ratio of a battery.

以下、本発明の実施形態を、図面を参照しつつ説明する。図1に本実施形態に係る正極板(電極板)1の斜視図を示す。なお、以下では、正極板1の長手方向EH、幅方向FH及び厚み方向GHを、図1に示す方向と定めて説明する。この正極板1は、ハイブリッドカーやプラグインハイブリッドカー、電気自動車等の車両などに搭載される角型で密閉型のリチウムイオン二次電池を製造するのに、具体的には、扁平状捲回型の電極体を製造するのに用いられる帯状の正極板である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a perspective view of the positive electrode plate (electrode plate) 1 according to the present embodiment. In the following description, the longitudinal direction EH, the width direction FH, and the thickness direction GH of the positive electrode plate 1 are defined as the directions shown in FIG. The positive electrode plate 1 is specifically used for manufacturing a square and sealed lithium ion secondary battery mounted on a vehicle such as a hybrid car, a plug-in hybrid car, or an electric vehicle. It is a strip-shaped positive electrode plate used for manufacturing a mold electrode body.

正極板1は、長手方向EHに延びる帯状のアルミニウム箔からなる集電箔3を有する。この集電箔3の第1主面3aのうち、幅方向FHの中央でかつ長手方向EHに延びる領域上には、第1活物質層5が帯状に形成されている。また、集電箔3の反対側の第2主面3bのうち、幅方向FHの中央でかつ長手方向EHに延びる領域上にも、第2活物質層6が帯状に形成されている。正極板1のうち幅方向FHの両端部は、それぞれ、厚み方向GHに第1活物質層5及び第2活物質層6が存在せず、集電箔3が厚み方向GHに露出した露出部1mとなっている。 The positive electrode plate 1 has a current collecting foil 3 made of a strip-shaped aluminum foil extending in the longitudinal direction EH. The first active material layer 5 is formed in a band shape on the region extending in the center of the width direction FH and in the longitudinal direction EH of the first main surface 3a of the current collector foil 3. Further, in the second main surface 3b on the opposite side of the current collecting foil 3, the second active material layer 6 is formed in a band shape on the region extending in the center of the width direction FH and in the longitudinal direction EH. Both ends of the positive electrode plate 1 in the width direction FH do not have the first active material layer 5 and the second active material layer 6 in the thickness direction GH, respectively, and the current collector foil 3 is exposed in the thickness direction GH. It is 1 m.

第1活物質層5及び第2活物質層6は、後述するように、粘土状の湿潤粒子21が集合した粒子集合体22を用いて形成されている。第1活物質層5及び第2活物質層6は、活物質粒子11、カーボンナノ粒子12、カーボンブラック粒子13及び結着剤14から構成されている。これらの重量割合は、活物質粒子:カーボンナノ粒子:カーボンブラック粒子:結着剤=90.7:3.9:3.9:1.5である。 The first active material layer 5 and the second active material layer 6 are formed by using a particle aggregate 22 in which clay-like wet particles 21 are aggregated, as will be described later. The first active material layer 5 and the second active material layer 6 are composed of active material particles 11, carbon nanoparticles 12, carbon black particles 13, and a binder 14. The weight ratio of these is active material particles: carbon nanoparticles: carbon black particles: binder = 90.7: 3.9: 3.9: 1.5.

本実施形態では、活物質粒子11として、リチウムイオンを挿入離脱可能な正極活物質粒子、具体的には、リチウム遷移金属複合酸化物粒子の1つであるリチウムニッケルコバルトマンガン酸化物粒子を用いている。また、カーボンナノ粒子12として、直径φが数nm、長さLが数μmのカーボンナノチューブ(CNT)を用いている。また、カーボンブラック粒子13としてアセチレンブラック(AB)粒子を、結着剤14としてポリフッ化ビニリデン(PVDF)を用いている。 In the present embodiment, as the active material particles 11, positive electrode active material particles capable of inserting and removing lithium ions, specifically, lithium nickel cobalt manganese oxide particles which are one of lithium transition metal composite oxide particles are used. There is. Further, as the carbon nanoparticles 12, carbon nanotubes (CNTs) having a diameter φ of several nm and a length L of several μm are used. Further, acetylene black (AB) particles are used as the carbon black particles 13, and polyvinylidene fluoride (PVDF) is used as the binder 14.

次いで、粒子集合体22の製造方法及び粒子集合体22を用いた正極板1の製造方法について説明する(図2〜図4参照)。まず「第1混合工程S1」において、カーボンナノ粒子12及び分散媒15を均一に混合して、第1混合物17を得る。本実施形態では、前述のように、カーボンナノ粒子12として、直径φが数nm、長さLが数μmのカーボンナノチューブを用いた。また、分散媒15として、N−メチルピロリドン(NMP)に結着剤14(本実施形態ではPVDF)を溶解させたPVDF溶液を用いた。また、カーボンナノ粒子12及び分散媒15の配合割合は、後述する第3混合物19において、固形分率NVが78.0wt%(NMPが22.0wt%)となり、かつ、固形分におけるカーボンナノ粒子12の重量割合が3.9wt%、結着剤14の重量割合が1.5wt%となるように調整した。また、本実施形態では、この第1混合工程S1を、混練シリンダ内に一対の混練スクリュが設けられた二軸混練機(不図示)を用いて行った。 Next, a method for producing the particle aggregate 22 and a method for producing the positive electrode plate 1 using the particle aggregate 22 will be described (see FIGS. 2 to 4). First, in the "first mixing step S1", the carbon nanoparticles 12 and the dispersion medium 15 are uniformly mixed to obtain the first mixture 17. In this embodiment, as described above, carbon nanotubes having a diameter of φ of several nm and a length of L of several μm are used as the carbon nanoparticles 12. Further, as the dispersion medium 15, a PVDF solution in which the binder 14 (PVDF in this embodiment) was dissolved in N-methylpyrrolidone (NMP) was used. Further, the mixing ratio of the carbon nanoparticles 12 and the dispersion medium 15 is such that the solid content NV is 78.0 wt% (NMP is 22.0 wt%) and the carbon nanoparticles in the solid content are in the third mixture 19 described later. The weight ratio of 12 was adjusted to 3.9 wt%, and the weight ratio of the binder 14 was adjusted to 1.5 wt%. Further, in the present embodiment, the first mixing step S1 was performed using a biaxial kneader (not shown) provided with a pair of kneading screws in the kneading cylinder.

次に、「第2混合工程S2」において、上述の第1混合物17及びカーボンブラック粒子13を均一に混合して、第2混合物18を得る。本実施形態では、カーボンブラック粒子13として、前述のようにアセチレンブラック粒子を用いた。また、第1混合物17及びカーボンブラック粒子13の配合割合は、後述する第3混合物19において、固形分率NVが78.0wt%(NMPが22.0wt%)となり、かつ、固形分におけるカーボンナノ粒子12の重量割合が3.9wt%、カーボンブラック粒子13の重量割合が3.9wt%、結着剤14の重量割合が1.5wt%となるように調整した。また、本実施形態では、この第2混合工程S2を、第1混合工程S1で用いた二軸混練機(不図示)を用い、第1混合工程S1に続いて連続的に行った。 Next, in the "second mixing step S2", the above-mentioned first mixture 17 and carbon black particles 13 are uniformly mixed to obtain a second mixture 18. In the present embodiment, acetylene black particles are used as the carbon black particles 13 as described above. Further, the mixing ratio of the first mixture 17 and the carbon black particles 13 is such that the solid content NV is 78.0 wt% (NMP is 22.0 wt%) and the carbon nano is in the solid content in the third mixture 19 described later. The weight ratio of the particles 12 was adjusted to 3.9 wt%, the weight ratio of the carbon black particles 13 was 3.9 wt%, and the weight ratio of the binder 14 was 1.5 wt%. Further, in the present embodiment, the second mixing step S2 was continuously performed following the first mixing step S1 using the twin-screw kneader (not shown) used in the first mixing step S1.

次に、「第3混合工程S3」において、上述の第2混合物18及び活物質粒子11を混ぜ、せん断応力τ=200N/m2以上で固練りして、粘土状の第3混合物19を得る。本実施形態では、活物質粒子11として、前述のようにリチウムニッケルコバルトマンガン酸化物粒子を用いた。また、第2混合物18及び活物質粒子11の配合割合は、第3混合物19の固形分率NVが78.0wt%(NMPが22.0wt%)となり、かつ、固形分における活物質粒子11の重量割合が90.7wt%、カーボンナノ粒子12の重量割合が3.9wt%、カーボンブラック粒子13の重量割合が3.9wt%、結着剤14の重量割合が1.5wt%となるように調整した。 Next, in the "third mixing step S3", the above-mentioned second mixture 18 and the active material particles 11 are mixed and kneaded with a shear stress of τ = 200 N / m 2 or more to obtain a clay-like third mixture 19. .. In the present embodiment, lithium nickel cobalt manganese oxide particles are used as the active material particles 11 as described above. Further, the mixing ratio of the second mixture 18 and the active material particles 11 is such that the solid content NV of the third mixture 19 is 78.0 wt% (NMP is 22.0 wt%) and the active material particles 11 in the solid content. The weight ratio of the carbon nanoparticles 12 is 90.7 wt%, the weight ratio of the carbon nanoparticles 12 is 3.9 wt%, the weight ratio of the carbon black particles 13 is 3.9 wt%, and the weight ratio of the binder 14 is 1.5 wt%. It was adjusted.

この第3混合工程S3の前半は、本実施形態では、第1混合工程S1及び第2混合工程S2で用いた二軸混練機(不図示)を用い、第2混合工程S2に続いて連続的に行った。これにより、活物質粒子11、カーボンナノ粒子12、カーボンブラック粒子13及び分散媒15が均一に混ざった第3混合物19を得る。 In the present embodiment, the first half of the third mixing step S3 uses the twin-screw kneader (not shown) used in the first mixing step S1 and the second mixing step S2, and is continuous following the second mixing step S2. I went to. As a result, a third mixture 19 in which the active material particles 11, the carbon nanoparticles 12, the carbon black particles 13 and the dispersion medium 15 are uniformly mixed is obtained.

本発明者が材料の混合順序を検討した結果、詳述しないが、以下が判ってきた。即ち、(1)活物質粒子11、カーボンナノ粒子12及びカーボンブラック粒子13を分散媒15に同時に混合した場合には、これを固練りしても、第3混合物19においてカーボンナノ粒子12及びカーボンブラック粒子13が凝集したままとなる。
また、(2)最初に活物質粒子11を分散媒15に混合し、その後にカーボンナノ粒子12及びカーボンブラック粒子13を混合し、更に固練りした場合も、第3混合物19においてカーボンナノ粒子12及びカーボンブラック粒子13が凝集したままとなる。
As a result of the present inventor examining the mixing order of the materials, the following has been found, although not detailed. That is, (1) when the active material particles 11, the carbon nanoparticles 12, and the carbon black particles 13 are simultaneously mixed with the dispersion medium 15, even if they are kneaded, the carbon nanoparticles 12 and carbon in the third mixture 19 The black particles 13 remain agglomerated.
Further, (2) when the active material particles 11 are first mixed with the dispersion medium 15, then the carbon nanoparticles 12 and the carbon black particles 13 are mixed and further kneaded, the carbon nanoparticles 12 in the third mixture 19 are also mixed. And the carbon black particles 13 remain agglomerated.

また、(3)まずカーボンナノ粒子12を分散媒15に混合し、次に活物質粒子11を混合し、その後にカーボンブラック粒子13を混合し、更に固練りした場合や、(4)まずカーボンナノ粒子12を分散媒15に混合し、次に活物質粒子11とカーボンブラック粒子13とを同時に混合し、更に固練りした場合には、第3混合物19においてカーボンナノ粒子12の凝集は抑制されるものの、カーボンブラック粒子13は凝集したままとなる。 Further, (3) first, the carbon nanoparticles 12 are mixed with the dispersion medium 15, then the active material particles 11, and then the carbon black particles 13 are mixed and further kneaded, or (4) first, carbon. When the nanoparticles 12 are mixed with the dispersion medium 15, then the active material particles 11 and the carbon black particles 13 are simultaneously mixed and further kneaded, the aggregation of the carbon nanoparticles 12 is suppressed in the third mixture 19. However, the carbon black particles 13 remain agglomerated.

これに対し、前述のように、第1混合工程S1で、最初にカーボンナノ粒子12を分散媒15に混合し、第2混合工程S2で、カーボンブラック粒子13を第1混合物17に混合し、第3混合工程S3で、最後に活物質粒子11を第2混合物18に混合し、更に固練りすることで、前述の(1)〜(4)のいずれの場合よりも、第3混合物19におけるカーボンナノ粒子12及びカーボンブラック粒子13の凝集を抑制できることが判ってきた。 On the other hand, as described above, in the first mixing step S1, the carbon nanoparticles 12 were first mixed with the dispersion medium 15, and in the second mixing step S2, the carbon black particles 13 were mixed with the first mixture 17. In the third mixing step S3, the active material particles 11 are finally mixed with the second mixture 18 and further kneaded to make the third mixture 19 more than any of the above-mentioned cases (1) to (4). It has been found that the aggregation of carbon nanoparticles 12 and carbon black particles 13 can be suppressed.

次に、第3混合工程S3の後半では、上述の第3混合物19をせん断応力τ=200N/m2以上で固練りする。本実施形態では、3本のロールを備えるロールミル200を用いた(図3参照)。このロールミル200は、仕込ロール210と、この仕込ロール210に第1ロール間隙Gaを介して平行に配置された中間ロール220と、この中間ロール220に第2ロール間隙Gbを介して平行に配置された仕上ロール230とを備える。これら仕込ロール210、中間ロール220及び仕上ロール230には、それぞれロールを回転駆動させるモータ(不図示)が連結されており、図3中に矢印で示す回転方向に、仕込ロール210(周速Va)、中間ロール220(周速Vb)及び仕上ロール230(周速Vc)をそれぞれ回転させる(Va<Vb<Vc)。 Next, in the latter half of the third mixing step S3, the above-mentioned third mixture 19 is kneaded with a shear stress of τ = 200 N / m 2 or more. In this embodiment, a roll mill 200 having three rolls is used (see FIG. 3). The roll mill 200 is arranged in parallel with the charging roll 210, the intermediate roll 220 arranged in parallel with the charging roll 210 via the first roll gap Ga, and the intermediate roll 220 with the second roll gap Gb in parallel. It is provided with a finishing roll 230. A motor (not shown) for rotationally driving the rolls is connected to each of the charging roll 210, the intermediate roll 220, and the finishing roll 230, and the charging roll 210 (peripheral speed Va) is connected in the rotation direction indicated by the arrow in FIG. ), The intermediate roll 220 (peripheral speed Vb) and the finishing roll 230 (peripheral speed Vc) are rotated (Va <Vb <Vc).

また、ロールミル200は、仕込ロール210と中間ロール220の第1ロール間隙Gaの上方に、第3混合物19をこの第1ロール間隙Gaに向けて供給する混合物供給部240を備える。また、ロールミル200は、仕上ロール230の近傍に、仕上ロール230に転写された膜状の第3混合物19を掻き取って回収するドクターブレード250を備える。
第3混合物19を混合物供給部240に投入すると、この第3混合物19は、仕込ロール210及び中間ロール220で圧延され、膜状となって中間ロール220上に造膜される。続いて、この膜状の第3混合物19は、中間ロール220及び仕上ロール230で更に圧延され、仕上ロール230上に転写される。その後、この膜状の第3混合物19は、ドクターブレード250により掻き取られて回収される。
Further, the roll mill 200 includes a mixture supply unit 240 that supplies the third mixture 19 toward the first roll gap Ga above the first roll gap Ga of the charging roll 210 and the intermediate roll 220. Further, the roll mill 200 includes a doctor blade 250 in the vicinity of the finishing roll 230 for scraping and recovering the film-like third mixture 19 transferred to the finishing roll 230.
When the third mixture 19 is charged into the mixture supply unit 240, the third mixture 19 is rolled by the charging roll 210 and the intermediate roll 220 to form a film, and a film is formed on the intermediate roll 220. Subsequently, the film-like third mixture 19 is further rolled on the intermediate roll 220 and the finishing roll 230, and transferred onto the finishing roll 230. The film-like third mixture 19 is then scraped and recovered by the doctor blade 250.

本実施形態では、中間ロール220と仕上ロール230の第2ロール間隙Gbを調整して、中間ロール220及び仕上ロール230の間で第3混合物19に掛かるせん断応力τを200N/m2とした。このせん断応力τは、仕上ロール230を回転させるモータのトルクと、第3混合物19の加工体積(第2ロール間隙Gb×加工面積)とから、(せん断応力τ)=(モータトルク)/(加工体積)により求めた。なお、第3混合物19の加工面積は、(加工面積)=(ロールの軸方向の加工幅)×(ロールの回転方向の加工長さ)により求める。「ロールの回転方向の加工長さ」は、中間ロール220及び仕上ロール230の間で第3混合物19に掛かる圧力の最大値に対し、98%以上の圧力の掛かる範囲の長さとした。 In the present embodiment, the second roll gap Gb between the intermediate roll 220 and the finishing roll 230 is adjusted so that the shear stress τ applied to the third mixture 19 between the intermediate roll 220 and the finishing roll 230 is 200 N / m 2 . This shear stress τ is determined by (shear stress τ) = (motor torque) / (machining) from the torque of the motor that rotates the finishing roll 230 and the machining volume of the third mixture 19 (second roll gap Gb × machining area). Volume). The processing area of the third mixture 19 is obtained by (processing area) = (processing width in the axial direction of the roll) × (processing length in the rotation direction of the roll). The "machining length in the rotation direction of the roll" was set to the length in the range in which a pressure of 98% or more was applied to the maximum value of the pressure applied to the third mixture 19 between the intermediate roll 220 and the finishing roll 230.

また、本実施形態では、このロールミル200に第3混合物19を5回通すことによって固練りを行った。なお、2回目以降は、回収した膜状の第3混合物19を複数回折り畳んだ状態にして、混合物供給部240に投入した。
このように高いせん断応力τで第3混合物19の固練りを行うことで、凝集していたカーボンナノ粒子12及びカーボンブラック粒子13を解砕して、第3混合物19内に均一に分散させることができる。
Further, in the present embodiment, kneading was performed by passing the third mixture 19 through the roll mill 200 five times. From the second time onward, the recovered film-like third mixture 19 was folded into a plurality of folded states and charged into the mixture supply unit 240.
By kneading the third mixture 19 with such a high shear stress τ, the agglomerated carbon nanoparticles 12 and carbon black particles 13 are crushed and uniformly dispersed in the third mixture 19. Can be done.

次に、「粒子集合体形成工程S4」において、第3混合物19からなる湿潤粒子21が集合した粒子集合体22を形成する。本実施形態では、押出シリンダ内に押出スクリュが配置され、押出シリンダから押し出される第3混合物19を切断する切断刃を備える押し出し機(不図示)を用いた。これにより、直径D=2.0mm、高さH=2.0mmの円柱状の湿潤粒子21を造粒し、湿潤粒子21が集合した粒子集合体22を得た。 Next, in the "particle assembly forming step S4", the particle aggregate 22 in which the wet particles 21 made of the third mixture 19 are aggregated is formed. In the present embodiment, an extruder (not shown) in which an extrusion screw is arranged in the extrusion cylinder and has a cutting blade for cutting the third mixture 19 extruded from the extrusion cylinder is used. As a result, columnar wet particles 21 having a diameter D = 2.0 mm and a height H = 2.0 mm were granulated to obtain a particle aggregate 22 in which the wet particles 21 were aggregated.

ここで、湿潤粒子21におけるカーボンナノ粒子12及びカーボンブラック粒子13の分散性について調査した試験の結果について説明する(図5参照)。図5に、実施例及び比較例について、湿潤粒子21の固形分率NVと湿潤粒子21の展延性との関係を示す。具体的には、実施例として、湿潤粒子21の固形分率NVを、77.0wt%〜80.0wt%に7段階に変更し、それ以外は前述のように第1混合工程S1〜粒子集合体形成工程S4を行って、湿潤粒子21の粒子集合体22をそれぞれ得た。 Here, the results of a test investigating the dispersibility of the carbon nanoparticles 12 and the carbon black particles 13 in the wet particles 21 will be described (see FIG. 5). FIG. 5 shows the relationship between the solid content NV of the wet particles 21 and the ductility of the wet particles 21 for Examples and Comparative Examples. Specifically, as an example, the solid content NV of the wet particles 21 is changed from 77.0 wt% to 80.0 wt% in 7 steps, and other than that, as described above, the first mixing step S1 to particle assembly. The body forming step S4 was carried out to obtain particle aggregates 22 of the wet particles 21 respectively.

一方、比較例として、前述の第1混合工程S1〜第3混合工程S3に代えて、活物質粒子11、カーボンナノ粒子12、カーボンブラック粒子13及び分散媒15を同時に混合して、第3混合物19を得た。その後、この第3混合物19について、前述の第3混合工程S3の後半と同様に、ロールミル200を用いて固練りを行い、更に、前述の粒子集合体形成工程S4と同様に、湿潤粒子21の粒子集合体22を得た。なお、この比較例でも、実施例と同様に、湿潤粒子21の固形分率NVを77.0wt%〜80.0wt%に7段階に変更して、湿潤粒子21の粒子集合体22をそれぞれ製造した。 On the other hand, as a comparative example, instead of the above-mentioned first mixing step S1 to third mixing step S3, active material particles 11, carbon nanoparticles 12, carbon black particles 13 and a dispersion medium 15 are simultaneously mixed to form a third mixture. I got 19. After that, the third mixture 19 is kneaded using a roll mill 200 in the same manner as in the latter half of the third mixing step S3 described above, and further, in the same manner as in the particle aggregate forming step S4 described above, the wet particles 21 A particle aggregate 22 was obtained. In this comparative example as well, the solid content NV of the wet particles 21 is changed in 7 steps from 77.0 wt% to 80.0 wt% to produce the particle aggregates 22 of the wet particles 21, respectively, as in the examples. did.

次に、実施例及び比較例の各湿潤粒子21について、「展延性試験」をそれぞれ行った(図6参照)。この展延性試験には、展延性試験装置300を用いる。この展延性試験装置300は、平坦な下面310bを有する上側部材310と、平坦な上面(後述する第1スライド部材321の上面)321aを有する下側部320とを備えており、上側部材310の下面310bと下側部320の上面321aとの間に、湿潤粒子21を配置する(図6(a)参照)。上側部材310には、図示しない荷重センサが取り付けられており、湿潤粒子21から上側部材310に掛かる鉛直方向の荷重FAを計測できるように構成されている。また、この展延性試験装置300は、上側部材310の下面310bと、下側部320の上面321aとの隙間の大きさtaを計測可能に構成されている。 Next, a "ductility test" was performed on each of the wet particles 21 of Examples and Comparative Examples (see FIG. 6). A ductility test apparatus 300 is used for this malleability test. The spreadability test apparatus 300 includes an upper member 310 having a flat lower surface 310b and a lower portion 320 having a flat upper surface (upper surface of the first slide member 321 described later) 321a, and the upper member 310. Wet particles 21 are arranged between the lower surface 310b and the upper surface 321a of the lower side 320 (see FIG. 6A). A load sensor (not shown) is attached to the upper member 310 so that the load FA in the vertical direction applied from the wet particles 21 to the upper member 310 can be measured. Further, the ductility test device 300 is configured to be capable of measuring the size ta of the gap between the lower surface 310b of the upper member 310 and the upper surface 321a of the lower portion 320.

また、下側部320は、第1スライド部材321と、この下方に配置された第2スライド部材323とを有する。第1スライド部材321の下面321bは、図6中、左側ほど上方に位置する斜面となっている。また、第2スライド部材323の上面323aも、第1スライド部材321の下面321bに対向し、図6中、左側ほど上方に位置する斜面となっている。第2スライド部材323に対して第1スライド部材321を、図6中、左方にスライドさせると、第1スライド部材321は、左方に移動すると共に上方に移動するため、第1スライド部材321の上面321aと上側部材310の下面310bとの間に配置された湿潤粒子21は、押し伸ばされる(図6(b)参照)。 Further, the lower side portion 320 has a first slide member 321 and a second slide member 323 arranged below the first slide member 321. The lower surface 321b of the first slide member 321 is a slope located upward toward the left side in FIG. Further, the upper surface 323a of the second slide member 323 also faces the lower surface 321b of the first slide member 321 and is a slope located upward toward the left side in FIG. When the first slide member 321 is slid to the left in FIG. 6 with respect to the second slide member 323, the first slide member 321 moves to the left and upward, so that the first slide member 321 Wet particles 21 arranged between the upper surface 321a and the lower surface 310b of the upper member 310 are stretched (see FIG. 6B).

そして、湿潤粒子21から上側部材310に掛かる荷重FAが所定荷重となったときの、湿潤粒子21の厚み(上側部材310の下面310bと下側部320の上面321aとの隙間の大きさta)を測定する。実施例及び比較例の各湿潤粒子21について測定した結果を図5に示す。なお、図5では、実施例で固形分率NVを77.0wt%とした場合の測定結果(湿潤粒子21の厚み=隙間の大きさta)を、基準(=展延性100%)として示してある。
なお、固形分率NVが等しい場合において、湿潤粒子21の展延性が小さい(湿潤粒子21が柔らかい)ほど、湿潤粒子21におけるカーボンナノ粒子12及びカーボンブラック粒子13の凝集が少ない(分散が良好である)ことが判っている。
Then, the thickness of the wet particles 21 when the load FA applied from the wet particles 21 to the upper member 310 becomes a predetermined load (the size of the gap between the lower surface 310b of the upper member 310 and the upper surface 321a of the lower portion 320). To measure. The measurement results for each of the wet particles 21 of Examples and Comparative Examples are shown in FIG. In FIG. 5, the measurement result (thickness of wet particles 21 = gap size ta) when the solid content NV is 77.0 wt% in the example is shown as a reference (= ductility 100%). is there.
When the solid content NV is the same, the smaller the ductility of the wet particles 21 (the softer the wet particles 21), the smaller the aggregation of the carbon nanoparticles 12 and the carbon black particles 13 in the wet particles 21 (the better the dispersion). I know there is).

図5のグラフから判るように、湿潤粒子21の固形分率NVが等しい場合、比較例(すべての材料を同時に混合)に比べて、実施例(カーボンナノ粒子12、カーボンブラック粒子13、活物質粒子11の順で混合)の方が、湿潤粒子21の展延性が小さく(湿潤粒子21が柔らかく)、湿潤粒子21におけるカーボンナノ粒子12及びカーボンブラック粒子13の凝集が少ない(分散が良好である)。 As can be seen from the graph of FIG. 5, when the solid content NV of the wet particles 21 is equal, the examples (carbon nanoparticles 12, carbon black particles 13, active material) are compared with the comparative example (all materials are mixed at the same time). The wet particles 21 are less spreadable (the wet particles 21 are softer), and the carbon nanoparticles 12 and the carbon black particles 13 are less agglomerated (good dispersion) in the wet particles 21 when the particles 11 are mixed in this order. ).

このような結果が生じる理由は、現時点では明確ではないが、分散媒15に濡れ易くするために、凝集し易い材料から順番に分散媒15と混合するのが良いと考えられる。即ち、実施例のように、まず、最も凝集し易いカーボンナノ粒子12を分散媒15に混合し、活物質粒子11やカーボンブラック粒子13に妨げられることなく、カーボンナノ粒子12が分散媒15に濡れるのを促すと共に、第1混合物17を得る。その後、次に凝集し易いカーボンブラック粒子13を第1混合物17に混合し、活物質粒子11に妨げられることなく、カーボンブラック粒子13が分散媒15に濡れるのを促すと共に、第2混合物18を得る。そして、最後に活物質粒子11を第2混合物18に混ぜ固練りして第3混合物19を得ることで、この第3混合物19においてカーボンナノ粒子12及びカーボンブラック粒子13と分散媒15とが確実に混合したと考えられる。 The reason why such a result occurs is not clear at present, but in order to make it easier to get wet with the dispersion medium 15, it is considered that it is better to mix with the dispersion medium 15 in order from the material that easily aggregates. That is, as in the embodiment, first, the carbon nanoparticles 12 that are most likely to aggregate are mixed with the dispersion medium 15, and the carbon nanoparticles 12 become the dispersion medium 15 without being hindered by the active material particles 11 and the carbon black particles 13. Along with encouraging wetting, the first mixture 17 is obtained. After that, the carbon black particles 13 that are likely to aggregate next are mixed with the first mixture 17, and the carbon black particles 13 are promoted to get wet with the dispersion medium 15 without being hindered by the active material particles 11, and the second mixture 18 is mixed. obtain. Finally, the active material particles 11 are mixed with the second mixture 18 and kneaded to obtain the third mixture 19, whereby the carbon nanoparticles 12, the carbon black particles 13 and the dispersion medium 15 are surely obtained in the third mixture 19. It is thought that it was mixed with.

粒子集合体形成工程S4の後は、「第1未乾燥膜形成工程S5」(図2参照)において、粒子集合体22を圧延した第1未乾燥活物質膜5xを、集電箔3上に形成する。この第1未乾燥膜形成工程S5は、ロールプレス装置100を用いて行う(図4参照)。このロールプレス装置100は、3本のロール、具体的には、第1ロール110と、この第1ロール110に第1ロール間隙G1を介して平行に配置された第2ロール120と、この第2ロール120に第2ロール間隙G2を介して平行に配置された第3ロール130とを備える。これら第1ロール110〜第3ロール130には、それぞれロールを回転駆動させるモータ(不図示)が連結されており、図4に矢印で示す回転方向に、第1ロール110(周速V1)、第2ロール120(周速V2)及び第3ロール130(周速V3)をそれぞれ回転させる(V1<V2<V3)。また、ロールプレス装置100は、第1ロール110と第2ロール120の第1ロール間隙G1の上方に、湿潤粒子21からなる粒子集合体22をこの第1ロール間隙G1に向けて供給する集合体供給部140を備える。 After the particle aggregate forming step S4, in the "first undried film forming step S5" (see FIG. 2), the first undried active material film 5x obtained by rolling the particle aggregate 22 is placed on the current collector foil 3. Form. The first undried film forming step S5 is performed using the roll press device 100 (see FIG. 4). The roll press device 100 includes three rolls, specifically, a first roll 110, a second roll 120 arranged in parallel with the first roll 110 via a first roll gap G1, and the first roll 110. The two rolls 120 are provided with a third roll 130 arranged in parallel with the second roll gap G2. Motors (not shown) for rotationally driving the rolls are connected to the first rolls 110 to the third rolls 130, respectively, and the first roll 110 (peripheral speed V1), The second roll 120 (peripheral speed V2) and the third roll 130 (peripheral speed V3) are rotated (V1 <V2 <V3), respectively. Further, the roll press device 100 supplies a particle aggregate 22 composed of wet particles 21 toward the first roll gap G1 above the first roll gap G1 of the first roll 110 and the second roll 120. A supply unit 140 is provided.

粒子集合体22(湿潤粒子21)を集合体供給部140に投入すると、この粒子集合体22は、第1ロール110及び第2ロール120で圧延され、膜状の第1未乾燥活物質膜5xとなって第2ロール120上に造膜される。続いて、この第1未乾燥活物質膜5xは、第2ロール120と第3ロール130との間で、第2ロール120と第3ロール130との間に通した集電箔3の第1主面3a上に転写される。これにより、集電箔3上に第1未乾燥活物質膜5xを有する「未乾燥片側正極板1x」が連続的に形成される。 When the particle aggregate 22 (wet particle 21) is charged into the aggregate supply unit 140, the particle aggregate 22 is rolled by the first roll 110 and the second roll 120, and the film-like first undried active material film 5x And a film is formed on the second roll 120. Subsequently, the first undried active material film 5x is the first of the current collecting foil 3 passed between the second roll 120 and the third roll 130 and between the second roll 120 and the third roll 130. Transferred onto the main surface 3a. As a result, the "undried one-sided positive electrode plate 1x" having the first undried active material film 5x is continuously formed on the current collector foil 3.

次に、「第1乾燥工程S6」において、集電箔3上の第1未乾燥活物質膜5xを乾燥させて、第1活物質層5を形成する。具体的には、上記の未乾燥片側正極板1xを乾燥装置(不図示)内に搬送し、未乾燥片側正極板1xのうち第1未乾燥活物質膜5xに熱風を吹き付け、第1未乾燥活物質膜5x中に残っているNMPを蒸発させて、第1活物質層5を形成する。なお、この集電箔3上に第1活物質層5を有する負極板を片側正極板1yともいう。 Next, in the "first drying step S6", the first undried active material film 5x on the current collector foil 3 is dried to form the first active material layer 5. Specifically, the above-mentioned undried one-sided positive electrode plate 1x is conveyed into a drying device (not shown), and hot air is blown to the first undried active material film 5x of the undried one-sided positive electrode plates 1x to obtain the first undried one side. The NMP remaining in the active material film 5x is evaporated to form the first active material layer 5. The negative electrode plate having the first active material layer 5 on the current collector foil 3 is also referred to as a single-side positive electrode plate 1y.

次に、「第2未乾燥膜形成工程S7」において、前述の第1未乾燥膜形成工程S5と同様にして、粒子集合体22を圧延した第2未乾燥活物質膜6xを、集電箔3上に形成する。即ち、別途用意した前述のロールプレス装置100を用い、粒子集合体22を用いて第2ロール120上に第2未乾燥活物質膜6xを造膜し、続いて、この第2ロール120上の第2未乾燥活物質膜6xを、第3ロール130で搬送される片側正極板1yのうち、集電箔3の第2主面3b上に転写する。これにより、集電箔3の第1主面3a上に乾燥済みの第1活物質層5を有し、集電箔3の第2主面3b上に未乾燥の第2未乾燥活物質膜6xを有する「片乾燥両側正極板1z」が連続的に形成される。 Next, in the "second undried film forming step S7", the second undried active material film 6x obtained by rolling the particle aggregate 22 in the same manner as in the first undried film forming step S5 described above is applied to the current collecting foil. Form on top of 3. That is, using the above-mentioned roll press device 100 prepared separately, a second undried active material film 6x is formed on the second roll 120 by using the particle aggregate 22, and then on the second roll 120. The second undried active material film 6x is transferred onto the second main surface 3b of the current collector foil 3 in the one-side positive electrode plate 1y conveyed by the third roll 130. As a result, the dried first active material layer 5 is provided on the first main surface 3a of the current collecting foil 3, and the undried second undried active material film is provided on the second main surface 3b of the current collecting foil 3. A "single-dried double-sided positive electrode plate 1z" having 6x is continuously formed.

次に、「第2乾燥工程S8」において、前述の第1乾燥工程S6と同様にして、集電箔3上の第2未乾燥活物質膜6xを乾燥させて、第2活物質層6を形成する。具体的には、片乾燥両側正極板1zを乾燥装置(不図示)内に搬送し、片乾燥両側正極板1zのうち第2未乾燥活物質膜6xに熱風を吹き付けて、第2活物質層6を形成する。これにより、集電箔3、第1活物質層5及び第2活物質層6を有する正極板(プレス前正極板1w)が形成される。 Next, in the "second drying step S8", the second undried active material film 6x on the current collector foil 3 is dried in the same manner as in the above-mentioned first drying step S6 to form the second active material layer 6. Form. Specifically, the single-dried double-sided positive electrode plate 1z is transported into a drying device (not shown), and hot air is blown onto the second undried active material film 6x of the single-dried double-sided positive electrode plates 1z to form a second active material layer. 6 is formed. As a result, a positive electrode plate (positive electrode plate 1w before pressing) having a current collecting foil 3, a first active material layer 5, and a second active material layer 6 is formed.

次に、「プレス工程S9」において、上述のプレス前正極板1wをロールプレス装置(不図示)でロールプレスして、第1活物質層5及び第2活物質層6の密度をそれぞれ高める。かくして、図1に示した正極板1が完成する。 Next, in the "pressing step S9", the above-mentioned pre-press positive electrode plate 1w is roll-pressed with a roll press device (not shown) to increase the densities of the first active material layer 5 and the second active material layer 6, respectively. Thus, the positive electrode plate 1 shown in FIG. 1 is completed.

ここで、正極板1の活物質層5,6における導電材(カーボンナノ粒子12及びカーボンブラック粒子13)の分散性について調査した試験の結果について説明する(図7及び図8参照)。図7は、正極板1の第1活物質層5の表面における材料色差(輝度)を画像解析した「輝度解析」の結果(2つの具体例)を示す。具体的には、導電材(カーボンナノ粒子12及びカーボンブラック粒子13)は、極めて反射率が低い一方、活物質粒子11は、ニッケルやコバルトを含み、反射率が高い。従って、正極板1の第1活物質層5の表面のうち、導電材が多く存在する部分(活物質粒子11が少ない部分)は、輝度が低くなり、活物質粒子11が多く存在する部分(導電材が少ない部分)は、輝度が高くなる。そこで、正極板1の第1活物質層5の表面を写した画像(全画素数:25万個)について、各画素の輝度を得た。図7に、解析した各画素の輝度の度数分布を示す。 Here, the results of a test investigating the dispersibility of the conductive materials (carbon nanoparticles 12 and carbon black particles 13) in the active material layers 5 and 6 of the positive electrode plate 1 will be described (see FIGS. 7 and 8). FIG. 7 shows the results (two specific examples) of "luminance analysis" in which the material color difference (luminance) on the surface of the first active material layer 5 of the positive electrode plate 1 is image-analyzed. Specifically, the conductive material (carbon nanoparticles 12 and carbon black particles 13) has extremely low reflectance, while the active material particles 11 contain nickel and cobalt and have high reflectance. Therefore, on the surface of the first active material layer 5 of the positive electrode plate 1, the portion where the conductive material is abundant (the portion where the active material particles 11 are small) has low brightness and the portion where the active material particles 11 are abundant (the portion where the active material particles 11 are abundant). The part with less conductive material) has higher brightness. Therefore, the brightness of each pixel was obtained for an image (total number of pixels: 250,000) showing the surface of the first active material layer 5 of the positive electrode plate 1. FIG. 7 shows the frequency distribution of the luminance of each analyzed pixel.

第1活物質層5における導電材の分散が良好な場合、実線で示す具体例1のように、輝度バラツキ(輝度の標準偏差)が小さくなる(具体例1では輝度の標準偏差=3.0)。一方、第1活物質層5における導電材の分散が良好でない場合、破線で示す具体例2のように、輝度バラツキ(輝度の標準偏差)が大きくなる(具体例2では輝度の標準偏差=5.4)。従って、この輝度の標準偏差の大きさを指標にすることで、第1活物質層5における導電材の分散性を評価できる。以下では、この輝度の標準偏差を「分散指数」ともいう。 When the dispersion of the conductive material in the first active material layer 5 is good, the brightness variation (standard deviation of brightness) becomes small as shown in Specific Example 1 shown by the solid line (Standard deviation of brightness = 3.0 in Specific Example 1). ). On the other hand, when the dispersion of the conductive material in the first active material layer 5 is not good, the brightness variation (standard deviation of brightness) becomes large as shown in Specific Example 2 shown by the broken line (in Specific Example 2, the standard deviation of brightness = 5). .4). Therefore, the dispersibility of the conductive material in the first active material layer 5 can be evaluated by using the magnitude of the standard deviation of the brightness as an index. Hereinafter, this standard deviation of brightness is also referred to as “dispersion index”.

図8に、第3混合工程S3の固練りの際に第3混合物19に掛けたせん断応力τと、活物質層5,6における導電材(カーボンナノ粒子12及びカーボンブラック粒子13)の分散指数との関係を示す。具体的には、固練り際のせん断応力τを6段階に変更し、それ以外は前述のように第1混合工程S1〜プレス工程S9を行って、正極板1をそれぞれ製造した。そして、各正極板1について、前述の「輝度解析」を行って、輝度の標準偏差(=分散指数)をそれぞれ求めた。 FIG. 8 shows the shear stress τ applied to the third mixture 19 during the kneading in the third mixing step S3 and the dispersion index of the conductive materials (carbon nanoparticles 12 and carbon black particles 13) in the active material layers 5 and 6. Shows the relationship with. Specifically, the shear stress τ at the time of kneading was changed to 6 steps, and other than that, the first mixing step S1 to the pressing step S9 were performed as described above to manufacture the positive electrode plates 1, respectively. Then, the above-mentioned "luminance analysis" was performed on each positive electrode plate 1 to obtain the standard deviation (= dispersion index) of the luminance.

図8のグラフから判るように、固練りの際に第3混合物19に掛けるせん断応力τを、少なくとも200N/m2以上とすれば、分散指数を2.0以下の小さな値にできる。一方、SEM画像により第1活物質層5における導電材(カーボンナノ粒子12及びカーボンブラック粒子13)の分散状態を調査した結果から、分散指数が2.0以下である場合、第1活物質層5における導電材の分散が特に良好であることが判っている。従って、上述のせん断応力τを200N/m2以上とすることで、第1活物質層5における導電材の分散を良好にできることが判る。 As can be seen from the graph of FIG. 8, if the shear stress τ applied to the third mixture 19 during kneading is at least 200 N / m 2 or more, the dispersion index can be made a small value of 2.0 or less. On the other hand, when the dispersion index is 2.0 or less from the result of investigating the dispersion state of the conductive material (carbon nanoparticles 12 and carbon black particles 13) in the first active material layer 5 by the SEM image, the first active material layer It is known that the dispersion of the conductive material in No. 5 is particularly good. Therefore, it can be seen that by setting the above-mentioned shear stress τ to 200 N / m 2 or more, the dispersion of the conductive material in the first active material layer 5 can be improved.

次に、以下の実施例及び比較例について、湿潤粒子21の固形分におけるカーボンナノ粒子12の配合割合と、電池のIV抵抗との関係を調査した(図9〜図11参照)。
実施例1〜4として(図9参照)、湿潤粒子21の固形分におけるカーボンナノ粒子12の配合割合を、0.5wt%、1.0wt%、1.5wt%及び2.0wt%に変更し、それ以外は実施形態と同様にして、4種類の正極板1を製造した。なお、湿潤粒子21における導電材全体の配合割合(カーボンナノ粒子12とカーボンブラック粒子13を合わせた配合割合)が等しく(7.8wt%)なるように、カーボンナノ粒子12の配合割合の変更に伴って、カーボンブラック粒子13の配合割合を変更した。また、カーボンナノ粒子12には、前述のように、直径φが数nm、長さLが数μmのカーボンナノチューブ(CNT)を用いた(図9には「第1カーボンナノ粒子」と記す)。更に、これらの正極板1を用い、また、負極板を別途用意して、リチウムイオン二次電池(以下、単に「電池」ともいう)をそれぞれ製造した。
Next, in the following Examples and Comparative Examples, the relationship between the blending ratio of the carbon nanoparticles 12 in the solid content of the wet particles 21 and the IV resistance of the battery was investigated (see FIGS. 9 to 11).
As Examples 1 to 4 (see FIG. 9), the blending ratio of the carbon nanoparticles 12 in the solid content of the wet particles 21 was changed to 0.5 wt%, 1.0 wt%, 1.5 wt%, and 2.0 wt%. , Other than that, four types of positive electrode plates 1 were manufactured in the same manner as in the embodiment. The blending ratio of the carbon nanoparticles 12 was changed so that the blending ratio of the entire conductive material (the blending ratio of the carbon nanoparticles 12 and the carbon black particles 13 combined) in the wet particles 21 was equal (7.8 wt%). Accordingly, the blending ratio of the carbon black particles 13 was changed. Further, as the carbon nanoparticles 12, as described above, carbon nanotubes (CNTs) having a diameter φ of several nm and a length L of several μm were used (referred to as “first carbon nanoparticles” in FIG. 9). .. Further, these positive electrode plates 1 were used, and a negative electrode plate was separately prepared to manufacture a lithium ion secondary battery (hereinafter, also simply referred to as “battery”).

また、比較例1〜4として、液状の活物質ペーストを用いた以下の手法により正極板1をそれぞれ製造した。具体的には、活物質ペーストの固形分におけるカーボンナノ粒子12の配合割合を、0wt%、1.0wt%、2.0wt%及び3.0wt%とし、導電材全体の配合割合が7.8wt%となるように、カーボンナノ粒子12の配合割合の変更に伴って、カーボンブラック粒子13の配合割合を変更した。また、この活物質ペーストには、分散剤(具体的にはナフチル基含有アクリル樹脂)を、0.9wt%の割合で配合し、その代わりに活物質粒子11の配合割合を減らした。即ち、固形分の配合割合を、活物質粒子:導電材(カーボンナノ粒子及びカーボンブラック粒子):結着剤:分散剤=89.8:7.8:1.5:0.9とした。また、活物質ペーストは、活物質粒子11、カーボンナノ粒子12、カーボンブラック粒子13及び分散剤を分散媒15に超音波振動を加えながら分散させることによって作製した。活物質ペーストの固形分率NVは、いずれも48.0wt%(NMPは52.0wt%)とした。 Further, as Comparative Examples 1 to 4, the positive electrode plates 1 were manufactured by the following methods using a liquid active material paste. Specifically, the blending ratio of the carbon nanoparticles 12 in the solid content of the active material paste is 0 wt%, 1.0 wt%, 2.0 wt% and 3.0 wt%, and the blending ratio of the entire conductive material is 7.8 wt. The blending ratio of the carbon black particles 13 was changed according to the change in the blending ratio of the carbon nanoparticles 12 so as to be%. Further, in this active material paste, a dispersant (specifically, a naphthyl group-containing acrylic resin) was blended at a ratio of 0.9 wt%, and instead, the blending ratio of the active material particles 11 was reduced. That is, the mixing ratio of the solid content was set to active material particles: conductive materials (carbon nanoparticles and carbon black particles): binder: dispersant = 89.8: 7.8: 1.5: 0.9. The active material paste was prepared by dispersing the active material particles 11, the carbon nanoparticles 12, the carbon black particles 13, and the dispersant in the dispersion medium 15 while applying ultrasonic vibration. The solid content NV of the active material paste was 48.0 wt% (NMP was 52.0 wt%).

次に、上述の活物質ペーストを集電箔3の第1主面3aに塗布し、加熱乾燥させて第1活物質層5を形成した。なお、活物質ペースト中のカーボンナノ粒子12は沈降し易いため、塗工の直前まで活物質ペーストに超音波振動を付与し続けた。また、活物質ペーストを集電箔3の第2主面3bにも塗布し、加熱乾燥させて第2活物質層6を形成した。その後、実施形態と同様にプレス工程S9を行って正極板1をそれぞれ製造した。更に、これらの正極板1を用いてリチウムイオン二次電池をそれぞれ製造した。 Next, the above-mentioned active material paste was applied to the first main surface 3a of the current collector foil 3 and dried by heating to form the first active material layer 5. Since the carbon nanoparticles 12 in the active material paste tend to settle, ultrasonic vibration was continuously applied to the active material paste until just before the coating. Further, the active material paste was also applied to the second main surface 3b of the current collector foil 3 and dried by heating to form the second active material layer 6. Then, the pressing step S9 was performed in the same manner as in the embodiment to manufacture the positive electrode plates 1 respectively. Further, each of these positive electrode plates 1 was used to manufacture a lithium ion secondary battery.

次に、実施例1〜4及び比較例1〜4に係る各電池について、IV抵抗をそれぞれ測定した。具体的には、SOC56%に調整した電池について、環境温度25℃において、放電電流値I=20Cで5秒間放電させて、この放電開始時の電池電圧V1と、5秒後の電池電圧V2とをそれぞれ測定し、R=(V1−V2)/Iにより、電池のIV抵抗Rを算出した。そして、比較例1の電池のIV抵抗Rを基準(=100%)として、その他の電池の「IV抵抗比」をそれぞれ算出した。その結果を図9に示す。 Next, the IV resistance of each of the batteries according to Examples 1 to 4 and Comparative Examples 1 to 4 was measured. Specifically, the battery adjusted to SOC 56% is discharged at an ambient temperature of 25 ° C. at a discharge current value I = 20C for 5 seconds, and the battery voltage V1 at the start of this discharge and the battery voltage V2 after 5 seconds are obtained. Was measured, and the IV resistance R of the battery was calculated by R = (V1-V2) / I. Then, the "IV resistance ratio" of the other batteries was calculated using the IV resistance R of the battery of Comparative Example 1 as a reference (= 100%). The result is shown in FIG.

また、実施例5,6(図10参照)として、カーボンナノ粒子12を、実施形態及び実施例1〜4で用いたカーボンナノチューブよりも大きい、具体的には、直径φが数nm、長さLが数十μmのカーボンナノチューブ(図10には「第2カーボンナノ粒子」と記す)に変更して、2種類の正極板1を製造した。なお、湿潤粒子21の固形分におけるカーボンナノ粒子12の配合割合は、1.0wt%及び2.0wt%とした。更に、これらの正極板1を用いて電池をそれぞれ製造した。 Further, in Examples 5 and 6 (see FIG. 10), the carbon nanoparticles 12 are larger than the carbon nanotubes used in the embodiments and Examples 1 to 4, specifically, the diameter φ is several nm and the length. Two types of positive electrode plates 1 were manufactured by changing to carbon nanotubes having an L of several tens of μm (referred to as “second carbon nanoparticles” in FIG. 10). The blending ratio of the carbon nanoparticles 12 in the solid content of the wet particles 21 was 1.0 wt% and 2.0 wt%. Further, each of these positive electrode plates 1 was used to manufacture a battery.

また、比較例5〜7として、カーボンナノ粒子12を実施例5,6と同様な大きなカーボンナノチューブに変更し、活物質ペーストの固形分におけるカーボンナノ粒子12の配合割合を、1.0wt%、2.0wt%及び3.0wt%として、液状の活物質ペーストを作製した。そして、これらの活物質ペーストを用いて比較例1〜4と同様に正極板1をそれぞれ製造し、更に電池をそれぞれ製造した。
次に、実施例5,6及び比較例5〜7に係る各電池について、前述の実施例1〜4及び比較例1〜4に係る各電池と同様にして、IV抵抗をそれぞれ測定し、IV抵抗比をそれぞれ算出した。その結果を図10に示す。
Further, as Comparative Examples 5 to 7, the carbon nanoparticles 12 were changed to the same large carbon nanotubes as in Examples 5 and 6, and the blending ratio of the carbon nanoparticles 12 in the solid content of the active material paste was 1.0 wt%. Liquid active material pastes were prepared at 2.0 wt% and 3.0 wt%. Then, using these active material pastes, the positive electrode plates 1 were manufactured in the same manner as in Comparative Examples 1 to 4, and the batteries were further manufactured.
Next, for each of the batteries according to Examples 5 and 6 and Comparative Examples 5 to 7, the IV resistance was measured in the same manner as for the batteries according to Examples 1 to 4 and Comparative Examples 1 to 4, respectively, and the IV was measured. The resistivity ratios were calculated respectively. The result is shown in FIG.

また、実施例7〜9(図11参照)として、カーボンナノ粒子12を、直径φが約150nm、長さLが約6μmのカーボンナノファイバ(図11には「第3カーボンナノ粒子」と記す)に変更して、3種類の正極板1を製造した。なお、湿潤粒子21の固形分におけるカーボンナノ粒子12の配合割合は、1.0wt%、2.0wt%及び3.0wt%とした。更に、これらの正極板1を用いて電池をそれぞれ製造した。 Further, as Examples 7 to 9 (see FIG. 11), the carbon nanoparticles 12 are referred to as carbon nanoparticles having a diameter φ of about 150 nm and a length L of about 6 μm (in FIG. 11, “third carbon nanoparticles”). ), And three types of positive electrode plates 1 were manufactured. The blending ratio of the carbon nanoparticles 12 in the solid content of the wet particles 21 was 1.0 wt%, 2.0 wt%, and 3.0 wt%. Further, each of these positive electrode plates 1 was used to manufacture a battery.

また、比較例8〜10として、カーボンナノ粒子12を実施例7〜9と同様なカーボンナノファイバに変更し、活物質ペーストの固形分におけるカーボンナノ粒子12の配合割合を、1.0wt%、2.0wt%及び3.0wt%として、液状の活物質ペーストを作製した。そして、これらの活物質ペーストを用いて正極板1をそれぞれ製造し、更に電池をそれぞれ製造した。
次に、実施例7〜9及び比較例8〜10に係る各電池について、前述の実施例1〜6及び比較例1〜7に係る各電池と同様にして、IV抵抗をそれぞれ測定し、IV抵抗比をそれぞれ算出した。その結果を図11に示す。
Further, as Comparative Examples 8 to 10, the carbon nanoparticles 12 were changed to the same carbon nanoparticles as in Examples 7 to 9, and the blending ratio of the carbon nanoparticles 12 in the solid content of the active material paste was 1.0 wt%. Liquid active material pastes were prepared at 2.0 wt% and 3.0 wt%. Then, each positive electrode plate 1 was manufactured using these active material pastes, and each battery was manufactured.
Next, for each of the batteries according to Examples 7 to 9 and Comparative Examples 8 to 10, the IV resistance was measured in the same manner as for the batteries according to Examples 1 to 6 and Comparative Examples 1 to 7, respectively, and the IV was measured. The resistivity ratios were calculated respectively. The result is shown in FIG.

図9〜図11の各グラフから判るように、カーボンナノ粒子12の配合割合を多くするほど、IV抵抗Rが小さくなる傾向にある。また、カーボンナノ粒子12の配合割合が等しい場合、比較例に比べて実施例の方がIV抵抗Rが小さくなることが判る。
その理由は、以下であると考えられる。即ち、まず比較例1では、正極板1の活物質層5,6に含まれる導電材がカーボンブラック粒子13のみであり、カーボンナノ粒子12は含まれない。カーボンブラック粒子13よりも導電性が良好なカーボンナノ粒子12が活物質層5,6に含まれないため、この正極板1を用いた電池でIV抵抗Rが最も大きくなった。これに対し、その他の比較例2〜10及び実施例1〜9の各電池では、正極板1の活物質層5,6に、導電性が良好なカーボンナノ粒子12が含まれるため、比較例1の電池よりもIV抵抗Rが小さくなった。また、カーボンナノ粒子12の配合割合が多くなるほど、活物質層5,6の導電性が良好になるため、電池のIV抵抗Rが小さくなる傾向にあると考えられる。
As can be seen from the graphs of FIGS. 9 to 11, the IV resistance R tends to decrease as the blending ratio of the carbon nanoparticles 12 increases. Further, it can be seen that when the blending ratios of the carbon nanoparticles 12 are equal, the IV resistance R is smaller in the examples than in the comparative examples.
The reason is considered to be as follows. That is, first, in Comparative Example 1, the conductive material contained in the active material layers 5 and 6 of the positive electrode plate 1 is only the carbon black particles 13, and the carbon nanoparticles 12 are not included. Since the carbon nanoparticles 12, which have better conductivity than the carbon black particles 13, are not contained in the active material layers 5 and 6, the IV resistance R is the largest in the battery using the positive electrode plate 1. On the other hand, in each of the other batteries of Comparative Examples 2 to 10 and Examples 1 to 9, the active material layers 5 and 6 of the positive electrode plate 1 contain carbon nanoparticles 12 having good conductivity, so that they are comparative examples. The IV resistance R was smaller than that of the battery of 1. Further, it is considered that as the blending ratio of the carbon nanoparticles 12 increases, the conductivity of the active material layers 5 and 6 becomes better, so that the IV resistance R of the battery tends to decrease.

また、比較例1〜10では、活物質ペーストに分散剤を加えているため、活物質層5,6中にも分散剤が残る。この分散剤によって活物質層5,6の導電性が低下するため、電池のIV抵抗比が大きくなる。一方、実施例1〜9では、分散剤を用いていないため、活物質層5,6中に分散剤が存在しない。このため、活物質層5,6の導電性が低下しないため、カーボンナノ粒子12の配合割合が等しい場合、比較例に比べて実施例の電池ではIV抵抗比が小さくなったと考えられる。 Further, in Comparative Examples 1 to 10, since the dispersant is added to the active material paste, the dispersant remains in the active material layers 5 and 6. Since the conductivity of the active material layers 5 and 6 is lowered by this dispersant, the IV resistance ratio of the battery is increased. On the other hand, in Examples 1 to 9, since the dispersant is not used, the dispersant does not exist in the active material layers 5 and 6. Therefore, since the conductivity of the active material layers 5 and 6 does not decrease, it is considered that the IV resistance ratio of the battery of the example was smaller than that of the comparative example when the compounding ratio of the carbon nanoparticles 12 was the same.

以上で説明したように、正極板1の製造方法では、第1混合工程S1で、最初に分散媒15にカーボンナノ粒子12を混合し、第2混合工程S2で、次にカーボンブラック粒子13を混合し、第3混合工程S3で、活物質粒子11を混合する。このような順序で混合することで、その他の順序で混合する場合に比べて、第3混合物19においてカーボンナノ粒子12及びカーボンブラック粒子13と分散媒15とを確実に混合できる。
しかも、第3混合工程S3で、この第3混合物19をせん断応力τ=200N/m2以上で固練りするので、凝集しているカーボンナノ粒子12或いはカーボンブラック粒子13を解砕し、第3混合物19におけるカーボンナノ粒子12及びカーボンブラック粒子13の分散を良好にできる。
As described above, in the method for producing the positive electrode plate 1, the carbon nanoparticles 12 are first mixed with the dispersion medium 15 in the first mixing step S1, and then the carbon black particles 13 are mixed in the second mixing step S2. The mixture is mixed, and the active material particles 11 are mixed in the third mixing step S3. By mixing in such an order, the carbon nanoparticles 12, the carbon black particles 13, and the dispersion medium 15 can be reliably mixed in the third mixture 19 as compared with the case of mixing in other orders.
Moreover, in the third mixing step S3, the third mixture 19 is kneaded with a shear stress τ = 200 N / m 2 or more, so that the agglomerated carbon nanoparticles 12 or carbon black particles 13 are crushed and the third The carbon nanoparticles 12 and the carbon black particles 13 can be well dispersed in the mixture 19.

その後、この第3混合物19からなる湿潤粒子21が集合した粒子集合体22を形成し、この粒子集合体22を用いて未乾燥活物質膜5x,6xを形成することで、カーボンナノ粒子12及びカーボンブラック粒子13の分散が良好な未乾燥活物質膜5x,6xを形成できる。更に、これを乾燥させることで、カーボンナノ粒子12及びカーボンブラック粒子13の分散が良好な活物質層5,6を形成できる。従って、正極板1の製造方法では、カーボンナノ粒子12及びカーボンブラック粒子13の分散が良好で、抵抗が低い活物質層5,6を形成できる。 After that, the particle aggregate 22 in which the wet particles 21 made of the third mixture 19 are aggregated is formed, and the undried active material films 5x and 6x are formed by using the particle aggregate 22 to form the carbon nanoparticles 12 and the carbon nanoparticles 12. It is possible to form undried active material films 5x and 6x in which the carbon black particles 13 are well dispersed. Further, by drying the carbon nanoparticles 12, the active material layers 5 and 6 in which the carbon nanoparticles 12 and the carbon black particles 13 are well dispersed can be formed. Therefore, in the method for producing the positive electrode plate 1, the active material layers 5 and 6 can be formed in which the carbon nanoparticles 12 and the carbon black particles 13 are well dispersed and the resistance is low.

以上において、本発明を実施形態及び実施例に即して説明したが、本発明は上述の実施形態及び実施例に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることは言うまでもない。
例えば、実施形態の第1混合工程S1、第2混合工程S2、及び、第3混合工程S3の前半では、二軸混練機を用いて混合を行ったが、例えば、ニーダやプラネタリミキサなどを用いて混合を行ってもよい。
また、実施形態の第3混合工程S3の後半では、ロールミルを用いて第3混合物19の固練りを行ったが、例えば、単軸混練機や二軸混練機、3軸以上の多軸混練機などを用いて固練りを行ってもよい。
In the above, the present invention has been described in accordance with the embodiments and examples, but the present invention is not limited to the above-described embodiments and examples, and is appropriately modified and applied without departing from the gist thereof. It goes without saying that you can do it.
For example, in the first half of the first mixing step S1, the second mixing step S2, and the third mixing step S3 of the embodiment, mixing was performed using a twin-screw kneader, but for example, a kneader, a planetary mixer, or the like was used. May be mixed.
Further, in the latter half of the third mixing step S3 of the embodiment, the third mixture 19 was kneaded using a roll mill. For example, a single-screw kneader, a twin-screw kneader, or a multi-screw kneader having three or more shafts. It may be kneaded by using or the like.

1 正極板(電極板)
3 集電箔
5 第1活物質層
5x 第1未乾燥活物質膜
6 第2活物質層
6x 第2未乾燥活物質膜
11 活物質粒子
12 カーボンナノ粒子
13 カーボンブラック粒子
14 結着剤
15 分散媒
17 第1混合物
18 第2混合物
19 第3混合物
21 湿潤粒子
22 粒子集合体
100 ロールプレス装置
200 ロールミル
S1 第1混合工程
S2 第2混合工程
S3 第3混合工程
S4 粒子集合体形成工程
S5 第1未乾燥膜形成工程
S6 第1乾燥工程
S7 第2未乾燥膜形成工程
S8 第2乾燥工程
S9 プレス工程
1 Positive electrode plate (electrode plate)
3 Current collector foil 5 1st active material layer 5x 1st undried active material film 6 2nd active material layer 6x 2nd undried active material film 11 Active material particles 12 Carbon nanoparticles 13 Carbon black particles 14 Binder 15 Dispersion Medium 17 1st mixture 18 2nd mixture 19 3rd mixture 21 Wet particles 22 Particle aggregate 100 Roll press device 200 Roll mill S1 1st mixing step S2 2nd mixing step S3 3rd mixing step S4 Particle aggregate forming step S5 1st Undried film forming step S6 First drying step S7 Second undried film forming step S8 Second drying step S9 Pressing step

Claims (1)

集電箔と、
上記集電箔上に形成され、活物質粒子、カーボンナノチューブ及びカーボンナノファイバの少なくともいずれかであるカーボンナノ粒子、並びに、カーボンブラック粒子を含む活物質層と、を備える
電極板の製造方法であって、
上記カーボンナノ粒子及び分散媒を混合して、第1混合物を得る第1混合工程と、
上記第1混合物及び上記カーボンブラック粒子を混合して、第2混合物を得る第2混合工程と、
上記第2混合物及び上記活物質粒子を混ぜ、せん断応力τ=200N/m2以上で固練りして、粘土状の第3混合物を得る第3混合工程と、
上記第3混合物からなる湿潤粒子が集合した粒子集合体を形成する粒子集合体形成工程と、
上記粒子集合体を圧延した未乾燥活物質膜を、上記集電箔上に形成する未乾燥膜形成工程と、
上記集電箔上の上記未乾燥活物質膜を乾燥させて、上記活物質層を形成する乾燥工程と、
を備える
電極板の製造方法。
With the current collector foil
A method for producing an electrode plate, which is formed on the current collecting foil and includes active material particles, carbon nanoparticles which are at least one of carbon nanotubes and carbon nanofibers, and an active material layer containing carbon black particles. hand,
In the first mixing step of mixing the carbon nanoparticles and the dispersion medium to obtain a first mixture,
A second mixing step of mixing the first mixture and the carbon black particles to obtain a second mixture, and
A third mixing step of mixing the second mixture and the active material particles and kneading them with a shear stress of τ = 200 N / m 2 or more to obtain a clay-like third mixture.
A particle aggregate forming step of forming a particle aggregate in which wet particles composed of the third mixture are aggregated, and
The undried film forming step of forming the undried active material film obtained by rolling the particle aggregate on the current collecting foil, and
A drying step of drying the undried active material film on the current collecting foil to form the active material layer, and
A method for manufacturing an electrode plate.
JP2019033638A 2019-02-27 2019-02-27 Electrode plate manufacturing method Active JP7074096B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019033638A JP7074096B2 (en) 2019-02-27 2019-02-27 Electrode plate manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019033638A JP7074096B2 (en) 2019-02-27 2019-02-27 Electrode plate manufacturing method

Publications (2)

Publication Number Publication Date
JP2020140793A true JP2020140793A (en) 2020-09-03
JP7074096B2 JP7074096B2 (en) 2022-05-24

Family

ID=72265050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019033638A Active JP7074096B2 (en) 2019-02-27 2019-02-27 Electrode plate manufacturing method

Country Status (1)

Country Link
JP (1) JP7074096B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022069787A (en) * 2020-10-26 2022-05-12 プライムプラネットエナジー&ソリューションズ株式会社 Electrode and method of manufacturing electrode
CN114914388A (en) * 2021-02-08 2022-08-16 泰星能源解决方案有限公司 Method for producing positive electrode active material mixture and method for testing positive electrode active material mixture
JP2022123654A (en) * 2021-02-12 2022-08-24 プライムプラネットエナジー&ソリューションズ株式会社 Manufacturing method for electrode sheet
JP2022191778A (en) * 2021-06-16 2022-12-28 本田技研工業株式会社 Manufacturing method of positive electrode, positive electrode, and lithium ion secondary battery
WO2023223627A1 (en) * 2022-05-19 2023-11-23 パナソニックホールディングス株式会社 Solid electrolyte composition and method for manufacturing same
JP7457228B1 (en) 2023-06-30 2024-03-28 artience株式会社 Method for manufacturing composite for secondary battery electrode

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015053165A (en) * 2013-09-06 2015-03-19 日立化成株式会社 Positive electrode for lithium ion secondary batteries, and lithium ion secondary battery
JP2018004579A (en) * 2016-07-08 2018-01-11 トヨタ自動車株式会社 Method for calculating characteristics of wet particles
JP2018063828A (en) * 2016-10-12 2018-04-19 トヨタ自動車株式会社 Method of manufacturing electrode
JP2018101518A (en) * 2016-12-20 2018-06-28 トヨタ自動車株式会社 Manufacturing method of electrode plate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015053165A (en) * 2013-09-06 2015-03-19 日立化成株式会社 Positive electrode for lithium ion secondary batteries, and lithium ion secondary battery
JP2018004579A (en) * 2016-07-08 2018-01-11 トヨタ自動車株式会社 Method for calculating characteristics of wet particles
JP2018063828A (en) * 2016-10-12 2018-04-19 トヨタ自動車株式会社 Method of manufacturing electrode
JP2018101518A (en) * 2016-12-20 2018-06-28 トヨタ自動車株式会社 Manufacturing method of electrode plate

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022069787A (en) * 2020-10-26 2022-05-12 プライムプラネットエナジー&ソリューションズ株式会社 Electrode and method of manufacturing electrode
JP7231595B2 (en) 2020-10-26 2023-03-01 プライムプラネットエナジー&ソリューションズ株式会社 Electrode manufacturing method
CN114914388A (en) * 2021-02-08 2022-08-16 泰星能源解决方案有限公司 Method for producing positive electrode active material mixture and method for testing positive electrode active material mixture
JP2022121231A (en) * 2021-02-08 2022-08-19 プライムプラネットエナジー&ソリューションズ株式会社 Manufacturing method of cathode active material mixture and inspection method
JP7289857B2 (en) 2021-02-08 2023-06-12 プライムプラネットエナジー&ソリューションズ株式会社 Manufacturing method and inspection method for positive electrode active material mixture
US12062772B2 (en) 2021-02-08 2024-08-13 Prime Planet Energy & Solutions, Inc. Manufacturing method and testing method for positive active material mixture
JP2022123654A (en) * 2021-02-12 2022-08-24 プライムプラネットエナジー&ソリューションズ株式会社 Manufacturing method for electrode sheet
JP7219294B2 (en) 2021-02-12 2023-02-07 プライムプラネットエナジー&ソリューションズ株式会社 Electrode sheet manufacturing method
JP2022191778A (en) * 2021-06-16 2022-12-28 本田技研工業株式会社 Manufacturing method of positive electrode, positive electrode, and lithium ion secondary battery
JP7247267B2 (en) 2021-06-16 2023-03-28 本田技研工業株式会社 Method for manufacturing positive electrode
WO2023223627A1 (en) * 2022-05-19 2023-11-23 パナソニックホールディングス株式会社 Solid electrolyte composition and method for manufacturing same
JP7457228B1 (en) 2023-06-30 2024-03-28 artience株式会社 Method for manufacturing composite for secondary battery electrode

Also Published As

Publication number Publication date
JP7074096B2 (en) 2022-05-24

Similar Documents

Publication Publication Date Title
JP7074096B2 (en) Electrode plate manufacturing method
JP7024640B2 (en) Manufacturing method of particle aggregate, manufacturing method of electrode plate and particle aggregate
Liu et al. Preparation of on chip, flexible supercapacitor with high performance based on electrophoretic deposition of reduced graphene oxide/polypyrrole composites
DE102015100119B4 (en) Secondary battery with nonaqueous electrolyte
US20230104306A1 (en) Method for producing electrode and electrode mixture
CN104053709A (en) Method for preparing paste-like composition comprising carbon-based conductive fillers
CN103346290A (en) High-efficient electrode manufacturing method
JP2020194625A (en) Manufacturing method of battery carbon nanotube dispersion composition
DE102021130384A1 (en) CARBON-BASED CONDUCTIVE FILLER PRECURSOR DISPERSIONS FOR BATTERY ELECTRODES AND PROCESS FOR THEIR MANUFACTURE AND USE
WO2015056759A1 (en) Conductive carbon, electrode material including said carbon, electrode in which said electrode material is used, and electric storage device provided with said electrode
CN105810881A (en) Method of manufacturing electrode
CN111200106B (en) Method for manufacturing densified strip-shaped electrode plate, and battery
CN116134075A (en) PTFE powder, method for producing electrode, and electrode
JP7103011B2 (en) Carbon nanotube dispersion liquid and its use
EP3942624A1 (en) Method for producing a battery
WO2014175756A1 (en) The carbon electrode and method of carbon electrode manufacturing
JP5334506B2 (en) Method for producing composition for positive electrode of non-aqueous electrolyte secondary battery
CN108428491A (en) Electric wire and the harness for using the electric wire
JP2021111528A (en) Method of manufacturing electrode plate
JP7059858B2 (en) Carbon black dispersion composition and its use
JP2011018687A (en) Method of manufacturing electrode sheet, and method of manufacturing electrode body
WO2023032391A1 (en) Electrode
EP4287291A1 (en) Electrode and electrode manufacturing method
BR102019014373B1 (en) PARTICLE AGGREGATE MANUFACTURING METHOD AND ELECTRODE PLATE MANUFACTURING METHOD
CN109599527B (en) Electrode plate manufacturing method and electrode plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220425

R151 Written notification of patent or utility model registration

Ref document number: 7074096

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151