[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2020038092A - Particle size distribution measuring device and particle size distribution measuring channel unit - Google Patents

Particle size distribution measuring device and particle size distribution measuring channel unit Download PDF

Info

Publication number
JP2020038092A
JP2020038092A JP2018164654A JP2018164654A JP2020038092A JP 2020038092 A JP2020038092 A JP 2020038092A JP 2018164654 A JP2018164654 A JP 2018164654A JP 2018164654 A JP2018164654 A JP 2018164654A JP 2020038092 A JP2020038092 A JP 2020038092A
Authority
JP
Japan
Prior art keywords
arrangement structure
gap arrangement
electromagnetic wave
void
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018164654A
Other languages
Japanese (ja)
Inventor
弘一 瀬戸
Koichi Seto
弘一 瀬戸
浩幸 新戸
Hiroyuki Niito
浩幸 新戸
誠治 神波
Seiji Kaminami
誠治 神波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Fukuoka University
Original Assignee
Murata Manufacturing Co Ltd
Fukuoka University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd, Fukuoka University filed Critical Murata Manufacturing Co Ltd
Priority to JP2018164654A priority Critical patent/JP2020038092A/en
Publication of JP2020038092A publication Critical patent/JP2020038092A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Measuring Cells (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

To provide a grain size distribution measurement device which does not use prior methods.SOLUTION: A grain size distribution measurement device comprises: a channel for circulating a fluid including a measured substance from an upstream side to a downstream side; a first gap arrangement structure on which open holes with a same shape and with a first aperture are periodically and two-dimensionally arranged on a metal thin film; a second gap arrangement structure on which, open holes with a same shape and with a second aperture smaller than the first aperture are periodically and two-dimensionally arranged on a metal thin film on a downstream side; a light source for radiating an electromagnetic wave penetrating the first and second gap arrangement structures; a detector for detecting the electromagnetic wave transmitting the first and second gap arrangement structure; and a capture amount calculation part for calculating a capture amount for the first gap arrangement structure on the basis of a first standard curve indicating a relationship between transmittance of the electromagnetic wave transmitting the first gap arrangement structure and the capture amount on the basis of the transmittance of the electromagnetic wave transmitting the first gap arrangement structure, and calculating a capture amount for the second gap arrangement structure on the basis of a second standard curve indicating a relationship between transmittance of the electromagnetic wave transmitting the second gap arrangement structure and the capture amount on the basis of the transmittance of the electromagnetic wave transmitting the second gap arrangement structure.SELECTED DRAWING: Figure 9

Description

本発明は、流体(気体、液体)中の被測定物の粒度分布測定装置に関する。特に、マイクロメートル(μm)オーダー以上の大きさを有する被測定物の粒度分布測定装置に関する。   The present invention relates to an apparatus for measuring a particle size distribution of an object to be measured in a fluid (gas, liquid). In particular, the present invention relates to an apparatus for measuring a particle size distribution of an object to be measured having a size on the order of micrometers (μm) or more.

マイクロメートルオーダー以上の大きさを有する被測定物の粒度分布計測方法として、『篩分け重量法』、『レーザー回折・散乱法』などが知られている。   As a method for measuring the particle size distribution of an object having a size on the order of micrometers or more, a “sieving weight method”, a “laser diffraction / scattering method”, and the like are known.

『篩分け重量法』は、被測定物を目開きの異なる篩によって分級し、各々の篩に分離された被測定物の重量を測定する方法であり、JIS Z 8815に試験方法が定められている。   The “sieving weight method” is a method of classifying an object to be measured with sieves having different openings and measuring the weight of the object to be measured separated into each sieve, and a test method is defined in JIS Z8815. I have.

『レーザー回折・散乱法』は、被測定物(粒子群)の複雑な回折散乱パターンを角度の異なる複数の検出器で計測して、粒子を球と仮定し、Mie散乱理論とフラウンホーファー回折理論から導かれる理論的回折散乱パターンと実測回折散乱パターンを照合することで有効径(回折散乱径)を求めるという方法であり、体積基準粒度分布として、どれくらいの大きさの粒子がどれくらいの割合で含まれているかが測定される。   The "laser diffraction / scattering method" measures the complex diffraction / scattering pattern of an object to be measured (particle group) with a plurality of detectors having different angles, assumes that the particles are spherical, and uses the Mie scattering theory and the Fraunhofer diffraction theory. Is a method of finding the effective diameter (diffraction scattering diameter) by comparing the theoretical diffraction scattering pattern derived from the above with the actually measured diffraction scattering pattern, and as a volume-based particle size distribution, what size particles are included in what proportion Is measured.

特開2009−19925号公報JP 2009-19925 A

『篩分け重量法』では、はかりによる重量測定を行うため、十分な精度を得るためには多量の被測定物の量(例えば、gオーダー以上)が必要となり、微量(ng〜mgオーダー)の被測定物は測定できないという問題がある。   In the "sieving weight method", a large amount of an object to be measured (for example, g order or more) is required in order to obtain sufficient accuracy because a weight is measured by a balance. There is a problem that an object to be measured cannot be measured.

また、JIS規格で定められている篩の最小目開きは、20μmであり、それ以上の粒度分布しか測定できないという問題がある。   In addition, the minimum opening of the sieve specified by the JIS standard is 20 μm, and there is a problem that only a particle size distribution larger than that can be measured.

『レーザー回折・散乱法』では、体積基準粒度分布として、どれくらいの大きさの粒子がどれくらいの割合で含まれているかを測定するため、篩分け重量法のように、被測定物の重さ(質量)に関する情報が得られないという問題がある。例えば、PM2.5測定において、パーティクルカウンター方式(レーザー回折・散乱法)が採用されないのは、この問題による。   The "laser diffraction / scattering method" measures the size of particles and the proportion of the particles as a volume-based particle size distribution. Mass)). For example, the PM2.5 measurement does not use the particle counter method (laser diffraction / scattering method) due to this problem.

また、解析には、被測定物(粒子)と分散媒の屈折率が必要となる。屈折率の入力値が不適当であると、ゴーストピークなどを生むなどの問題が発生するため、正確な値の入力が求められる。しかし、多くの場合、被測定物の屈折率を求めることは、非常に手間がかかるという問題がある。例えば、溶媒の代表的なものは屈折率が一般に明らかにされているが、被測定物はユーザー個別になるため、被測定物の屈折率は、ユーザーが別途用意する必要がある。   In addition, the analysis requires the refractive index of the object to be measured (particles) and the dispersion medium. If the input value of the refractive index is inappropriate, a problem such as generation of a ghost peak or the like occurs. Therefore, it is required to input an accurate value. However, in many cases, there is a problem that obtaining the refractive index of the object to be measured is very troublesome. For example, the refractive index of a typical solvent is generally clarified, but since the object to be measured is individual, the user needs to separately prepare the refractive index of the object to be measured.

また、理論的回折散乱パターンと実測回折散乱パターンとの照合を行うため、つまり、近似を行うため、メーカー間差や機種間差が大きい、較正ができない、被測定物の形状の影響が大きい等の問題がある。   Also, in order to compare the theoretical diffraction scattering pattern with the actually measured diffraction scattering pattern, that is, to perform approximation, there is a large difference between manufacturers and models, calibration is not possible, and the influence of the shape of the measured object is large. There is a problem.

そこで、本発明の目的は、従来の方法によらない粒度分布測定装置を提供することである。   Therefore, an object of the present invention is to provide a particle size distribution measuring device that does not use a conventional method.

本発明に係る粒度分布測定装置は、被測定物を含む流体を上流側から下流側に流通させる流路と、
前記流路内で前記流体を通過させるように設けられ、金属製薄膜に第1の開口径を有する同形状の貫通孔を周期的に2次元配置した金属製薄膜からなる第1空隙配置構造体と、
前記流路の前記第1空隙配置構造体より下流側に、前記流体を通過させるように設けられ、金属製薄膜に前記第1の開口径より小さい第2の開口径を有する同形状の貫通孔を周期的に2次元配置した金属製薄膜からなる第2空隙配置構造体と、
前記第1空隙配置構造体及び前記第2空隙配置構造体を貫くように電磁波を照射する光源と、
前記第1空隙配置構造体及び前記第2空隙配置構造体を透過した電磁波を検出する検出器と、
前記第1空隙配置構造体を透過した電磁波の透過率から、前記第1空隙配置構造体を透過した電磁波の透過率と前記第1空隙配置構造体に捕捉された物質の量との関係を示す第1の検量線に基づいて、前記第1空隙配置構造体に捕捉された物質の量を算出すると共に、前記第2空隙配置構造体を透過した電磁波の透過率から、前記第2空隙配置構造体を透過した電磁波の透過率と前記第2空隙配置構造体に捕捉された物質の量との関係を示す第2の検量線に基づいて前記第2空隙配置構造体に捕捉された物質の量を算出する、捕捉量算出部と、
を備える。
The particle size distribution measuring device according to the present invention, a flow path for flowing the fluid containing the object to be measured from the upstream side to the downstream side,
A first gap arrangement structure formed of a metal thin film provided so as to allow the fluid to pass through the flow path and having a two-dimensionally arranged through hole of the same shape having a first opening diameter in the metal thin film; When,
A through hole of the same shape that is provided on the downstream side of the first gap arrangement structure of the flow path so as to allow the fluid to pass therethrough and has a second opening diameter smaller than the first opening diameter in the metal thin film. A second void-arranged structure made of a metal thin film having two-dimensionally periodically arranged,
A light source for irradiating an electromagnetic wave so as to penetrate the first gap arrangement structure and the second gap arrangement structure;
A detector for detecting an electromagnetic wave transmitted through the first gap arrangement structure and the second gap arrangement structure;
From the transmittance of the electromagnetic wave transmitted through the first void-arranged structure, the relationship between the transmittance of the electromagnetic wave transmitted through the first void-arranged structure and the amount of the substance captured by the first void-arranged structure is shown. Based on the first calibration curve, the amount of the substance trapped in the first gap arrangement structure is calculated, and the transmittance of the electromagnetic wave transmitted through the second gap arrangement structure is calculated based on the second gap arrangement structure. The amount of the substance trapped in the second void-arranged structure based on the second calibration curve indicating the relationship between the transmittance of the electromagnetic wave transmitted through the body and the amount of the substance trapped in the second void-arranged structure Calculating a capture amount calculating section,
Is provided.

また、本発明に係る粒度分布測定装置は、被測定物を含む流体を上流側から下流側に流通させる流路と、
前記流路内で前記流体を通過させるように設けられ、金属製薄膜に第1の開口径を有する同形状の貫通孔を周期的に2次元配置した金属製薄膜からなる第1空隙配置構造体と、
前記流路の前記第1空隙配置構造体より下流側に、前記流体を通過させるように設けられ、金属製薄膜に前記第1の開口径より小さい第2の開口径を有する同形状の貫通孔を周期的に2次元配置した金属製薄膜からなる第2空隙配置構造体と、
前記第1空隙配置構造体を貫くように電磁波を照射する第1の光源と、
前記第1空隙配置構造体を透過した電磁波を検出する第1の検出器と、
前記第2空隙配置構造体を貫くように電磁波を照射する第2の光源と、
前記第2空隙配置構造体を透過した電磁波を検出する第2の検出器と、
前記第1空隙配置構造体を透過した電磁波の透過率から、前記第1空隙配置構造体を透過した電磁波の透過率と前記第1空隙配置構造体に捕捉された物質の量との関係を示す第1の検量線に基づいて、前記第1空隙配置構造体に捕捉された物質の量を算出すると共に、前記第2空隙配置構造体を透過した電磁波の透過率から、前記第2空隙配置構造体を透過した電磁波の透過率と前記第2空隙配置構造体に捕捉された物質の量との関係を示す第2の検量線に基づいて前記第2空隙配置構造体に捕捉された物質の量を算出する、捕捉量算出部と、
を備える。
Further, the particle size distribution measuring device according to the present invention, a flow path for flowing the fluid containing the measured object from the upstream side to the downstream side,
A first gap arrangement structure formed of a metal thin film provided so as to allow the fluid to pass through the flow path and having a two-dimensionally arranged through hole of the same shape having a first opening diameter in the metal thin film; When,
A through hole of the same shape that is provided on the downstream side of the first gap arrangement structure of the flow path so as to allow the fluid to pass therethrough and has a second opening diameter smaller than the first opening diameter in the metal thin film. A second void-arranged structure made of a metal thin film having two-dimensionally periodically arranged,
A first light source that irradiates an electromagnetic wave so as to penetrate the first gap arrangement structure;
A first detector for detecting an electromagnetic wave transmitted through the first gap arrangement structure;
A second light source for irradiating an electromagnetic wave so as to penetrate the second gap arrangement structure;
A second detector for detecting an electromagnetic wave transmitted through the second gap arrangement structure;
From the transmittance of the electromagnetic wave transmitted through the first void-arranged structure, the relationship between the transmittance of the electromagnetic wave transmitted through the first void-arranged structure and the amount of the substance captured by the first void-arranged structure is shown. Based on the first calibration curve, the amount of the substance trapped in the first gap arrangement structure is calculated, and the transmittance of the electromagnetic wave transmitted through the second gap arrangement structure is calculated based on the second gap arrangement structure. The amount of the substance trapped in the second void-arranged structure based on the second calibration curve indicating the relationship between the transmittance of the electromagnetic wave transmitted through the body and the amount of the substance trapped in the second void-arranged structure Calculating a capture amount calculating section,
Is provided.

また、本発明に係る粒度分布測定用流路ユニットは、被測定物を含む流体を上流側から下流側に流通させる流路と、
前記流路内で前記流体を通過させるように設けられ、金属製薄膜に第1の開口径を有する同形状の貫通孔を周期的に2次元配置した金属製薄膜からなる第1空隙配置構造体と、
前記流路の前記第1空隙配置構造体より下流側に、前記流体を通過させるように設けられ、金属製薄膜に前記第1の開口径より小さい第2の開口径を有する同形状の貫通孔を周期的に2次元配置した金属製薄膜からなる第2空隙配置構造体と、
を備える。
Further, the channel unit for particle size distribution measurement according to the present invention, a channel for flowing the fluid containing the object to be measured from the upstream side to the downstream side,
A first gap arrangement structure formed of a metal thin film provided so as to allow the fluid to pass through the flow path and having a two-dimensionally arranged through hole of the same shape having a first opening diameter in the metal thin film; When,
A through hole of the same shape that is provided on the downstream side of the first gap arrangement structure of the flow path so as to allow the fluid to pass therethrough and has a second opening diameter smaller than the first opening diameter in the metal thin film. A second void-arranged structure made of a metal thin film having two-dimensionally periodically arranged,
Is provided.

本発明に係る粒度分布測定装置によれば、流体中の被測定物の粒度分布測定装置を提供することができる。特に、μmオーダー以上の大きさを有する被測定物の広いレンジにわたる粒度分布を行うことができる。   ADVANTAGE OF THE INVENTION According to the particle size distribution measuring device which concerns on this invention, the particle size distribution measuring device of the to-be-measured object in a fluid can be provided. In particular, it is possible to perform a particle size distribution over a wide range of an object to be measured having a size on the order of μm or more.

実施の形態1に係る粒度分布測定装置の原理を示す概略図である。FIG. 2 is a schematic diagram showing the principle of the particle size distribution measuring device according to the first embodiment. 空隙配置構造体に規則的に配置された貫通孔の平面図(a)と側面図(b)である。It is the top view (a) and the side view (b) of the through-hole regularly arrange | positioned in the space | gap arrangement structure. 図2の空隙配置構造体を透過した電磁波の周波数と透過率との関係を示す図である。FIG. 3 is a diagram illustrating a relationship between a frequency and a transmittance of an electromagnetic wave transmitted through the gap arrangement structure in FIG. 2. 図2の空隙配置構造体に流体中の被測定物が付着した場合に通過する流体の流量に応じて電磁波の透過率が低下する様子を示す図である。FIG. 3 is a diagram illustrating a state in which the transmittance of electromagnetic waves is reduced according to the flow rate of a fluid that passes when an object to be measured in a fluid adheres to the void arrangement structure in FIG. 2. 図4に示す電磁波の透過率の低下と被測定物である粒子の数と粒子質量との関係の一例を示す図である。FIG. 5 is a diagram illustrating an example of a relationship between a decrease in the transmittance of the electromagnetic wave illustrated in FIG. 4 and the number and the mass of the particles as the object to be measured. 図1の3つの空隙配置構造体を透過した電磁波の周波数と透過率との関係を示す図である。FIG. 2 is a diagram illustrating a relationship between a frequency and a transmittance of an electromagnetic wave transmitted through three gap arrangement structures illustrated in FIG. 1. 図6の3つの空隙配置構造体ごとの電磁波の透過率変化を示すグラフである。FIG. 7 is a graph showing a change in transmittance of electromagnetic waves for each of the three gap arrangement structures shown in FIG. 6. 図7の3つの空隙配置構造体ごとの電磁波の透過率変化に対応する粒子の質量、個数、体積との関係を示す図である。FIG. 8 is a diagram illustrating a relationship among a mass, a number, and a volume of particles corresponding to a change in transmittance of an electromagnetic wave for each of the three void arrangement structures in FIG. 7. 実施の形態1に係る粒度分布測定装置の構成を示す概略図である。1 is a schematic diagram illustrating a configuration of a particle size distribution measuring device according to Embodiment 1. 空隙配置構造体とシリンジとの接続の一例を示す概略図である。It is a schematic diagram showing an example of connection of a void arrangement structure and a syringe. 4つの空隙配置構造体(No.1〜No.4)ごとの粒子の質量と透過率との関係を示す検量線のグラフである。4 is a graph of a calibration curve showing the relationship between the mass of particles and the transmittance for each of the four void arrangement structures (No. 1 to No. 4). 4つの空隙配置構造体(No.1〜No.4)ごとの粒子数と透過率との関係を示す検量線のグラフである。It is a graph of a calibration curve which shows the relationship between the number of particles and transmittance | permeability for every four space arrangement | positioning structures (No. 1-No. 4). 実施例1において、図10の検量線に基づいて算出した粒径毎の質量分布を示す図である。FIG. 11 is a diagram illustrating a mass distribution for each particle size calculated based on the calibration curve of FIG. 10 in Example 1. 図13の粒径毎の質量分布に基づいて算出した粒径毎の質量%の例を示す図である。FIG. 14 is a diagram illustrating an example of mass% for each particle size calculated based on the mass distribution for each particle size in FIG. 13. 実施例1において、図12の検量線に基づいて算出した粒径毎の粒子数分布を示す図である。FIG. 13 is a diagram illustrating a particle number distribution for each particle size calculated based on the calibration curve of FIG. 12 in Example 1. 図15の粒径毎の粒子数分布に基づいて算出した粒径毎の粒子数%の例を示す図である。FIG. 16 is a diagram illustrating an example of the particle number% for each particle size calculated based on the particle number distribution for each particle size in FIG. 15. 実施例2において、流体が大気である場合の粒度分布測定装置における流路ユニットの構成を示す概略図である。FIG. 7 is a schematic diagram illustrating a configuration of a flow channel unit in a particle size distribution measurement device when a fluid is air in Embodiment 2. 各空隙配置構造体に捕捉したエアロゾルを回収する捕捉物分離回収装置の構成を示す概略図である。It is the schematic which shows the structure of the capture thing isolation | separation collection | recovery apparatus which collect | recovers the aerosol captured by each space | gap arrangement structure. 4つの空隙配置構造体(No.1〜No.4)ごとの分離物の質量と透過率との関係を示す検量線のグラフである。It is a graph of the calibration curve which shows the relationship between the mass of the isolate | separated substance and the transmittance | permeability for every four space arrangement | positioning structures (No. 1-No. 4). 実施例2において、図19の検量線に基づいて算出した粒径毎の質量分布を示す図である。FIG. 20 is a diagram showing a mass distribution for each particle size calculated based on the calibration curve of FIG. 19 in Example 2. 図20の粒径毎の質量分布に基づいて算出した粒径毎の質量%の例を示す図である。FIG. 21 is a diagram illustrating an example of mass% for each particle size calculated based on the mass distribution for each particle size in FIG. 20. 変形例の空隙配置構造体に規則的に配置された貫通孔の平面図(a)と側面図(b)である。It is the top view (a) and side view (b) of the through-hole regularly arrange | positioned in the space | gap arrangement structure of a modification. 実施の形態2に係る粒度分布測定装置の構成を示す概略図である。FIG. 9 is a schematic diagram illustrating a configuration of a particle size distribution measuring device according to a second embodiment.

第1の態様に係る粒度分布測定装置は、被測定物を含む流体を上流側から下流側に流通させる流路と、
前記流路内で前記流体を通過させるように設けられ、金属製薄膜に第1の開口径を有する同形状の貫通孔を周期的に2次元配置した金属製薄膜からなる第1空隙配置構造体と、
前記流路の前記第1空隙配置構造体より下流側に、前記流体を通過させるように設けられ、金属製薄膜に前記第1の開口径より小さい第2の開口径を有する同形状の貫通孔を周期的に2次元配置した金属製薄膜からなる第2空隙配置構造体と、
前記第1空隙配置構造体及び前記第2空隙配置構造体を貫くように電磁波を照射する光源と、
前記第1空隙配置構造体及び前記第2空隙配置構造体を透過した電磁波を検出する検出器と、
前記第1空隙配置構造体を透過した電磁波の透過率から、前記第1空隙配置構造体を透過した電磁波の透過率と前記第1空隙配置構造体に捕捉された物質の量との関係を示す第1の検量線に基づいて、前記第1空隙配置構造体に捕捉された物質の量を算出すると共に、前記第2空隙配置構造体を透過した電磁波の透過率から、前記第2空隙配置構造体を透過した電磁波の透過率と前記第2空隙配置構造体に捕捉された物質の量との関係を示す第2の検量線に基づいて前記第2空隙配置構造体に捕捉された物質の量を算出する、捕捉量算出部と、
を備える。
The particle size distribution measuring device according to the first aspect, a flow path that allows the fluid containing the measured object to flow from the upstream side to the downstream side,
A first gap arrangement structure formed of a metal thin film provided so as to allow the fluid to pass through the flow path and having a two-dimensionally arranged through hole of the same shape having a first opening diameter in the metal thin film; When,
A through hole of the same shape that is provided on the downstream side of the first gap arrangement structure of the flow path so as to allow the fluid to pass therethrough and has a second opening diameter smaller than the first opening diameter in the metal thin film. A second void-arranged structure made of a metal thin film having two-dimensionally periodically arranged,
A light source for irradiating an electromagnetic wave so as to penetrate the first gap arrangement structure and the second gap arrangement structure;
A detector for detecting an electromagnetic wave transmitted through the first gap arrangement structure and the second gap arrangement structure;
From the transmittance of the electromagnetic wave transmitted through the first void-arranged structure, the relationship between the transmittance of the electromagnetic wave transmitted through the first void-arranged structure and the amount of the substance captured by the first void-arranged structure is shown. Based on the first calibration curve, the amount of the substance trapped in the first gap arrangement structure is calculated, and the transmittance of the electromagnetic wave transmitted through the second gap arrangement structure is calculated based on the second gap arrangement structure. The amount of the substance trapped in the second void-arranged structure based on the second calibration curve indicating the relationship between the transmittance of the electromagnetic wave transmitted through the body and the amount of the substance trapped in the second void-arranged structure Calculating a capture amount calculating section,
Is provided.

第2の態様に係る粒度分布測定装置は、被測定物を含む流体を上流側から下流側に流通させる流路と、
前記流路内で前記流体を通過させるように設けられ、金属製薄膜に第1の開口径を有する同形状の貫通孔を周期的に2次元配置した金属製薄膜からなる第1空隙配置構造体と、
前記流路の前記第1空隙配置構造体より下流側に、前記流体を通過させるように設けられ、金属製薄膜に前記第1の開口径より小さい第2の開口径を有する同形状の貫通孔を周期的に2次元配置した金属製薄膜からなる第2空隙配置構造体と、
前記第1空隙配置構造体を貫くように電磁波を照射する第1の光源と、
前記第1空隙配置構造体を透過した電磁波を検出する第1の検出器と、
前記第2空隙配置構造体を貫くように電磁波を照射する第2の光源と、
前記第2空隙配置構造体を透過した電磁波を検出する第2の検出器と、
前記第1空隙配置構造体を透過した電磁波の透過率から、前記第1空隙配置構造体を透過した電磁波の透過率と前記第1空隙配置構造体に捕捉された物質の量との関係を示す第1の検量線に基づいて、前記第1空隙配置構造体に捕捉された物質の量を算出すると共に、前記第2空隙配置構造体を透過した電磁波の透過率から、前記第2空隙配置構造体を透過した電磁波の透過率と前記第2空隙配置構造体に捕捉された物質の量との関係を示す第2の検量線に基づいて前記第2空隙配置構造体に捕捉された物質の量を算出する、捕捉量算出部と、
を備えた、粒度分布測定装置。
The particle size distribution measuring device according to the second aspect, a flow path that allows the fluid containing the measured object to flow from the upstream side to the downstream side,
A first gap arrangement structure formed of a metal thin film provided so as to allow the fluid to pass through the flow path and having a two-dimensionally arranged through hole of the same shape having a first opening diameter in the metal thin film; When,
A through hole of the same shape that is provided on the downstream side of the first gap arrangement structure of the flow path so as to allow the fluid to pass therethrough and has a second opening diameter smaller than the first opening diameter in the metal thin film. A second void-arranged structure made of a metal thin film having two-dimensionally periodically arranged,
A first light source that irradiates an electromagnetic wave so as to penetrate the first gap arrangement structure;
A first detector for detecting an electromagnetic wave transmitted through the first gap arrangement structure;
A second light source for irradiating an electromagnetic wave so as to penetrate the second gap arrangement structure;
A second detector for detecting an electromagnetic wave transmitted through the second gap arrangement structure;
From the transmittance of the electromagnetic wave transmitted through the first void-arranged structure, the relationship between the transmittance of the electromagnetic wave transmitted through the first void-arranged structure and the amount of the substance captured by the first void-arranged structure is shown. Based on the first calibration curve, the amount of the substance trapped in the first gap arrangement structure is calculated, and the transmittance of the electromagnetic wave transmitted through the second gap arrangement structure is calculated based on the second gap arrangement structure. The amount of the substance trapped in the second void-arranged structure based on the second calibration curve indicating the relationship between the transmittance of the electromagnetic wave transmitted through the body and the amount of the substance trapped in the second void-arranged structure Calculating a capture amount calculating section,
, A particle size distribution measuring device.

第3の態様に係る粒度分布測定装置は、上記第2の態様において、前記流路は、上流側から下流側に第1の方向に沿って延在し、
前記第1の光源と、前記第2の光源とは共通の光源であって、前記共通の光源によって前記第1空隙配置構造体及び前記第2空隙配置構造体を貫くように電磁波を照射し、
前記第1の検出器と、前記第2の検出器とは共通の検出器であって、前記共通の検出器によって前記第1空隙配置構造体及び前記第2空隙配置構造体を透過した電磁波を検出してもよい。
In the particle size distribution measuring device according to a third aspect, in the second aspect, the flow path extends from the upstream side to the downstream side along the first direction,
The first light source and the second light source are a common light source, and the common light source irradiates an electromagnetic wave so as to penetrate the first gap arrangement structure and the second gap arrangement structure,
The first detector and the second detector are a common detector, and the common detector detects an electromagnetic wave transmitted through the first gap arrangement structure and the second gap arrangement structure. It may be detected.

第4の態様に係る粒度分布測定装置は、上記第2又は第3の態様において、前記流路は、上流側から下流側に流路方向が変化する箇所を少なくとも2以上含み、前記第1空隙配置構造体及び前記第2空隙配置構造体は、前記流路内の前記流路方向が変化する箇所に設けられていてもよい。   In the particle size distribution measuring device according to a fourth aspect, in the second or third aspect, the flow path includes at least two or more locations where the flow direction changes from upstream to downstream, and the first gap The arrangement structure and the second gap arrangement structure may be provided at a position in the flow path where the flow direction changes.

第5の態様に係る粒度分布測定装置は、上記第1から第4のいずれかの態様において、前記第1の検量線と、前記第2の検量線と、を記録する記憶部を、さらに備えてもよい。   The particle size distribution measuring apparatus according to a fifth aspect, in any one of the first to fourth aspects, further includes a storage unit that records the first calibration curve and the second calibration curve. You may.

第6の態様に係る粒度分布測定装置は、上記第1から第5のいずれかの態様において、前記第1の検量線は、前記第1空隙配置構造体を透過した電磁波の近接する2つのピークの間のディップ点より低周波数側のピーク点の透過率と前記第1空隙配置構造体に捕捉された物質の量との関係を示すと共に、前記第2の検量線は、前記第2空隙配置構造体を透過した電磁波の近接する2つのピークの間のディップ点より低周波数側のピーク点の透過率と前記第2空隙配置構造体に捕捉された物質の量との関係を示すものであってもよい。   In the particle size distribution measuring apparatus according to a sixth aspect, in any one of the first to fifth aspects, the first calibration curve may include two adjacent peaks of the electromagnetic wave transmitted through the first void-arranged structure. Shows the relationship between the transmittance of the peak point on the lower frequency side than the dip point and the amount of the substance trapped in the first gap arrangement structure, and the second calibration curve is the second gap arrangement. 9 shows a relationship between the transmittance at the peak point on the lower frequency side than the dip point between two adjacent peaks of the electromagnetic wave transmitted through the structure and the amount of the substance trapped in the second void-arranged structure. You may.

第7の態様に係る粒度分布測定装置は、上記第1の態様において、前記光源は、前記第1空隙配置構造体の上流側から前記第1空隙配置構造体及び前記第2空隙配置構造体を貫くように電磁波を照射してもよい。   In the particle size distribution measuring apparatus according to a seventh aspect, in the first aspect, the light source may include the first gap arrangement structure and the second gap arrangement structure from an upstream side of the first gap arrangement structure. An electromagnetic wave may be irradiated so as to penetrate.

第8の態様に係る粒度分布測定装置は、上記第1の態様において、前記光源は、前記第2空隙配置構造体の下流側から前記第2空隙配置構造体及び前記第1空隙配置構造体を貫くように電磁波を照射してもよい。   In the particle size distribution measuring apparatus according to an eighth aspect, in the first aspect, the light source may include the second gap arrangement structure and the first gap arrangement structure from a downstream side of the second gap arrangement structure. An electromagnetic wave may be irradiated so as to penetrate.

第9の態様に係る粒度分布測定用流路ユニットは、被測定物を含む流体を上流側から下流側に流通させる流路と、
前記流路内で前記流体を通過させるように設けられ、金属製薄膜に第1の開口径を有する同形状の貫通孔を周期的に2次元配置した金属製薄膜からなる第1空隙配置構造体と、
前記流路の前記第1空隙配置構造体より下流側に、前記流体を通過させるように設けられ、金属製薄膜に前記第1の開口径より小さい第2の開口径を有する同形状の貫通孔を周期的に2次元配置した金属製薄膜からなる第2空隙配置構造体と、
を備える。
The particle size distribution measurement flow channel unit according to the ninth aspect, a flow channel that allows the fluid containing the measured object to flow from the upstream side to the downstream side,
A first gap arrangement structure formed of a metal thin film provided so as to allow the fluid to pass through the flow path and having a two-dimensionally arranged through hole of the same shape having a first opening diameter in the metal thin film; When,
A through hole of the same shape that is provided on the downstream side of the first gap arrangement structure of the flow path so as to allow the fluid to pass therethrough and has a second opening diameter smaller than the first opening diameter in the metal thin film. A second void-arranged structure made of a metal thin film having two-dimensionally periodically arranged,
Is provided.

以下、実施の形態に係る粒度分布測定装置について、添付図面を参照しながら説明する。なお、図面において実質的に同一の部材については同一の符号を付している。   Hereinafter, a particle size distribution measuring apparatus according to an embodiment will be described with reference to the accompanying drawings. In the drawings, substantially the same members are denoted by the same reference numerals.

(実施の形態1)
<粒度分布測定装置の原理について>
図1は、実施の形態1に係る粒度分布測定装置10の原理を示す概略図である。図2は、空隙配置構造体14に規則的に配置された貫通孔5の平面図(a)と側面図(b)である。図3は、図2の空隙配置構造体14を透過した電磁波の周波数と透過率との関係を示す図である。図4は、図2の空隙配置構造体14に流体中の被測定物が付着した場合に通過する流体の流量に応じて電磁波の透過率が低下する様子を示す図である。図5は、図4に示す電磁波の透過率の低下と被測定物である粒子の数と粒子質量との関係の一例を示す図である。図6は、図1の3つの空隙配置構造体14a、14b、14cを透過した電磁波の周波数と透過率との関係を示す図である。図7は、図6の3つの空隙配置構造体14a、14b、14cごとの電磁波の透過率変化を示すグラフである。図8は、図7の3つの空隙配置構造体14a、14b、14cごとの電磁波の透過率変化に対応する粒子の質量、個数、体積との関係を示す図である。
(Embodiment 1)
<About the principle of the particle size distribution measurement device>
FIG. 1 is a schematic diagram showing the principle of a particle size distribution measuring device 10 according to the first embodiment. FIG. 2 is a plan view (a) and a side view (b) of the through holes 5 regularly arranged in the gap arrangement structure 14. FIG. 3 is a diagram showing the relationship between the frequency of the electromagnetic wave transmitted through the gap arrangement structure 14 of FIG. 2 and the transmittance. FIG. 4 is a diagram showing a state in which the transmittance of electromagnetic waves is reduced according to the flow rate of the fluid passing when an object to be measured in the fluid adheres to the gap arrangement structure 14 of FIG. FIG. 5 is a diagram illustrating an example of a relationship between a decrease in the transmittance of the electromagnetic wave illustrated in FIG. 4 and the number of particles to be measured and the particle mass. FIG. 6 is a diagram showing a relationship between the frequency and the transmittance of the electromagnetic wave transmitted through the three gap arrangement structures 14a, 14b, and 14c in FIG. FIG. 7 is a graph showing a change in transmittance of electromagnetic waves for each of the three gap arrangement structures 14a, 14b, and 14c in FIG. FIG. 8 is a diagram showing the relationship between the mass, the number, and the volume of the particles corresponding to the change in the transmittance of the electromagnetic wave for each of the three void arrangement structures 14a, 14b, and 14c in FIG.

図1を用いて、本実施の形態1に係る粒度分布測定装置10の概要を示す。この粒度分布測定装置10では、図1に示すように、貫通孔5の孔寸法D3、D2、D1が異なる空隙配置構造体14a、14b、14cを複数種類以上用いて、流体1に含まれる被測定物2a、2b、2cの分級(分離)を行う。分級に使用する空隙配置構造体14a、14b、14cの種類(孔寸法の大きさ)は、図7に示すように最終的に求めたい粒度分布の測定範囲に対して、その分布を構成する測定レンジの境界(棒グラフと棒グラフとの境界)と一致するように選択する。また、被測定物2a、2b、2cを含む流体1が、空隙配置構造体14a、14b、14cを流通する方向を第1の方向3(z方向)とする。空隙配置構造体14a、14b、14cは、第1の方向3に沿って、孔寸法D3の最も大きい空隙配置構造体14aから孔寸法D1の最も小さい空隙配置構造体14cに向かって孔寸法の大きさの順に流体1が通過するように配置する。これによって、まず大きな粒子2aが空隙配置構造体14aに捕捉(分離)され、次いで、次に、中間の大きさの粒子2bが空隙配置構造体14bに捕捉(分離)され、最後に小さい粒子2cが空隙配置構造体14cに捕捉(分離)される。このような配置によって、大きさの異なる粒子2a、2b、2cが含まれる場合にも分級を可能にすることができる。   FIG. 1 shows an outline of a particle size distribution measuring apparatus 10 according to the first embodiment. In this particle size distribution measuring device 10, as shown in FIG. 1, a plurality of types of void-arranged structures 14a, 14b, and 14c having different hole sizes D3, D2, and D1 of the through-holes 5 are used. Classification (separation) of the measurement objects 2a, 2b, and 2c is performed. The type (size of pore size) of the void-arranged structures 14a, 14b, 14c used for classification is determined by measuring the particle size distribution to be finally determined as shown in FIG. Select to match the boundary of the range (the boundary between bar graphs). Further, the direction in which the fluid 1 including the DUTs 2a, 2b, and 2c flows through the gap arrangement structures 14a, 14b, and 14c is referred to as a first direction 3 (z direction). The gap arrangement structures 14a, 14b, and 14c have a larger dimension along the first direction 3 from the gap arrangement structure 14a having the largest hole dimension D3 to the gap arrangement structure 14c having the smallest hole dimension D1. The fluids 1 are arranged so as to pass in this order. As a result, first, the large particles 2a are captured (separated) by the void-arranged structures 14a, and then, the particles 2b of an intermediate size are captured (separated) by the void-arranged structures 14b, and finally, the small particles 2c Is captured (separated) by the void arrangement structure 14c. Such an arrangement enables classification even when particles 2a, 2b, and 2c having different sizes are included.

各空隙配置構造体14は、図2に示す貫通孔5が周期的に規則的に2次元配置されている。図2では、貫通孔5は一辺Dの正方形であり、貫通孔5のピッチP、厚さTの場合を示している。この空隙配置構造体14は、図3に示すような電磁波透過特性を有する。具体的には、テラヘルツ帯に電磁波を透過する透過領域を有し、透過領域には2つの近接したピークとその間にディップ点とを有する。また、透過領域より低周波数側には、ほとんど電磁波を透過しない遮断領域を有し、透過領域より高周波側には0次の回折点及び1次の回折点を有する回折領域を有する。この空隙配置構造体14では、貫通孔5の構造(ピッチPや孔寸法D、図2参照)を変えることにより、透過領域の周波数範囲やディップ点の周波数、ディップ点の低周波数側及び高周波数側のピークの周波数等が変化する。   In each of the void arrangement structures 14, the through holes 5 shown in FIG. 2 are periodically and regularly two-dimensionally arranged. In FIG. 2, the through hole 5 is a square with one side D, and the pitch P of the through hole 5 and the thickness T are shown. This gap arrangement structure 14 has an electromagnetic wave transmission characteristic as shown in FIG. Specifically, it has a transmission region through which electromagnetic waves pass in the terahertz band, and the transmission region has two adjacent peaks and a dip point therebetween. Further, on the lower frequency side than the transmission region, there is a cut-off region that hardly transmits an electromagnetic wave, and on the higher frequency side than the transmission region, there is a diffraction region having zero-order diffraction points and first-order diffraction points. In the void arrangement structure 14, by changing the structure of the through hole 5 (pitch P and hole size D, see FIG. 2), the frequency range of the transmission region, the frequency of the dip point, the low frequency side of the dip point and the high frequency The frequency of the peak on the side changes.

また、図1に示したように空隙配置構造体近傍に被測定物が存在すると、その影響を受け、図4に示すように電磁波透過特性が変化する。具体的には、流体中の被測定物が空隙配置構造体に付着した場合に、通過する流体の流量、つまり捕捉された被測定物の量に応じて透過する電磁波の透過率が低下する。   In addition, when an object to be measured is present near the space-arranged structure as shown in FIG. 1, the electromagnetic wave transmission characteristics are changed as shown in FIG. Specifically, when the object to be measured in the fluid adheres to the void-arranged structure, the transmittance of the electromagnetic wave to be transmitted decreases according to the flow rate of the passing fluid, that is, the amount of the measured object to be captured.

図5に、検量線の例を示す。この図5は、濃度50[mg/mL]の平均粒径2.0[μm]の球状ポリスチレン粒子の水溶液(Micromod 社製micromer)を用意し、希釈して濃度既知の粒子溶液を複数種類用意し、それらを孔寸法1.8[μm]の空隙配置構造体で分離した時の分離前後の透過率変化量を示している。ここで、図3の電磁波透過特性のうち、ディップ点より低周波数側のピーク点の透過率変化を用いることで最も大きな透過率変化を利用できる。なお、透過率変化を測定する箇所は、上記のディップ点より低周波数側のピーク点に限られるものではない。透過率変化を測定する箇所は、例えば、ディップ点より高低周波数側のピーク点、あるいは、ディップ点であってもよい。さらに、他の点であってもよい。
この図5の検量線を用いることによって、測定された透過率変化から被測定物の粒子数又は粒子質量を得ることができる。
FIG. 5 shows an example of the calibration curve. In FIG. 5, an aqueous solution (micromod manufactured by Micromod) of spherical polystyrene particles having an average particle size of 2.0 [μm] having a concentration of 50 [mg / mL] is prepared and diluted to prepare a plurality of types of particle solutions having known concentrations. In addition, the graph shows the transmittance change before and after separation when they are separated by a gap arrangement structure having a pore size of 1.8 [μm]. Here, among the electromagnetic wave transmission characteristics of FIG. 3, the largest change in transmittance can be used by using the change in transmittance at the peak point on the lower frequency side than the dip point. The location where the transmittance change is measured is not limited to the peak point on the lower frequency side than the dip point. The location where the transmittance change is measured may be, for example, a peak point or a dip point on the higher or lower frequency side than the dip point. Furthermore, other points may be used.
By using the calibration curve of FIG. 5, the number of particles or the particle mass of the measured object can be obtained from the measured change in transmittance.

次に、図1の3つの空隙配置構造体14a、14b、14cを用いた分級による粒度分布測定の例について説明する。
まず、分級後の各々の空隙配置構造体14a、14b、14cの電磁波透過特性の測定を行い、予め、各々の空隙配置構造体14a、14b、14cについて分級前に測定を行っていた電磁波透過特性との比較を行う。
Next, an example of particle size distribution measurement by classification using the three void arrangement structures 14a, 14b, and 14c in FIG. 1 will be described.
First, the electromagnetic wave transmission characteristics of each of the gap-arranged structures 14a, 14b, and 14c after the classification are measured, and the electromagnetic wave transmission characteristics that are measured in advance for each of the gap-arranged structures 14a, 14b, and 14c before the classification are performed. Compare with.

図6に示す周波数ごとの3つの群のグラフは、図1に示した3種類の空隙配置構造体14a、14b、14cのそれぞれの電磁波透過特性に対応している。また、各群のなかで淡い色のグラフが分級前(空隙配置構造体単独の特性)の電磁波透過特性であり、濃い色が分級後(分離物を含む空隙配置構造体の特性)の電磁波透過特性を示している。分級前後の電磁波透過特性の変化は、代表的には、ディップ点(定義は図3参照)の周波数変化量、乃至、通過帯中の任意の周波数の透過率変化量(図6参照)を用いて数値化する。これらの分級前後の電磁波透過特性の変化量は、分級により流体から分離され空隙配置構造体に捕捉された被測定物の量に相関している。つまり、各空隙配置構造体14a、14b、14cの分級前後の電磁波透過特性の変化量を測定することで、各空隙配置構造体に捕捉された被測定物の量を知ることが可能となる。   The three groups of graphs for each frequency shown in FIG. 6 correspond to the electromagnetic wave transmission characteristics of the three types of void-arranged structures 14a, 14b, and 14c shown in FIG. Also, the light-colored graphs in each group indicate the electromagnetic wave transmission characteristics before classification (characteristics of the void-arranged structure alone), and the darker colors indicate the electromagnetic wave transmission characteristics after classification (characteristics of the void-arranged structures including the separated material). The characteristics are shown. The change in the electromagnetic wave transmission characteristics before and after the classification is typically represented by a frequency change at a dip point (see FIG. 3 for definition) or a transmittance change at an arbitrary frequency in a pass band (see FIG. 6). And digitize it. The amount of change in the electromagnetic wave transmission characteristics before and after the classification is correlated with the amount of the measured object separated from the fluid by the classification and captured by the void-arranged structure. That is, by measuring the amount of change in the electromagnetic wave transmission characteristics of each of the gap-arranged structures 14a, 14b, and 14c before and after classification, it becomes possible to know the amount of the measured object captured by each gap-arranged structure.

図7は、図6で得られた各空隙配置構造体の被測定物による電磁波透過特性の変化量(分級前後の透過率変化量)をまとめ、ヒストグラム化した図である。図7の横軸は、空隙配置構造体の孔寸法D1〜D3による粒径レンジを示している。図7の縦軸は、分級前後の透過率変化量、つまり、「分級前の透過率」と「分級後の透過率」との差分を示している。この図7から、図5の検量線を用いて、縦軸を分離された被測定物の質量、個数、体積などに変換して、最終的な粒度分布を得ることができる。   FIG. 7 is a graph summarizing the amount of change in the electromagnetic wave transmission characteristics (the amount of change in transmittance before and after classification) of each of the void-arranged structures obtained in FIG. The horizontal axis in FIG. 7 indicates the particle size range based on the pore sizes D1 to D3 of the void arrangement structure. The vertical axis in FIG. 7 indicates the transmittance change amount before and after classification, that is, the difference between “transmittance before classification” and “transmittance after classification”. From FIG. 7, the final particle size distribution can be obtained by converting the vertical axis into the mass, number, volume, and the like of the separated object using the calibration curve in FIG. 5.

図8に示す粒度分布は、図7の各空隙配置構造体の分級前後の透過率変化量について、図5の検量線を用いて、図7の結果の縦軸の変換を行って得られたものである。
なお、孔寸法D1より小さい被測定物は空隙配置構造体14cを通過するので観測できない。また、図8では、孔寸法D3以上の被測定物は、全て空隙配置構造体14aに捕捉される。つまり、孔寸法D3以上の被測定物の詳細な粒度分布を得るにはさらに細かく分級する必要がある。この場合には、対応する孔寸法の空隙配置構造体を用意する必要がある。
The particle size distribution shown in FIG. 8 was obtained by transforming the vertical axis of the result of FIG. 7 using the calibration curve of FIG. 5 for the transmittance change amount before and after classification of each void arrangement structure of FIG. Things.
Note that an object to be measured smaller than the hole size D1 cannot be observed because it passes through the void arrangement structure 14c. In FIG. 8, all the objects to be measured having the hole size D3 or more are captured by the void arrangement structure 14a. That is, in order to obtain a detailed particle size distribution of the measured object having the pore size D3 or more, it is necessary to classify the object more finely. In this case, it is necessary to prepare a void arrangement structure having a corresponding hole size.

<粒度分布測定装置の構成について>
図9は、実施の形態1に係る粒度分布測定装置10の構成を示す概略図である。図9では、便宜上、流体1の流れる方向をz方向として示している。また、図9の紙面手前から紙面に向ってx方向、図9の下方から上方に向ってy方向としている。
この粒度分布測定装置10は、被測定物を含む流体1を上流側から下流側に流通させる流路11と、流路11の上流側に配置された第1空隙配置構造体14aと、下流側に配置された第2空隙配置構造体14bと、電磁波4を照射する光源16と、電磁波4を検出する検出器17と、第1空隙配置構造体及び第2空隙配置構造体14bに捕捉された物質の量を算出する捕捉量算出部25aと、を備える。第1空隙配置構造体14aは、流路11内で流体1を通過させるように設けられ、金属製薄膜に第1の開口径を有する同形状の貫通孔を周期的に2次元配置した金属製薄膜からなる。第2空隙配置構造体14bは、流路11の第1空隙配置構造体14aより下流側に、流体1を通過させるように設けられ、金属製薄膜に第1の開口径より小さい第2の開口径を有する同形状の貫通孔を周期的に2次元配置した金属製薄膜からなる。光源16は、第1空隙配置構造体14a及び第2空隙配置構造体14bを貫くように電磁波4を照射する。検出器17は、第1空隙配置構造体14a及び第2空隙配置構造体14bを透過した電磁波4を検出する。電磁波4は、z方向と交差するように照射される。捕捉量算出部25aは、第1空隙配置構造体14aを透過した電磁波の透過率から、第1の検量線に基づいて、第1空隙配置構造体に捕捉された物質の量を算出する。また、捕捉量算出部25aは、第2空隙配置構造体14bを透過した電磁波の透過率から、第2の検量線に基づいて第2空隙配置構造体14bに捕捉された物質の量を算出する。なお、第1の検量線24aは、第1空隙配置構造体14aを透過した電磁波の透過率と第1空隙配置構造体14aに捕捉された物質の量との関係を示すものである。また、第2の検量線24bは、第2空隙配置構造体14bを透過した電磁波の透過率と第2空隙配置構造体14bに捕捉された物質の量との関係を示すものである。
<Configuration of particle size distribution measurement device>
FIG. 9 is a schematic diagram showing a configuration of the particle size distribution measuring device 10 according to the first embodiment. In FIG. 9, for the sake of convenience, the direction in which the fluid 1 flows is shown as the z direction. In addition, the direction is the x direction from the near side of the sheet of FIG. 9 to the sheet of paper, and the y direction is from the bottom to the top of FIG.
The particle size distribution measuring device 10 includes a flow path 11 for flowing the fluid 1 containing the object to be measured from the upstream side to the downstream side, a first void arrangement structure 14a disposed on the upstream side of the flow path 11, and a downstream side. , The light source 16 for irradiating the electromagnetic wave 4, the detector 17 for detecting the electromagnetic wave 4, and the first and second gap arrangement structures 14b. A capture amount calculation unit 25a for calculating the amount of the substance. The first void-arranged structure 14a is provided so as to allow the fluid 1 to pass through the flow channel 11, and is formed of a metal thin film having a two-dimensionally periodically arranged through-hole having the first opening diameter in the metal thin film. Consists of a thin film. The second gap arrangement structure 14b is provided downstream of the first gap arrangement structure 14a in the flow path 11 so as to allow the fluid 1 to pass therethrough, and the second thin film made of metal has a second opening smaller than the first opening diameter. It is made of a metal thin film in which through holes of the same shape having the same diameter are periodically arranged two-dimensionally. The light source 16 emits the electromagnetic wave 4 so as to penetrate the first gap arrangement structure 14a and the second gap arrangement structure 14b. The detector 17 detects the electromagnetic wave 4 transmitted through the first gap arrangement structure 14a and the second gap arrangement structure 14b. The electromagnetic wave 4 is irradiated so as to intersect the z direction. The trapping amount calculation unit 25a calculates the amount of the substance trapped in the first gap arrangement structure from the transmittance of the electromagnetic wave transmitted through the first gap arrangement structure 14a based on the first calibration curve. Further, the trapping amount calculation unit 25a calculates the amount of the substance trapped in the second gap arrangement structure 14b based on the transmittance of the electromagnetic wave transmitted through the second gap arrangement structure 14b based on the second calibration curve. . The first calibration curve 24a indicates the relationship between the transmittance of the electromagnetic wave transmitted through the first gap arrangement structure 14a and the amount of the substance captured by the first gap arrangement structure 14a. Further, the second calibration curve 24b shows the relationship between the transmittance of the electromagnetic wave transmitted through the second gap arrangement structure 14b and the amount of the substance captured by the second gap arrangement structure 14b.

この粒度分布測定装置10によれば、先行技術の問題点を解決し、流体中の被測定物の粒度分布測定装置を提供することができる。特に、μmオーダー以上の大きさを有する被測定物の広いレンジにわたる粒度分布を行うことができる。従来の『篩分け重量法』との比較では、微量(ng〜mgオーダー)の被測定物の測定ができ、規格外の20μm以下の大きさを有する被測定物の測定をも可能にする。また、従来の『レーザー回折・散乱法』との比較では、同法では困難な被測定物の重さ(質量)による測定ができ、近似不要の直接測定を提供することができる。
さらに、この粒度分布測定装置10によれば、被測定物を含む流体を流路に流通させながら被測定物の粒度分布をリアルタイムに測定できる。
According to the particle size distribution measuring device 10, it is possible to solve the problems of the prior art and to provide a particle size distribution measuring device for an object to be measured in a fluid. In particular, it is possible to perform a particle size distribution over a wide range of an object to be measured having a size on the order of μm or more. In comparison with the conventional “sieving weight method”, a very small amount (ng to mg order) of an object to be measured can be measured, and an object to be measured having a nonstandard size of 20 μm or less can be measured. In addition, in comparison with the conventional “laser diffraction / scattering method”, it is possible to perform measurement based on the weight (mass) of an object to be measured, which is difficult by the method, and it is possible to provide direct measurement without approximation.
Further, according to the particle size distribution measuring device 10, the particle size distribution of the measured object can be measured in real time while the fluid containing the measured object is allowed to flow through the flow path.

この粒度分布測定装置10の捕捉量算出部25aは、コンピュータ装置20において実行されるプログラムとして実現されるものであり、例えば、図9のブロック図ではコンピュータ装置20の記憶部22上に存在する。実行時には、記憶部22から読み出されて処理部21にて実行される。
また、第1の検量線24a及び第2の検量線24bは、例えば、図9のブロック図では、コンピュータ装置20の記憶部22上に存在する。
The captured amount calculation unit 25a of the particle size distribution measurement device 10 is realized as a program executed in the computer device 20, and exists on the storage unit 22 of the computer device 20 in the block diagram of FIG. 9, for example. At the time of execution, it is read from the storage unit 22 and executed by the processing unit 21.
In addition, the first calibration curve 24a and the second calibration curve 24b exist in the storage unit 22 of the computer device 20, for example, in the block diagram of FIG.

以下に、この粒度分布測定装置10を構成する構成部材について説明する。   Hereinafter, components constituting the particle size distribution measuring device 10 will be described.

<流路>
流路11によって被測定物2a、2b、2cを含む流体1を上流側から下流側に流通させる。そこで、流路11は、液体又は気体等の流体1を流せるものであればよい。また、電磁波を流路11の外部から内部に向けて照射する場合には、照射する電磁波について透明である必要がある。なお、「透明」とは、例えば、電磁波を50%以上透過させるものであればよい。さらに、流路11は、図9に示すように直線状に設けられてもよいが、これに限られない。例えば、後述する実施の形態2に示すように、流路11は、流路方向が変化する箇所を2以上含んでもよい。つまり、流路11は、1本であって分岐していなければジグザグに設けられていてもよい。
<Flow path>
The fluid 1 including the objects to be measured 2a, 2b, and 2c flows from the upstream side to the downstream side through the flow path 11. Therefore, the flow channel 11 may be any type as long as it can flow the fluid 1 such as a liquid or a gas. Further, when irradiating the electromagnetic wave from the outside of the flow path 11 to the inside, it is necessary that the irradiated electromagnetic wave is transparent. Note that “transparent” may be any material that transmits an electromagnetic wave by 50% or more, for example. Further, the flow channel 11 may be provided in a straight line as shown in FIG. 9, but is not limited to this. For example, as described in a second embodiment described later, the flow channel 11 may include two or more locations where the flow channel direction changes. That is, the flow path 11 may be provided in a zigzag manner as long as it is one and does not branch.

<第1空隙配置構造体及び第2空隙配置構造体>
第1空隙配置構造体14a及び第2空隙配置構造体14bは、流路11内で流体1を通過させるものである。また、第1空隙配置構造体14aは、金属製薄膜に第1の開口径D3を有する同形状の貫通孔5aを周期的に2次元配置した金属製薄膜からなる。第2空隙配置構造体14bは、金属製薄膜に第1の開口径D3より小さい第2の開口径D2を有する同形状の貫通孔5bを周期的に2次元配置した金属製薄膜からなる。なお、図1及び図2では、貫通孔5、5a、5b、5cは、正方形であるが、これに限られない。貫通孔は、例えば、円形、楕円形、多角形等であってもよい。また、正方形の開口の内側に向かって突起を有する形状や、図22の長方形のように面内で等方的でない形状であってもよい。このような形状とすることで、面に垂直に入射する場合にもディップ点を示すことが知られている。
また、空隙配置構造体において、同形状の貫通孔が有機的に2次元配置されていればよい。貫通孔の孔寸法は、図1及び図2では正方形の一辺として示しているがこれに限定されない。例えば、貫通孔の孔寸法として、例えば、貫通孔の正方形のなかで最も長い対角線の長さを用いてもよい。なお、後述する実施例に示すように、被測定物の形状に応じて対応する孔寸法を用いることが望ましい。
<First gap arrangement structure and second gap arrangement structure>
The first gap arrangement structure 14a and the second gap arrangement structure 14b allow the fluid 1 to pass through the flow path 11. The first void arrangement structure 14a is made of a metal thin film in which through holes 5a of the same shape having a first opening diameter D3 are periodically and two-dimensionally arranged in a metal thin film. The second void arrangement structure 14b is formed of a metal thin film in which through holes 5b of the same shape having a second opening diameter D2 smaller than the first opening diameter D3 are periodically and two-dimensionally arranged in the metal thin film. In FIGS. 1 and 2, the through holes 5, 5a, 5b, 5c are square, but are not limited thereto. The through-hole may be, for example, circular, elliptical, polygonal, or the like. In addition, a shape having a protrusion toward the inside of a square opening or a shape that is not isotropic in a plane such as a rectangle in FIG. 22 may be used. It is known that such a shape shows a dip point even when the light is perpendicularly incident on a surface.
Further, in the void-arranged structure, the through-holes having the same shape may be organically two-dimensionally arranged. Although the hole size of the through-hole is shown as one side of a square in FIGS. 1 and 2, it is not limited to this. For example, as the hole size of the through hole, for example, the length of the longest diagonal line in the square of the through hole may be used. In addition, as shown in Examples described later, it is desirable to use a corresponding hole size according to the shape of the measured object.

<光源>
光源16によって、第1空隙配置構造体14a及び第2空隙配置構造体14bを貫くように電磁波4を照射する。なお、光源16は、図9に示すように1つの場合に限られない。例えば、図23に示すように、第1の光源16a、第2の光源16b、第3の光源16cのように複数の光源を含んでもよい。この場合、各光源16a、16b、16cは、各空隙配置構造体14a、14b、14cに対応している。また、光源16は、図9では流路11の外から流路11内の空隙配置構造体14a、14b、14c、14dに電磁波4を照射しているが、これに限られず、流路11内に光源を配置してもよい。また、光源16は、図9では上流側から下流側に照射しているが、これに限られない。逆に、下流側から上流側に照射してもよい。
また、光源16は、用いる空隙配置構造体の透過領域に対応する周波数帯の電磁波を照射すればよい。例えば、図2、図3、図5に示すように、例えば、30THz〜300THz、好ましくは60THz〜120THzの範囲の周波数帯の電磁波を照射すればよい。具体的には、光源16としては遠赤外線源から近赤外線源を用いることができる。
<Light source>
The electromagnetic wave 4 is irradiated by the light source 16 so as to penetrate the first gap arrangement structure 14a and the second gap arrangement structure 14b. Note that the number of light sources 16 is not limited to one as shown in FIG. For example, as shown in FIG. 23, a plurality of light sources such as a first light source 16a, a second light source 16b, and a third light source 16c may be included. In this case, each of the light sources 16a, 16b, and 16c corresponds to each of the gap arrangement structures 14a, 14b, and 14c. Further, in FIG. 9, the light source 16 irradiates the electromagnetic wave 4 to the gap arrangement structures 14 a, 14 b, 14 c, and 14 d in the flow channel 11 from outside the flow channel 11, but is not limited thereto. The light source may be arranged in the light source. Further, the light source 16 irradiates from the upstream side to the downstream side in FIG. 9, but is not limited to this. Conversely, irradiation may be performed from the downstream side to the upstream side.
In addition, the light source 16 may irradiate an electromagnetic wave in a frequency band corresponding to a transmission region of the gap arrangement structure to be used. For example, as shown in FIG. 2, FIG. 3, and FIG. 5, for example, an electromagnetic wave in a frequency band of 30 THz to 300 THz, preferably 60 THz to 120 THz may be irradiated. Specifically, as the light source 16, a far-infrared ray source to a near-infrared ray source can be used.

<検出器>
検出器17によって第1空隙配置構造体14a及び第2空隙配置構造体14bを透過した電磁波を検出する。なお、検出器17は、図9に示すように1つの場合に限られない。例えば、図23に示すように、第1の検出器17a、第2の検出器17b、第3の検出器17cのように複数の検出器を含んでもよい。この場合、各検出器17a、17b、17cは、各空隙配置構造体14a、14b、14cに対応している。また、検出器17は、図9では流路11の外から流路11内の空隙配置構造体14a、14b、14c、14dを透過した電磁波4を検出しているが、これに限られず、流路11内に検出器を配置してもよい。
なお、図9の場合には、複数の空隙配置構造体14a、14b、14c、14dを透過した透過光から、それぞれの空隙配置構造体14a、14b、14c、14dの電磁波透過特性を分離している。
<Detector>
The detector 17 detects the electromagnetic wave transmitted through the first gap arrangement structure 14a and the second gap arrangement structure 14b. Note that the number of detectors 17 is not limited to one as shown in FIG. For example, as shown in FIG. 23, a plurality of detectors such as a first detector 17a, a second detector 17b, and a third detector 17c may be included. In this case, each of the detectors 17a, 17b, and 17c corresponds to each of the gap arrangement structures 14a, 14b, and 14c. Further, in FIG. 9, the detector 17 detects the electromagnetic waves 4 transmitted from the outside of the flow path 11 through the void-arranged structures 14a, 14b, 14c, and 14d in the flow path 11, but is not limited thereto. A detector may be arranged in the road 11.
In the case of FIG. 9, the electromagnetic wave transmission characteristics of each of the gap arrangement structures 14a, 14b, 14c, and 14d are separated from the transmitted light transmitted through the plurality of gap arrangement structures 14a, 14b, 14c, and 14d. I have.

<コンピュータ装置>
コンピュータ装置20は、汎用的なコンピュータ装置を用いることができ、例えば、図9に示すように、処理部21、記憶部22、表示部23を含む。なお、さらに、入力装置、記憶装置、インタフェース等を含んでもよい。
<処理部>
処理部21は、例えば、中央処理演算子(CPU)、マイクロコンピュータ、又は、コンピュータで実行可能な命令を実行できる処理装置であればよい。
<記憶部>
記憶部22は、例えば、ROM、EEPROM、RAM、フラッシュSSD、ハードディスク、USBメモリ、磁気ディスク、光ディスク、光磁気ディスク等の少なくとも一つであってもよい。
記憶部22には、検量線24とプログラム25とを含む。
<検量線>
検量線24には、第1の検量線24a、第2の検量線24b、第3の検量線24c、第4の検量線24dを含む。各検量線24a〜24dは、各空隙配置構造体14a〜14dにそれぞれ対応している。なお、用いる空隙配置構造体ごとに対応する検量線をあらかじめ記憶しておく。
検量線は、例えば、図5に示すように、分級前後の空隙配置構造体を透過した電磁波の透過率差と空隙配置構造体に捕捉された物質の量、あるいは対応する粒子数との関係を示す。つまり、分級前後の空隙配置構造体を透過した電磁波の透過率差から捕捉された物質の量あるいは粒子数を算出できる。なお、検量線は、図5に示すように一次関数で表すことができる。
<プログラム>
プログラム25には、捕捉量算出部25aを含んでいればよい。捕捉量算出部25aは、実行時には、記憶部22から読み出されて処理部21にて実行される。捕捉量算出部25aによって、検量線24を用いて、分級前後の空隙配置構造体を透過した電磁波の透過率差から捕捉された物質の量あるいは粒子数を算出する。
なお、必要に応じて検量線算出部25bを含んでいてもよい。検量線算出部25bによって、分級前後の空隙配置構造体を透過した電磁波の透過率差と空隙配置構造体に捕捉された物質の量、あるいは対応する粒子数とを検量線として関連づける。この検量線算出部25bも、実行時には、記憶部22から読み出されて処理部21にて実行される。
<表示部>
表示部23は、例えば、粒度分布を表示できればよい。また、検量線を表示してもよい。なお、カラー表示であると視覚的にわかりやすいが、これに限定されず、モノクロ表示であってもよい。あるいは、数字をデジタル表示できるだけのものであってもよい。
<Computer device>
As the computer device 20, a general-purpose computer device can be used. For example, as shown in FIG. 9, the computer device 20 includes a processing unit 21, a storage unit 22, and a display unit 23. Note that the input device, the storage device, the interface, and the like may be further included.
<Processing unit>
The processing unit 21 may be, for example, a central processing operator (CPU), a microcomputer, or a processing device that can execute a computer-executable instruction.
<Storage unit>
The storage unit 22 may be, for example, at least one of a ROM, an EEPROM, a RAM, a flash SSD, a hard disk, a USB memory, a magnetic disk, an optical disk, a magneto-optical disk, and the like.
The storage unit 22 includes a calibration curve 24 and a program 25.
<Calibration curve>
The calibration curve 24 includes a first calibration curve 24a, a second calibration curve 24b, a third calibration curve 24c, and a fourth calibration curve 24d. Each of the calibration curves 24a to 24d corresponds to each of the gap arrangement structures 14a to 14d. Note that a calibration curve corresponding to each void arrangement structure to be used is stored in advance.
The calibration curve, for example, as shown in FIG. 5, shows the relationship between the difference between the transmittance of the electromagnetic wave transmitted through the void-arranged structure before and after classification and the amount of the substance trapped in the void-arranged structure, or the corresponding number of particles. Show. That is, the amount of trapped substances or the number of particles can be calculated from the transmittance difference of the electromagnetic waves transmitted through the void-arranged structure before and after classification. Note that the calibration curve can be represented by a linear function as shown in FIG.
<Program>
The program 25 only needs to include the capture amount calculation unit 25a. At the time of execution, the capture amount calculation unit 25a is read from the storage unit 22 and executed by the processing unit 21. Using the calibration curve 24, the trapping amount calculation unit 25a calculates the amount of trapped substances or the number of particles from the difference in the transmittance of electromagnetic waves transmitted through the void-arranged structure before and after classification.
Note that a calibration curve calculation unit 25b may be included as necessary. The calibration curve calculation unit 25b associates, as a calibration curve, the difference between the transmittance of the electromagnetic wave transmitted through the void-arranged structure before and after the classification and the amount of the substance trapped in the void-arranged structure, or the corresponding number of particles. At the time of execution, the calibration curve calculation unit 25b is also read from the storage unit 22 and executed by the processing unit 21.
<Display unit>
The display unit 23 only needs to be able to display the particle size distribution, for example. Further, a calibration curve may be displayed. Note that the color display is visually easy to understand, but is not limited thereto, and may be a monochrome display. Alternatively, it may be one that can only digitally display numbers.

(実施例1:純水中のポリスチレン球状粒子の粒度分布測定の例)
被測定物として、下記の表1に示すMicromod 社の球状ポリスチレン粒子水溶液(sample1〜4)を用意した。平均粒径と濃度[mg/mL]は試薬規格である。1粒子体積は、平均粒径から算出した。1粒子質量は、ポリスチレンの密度1.05[g/cm]と1粒子体積より算出した。粒子数濃度[個/mL]は、濃度と1粒子質量より算出した。これら4種類の溶液を混合することで被測定物を作製した。
(Example 1: Example of particle size distribution measurement of polystyrene spherical particles in pure water)
As the object to be measured, spherical polystyrene particle aqueous solutions (samples 1 to 4) of Micromod shown in Table 1 below were prepared. The average particle size and concentration [mg / mL] are reagent specifications. One particle volume was calculated from the average particle size. The mass of one particle was calculated from the density of polystyrene of 1.05 [g / cm 3 ] and the volume of one particle. The particle number concentration [particles / mL] was calculated from the concentration and the mass of one particle. An object to be measured was prepared by mixing these four types of solutions.

Figure 2020038092
Figure 2020038092

また、検量線用の標準液を以下のようにして作製した。まず、試薬原液に対して、純水を用いて、sample1を1600倍、sample2を2400倍、sample3を3800倍、sample4を9400倍で希釈した。さらに、純水を用いてそれら希釈液を、2倍(標準液(1))、3倍(標準液(2))、5倍(標準液(3))、10倍(標準液(4))で希釈し、標準液(1)〜(4)を得た。表2に、各sampleの標準液の濃度と粒子数濃度を示す。また、各sampleの標準液(3)を1[mL]づつ分収し、混合した溶液を被測定物とした。   Further, a standard solution for a calibration curve was prepared as follows. First, using pure water, sample 1 was diluted 1600 times, sample 2 was diluted 2400 times, sample 3 was diluted 3800 times, and sample 4 was diluted 9400 times. Further, using diluent, the dilutions were doubled (standard solution (1)), tripled (standard solution (2)), five-fold (standard solution (3)), and ten-fold (standard solution (4)). ) To obtain standard solutions (1) to (4). Table 2 shows the concentration of the standard solution and the particle number concentration of each sample. In addition, 1 [mL] of the standard solution (3) of each sample was collected, and the mixed solution was used as an object to be measured.

Figure 2020038092
Figure 2020038092

被測定物の粒度分布測定において、1μm<d4≦4μm、4μm<d3≦7μm、7μm<d2≦11μm、11μm<d1の4つの粒径レンジ(d1〜d4)で測定することとし、レンジ境界値と同じ寸法の孔を有する4種類の空隙配置構造体(No.1〜No.4)を用意した。表3に、それらの構造設計値を示す。
空隙配置構造体の作製は、以下のようにして行った。まず、エレクトロフォーミング法によりNi製の空隙配置構造体を作製した後、無電解メッキにより、Ni製の空隙配置構造体の全表面に厚さ30nm程度のAu表面層を形成して、空隙配置構造体を得た。なお、空隙配置構造体の外寸は6mmφとし、その面全体を流体が通過するようにした。
In the particle size distribution measurement of the object to be measured, measurement is performed in four particle size ranges (d1 to d4) of 1 μm <d4 ≦ 4 μm, 4 μm <d3 ≦ 7 μm, 7 μm <d2 ≦ 11 μm, and 11 μm <d1. Four types of void-arranged structures (No. 1 to No. 4) having holes of the same dimensions as those of Example 1 were prepared. Table 3 shows their structural design values.
The production of the void-arranged structure was performed as follows. First, after a Ni-made void arrangement structure is manufactured by an electroforming method, an Au surface layer having a thickness of about 30 nm is formed on the entire surface of the Ni-made void arrangement structure by electroless plating. I got a body. The outer dimensions of the space-arranged structure were 6 mmφ, and the fluid was allowed to pass through the entire surface.

Figure 2020038092
Figure 2020038092

初めに検量線を以下の手順で作成した。
空隙配置構造体No.1〜No.4の分級前の電磁波透過特性をFT−IRにより測定した。分級前(分離前)の空隙配置構造体の電磁波透過特性の測定結果から、通過領域が生じる周波数帯が空隙配置構造体No.1〜No.4で異なっており、ディップ点(図4参照)の周波数で、空隙配置構造体No.1が約16[THz]、空隙配置構造体No.2が約26[THz]、空隙配置構造体No.3が約45[THz]、空隙配置構造体No.4が約180[THz]であった。
First, a calibration curve was created in the following procedure.
Void arrangement structure No. 1 to No. The electromagnetic wave transmission characteristics before classification of No. 4 were measured by FT-IR. From the measurement results of the electromagnetic wave transmission characteristics of the gap-arranged structure before classification (before separation), the frequency band in which the passage region occurs is determined by the gap-arranged structure No. 1 to No. 4 at the frequency of the dip point (see FIG. 4), 1 is about 16 [THz], and the void arrangement structure No. 2 is about 26 [THz], and the void arrangement structure No. 3 is about 45 [THz], and the void arrangement structure No. 4 was about 180 [THz].

続いて、空隙配置構造体No.1に対してsample1の標準液(1)〜(4)、空隙配置構造体No.2に対してsample2の標準液(1)〜(4)、空隙配置構造体No.3に対してsample3の標準液(1)〜(4)、空隙配置構造体No.4に対してsample4の標準液(1)〜(4)を通液した。通液は、シリンジ中に標準液1[mL]を滴下し、純水でメスアップし10[mL]にした後、シリンジポンプを用いて、流量5[mL/min]で行った。標準液の通液後、純水20[mL]を同流量で通液し、洗浄を行った。洗浄後の空隙配置構造体を約37℃で約15時間の乾燥を行い、粒子捕捉後の空隙配置構造体の電磁波特性測定用のサンプルとした。なお、空隙配置構造体とシリンジとの接続は、例えば、図10に示す流路治具(T3Z513-1010〜-1012)とリング状のシリコンゴムパッキン、及び、パッケージ治具を用いて行った。この場合、流路治具T3Z513-1012の先端のルアーロック構造部がシリンジに接続される。   Subsequently, the void arrangement structure No. 1, the standard solution (1) to (4) of sample 1 and the void arrangement structure No. 2, the standard solutions (1) to (4) of sample 2 and the void-arranged structure No. 3, the standard solutions (1) to (4) of sample 3 and the void arrangement structure No. Sample 4 was passed through standard solutions (1) to (4) of sample4. The liquid was passed through the syringe by dropping 1 [mL] of the standard solution, making up to 10 [mL] with pure water, and then using a syringe pump at a flow rate of 5 [mL / min]. After the passage of the standard solution, 20 [mL] of pure water was passed at the same flow rate to perform washing. The void-arranged structure after the washing was dried at about 37 ° C. for about 15 hours to obtain a sample for measuring the electromagnetic wave characteristics of the void-arranged structure after the particles were captured. The connection between the cavity arrangement structure and the syringe was performed using, for example, a flow path jig (T3Z513-1010 to -1012), a ring-shaped silicon rubber packing, and a package jig shown in FIG. In this case, the luer lock structure at the tip of the flow path jig T3Z513-1012 is connected to the syringe.

続いて、粒子捕捉(分級)後(乾燥後)の空隙配置構造体の電磁波透過特性をFT−IRで測定した。さらに、分級前後の空隙配置構造体の電磁波透過特性の変化として、ディップ点の低周波側にあらわれる通過帯のピーク点における透過率変化を代表値として取得した。表4に、空隙配置構造体No.1〜No.4の分級前と、標準液(1)〜(4)の分級後の低周波側ピーク点における透過率の測定値を示す。また、この結果と、表2のsample1〜4の標準液(1)〜(4)の濃度、乃至、粒子数濃度から作成した検量線を図11及び図12に示す。   Subsequently, the electromagnetic wave transmission characteristics of the void-arranged structure after particle capture (classification) (after drying) were measured by FT-IR. Further, as a change in the electromagnetic wave transmission characteristics of the gap-arranged structure before and after classification, a change in transmittance at a peak point of a pass band appearing on the low frequency side of the dip point was obtained as a representative value. Table 4 shows the void arrangement structure No. 1 to No. The measured values of the transmittance at the low frequency side peak point before the classification of No. 4 and after the classification of the standard solutions (1) to (4) are shown. In addition, FIGS. 11 and 12 show the results and the calibration curves prepared from the concentrations of the standard solutions (1) to (4) of Samples 1 to 4 in Table 2 and the particle number concentration.

Figure 2020038092
Figure 2020038092

なお、この実施例では、検量線を求めるために、表1の試薬規格である濃度から、表2の標準液の濃度と粒子数濃度を求めているが、検量線の精度を高めるために、標準液の濃度と粒子数濃度とを実測により求めてもよい。その場合は、例えば、濃度はQCM(水晶振動子マイクロバランス法)、粒子数濃度は血球計算盤による計数などにより実測することができる。なお、その具体的な方法は、実施例2に示した。   In this example, in order to obtain the calibration curve, the concentration of the standard solution and the particle number concentration in Table 2 are obtained from the concentration as the reagent standard in Table 1, but in order to improve the accuracy of the calibration curve, The concentration of the standard solution and the particle number concentration may be determined by actual measurement. In this case, for example, the concentration can be measured by QCM (quartz crystal microbalance method), and the particle number concentration can be measured by counting using a hemocytometer. The specific method is described in Example 2.

次に、被測定物(各sampleの標準液(3)をそれぞれ1[mL]分収し、混合した溶液)の粒度分布を測定した。
まず、図9に示す被測定物の粒度分布測定装置10を用意した。この粒度分布測定装置10は、図10と同様に、流路治具12、シリコンゴムパッキン13、パッケージ治具15、空隙配置構造体14a、14b、14c、14dから構成されている。また、4種類の空隙配置構造体14a、14b、14c、14dは、流体1が、孔寸法の最も大きい空隙配置構造体(No.1)から最も小さい空隙配置構造体(No.4)に向かって孔寸法の大きさの順に通過するように配置されている。
Next, the particle size distribution of the measured object (a solution obtained by collecting and mixing 1 mL of the standard solution (3) of each sample) was measured.
First, a device 10 for measuring a particle size distribution of an object to be measured shown in FIG. 9 was prepared. As shown in FIG. 10, the particle size distribution measuring device 10 includes a flow path jig 12, a silicone rubber packing 13, a package jig 15, and gap arrangement structures 14a, 14b, 14c, and 14d. In addition, the four types of gap arrangement structures 14a, 14b, 14c, and 14d indicate that the fluid 1 moves from the gap arrangement structure having the largest pore size (No. 1) to the smallest gap arrangement structure (No. 4). The holes are arranged so as to pass through in the order of the hole size.

空隙配置構造体No.1〜No.4の分級前(分離前)の電磁波透過特性をFT−IRにより測定した。
続いて、シリンジ中に被測定物4[mL]を滴下し、純水でメスアップし10[mL]にした後、シリンジポンプを用いて、流量5[mL/min]で図9の粒度分布測定装置に通液を行った。
通液後、純水20[mL]を同流量で通液し、洗浄を行った。
洗浄後、デバイスから空隙配置構造体No.1〜No.4を取り出し、約37℃で約15時間の乾燥を行い、分級後(粒子分離後)の空隙配置構造体No.1〜No.4の電磁波特性を測定した。
Void arrangement structure No. 1 to No. The electromagnetic wave transmission characteristics before classification (before separation) of No. 4 were measured by FT-IR.
Subsequently, 4 [mL] of the object to be measured was dropped into the syringe, the volume was increased to 10 [mL] with pure water, and then the particle size distribution of FIG. 9 was measured using a syringe pump at a flow rate of 5 [mL / min]. The solution was passed through the measuring device.
After the passing, 20 [mL] of pure water was passed at the same flow rate to wash.
After the cleaning, the space arrangement structure No. 1 to No. 4 was taken out and dried at about 37 ° C. for about 15 hours. 1 to No. 4 was measured.

分級前後(分離前後)の空隙配置構造体の電磁波透過特性の変化として、ディップ点の低周波側にあらわれる通過領域のピーク点における透過率変化を代表値として取得した。
表5に、空隙配置構造体No.1〜No.4の被測定物の分級前後(分離前後)の低周波側ピーク点における透過率の測定値を示す。
また、この結果と、図11及び図12の検量線により得られた質量による被測定物の粒度分布図と粒子数による粒度分布図を図13乃至図16に示す。
なお、図13乃至図16では、質量と粒子数に関する粒度分布を示したが、表1からさらに体積に関する粒度分布を得ることも可能である。
As a change in the electromagnetic wave transmission characteristics of the void-arranged structure before and after classification (before and after separation), a change in transmittance at a peak point of a passing region appearing on the low frequency side of the dip point was obtained as a representative value.
Table 5 shows the void arrangement structure No. 1 to No. 4 shows the measured values of the transmittance at the low frequency side peak point before and after classification (before and after separation) of the DUT.
FIGS. 13 to 16 show the results, the particle size distribution chart of the measured object based on the mass obtained by the calibration curves of FIGS. 11 and 12, and the particle size distribution chart based on the number of particles.
13 to 16 show the particle size distribution relating to mass and the number of particles, but it is also possible to obtain a particle size distribution relating to volume from Table 1.

Figure 2020038092
Figure 2020038092

(実施例2:大気中のPMの粒度分布測定の例)
大気中のPM2.5やPM10等のエアロゾルの粒度分布測定において、1μm<d4≦4μm、4μm<d3≦7μm、7μm<d2≦11μm、11μm<d1の4つの粒径レンジ(d1〜d4)で測定することとした。そこで、レンジ境界値と同じ寸法の孔を有する4種類の空隙配置構造体(No.1〜No.4)を用意した。(表3参照)
図17に示す、流路治具12、シリコンゴムパッキン13、パッケージ治具15、及び空隙配置構造体(No.1〜No,4)14a、14b、14c、14dから成る粒度分布測定用流路ユニット28を用いた。この粒度分布測定用流路ユニット28において、大気1aが、孔寸法の最も大きい空隙配置構造体(No.1)から孔寸法の最も小さい空隙配置構造体(No.4)に向かって孔寸法の大きさの順に通過するように、吸引ポンプ19で大気吸引を行った。
また、粒度分布測定装置と同じ構成の装置を3セット用意し、検量線作成用とした。
(Example 2: Example of particle size distribution measurement of PM in the atmosphere)
In the particle size distribution measurement of aerosols such as PM2.5 and PM10 in the atmosphere, four particle size ranges (d1 to d4) of 1 μm <d4 ≦ 4 μm, 4 μm <d3 ≦ 7 μm, 7 μm <d2 ≦ 11 μm, and 11 μm <d1. It was decided to measure. Therefore, four types of void arrangement structures (No. 1 to No. 4) having holes having the same dimensions as the range boundary value were prepared. (See Table 3)
As shown in FIG. 17, a particle size distribution measuring channel composed of the channel jig 12, the silicone rubber packing 13, the package jig 15, and the void arrangement structures (No. 1 to No. 4) 14a, 14b, 14c, and 14d. Unit 28 was used. In the particle size distribution measurement channel unit 28, the atmosphere 1a is moved from the void arrangement structure (No. 1) having the largest pore size to the void arrangement structure (No. 4) having the smallest pore size. Atmospheric suction was performed by the suction pump 19 so as to pass through in the order of size.
In addition, three sets of devices having the same configuration as the particle size distribution measuring device were prepared and used for preparing a calibration curve.

同日同時刻に、同じ場所で、粒度分布測定装置と3セットの検量線作成用装置の大気吸引を行った。吸引は、10[L/min]の流量で行い、粒度分布測定装置では吸引時間を60[min]、検量線作成用デバイスでは、吸引時間を3セットで変えて、30、60、90[min]とした。   At the same time and at the same time, air suction was performed at the same place using the particle size distribution measurement device and three sets of calibration curve creation devices. Suction is performed at a flow rate of 10 [L / min], the suction time is changed to 60 [min] in the particle size distribution measuring device, and the suction time is changed in three sets in the calibration curve creating device to 30, 60, 90 [min]. ].

検量線作成は、以下の手順で行った。
検量線作成デバイスで用いる空隙配置構造体の吸引前の電磁波透過特性をFT−IRにより測定した。
吸引後の検量線作成デバイスから空隙配置構造体を回収し、吸引後の電磁波透過特性をFT−IRにより測定した。
図18は、捕捉物回収装置30の構成を示す概略図である。吸引後の電磁波透過特性の測定が終了した空隙配置構造体14及びパッケージ治具15の1組を図10の構成にして、洗浄用の溶媒32を入れたシリンジ31と接続して、図18の捕捉物回収装置30を構成した。図18に示すように、大気吸引時の空隙配置構造体14の吸引ポンプ側の面(排気側の面)から、溶媒32をシリンジポンプで流すことで、空隙配置構造体14上に分離されたエアロゾル33の逆洗回収を行った。溶媒はエタノール、溶媒量は20[mL]、流量20[mL/min]とした。空隙配置構造体14は、その構造から、一般的なメンブレンフィルターと比較して、逆洗によって分離物をほぼ回収できるという特徴があり、その回収率は概ね95%以上となる。
The calibration curve was prepared according to the following procedure.
The electromagnetic wave transmission characteristics of the void-arranged structure used in the calibration curve creating device before suction were measured by FT-IR.
The void-arranged structure was collected from the calibration curve creating device after suction, and the electromagnetic wave transmission characteristics after suction were measured by FT-IR.
FIG. 18 is a schematic diagram illustrating the configuration of the captured object recovery device 30. One set of the gap arrangement structure 14 and the package jig 15 for which the measurement of the electromagnetic wave transmission characteristics after the suction has been completed is configured as shown in FIG. 10 and connected to the syringe 31 containing the cleaning solvent 32. The captured matter recovery device 30 was configured. As shown in FIG. 18, the solvent 32 was separated from the surface on the suction pump side (the surface on the exhaust side) of the gap arrangement structure 14 at the time of atmospheric suction by flowing the solvent 32 with a syringe pump. The aerosol 33 was backwashed and collected. The solvent was ethanol, the amount of the solvent was 20 [mL], and the flow rate was 20 [mL / min]. The void-arranged structure 14 has a feature that, due to its structure, compared with a general membrane filter, the separated material can be substantially recovered by backwashing, and the recovery rate is approximately 95% or more.

次に、逆洗で得られたエアロゾル回収液について、遠心分離を行い、エアロゾルを沈降分離した後、上澄み液を廃棄することで濃縮を行い、最終的に、回収したエアロゾルが分散した溶液量100[μL]の回収液を得た。
この回収液とQCMセンサーデバイスを用いて、回収液中のエアロゾルの定量を行った。QCMセンサーは、多摩デバイス社製の周波数9MHz(測定レンジ100ng〜30μg)のQCMセンサーチップを用い、5mmφのQCM電極上に、回収液100[μL]を滴下し、溶媒を乾燥させた後、電極上に残留したエアロゾルの質量の計測を行った。
Next, the aerosol recovery liquid obtained by backwashing is centrifuged, the aerosol is separated by sedimentation, and the supernatant is discarded to concentrate. Finally, the amount of the solution in which the recovered aerosol is dispersed is 100%. [μL] of the recovered liquid was obtained.
Using this collected liquid and the QCM sensor device, the aerosol in the collected liquid was quantified. The QCM sensor uses a 9 cm frequency (manufacturing range: 100 ng to 30 μg) QCM sensor chip manufactured by Tama Device Co., and drops 100 [μL] of the recovery solution onto a 5 mmφ QCM electrode, and after drying the solvent, The mass of the aerosol remaining on the top was measured.

以上の手順により、エアロゾル分離による空隙配置構造体の電磁波透過特性(実施例1と同様に低周波側ピーク点における透過率を代表値とした)の変化量と空隙配置構造体上に分離されたエアロゾルの質量の相関を求め、検量線とした。
図19に、得られた検量線を示す。
According to the above-described procedure, the amount of change in the electromagnetic wave transmission characteristics (the transmittance at the peak point on the low frequency side as a representative value as in Example 1) of the gap-arranged structure due to the aerosol separation and separation on the gap-arranged structure were obtained. The correlation between the masses of the aerosols was determined and used as a calibration curve.
FIG. 19 shows the obtained calibration curve.

なお、本実施例では、QCMセンサーを用いた方法を示したが、同様に回収液を用いて、回収液中のエアロゾルの個数を血球計算盤や画像解析等を用いて計数してもよい。表6に、画像解析より求めた粒子数の計数結果を示す。   In the present embodiment, the method using the QCM sensor has been described. However, the number of aerosols in the collected liquid may be similarly counted using a hemocytometer or image analysis using the collected liquid. Table 6 shows the results of counting the number of particles obtained by image analysis.

Figure 2020038092
Figure 2020038092

エアロゾルの粒度分布は、以下の手順で求めた。
粒度分布測定装置の空隙配置構造体No.1〜No.4の分離前の電磁波透過特性をFT−IRにより測定した。
続いて、大気吸引を行い、吸引後の粒度分布測定デバイスから空隙配置構造体を回収し、吸引後の電磁波透過特性をFT−IRにより測定した。
表7に測定結果を示す。また、この結果と、図19の検量線から求めた大気中のエアロゾルの粒度分布測定結果を図20及び図21に示す。
The particle size distribution of the aerosol was determined by the following procedure.
The void arrangement structure No. of the particle size distribution measuring device. 1 to No. The electromagnetic wave transmission characteristics of Sample No. 4 before separation were measured by FT-IR.
Subsequently, air suction was performed, the void-arranged structure was collected from the particle size distribution measurement device after suction, and the electromagnetic wave transmission characteristics after suction were measured by FT-IR.
Table 7 shows the measurement results. 20 and 21 show the results and the measurement results of the particle size distribution of the aerosol in the atmosphere obtained from the calibration curve in FIG.

Figure 2020038092
Figure 2020038092

(変形例)
実施例では、空隙配置構造体として、図2に示した正方形の貫通孔5が正方格子状に2次元配置された空隙配置構造体14を用いたが、この構造に限定されるものではない。精密なサイズ排除分離が行える構造であれば、つまり、同じ形状の貫通孔を配列した構造であれば、どのような構造でも可能である。例えば、被測定物が球状と想定される場合は、丸孔を正方格子や三角格子状などに配置したような構造がより望ましい。
さらに、異なる孔形状を有する空隙配置構造体を複数種類以上用いて粒度分布計測を実施することで、被測定物の形状に関する情報(例えば、球や正方形など対称性が高い形状なのか、楕円や直方体などの低い形状なのかなど)を得ることも可能となる。
(Modification)
In the embodiment, as the void arrangement structure, the void arrangement structure 14 in which the square through-holes 5 shown in FIG. 2 are two-dimensionally arranged in a square lattice is used, but the present invention is not limited to this structure. Any structure is possible as long as it is a structure capable of precise size exclusion separation, that is, a structure in which through holes of the same shape are arranged. For example, when the object to be measured is assumed to be spherical, a structure in which round holes are arranged in a square lattice or a triangular lattice is more desirable.
Further, by performing the particle size distribution measurement using a plurality of types of void arrangement structures having different hole shapes, information on the shape of the object to be measured (for example, whether the shape is highly symmetric such as a sphere or a square, an ellipse, It is also possible to obtain a low shape such as a rectangular parallelepiped).

変形例として、図22と表8に示す3種類の空隙配置構造体No.5〜No.7を用意した。空隙配置構造体No.5は、貫通孔5の構造として、x方向のピッチP1よりy方向のピッチP2が長く、貫通孔5は、x方向の長さD1よりy方向の長さD2が長い長方形状である。空隙配置構造体No.7は、貫通孔5の構造として、x方向のピッチP1がy方向のピッチP2より長く、貫通孔5は、x方向の長さD1がy方向の長さD2より長い長方形状である。なお、空隙配置構造体No.6は、表3の空隙配置構造体No.3と同じ構造であり、貫通孔5は正方形状を有する。   As a modified example, three types of void arrangement structures No. shown in FIG. 5-No. 7 was prepared. Void arrangement structure No. Reference numeral 5 denotes a structure of the through-hole 5, in which the pitch P2 in the y-direction is longer than the pitch P1 in the x-direction, and the through-hole 5 has a rectangular shape in which the length D2 in the y-direction is longer than the length D1 in the x-direction. Void arrangement structure No. Reference numeral 7 denotes a structure of the through hole 5, wherein the pitch P1 in the x direction is longer than the pitch P2 in the y direction, and the through hole 5 has a rectangular shape in which the length D1 in the x direction is longer than the length D2 in the y direction. In addition, the void arrangement structure No. 6 is a void arrangement structure No. in Table 3. 3, and the through-hole 5 has a square shape.

Figure 2020038092
Figure 2020038092

また、フォトリソ工程により、L4.5μm×W3.5μm×T3.5μmの寸法を有する感光性樹脂粒子を作製し、その水溶液を測定物として、同条件で分離を行い、分級前後(分離前後)の電磁波透過特性の変化量を比較した。
表9に結果を示す。この結果は、被測定物である直方体粒子の貫通孔の通過時の向きに応じて透過率(分離される割合)が変化することを示している。
In addition, photosensitive resin particles having dimensions of L4.5 μm × W3.5 μm × T3.5 μm were prepared by a photolithography process, and the aqueous solution was used as a measurement object to perform separation under the same conditions, before and after classification (before and after separation). The changes in the electromagnetic wave transmission characteristics were compared.
Table 9 shows the results. This result indicates that the transmittance (separation rate) changes according to the direction of the rectangular parallelepiped particles, which are the objects to be measured, when passing through the through holes.

Figure 2020038092
Figure 2020038092

(実施の形態2)
図23は、実施の形態2に係る粒度分布測定装置10aの構成を示す概略図である。粒度分布測定装置として、図9や図17では、複数の空隙配置構造体を流路方向に主面が垂直に直列配置した構造を示したが、空隙配置構造体の配置は、これに限定されるものではない。空隙配置構造体の配置は、粒径測定レンジを規定する空隙配置構造体に対し、孔寸法が大きい空隙配置構造体から孔寸法の小さい空隙配置構造体の順に流体が流れる構造であれば、どのような配置でも等価となる。
(Embodiment 2)
FIG. 23 is a schematic diagram showing a configuration of a particle size distribution measuring device 10a according to the second embodiment. As a particle size distribution measuring device, in FIGS. 9 and 17, a structure in which a plurality of void-arranged structures are arranged in series with the main surface perpendicular to the flow path direction is shown, but the arrangement of the void-arranged structures is not limited thereto. Not something. The arrangement of the void-arranged structures may be any structure as long as the fluid flows in the order from the void-arranged structure with the larger pore size to the void-arranged structure with the smaller pore size, relative to the void-arranged structure that defines the particle size measurement range. Such an arrangement is equivalent.

実施の形態2に係る粒度分布測定装置10aでは、図23に示すように、3つの空隙配置構造体14a、14b、14cを流路方向の変化する箇所に並列に配置している。この粒度分布測定装置10aでは、さらに、3つの空隙配置構造体14a、14b、14cの並列配置の利点を生かして、リアルタイムの粒度分布測定を可能にしている。また、3つの空隙配置構造体14a、14b、14cごとにそれぞれ光源16a、16b、16cと検出器17a、17b、17cを有する別々の光学系で電磁波透過特性を測定できる。そこで、1つの光源からの電磁波が複数の空隙配置構造体を透過してきた透過光を用いる場合に比べて、それぞれの空隙配置構造体の電磁波透過特性を得ることができる。
なお、図23では、流路治具12の一部を電磁波透過材料からなる窓材18とすることで、流体1を流して分級を行いながら、空隙配置構造体14a、14b、14cの電磁波透過特性の測定をリアルタイムに行うことができる。
In the particle size distribution measuring device 10a according to the second embodiment, as shown in FIG. 23, three void arrangement structures 14a, 14b, and 14c are arranged in parallel at locations where the flow direction changes. In the particle size distribution measuring device 10a, real-time particle size distribution measurement is enabled by taking advantage of the parallel arrangement of the three void arrangement structures 14a, 14b, and 14c. Further, the electromagnetic wave transmission characteristics can be measured by separate optical systems having the light sources 16a, 16b, 16c and the detectors 17a, 17b, 17c for each of the three gap arrangement structures 14a, 14b, 14c. Therefore, the electromagnetic wave transmission characteristics of each of the gap-arranged structures can be obtained as compared with a case where the electromagnetic wave from one light source transmits through a plurality of gap-arranged structures.
In FIG. 23, a part of the flow path jig 12 is made of a window material 18 made of an electromagnetic wave transmitting material, so that the fluid 1 is caused to flow and classify while the electromagnetic wave transmitting structures 14a, 14b, and 14c transmit electromagnetic waves. Characteristics can be measured in real time.

本開示によれば、被測定物の分級前後における空隙配置構造体の電磁波透過特性の変化から、微量な被測定物の定量測定を行うことができる。特に、本開示に係る空隙配置構造体を用いた粒度分布測定装置により、従来技術の『篩分け重量法』では実現が困難であった微量(ng〜mgオーダー)の被測定物の粒度分布測定、つまり、従来のJIS規格外の20μm以下の大きさを有する被測定物の粒度分布測定を可能となった。
また、空隙配置構造体の逆洗による分離物回収が容易という特徴を活かせば、大気中のPM2.5等の検量線作成用の標準試料が用意できない場合でも、分離物から検量線作成を行うことができる。従来技術の『レーザー回折・散乱法』では、被測定物の分級・回収が行われないため、このような検量線作成は困難であった。
According to the present disclosure, it is possible to perform a quantitative measurement of a small amount of an object to be measured based on a change in the electromagnetic wave transmission characteristics of the void-arranged structure before and after classification of the object to be measured. In particular, with the particle size distribution measuring apparatus using the void-arranged structure according to the present disclosure, it is difficult to realize the particle size distribution of a small amount (ng to mg order) of an object to be measured by the conventional “sieving weight method”. That is, it has become possible to measure the particle size distribution of an object to be measured having a size of 20 μm or less outside the conventional JIS standard.
Also, by utilizing the feature that the separated material can be easily collected by backwashing the void-arranged structure, even when a standard sample for preparing a calibration curve such as PM2.5 in the atmosphere cannot be prepared, a calibration curve is prepared from the separated material. be able to. In the prior art “laser diffraction / scattering method”, since the object to be measured is not classified and collected, it is difficult to create such a calibration curve.

また、本開示に係る空隙配置構造体を用いた粒度分布測定装置により、従来技術の『レーザー回折・散乱法』では困難であった被測定物の質量、粒子数、体積による粒度分布を理論値との照合という近似なしに測定できるようになった。   In addition, the particle size distribution measurement apparatus using the void arrangement structure according to the present disclosure, by the prior art "laser diffraction / scattering method" difficult to measure the mass, the number of particles, the particle size distribution by the theoretical value The measurement can be performed without the approximation of collating with.

また、空隙配置構造体の構造を変えて粒度分布測定を行うことで被測定物の形、例えば、真球からのずれの程度等、に関する情報が得られる。
さらに、分級しながら電磁波透過特性を測定を行うことで、リアルタイムで粒度分布測定ができるという、従来技術では得られない効果も実現できる。
さらに、本開示に係る空隙配置構造体を用いた粒度分布測定装置により、例えば、高価な試薬や貴重な検体(被測定物が微量になる用途)、セラミック原料やエアロゾルや細菌・細胞等の生体関連物質(粒子サイズがμmオーダーになる用途)の質量、粒子数、体積等に基づく粒度分布測定が可能となる。
Further, by performing the particle size distribution measurement while changing the structure of the void arrangement structure, information on the shape of the object to be measured, for example, the degree of deviation from a true sphere or the like can be obtained.
Further, by measuring the electromagnetic wave transmission characteristics while classifying, the particle size distribution can be measured in real time, which is an effect that cannot be obtained by the conventional technology.
Furthermore, the particle size distribution measuring device using the void-arranged structure according to the present disclosure can be used to measure, for example, expensive reagents and valuable specimens (applications where the amount of an object to be measured is small), ceramic raw materials, aerosols, and living organisms such as bacteria and cells. The particle size distribution can be measured based on the mass, the number of particles, the volume, and the like of related substances (applications in which the particle size is on the order of μm).

なお、本開示においては、前述した様々な実施の形態及び/又は実施例のうちの任意の実施の形態及び/又は実施例を適宜組み合わせることを含むものであり、それぞれの実施の形態及び/又は実施例が有する効果を奏することができる。   Note that the present disclosure includes appropriately combining any embodiment and / or example among the various embodiments and / or examples described above, and includes each embodiment and / or example. The effects of the embodiment can be obtained.

本発明に係る粒度分布測定装置によれば、流体中の被測定物の粒度分布測定装置を提供することができる。特に、μmオーダー以上の大きさを有する被測定物の広いレンジにわたる粒度分布を行うことができる。   ADVANTAGE OF THE INVENTION According to the particle size distribution measuring device which concerns on this invention, the particle size distribution measuring device of the to-be-measured object in a fluid can be provided. In particular, it is possible to perform a particle size distribution over a wide range of an object to be measured having a size on the order of μm or more.

1 流体
1a 大気
2a、2b、2c 粒子
3 第1の方向
4 電磁波
4a 電磁波(入射波)
4b 電磁波(透過波)
5、5a、5b、5c 貫通孔
10、10a 粒度分布測定装置
11 流路
12 流路治具
13 シリコンゴムパッキン
14、14a、14b、14c、14d 空隙配置構造体
15 パッケージ治具
16、16a、16b、16c 光源
17、17a、17b、17c 検出器
18 窓材
19 吸引ポンプ
20 コンピュータ装置
21 処理部
22 記憶部
23 表示部
24 検量線
24a 第1の検量線
24b 第2の検量線
25 プログラム
25a 捕捉量算出部
25b 検量線算出部
28 粒度分布測定用流路ユニット
30 捕捉物回収装置
31 シリンジ
32 溶媒
33 エアロゾル
Reference Signs List 1 fluid 1a atmosphere 2a, 2b, 2c particle 3 first direction 4 electromagnetic wave 4a electromagnetic wave (incident wave)
4b Electromagnetic wave (transmitted wave)
5, 5a, 5b, 5c Through-hole 10, 10a Particle size distribution measuring device 11 Flow path 12 Flow path jig 13 Silicon rubber packing 14, 14a, 14b, 14c, 14d Air gap arrangement structure 15 Package jig 16, 16a, 16b , 16c Light source 17, 17a, 17b, 17c Detector 18 Window material 19 Suction pump 20 Computer device 21 Processing unit 22 Storage unit 23 Display unit 24 Calibration curve 24a First calibration curve 24b Second calibration curve 25 Program 25a Captured amount Calculator 25b Calibration curve calculator 28 Particle size distribution measurement flow channel unit 30 Captured matter recovery device 31 Syringe 32 Solvent 33 Aerosol

Claims (9)

被測定物を含む流体を上流側から下流側に流通させる流路と、
前記流路内で前記流体を通過させるように設けられ、金属製薄膜に第1の開口径を有する同形状の貫通孔を周期的に2次元配置した金属製薄膜からなる第1空隙配置構造体と、
前記流路の前記第1空隙配置構造体より下流側に、前記流体を通過させるように設けられ、金属製薄膜に前記第1の開口径より小さい第2の開口径を有する同形状の貫通孔を周期的に2次元配置した金属製薄膜からなる第2空隙配置構造体と、
前記第1空隙配置構造体及び前記第2空隙配置構造体を貫くように電磁波を照射する光源と、
前記第1空隙配置構造体及び前記第2空隙配置構造体を透過した電磁波を検出する検出器と、
前記第1空隙配置構造体を透過した電磁波の透過率から、前記第1空隙配置構造体を透過した電磁波の透過率と前記第1空隙配置構造体に捕捉された物質の量との関係を示す第1の検量線に基づいて、前記第1空隙配置構造体に捕捉された物質の量を算出すると共に、前記第2空隙配置構造体を透過した電磁波の透過率から、前記第2空隙配置構造体を透過した電磁波の透過率と前記第2空隙配置構造体に捕捉された物質の量との関係を示す第2の検量線に基づいて前記第2空隙配置構造体に捕捉された物質の量を算出する、捕捉量算出部と、
を備えた、粒度分布測定装置。
A flow path for flowing the fluid containing the device under test from the upstream side to the downstream side,
A first gap arrangement structure formed of a metal thin film provided so as to allow the fluid to pass through the flow path and having a two-dimensionally arranged through hole of the same shape having a first opening diameter in the metal thin film; When,
A through hole of the same shape that is provided on the downstream side of the first gap arrangement structure of the flow path so as to allow the fluid to pass therethrough and has a second opening diameter smaller than the first opening diameter in the metal thin film. A second void-arranged structure made of a metal thin film having two-dimensionally periodically arranged,
A light source for irradiating an electromagnetic wave so as to penetrate the first gap arrangement structure and the second gap arrangement structure;
A detector for detecting an electromagnetic wave transmitted through the first gap arrangement structure and the second gap arrangement structure;
From the transmittance of the electromagnetic wave transmitted through the first void-arranged structure, the relationship between the transmittance of the electromagnetic wave transmitted through the first void-arranged structure and the amount of the substance captured by the first void-arranged structure is shown. Based on the first calibration curve, the amount of the substance trapped in the first gap arrangement structure is calculated, and the transmittance of the electromagnetic wave transmitted through the second gap arrangement structure is calculated based on the second gap arrangement structure. The amount of the substance trapped in the second void-arranged structure based on the second calibration curve indicating the relationship between the transmittance of the electromagnetic wave transmitted through the body and the amount of the substance trapped in the second void-arranged structure Calculating a capture amount calculating section,
, A particle size distribution measuring device.
被測定物を含む流体を上流側から下流側に流通させる流路と、
前記流路内で前記流体を通過させるように設けられ、金属製薄膜に第1の開口径を有する同形状の貫通孔を周期的に2次元配置した金属製薄膜からなる第1空隙配置構造体と、
前記流路の前記第1空隙配置構造体より下流側に、前記流体を通過させるように設けられ、金属製薄膜に前記第1の開口径より小さい第2の開口径を有する同形状の貫通孔を周期的に2次元配置した金属製薄膜からなる第2空隙配置構造体と、
前記第1空隙配置構造体を貫くように電磁波を照射する第1の光源と、
前記第1空隙配置構造体を透過した電磁波を検出する第1の検出器と、
前記第2空隙配置構造体を貫くように電磁波を照射する第2の光源と、
前記第2空隙配置構造体を透過した電磁波を検出する第2の検出器と、
前記第1空隙配置構造体を透過した電磁波の透過率から、前記第1空隙配置構造体を透過した電磁波の透過率と前記第1空隙配置構造体に捕捉された物質の量との関係を示す第1の検量線に基づいて、前記第1空隙配置構造体に捕捉された物質の量を算出すると共に、前記第2空隙配置構造体を透過した電磁波の透過率から、前記第2空隙配置構造体を透過した電磁波の透過率と前記第2空隙配置構造体に捕捉された物質の量との関係を示す第2の検量線に基づいて前記第2空隙配置構造体に捕捉された物質の量を算出する、捕捉量算出部と、
を備えた、粒度分布測定装置。
A flow path for flowing the fluid containing the device under test from the upstream side to the downstream side,
A first gap arrangement structure formed of a metal thin film provided so as to allow the fluid to pass through the flow path and having a two-dimensionally arranged through hole of the same shape having a first opening diameter in the metal thin film; When,
A through hole of the same shape that is provided on the downstream side of the first gap arrangement structure of the flow path so as to allow the fluid to pass therethrough and has a second opening diameter smaller than the first opening diameter in the metal thin film. A second void-arranged structure made of a metal thin film having two-dimensionally periodically arranged,
A first light source that irradiates an electromagnetic wave so as to penetrate the first gap arrangement structure;
A first detector for detecting an electromagnetic wave transmitted through the first gap arrangement structure;
A second light source for irradiating an electromagnetic wave so as to penetrate the second gap arrangement structure;
A second detector for detecting an electromagnetic wave transmitted through the second gap arrangement structure;
From the transmittance of the electromagnetic wave transmitted through the first void-arranged structure, the relationship between the transmittance of the electromagnetic wave transmitted through the first void-arranged structure and the amount of the substance captured by the first void-arranged structure is shown. Based on the first calibration curve, the amount of the substance trapped in the first gap arrangement structure is calculated, and the transmittance of the electromagnetic wave transmitted through the second gap arrangement structure is calculated based on the second gap arrangement structure. The amount of the substance trapped in the second void-arranged structure based on the second calibration curve indicating the relationship between the transmittance of the electromagnetic wave transmitted through the body and the amount of the substance trapped in the second void-arranged structure Calculating a capture amount calculating section,
, A particle size distribution measuring device.
前記流路は、上流側から下流側に第1の方向に沿って延在し、
前記第1の光源と、前記第2の光源とは共通の光源であって、前記共通の光源によって前記第1空隙配置構造体及び前記第2空隙配置構造体を貫くように電磁波を照射し、
前記第1の検出器と、前記第2の検出器とは共通の検出器であって、前記共通の検出器によって前記第1空隙配置構造体及び前記第2空隙配置構造体を透過した電磁波を検出する、請求項2に記載の粒度分布測定装置。
The flow path extends from the upstream side to the downstream side along the first direction,
The first light source and the second light source are a common light source, and the common light source irradiates an electromagnetic wave so as to penetrate the first gap arrangement structure and the second gap arrangement structure,
The first detector and the second detector are a common detector, and the common detector detects an electromagnetic wave transmitted through the first gap arrangement structure and the second gap arrangement structure. The particle size distribution measuring device according to claim 2, which detects.
前記流路は、上流側から下流側に流路方向が変化する箇所を少なくとも2以上含み、前記第1空隙配置構造体及び前記第2空隙配置構造体は、前記流路内の前記流路方向が変化する箇所に設けられている、請求項2又は3に記載の粒度分布測定装置。   The flow path includes at least two or more locations where the flow direction changes from the upstream side to the downstream side, and the first gap arrangement structure and the second gap arrangement structure are arranged in the flow path direction in the flow path. The particle size distribution measuring device according to claim 2, wherein the particle size distribution measuring device is provided at a position where the particle size changes. 前記第1の検量線と、前記第2の検量線と、を記録する記憶部を、さらに備える、請求項1から4のいずれか一項に記載の粒度分布測定装置。   The particle size distribution measuring device according to any one of claims 1 to 4, further comprising a storage unit that records the first calibration curve and the second calibration curve. 前記第1の検量線は、前記第1空隙配置構造体を透過した電磁波の近接する2つのピークの間のディップ点より低周波数側のピーク点の透過率と前記第1空隙配置構造体に捕捉された物質の量との関係を示すと共に、前記第2の検量線は、前記第2空隙配置構造体を透過した電磁波の近接する2つのピークの間のディップ点より低周波数側のピーク点の透過率と前記第2空隙配置構造体に捕捉された物質の量との関係を示す、請求項1から5のいずれか一項に記載の粒度分布測定装置。   The first calibration curve includes a transmittance at a peak point on a lower frequency side than a dip point between two adjacent peaks of an electromagnetic wave transmitted through the first gap arrangement structure and the first gap arrangement structure. And the second calibration curve is a peak point on a lower frequency side than a dip point between two adjacent peaks of the electromagnetic wave transmitted through the second gap arrangement structure. The particle size distribution measuring device according to any one of claims 1 to 5, wherein the particle size distribution measuring device shows a relationship between a transmittance and an amount of a substance trapped in the second void arrangement structure. 前記光源は、前記第1空隙配置構造体の上流側から前記第1空隙配置構造体及び前記第2空隙配置構造体を貫くように電磁波を照射する、請求項1に記載の粒度分布測定装置。   The particle size distribution measuring device according to claim 1, wherein the light source irradiates an electromagnetic wave from an upstream side of the first gap arrangement structure so as to penetrate the first gap arrangement structure and the second gap arrangement structure. 前記光源は、前記第2空隙配置構造体の下流側から前記第2空隙配置構造体及び前記第1空隙配置構造体を貫くように電磁波を照射する、請求項1に記載の粒度分布測定装置。   The particle size distribution measuring device according to claim 1, wherein the light source irradiates an electromagnetic wave from a downstream side of the second gap arrangement structure so as to penetrate the second gap arrangement structure and the first gap arrangement structure. 被測定物を含む流体を上流側から下流側に流通させる流路と、
前記流路内で前記流体を通過させるように設けられ、金属製薄膜に第1の開口径を有する同形状の貫通孔を周期的に2次元配置した金属製薄膜からなる第1空隙配置構造体と、
前記流路の前記第1空隙配置構造体より下流側に、前記流体を通過させるように設けられ、金属製薄膜に前記第1の開口径より小さい第2の開口径を有する同形状の貫通孔を周期的に2次元配置した金属製薄膜からなる第2空隙配置構造体と、
を備えた、粒度分布測定用流路ユニット。
A flow path for flowing the fluid containing the device under test from the upstream side to the downstream side,
A first gap arrangement structure formed of a metal thin film provided so as to allow the fluid to pass through the flow path and having a two-dimensionally arranged through hole of the same shape having a first opening diameter in the metal thin film; When,
A through hole of the same shape that is provided on the downstream side of the first gap arrangement structure of the flow path so as to allow the fluid to pass therethrough and has a second opening diameter smaller than the first opening diameter in the metal thin film. A second void-arranged structure made of a metal thin film having two-dimensionally periodically arranged,
A particle size distribution measurement channel unit comprising:
JP2018164654A 2018-09-03 2018-09-03 Particle size distribution measuring device and particle size distribution measuring channel unit Pending JP2020038092A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018164654A JP2020038092A (en) 2018-09-03 2018-09-03 Particle size distribution measuring device and particle size distribution measuring channel unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018164654A JP2020038092A (en) 2018-09-03 2018-09-03 Particle size distribution measuring device and particle size distribution measuring channel unit

Publications (1)

Publication Number Publication Date
JP2020038092A true JP2020038092A (en) 2020-03-12

Family

ID=69737821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018164654A Pending JP2020038092A (en) 2018-09-03 2018-09-03 Particle size distribution measuring device and particle size distribution measuring channel unit

Country Status (1)

Country Link
JP (1) JP2020038092A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008185552A (en) * 2007-01-31 2008-08-14 Tohoku Univ Measuring apparatus and measuring method
JP2011012976A (en) * 2009-06-30 2011-01-20 Nitta Corp Particle classification/concentration measurement apparatus
WO2011077949A1 (en) * 2009-12-22 2011-06-30 株式会社村田製作所 Method for measuring characteristic of object to be measured, and measuring device
WO2014192389A1 (en) * 2013-05-31 2014-12-04 株式会社村田製作所 Method for measuring substance to be measured
WO2015186410A1 (en) * 2014-06-03 2015-12-10 株式会社村田製作所 Measurement method and measurement system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008185552A (en) * 2007-01-31 2008-08-14 Tohoku Univ Measuring apparatus and measuring method
JP2011012976A (en) * 2009-06-30 2011-01-20 Nitta Corp Particle classification/concentration measurement apparatus
WO2011077949A1 (en) * 2009-12-22 2011-06-30 株式会社村田製作所 Method for measuring characteristic of object to be measured, and measuring device
WO2014192389A1 (en) * 2013-05-31 2014-12-04 株式会社村田製作所 Method for measuring substance to be measured
WO2015186410A1 (en) * 2014-06-03 2015-12-10 株式会社村田製作所 Measurement method and measurement system

Similar Documents

Publication Publication Date Title
Babick Suspensions of colloidal particles and aggregates
Welker Size analysis and identification of particles
Merkus Particle size, size distributions and shape
Zíková et al. Size-resolved penetration through high-efficiency filter media typically used for aerosol sampling
Baron Measurement of Airborne Fibers A Review
JP6373986B2 (en) Particle suspension used as a low-contrast standard for liquid testing
Borgese et al. The assessment of a method for measurements and lead quantification in air particulate matter using total reflection X-ray fluorescence spectrometers
CN110631967B (en) A Raman Spectroscopy-Based Method for Source Analysis of Atmospheric Black Carbon Aerosols
CN106198321A (en) Model building method and light scattering component detection method
EP2843410A3 (en) Sample analyzing method and sample analyzer
Lee et al. Characterization of colloidal nanoparticles in mixtures with polydisperse and multimodal size distributions using a particle tracking analysis and electrospray-scanning mobility particle sizer
Brostrøm et al. Improving the foundation for particulate matter risk assessment by individual nanoparticle statistics from electron microscopy analysis
Zampetti et al. Effects of Oscillation Amplitude Variations on QCM Response to Microspheres of Different Sizes
Sachinidou et al. Inter-laboratory validation of the method to determine the filtration efficiency for airborne particles in the 3–500 nm range and results sensitivity analysis
CN108387503B (en) Method for fixing value of particle counting particle standard substance
JP2020038092A (en) Particle size distribution measuring device and particle size distribution measuring channel unit
Ferrante et al. Measurement techniques of exposure to nanomaterials in workplaces
CN106644864A (en) Value determination method and measurement system of standard substance for detecting cutting properties of PM2.5 (Particulate Matter2.5) cutter
TW201346240A (en) Microparticle detecting apparatus
Hyslop et al. Reanalysis of archived IMPROVE PM2. 5 samples previously analyzed over a 15-year period
WO2015186410A1 (en) Measurement method and measurement system
Hosseini et al. Low-cost sheath-less microfluidic impedance cytometry for point-of-care applications
Liu et al. Airborne mineral dust measurement using an integrated microfluidic device
Goderis et al. 3D printed micro-cyclones with improved geometries for low-cost aerosol size separation
JP4580976B2 (en) Biological sample analyzer with quality control function and method for displaying quality control measurement results

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220426

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221018