[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2020034695A - Video projection device, and projection type video display device - Google Patents

Video projection device, and projection type video display device Download PDF

Info

Publication number
JP2020034695A
JP2020034695A JP2018160642A JP2018160642A JP2020034695A JP 2020034695 A JP2020034695 A JP 2020034695A JP 2018160642 A JP2018160642 A JP 2018160642A JP 2018160642 A JP2018160642 A JP 2018160642A JP 2020034695 A JP2020034695 A JP 2020034695A
Authority
JP
Japan
Prior art keywords
light source
phosphor
semiconductor light
wavelength conversion
modulation signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018160642A
Other languages
Japanese (ja)
Other versions
JP7122552B2 (en
Inventor
行天 敬明
Takaaki Gyoten
敬明 行天
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2018160642A priority Critical patent/JP7122552B2/en
Publication of JP2020034695A publication Critical patent/JP2020034695A/en
Application granted granted Critical
Publication of JP7122552B2 publication Critical patent/JP7122552B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Projection Apparatus (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Video Image Reproduction Devices For Color Tv Systems (AREA)

Abstract

To provide a video projection device and projection type video display device that can display videos as achieving higher energy efficiency in comparison to a conventional technology upon using a plurality of phosphors different in excitation limit intensity by switching them in a video display system performing a wavelength conversion of light of a semiconductor light source by phosphor, and displaying videos by use of the light having the wavelength converted.SOLUTION: A video projection device according to the present disclosure comprises: a semiconductor light source 110 that is driven in accordance with a PWM modulation signal; and a time division switch wavelength conversion element 120 that performs a wavelength conversion of output light of the semiconductor light source as sequentially alternatively switching a plurality of phosphors including a first phosphor and a second phosphor having excitation intensity saturated by input light of smaller intensity than the first phosphor. A frequency of the PWM modulation signal performing a PWM modulation of electricity driving the semiconductor light source in a period having the second phosphor used is higher than that of the PWM modulation signal in a period having the first phosphor used.SELECTED DRAWING: Figure 1

Description

本開示は、半導体光源の光を蛍光体で波長変換し、その光を用いて映像を表示する映像表示システムの映像投影装置及び投写型映像表示装置に関する。   The present disclosure relates to an image projection device and a projection type image display device of an image display system that converts light from a semiconductor light source into a wavelength using a phosphor and displays an image using the light.

特許文献1は、発光素子と蛍光体との組み合わせにより、各色異なる発光効率を考慮して、できる限り明るく、かつ色再現性の高い画像を投影する光源装置、投影装置及び投影方法を開示する。   Patent Literature 1 discloses a light source device, a projection device, and a projection method for projecting an image that is as bright as possible and has high color reproducibility in consideration of luminous efficiency of each color by combining a light emitting element and a phosphor.

この光源装置、投影装置及び投影方法は、青色光を発光する半導体レーザーと、青色光を用いて青色光及び緑色光を発生するカラーホイール及びモータと、赤色光を発するLEDと、青色光、緑色光及び赤色光が循環的に発生するように半導体レーザー、LED、カラーホイール及びモータを制御する投影光処理部及びCPUと、画像信号を入力する入力部と、青色光、緑色光及び赤色光を用いて光像を形成して投影する投影系とを備える。   The light source device, the projection device, and the projection method include a semiconductor laser that emits blue light, a color wheel and a motor that generates blue light and green light using blue light, an LED that emits red light, blue light, and green light. A projection light processing unit and a CPU for controlling a semiconductor laser, an LED, a color wheel and a motor so that light and red light are generated cyclically, an input unit for inputting an image signal, and a blue light, a green light and a red light. And a projection system for forming and projecting an optical image using the optical system.

このカラーホイール及びモータは、より発光効率の高い青色光の発生時間が緑色光の発生時間よりも短くなるように設定される。また、投影光処理部及びCPUは、青色光を発生する時の駆動電力が、緑色光を発生する時の駆動電力よりも大きくなるように設定される。これにより、明るくかつ色再現性の高い画像を投影する光源装置、投影装置及び投影方法を実現することができる。   The color wheel and the motor are set so that the generation time of blue light with higher luminous efficiency is shorter than the generation time of green light. Further, the projection light processing unit and the CPU are set so that the driving power for generating blue light is larger than the driving power for generating green light. Accordingly, it is possible to realize a light source device, a projection device, and a projection method that project an image that is bright and has high color reproducibility.

しかしながら、このように半導体光源の光を蛍光体で波長変換し、その光を用いて映像を表示する投影装置において、励起限界強度が異なる複数の蛍光体を切り替えて用いる際に、低い励起限界強度を持つ蛍光体が発熱してエネルギー効率を低下させるという問題点がある。   However, in such a projector that converts the wavelength of the light from the semiconductor light source with a phosphor and displays an image using the light, when a plurality of phosphors having different excitation limit intensities are switched and used, a low excitation limit is used. However, there is a problem that the phosphor having the above-mentioned characteristic generates heat to lower the energy efficiency.

特開2011−70127号公報JP-A-2011-70127

本開示は、従来技術に比較してより高いエネルギー効率を達成しつつ映像を表示することが可能な、映像投影装置及び投写型映像表示装置を提供する。   The present disclosure provides an image projection device and a projection-type image display device that can display an image while achieving higher energy efficiency as compared with the related art.

本開示に係る映像投影装置は、PWM変調信号に従って駆動される半導体光源と、並びに、第1の蛍光体及び第1の蛍光体よりも小さい強度の入力光で励起強度が飽和する第2の蛍光体を含む複数の蛍光体を順次選択的に切り替えながら、半導体光源の出力光を波長変換する時分割切替え波長変換素子とを備え、第2の蛍光体が用いられる期間におけるPWM変調信号の周波数は、第1の蛍光体が用いられる期間におけるPWM変調信号の周波数よりも高い。   An image projection device according to the present disclosure includes a semiconductor light source driven in accordance with a PWM modulation signal, and a first fluorescent substance and a second fluorescent substance whose excitation intensity is saturated by input light having an intensity smaller than that of the first fluorescent substance. A time-division switching wavelength conversion element for wavelength-converting the output light of the semiconductor light source while sequentially and selectively switching a plurality of phosphors including the phosphor, and the frequency of the PWM modulation signal during the period when the second phosphor is used is , During the period in which the first phosphor is used.

本開示における映像投影装置及び投写型映像表示装置は、従来技術に比較してより高いエネルギー効率を達成しつつ、映像を表示することができる。   The image projection device and the projection-type image display device according to the present disclosure can display an image while achieving higher energy efficiency as compared with the related art.

実施の形態1における映像投影装置の構成例を示すブロック図FIG. 2 is a block diagram illustrating a configuration example of a video projection device according to Embodiment 1. 図1の映像投影装置において、時分割切替え波長変換素子に含まれる蛍光体ホイールの構成例を示す平面図FIG. 2 is a plan view showing a configuration example of a phosphor wheel included in a time-division switching wavelength conversion element in the video projection device in FIG. 1. 図1の半導体光源駆動回路の構成例を示すブロック図FIG. 2 is a block diagram showing a configuration example of the semiconductor light source drive circuit of FIG. PWM変調信号の周波数の変更を行わない従来例の半導体光源駆動回路において、半導体光源に流れる電流を示すタイミングチャートA timing chart showing a current flowing through a semiconductor light source in a conventional semiconductor light source driving circuit that does not change the frequency of a PWM modulation signal PWM変調信号の周波数の変更を行う図1の半導体光源駆動回路において、半導体光源に流れる電流を示すタイミングチャートFIG. 1 is a timing chart showing a current flowing through a semiconductor light source in the semiconductor light source drive circuit of FIG. 1 for changing the frequency of a PWM modulation signal.

以下、適宜図面を参照しながら、実施の形態を詳細に説明する。ただし、例えば既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明など、必要以上に詳細な説明は省略する場合がある。これは、以下の説明が必要以上に冗長になるのを避け、当業者の理解を容易にするためである。   Hereinafter, embodiments will be described in detail with reference to the drawings as appropriate. However, unnecessary detailed descriptions such as detailed description of well-known matters and redundant description of substantially the same configuration may be omitted. This is to prevent the following description from being unnecessarily redundant and to facilitate the understanding of those skilled in the art.

なお、発明者は、当業者による本開示の十分な理解を助けるために添付図面及び以下の説明を提供するのであって、これらによって特許請求の範囲に記載の主題を限定することを意図するものではない。   The inventor provides the accompanying drawings and the following description to assist those skilled in the art with a sufficient understanding of the present disclosure, and these are intended to limit the subject matter described in the claims. is not.

(実施の形態1)
以下、図1〜図5を参照して、実施の形態1を詳細に説明する。
(Embodiment 1)
Hereinafter, the first embodiment will be described in detail with reference to FIGS.

[1−1.構成]
まず、図1〜図3を参照して、実施の形態1における映像投影装置及び、半導体光源駆動回路の構成を詳細に説明する。
[1-1. Constitution]
First, the configurations of the video projector and the semiconductor light source drive circuit according to the first embodiment will be described in detail with reference to FIGS.

[1−1−1.映像投影装置の構成]
図1は本開示の実施の形態1における映像投影装置の構成を示すブロック図である。図1に示すように、実施の形態1における映像投影装置は、半導体光源駆動回路100と、半導体光源110と、時分割切替え波長変換素子120と、光変調素子130と、投影レンズ140と、PWM変調器150と、波長変換素子駆動回路160を備えて構成される。
[1-1-1. Configuration of video projection device]
FIG. 1 is a block diagram illustrating a configuration of a video projection device according to Embodiment 1 of the present disclosure. As shown in FIG. 1, the image projection device according to the first embodiment includes a semiconductor light source driving circuit 100, a semiconductor light source 110, a time division switching wavelength conversion element 120, a light modulation element 130, a projection lens 140, a PWM It comprises a modulator 150 and a wavelength conversion element drive circuit 160.

本開示の実施の形態1における映像投影装置は、色順次表示の投写型映像表示装置等に用いられる。半導体光源110の出力光を複数の蛍光体を切替えて波長変換することで、異なる色の映像光を生成する。さらにこの映像光を用いることで、入力された映像信号に従って、スクリーン170に映像171を投影して表示する。   The video projection device according to the first embodiment of the present disclosure is used for a projection-type video display device that performs color sequential display and the like. By changing the wavelength of the output light of the semiconductor light source 110 by switching a plurality of phosphors, image lights of different colors are generated. Further, by using this image light, the image 171 is projected and displayed on the screen 170 in accordance with the input image signal.

PWM変調器150は、外部回路から入力されるPWM設定値及び波長変換素子駆動回路160から入力される周波数切替え信号に従ってPWM変調信号を生成し、半導体光源駆動回路100に供給する。生成するPWM変調信号の周波数は、波長変換素子駆動回路160からの周波数切替え信号により切替えられる。半導体光源駆動回路100は、外部から入力される目標電流値及び、PWM変調器150からのPWM変調信号に従って、半導体光源110に流す電流がPWM変調されるように半導体光源110を駆動する。   The PWM modulator 150 generates a PWM modulation signal according to a PWM set value input from an external circuit and a frequency switching signal input from the wavelength conversion element driving circuit 160, and supplies the PWM modulation signal to the semiconductor light source driving circuit 100. The frequency of the generated PWM modulation signal is switched by a frequency switching signal from the wavelength conversion element driving circuit 160. The semiconductor light source driving circuit 100 drives the semiconductor light source 110 according to a target current value input from the outside and a PWM modulation signal from the PWM modulator 150 so that the current flowing to the semiconductor light source 110 is PWM-modulated.

半導体光源駆動回路100により駆動された半導体光源110は、青色光を発生して、時分割切替え波長変換素子120に出力する。波長変換素子駆動回路160は、外部回路から入力された垂直同期信号に同期して、波長変換素子駆動信号を生成し、時分割切替え波長変換素子120に供給する。また、波長変換素子駆動回路160は、上記の垂直同期信号に同期して周波数切替え信号を生成し、PWM変調器150に供給する。   The semiconductor light source 110 driven by the semiconductor light source driving circuit 100 generates blue light and outputs it to the time division switching wavelength conversion element 120. The wavelength conversion element drive circuit 160 generates a wavelength conversion element drive signal in synchronization with the vertical synchronization signal input from the external circuit, and supplies the generated signal to the time division switching wavelength conversion element 120. Further, the wavelength conversion element drive circuit 160 generates a frequency switching signal in synchronization with the vertical synchronization signal, and supplies the frequency switching signal to the PWM modulator 150.

時分割切替え波長変換素子120は、波長変換素子駆動信号に従って波長変換に用いる蛍光体を順次切替えながら、半導体光源110の出力光を波長変換する。波長変換された出力光は、光変調素子130へ出力される。光変調素子130では外部から入力された映像信号に従って入力された光が強度変調され、映像光となる。映像光は投影レンズ140を通してスクリーン170に投射され、スクリーン170に映像171が表示される。   The time-division switching wavelength conversion element 120 wavelength-converts the output light of the semiconductor light source 110 while sequentially switching the phosphor used for wavelength conversion according to the wavelength conversion element drive signal. The wavelength-converted output light is output to the light modulation element 130. In the light modulation element 130, the light input according to the video signal input from the outside is intensity-modulated to be video light. The image light is projected onto the screen 170 through the projection lens 140, and the image 171 is displayed on the screen 170.

[1−1−2.時分割切替え波長変換素子120の構成]
図2を参照して、時分割切替え波長変換素子120の構成を説明する。図2は、時分割切替え波長変換素子120に含まれる蛍光体ホイール121の構成例を示す平面図である。時分割切替え波長変換素子120は、図2に示す蛍光体ホイール121及び蛍光体ホイール121を回転させるモータを備えて構成される。
[1-1-2. Configuration of time division switching wavelength conversion element 120]
The configuration of the time division switching wavelength conversion element 120 will be described with reference to FIG. FIG. 2 is a plan view showing a configuration example of the phosphor wheel 121 included in the time division switching wavelength conversion element 120. The time division switching wavelength conversion element 120 includes a phosphor wheel 121 shown in FIG. 2 and a motor for rotating the phosphor wheel 121.

蛍光体ホイール121は、その演習に沿った領域を分割するように、径方向に所定の幅を持って形成された透過領域122、緑色蛍光体領域123及び赤色蛍光体領域124からなる。蛍光体ホイール121はモータによって駆動されて回転することで、半導体光源110からの青色光を受ける領域122〜124を選択的に切り替える。透過領域122は、半導体光源110からの青色光を透過し、そのまま光変調素子130に出力する。緑色蛍光体領域123は緑色蛍光体で構成され、半導体光源110からの青色光を緑色光に変換して光変調素子130に出力する。赤色蛍光体領域124は赤色蛍光体で構成され、半導体光源110からの青色光を赤色光に変換して光変調素子130に出力する。   The phosphor wheel 121 includes a transmission region 122, a green phosphor region 123, and a red phosphor region 124 formed with a predetermined width in the radial direction so as to divide a region along the exercise. The phosphor wheel 121 is driven by a motor to rotate, thereby selectively switching the regions 122 to 124 that receive the blue light from the semiconductor light source 110. The transmission region 122 transmits the blue light from the semiconductor light source 110 and outputs the blue light to the light modulation element 130 as it is. The green phosphor region 123 is formed of a green phosphor, converts blue light from the semiconductor light source 110 into green light, and outputs the green light to the light modulation element 130. The red phosphor region 124 is formed of a red phosphor, converts blue light from the semiconductor light source 110 into red light, and outputs the red light to the light modulation element 130.

[1−1−3.半導体光源駆動回路の構成]
図3は、実施の形態1における半導体光源駆動回路100の構成例を示すブロック図である。図3において、半導体光源駆動回路100は、スイッチング電源200、比較器210、コンデンサ220、平均化抵抗230、FET240及び検知抵抗250を備える。スイッチング電源200、半導体光源110、FET240及び検知抵抗250は直列に接続される。
[1-1-3. Configuration of semiconductor light source drive circuit]
FIG. 3 is a block diagram illustrating a configuration example of the semiconductor light source driving circuit 100 according to the first embodiment. 3, the semiconductor light source driving circuit 100 includes a switching power supply 200, a comparator 210, a capacitor 220, an averaging resistor 230, an FET 240, and a detection resistor 250. The switching power supply 200, the semiconductor light source 110, the FET 240, and the detection resistor 250 are connected in series.

スイッチング電源200は、比較器210からの比較結果信号に従って、半導体光源110への出力電圧を制御する。FET240は、PWM変調器150からのPWM変調信号に従って導通のオンオフを切り替え、半導体光源110に流れる電流をオンオフ制御する。検知抵抗250は、検知抵抗250を流れる電流により電圧を発生する。発生した電圧は平均化抵抗230を通じてコンデンサ220を充電する。比較器210は、外部から入力された目標電流値を示す基準電圧と、コンデンサ220の出力電圧とを比較し、その差分を示す比較結果信号を生成し、スイッチング電源200に出力する。これによりスイッチング電源200は、半導体光源110に流れる電流の平均値と、目標電流値とが等しくなるように駆動制御される。   The switching power supply 200 controls the output voltage to the semiconductor light source 110 according to the comparison result signal from the comparator 210. The FET 240 switches conduction on and off according to a PWM modulation signal from the PWM modulator 150, and controls on and off of a current flowing through the semiconductor light source 110. The detection resistor 250 generates a voltage by a current flowing through the detection resistor 250. The generated voltage charges the capacitor 220 through the averaging resistor 230. Comparator 210 compares a reference voltage indicating a target current value input from the outside with an output voltage of capacitor 220, generates a comparison result signal indicating the difference, and outputs the result to switching power supply 200. Thus, the switching power supply 200 is driven and controlled such that the average value of the current flowing through the semiconductor light source 110 is equal to the target current value.

[1−2.動作]
以上のように構成された映像投影装置及び半導体光源駆動回路について、その動作を以下で詳細に説明する。
[1-2. motion]
The operations of the video projection device and the semiconductor light source driving circuit configured as described above will be described in detail below.

図1において、PWM変調器150は、外部回路から入力されるPWM設定値及び波長変換素子駆動回路160から入力される周波数切替え信号に従ってPWM変調信号を生成し、半導体光源駆動回路100に出力する。出力されるPWM変調信号の周波数は、波長変換素子駆動回路160からの周波数切替え信号により切替えられる。また、PWM変調信号は、デューティサイクルが外部から入力されるPWM設定値(デューティサイクルの指示値)と等しくなるように生成される。   In FIG. 1, the PWM modulator 150 generates a PWM modulation signal according to a PWM set value input from an external circuit and a frequency switching signal input from the wavelength conversion element driving circuit 160, and outputs the PWM modulation signal to the semiconductor light source driving circuit 100. The frequency of the output PWM modulation signal is switched by a frequency switching signal from the wavelength conversion element driving circuit 160. Further, the PWM modulation signal is generated such that the duty cycle is equal to a PWM set value (duty cycle instruction value) input from the outside.

半導体光源駆動回路100は、外部から入力される、目標電流値を示す基準電圧及び、PWM変調器150からのPWM変調信号に従って、半導体光源110を駆動する。この時半導体光源110は、PWM変調信号がオンである間のみ半導体光源110に電流が流れ、かつ上述のように、PWM変調信号の1周期の間に半導体光源110に流れる電流の平均値が、目標電流値と等しくなるように駆動制御する。   The semiconductor light source drive circuit 100 drives the semiconductor light source 110 according to a reference voltage indicating a target current value and a PWM modulation signal from the PWM modulator 150, which are input from the outside. At this time, the semiconductor light source 110 allows the current to flow through the semiconductor light source 110 only while the PWM modulation signal is on, and as described above, the average value of the current flowing through the semiconductor light source 110 during one cycle of the PWM modulation signal is: Drive control is performed so as to be equal to the target current value.

半導体光源駆動回路100により駆動された半導体光源110は、青色光を発生して、時分割切替え波長変換素子120に出力する。波長変換素子駆動回路160は、外部回路から入力された垂直同期信号に同期して、前述の波長変換素子駆動信号を生成し、時分割切替え波長変換素子120に出力する。また、波長変換素子駆動回路160は、PWM変調器150のPWM変調信号の周波数を後述のように切り替えるための周波数切替え信号も生成し、PWM変調器150に出力する。   The semiconductor light source 110 driven by the semiconductor light source driving circuit 100 generates blue light and outputs it to the time division switching wavelength conversion element 120. The wavelength conversion element drive circuit 160 generates the above-described wavelength conversion element drive signal in synchronization with the vertical synchronization signal input from the external circuit, and outputs the signal to the time division switching wavelength conversion element 120. Further, the wavelength conversion element driving circuit 160 also generates a frequency switching signal for switching the frequency of the PWM modulation signal of the PWM modulator 150 as described later, and outputs the signal to the PWM modulator 150.

時分割切替え波長変換素子120は、波長変換素子駆動回路160からの波長変換素子駆動信号に従って駆動される。時分割切替え波長変換素子120はモータにより半導体ホイール121を回転させ、波長変換に使用する領域122〜124を順次選択的に切り替える。   The time-division switching wavelength conversion element 120 is driven according to a wavelength conversion element drive signal from the wavelength conversion element drive circuit 160. The time-division switching wavelength conversion element 120 rotates the semiconductor wheel 121 by a motor and selectively switches the regions 122 to 124 used for wavelength conversion sequentially.

透過領域122が使用されている間、半導体光源110からの青色光はカラーホイール121を透過し、そのまま光変調素子130へと出力される。黄色蛍光体領域123が使用されている間、黄色蛍光体領域123の黄色蛍光体は半導体光源110からの青色光を受けて黄色光を発光し、光変調素子130に出力する。同様に、赤色蛍光体領域124の蛍光体は半導体光源110からの青色光を受けて赤色光を発光し、光変調素子130に出力する。   While the transmission region 122 is used, the blue light from the semiconductor light source 110 passes through the color wheel 121 and is output to the light modulation element 130 as it is. While the yellow phosphor region 123 is being used, the yellow phosphor in the yellow phosphor region 123 receives the blue light from the semiconductor light source 110, emits yellow light, and outputs the yellow light to the light modulation element 130. Similarly, the phosphor in the red phosphor region 124 receives the blue light from the semiconductor light source 110, emits red light, and outputs the red light to the light modulation element 130.

光変調素子130は、外部から入力された映像信号に従って、時分割切替え波長変換素子120からの出力光を強度変調し、映像光とする。映像光は投影レンズ140を通してスクリーン170に投射され、スクリーン170に映像171が表示される。   The light modulation element 130 modulates the intensity of the output light from the time-division switching wavelength conversion element 120 according to a video signal input from the outside, to obtain video light. The image light is projected onto the screen 170 through the projection lens 140, and the image 171 is displayed on the screen 170.

半導体光源110の出力光の強度は、半導体光源110に流れる電流の値が大きいほど増大する。半導体光源110の出力光の強度の増大に応じて、時分割切替え波長変換素子120の出力光の強度も増大する。しかしながら、蛍光体にはそれぞれの励起限界強度があり、それを超える強度の光を入力しても、発光の強度は一定のままである。励起限界強度を超えた分のエネルギーにより蛍光体は発熱してエネルギー効率を低下させ、ひいては映像投影装置のエネルギー効率を低下させる。励起限界強度は蛍光体の種類によって異なり、赤色蛍光体領域124の赤色蛍光体の励起限界強度は、緑色蛍光体領域123の緑色蛍光体の励起限界強度よりも小さい。   The intensity of the output light from the semiconductor light source 110 increases as the value of the current flowing through the semiconductor light source 110 increases. As the intensity of the output light of the semiconductor light source 110 increases, the intensity of the output light of the time division switching wavelength conversion element 120 also increases. However, the phosphors have their respective excitation limit intensities, and the intensity of light emission remains constant even when light having an intensity exceeding the excitation limit intensity is input. The phosphor emits heat due to the energy exceeding the excitation limit intensity and lowers the energy efficiency, and consequently the energy efficiency of the image projection device. The excitation limit intensity differs depending on the type of phosphor, and the excitation limit intensity of the red phosphor in the red phosphor region 124 is smaller than the excitation limit intensity of the green phosphor in the green phosphor region 123.

また、半導体光源110の温度は、半導体光源110に電流が流れる期間(以下では「オン期間」と表記する)の間に上昇し、半導体光源110に電流が流れない期間(以下では「オフ期間」と表記する)の間に急速に低下する。半導体光源110の順方向電圧は高温であるほど減少するため、スイッチング電源200が一定の電圧を出力する場合において半導体光源110に流れる電流は、オン期間の間徐々に増加し、一定の値に飽和する。その後オフ期間に入ると半導体光源110の温度は急速に低下し、オン期間に入る前の温度まで戻る。従って、デューティサイクルの値によらず立ち上がりの波形は同一となる。   Further, the temperature of the semiconductor light source 110 increases during a period during which a current flows through the semiconductor light source 110 (hereinafter, referred to as an “on period”), and during a period during which no current flows through the semiconductor light source 110 (hereinafter, an “off period”). Rapidly decreases during the period). Since the forward voltage of the semiconductor light source 110 decreases as the temperature increases, when the switching power supply 200 outputs a constant voltage, the current flowing through the semiconductor light source 110 gradually increases during the ON period and saturates to a constant value. I do. Thereafter, when the OFF period is entered, the temperature of the semiconductor light source 110 is rapidly reduced, and returns to the temperature before the ON period was entered. Therefore, the rising waveform is the same regardless of the value of the duty cycle.

以下では、半導体光源110を流れる電流が飽和している時に半導体光源110が発光する光の強度が、緑色蛍光体の励起限界強度よりも小さく、赤色蛍光体の励起限界強度よりも大きい場合を想定する。図4は、PWM変調信号の周波数の変更を行わない従来例の半導体光源駆動回路において、半導体光源110に流れる電流を示すタイミングチャートである。図4では、時分割切替え波長変換素子120において緑色蛍光体領域123を用いる期間をT1で示し、赤色蛍光体領域124を用いる期間をT2で示す。また、Tc1はPWM変調信号の周期を示す。   In the following, it is assumed that the intensity of light emitted by the semiconductor light source 110 when the current flowing through the semiconductor light source 110 is saturated is smaller than the excitation limit intensity of the green phosphor and larger than the excitation limit intensity of the red phosphor. I do. FIG. 4 is a timing chart showing a current flowing through the semiconductor light source 110 in the conventional semiconductor light source driving circuit in which the frequency of the PWM modulation signal is not changed. In FIG. 4, a period in which the green phosphor region 123 is used in the time division switching wavelength conversion element 120 is indicated by T1, and a period in which the red phosphor region 124 is used is indicated by T2. Tc1 indicates the period of the PWM modulation signal.

図4において、半導体光源110に流れる電流が飽和している時の電流値をIpで表す。また、半導体光源110が赤色蛍光体の励起限界強度に等しい強さの光を発する電流はIpmで示される。図4における斜線部では、半導体光源110に過剰な電流が流れ、赤色蛍光体には励起限界強度を超える強度の光が入力されている。この入力光の過剰分は赤色蛍光体の内部で熱エネルギーに変換され、発熱した赤色蛍光体はエネルギー効率を低下させる。   In FIG. 4, the current value when the current flowing through the semiconductor light source 110 is saturated is represented by Ip. A current at which the semiconductor light source 110 emits light having an intensity equal to the excitation limit intensity of the red phosphor is indicated by Ipm. In the hatched portion in FIG. 4, an excessive current flows through the semiconductor light source 110, and light having an intensity exceeding the excitation limit intensity is input to the red phosphor. This excess input light is converted into thermal energy inside the red phosphor, and the heated red phosphor reduces energy efficiency.

図5は、図1の半導体光源駆動回路100においてPWM変調信号の周波数を蛍光体の種類ごとに切り替える場合の、半導体光源110に流れる電流を示すタイミングチャートである。図5において、期間T1、T2及び周期Tc1は図4のものと同一である。期間T2におけるPWM変調信号の周波数は、期間T1におけるPWM変調信号の周波数よりも高く設定されている。従って、期間T2においてPWM変調信号の周期Tc2は、期間T1における周期Tc1よりも短い。   FIG. 5 is a timing chart showing a current flowing through the semiconductor light source 110 when the frequency of the PWM modulation signal is switched for each type of phosphor in the semiconductor light source driving circuit 100 of FIG. 5, the periods T1, T2 and the cycle Tc1 are the same as those in FIG. The frequency of the PWM modulation signal in the period T2 is set higher than the frequency of the PWM modulation signal in the period T1. Therefore, the period Tc2 of the PWM modulation signal in the period T2 is shorter than the period Tc1 in the period T1.

ここで周期Tc2は、半導体光源110に流れる電流が飽和するよりも早くオフ期間に入るように、充分短く設定される。こうすることで、半導体光源110に流れる電流の最大値が低下する。この電流の最大値がIpm以下であれば、半導体光源110の出力光は赤色蛍光体の励起限界強度を超えることはない。従って、半導体光源110に図4の斜線部に示す過剰な電流は流れず、エネルギー効率の低下が解決される。   Here, the cycle Tc2 is set to be sufficiently short so that the off-period is entered earlier than the current flowing through the semiconductor light source 110 is saturated. By doing so, the maximum value of the current flowing through the semiconductor light source 110 decreases. If the maximum value of this current is equal to or less than Ipm, the output light of the semiconductor light source 110 does not exceed the excitation limit intensity of the red phosphor. Therefore, the excessive current shown by the hatched portion in FIG. 4 does not flow through the semiconductor light source 110, and the reduction in energy efficiency is solved.

なお、デューティサイクルが100パーセントに近い値である場合にPWM変調信号の周波数を高くすると、半導体光源110に流れる電流の期間T2にわたっての積分値は減少する。これは、期間T2において半導体光源110の合計の出力が低下することを示している。従ってこの期間T2に関して、PWM変調信号の周波数を切り替える場合における半導体光源110の出力は、周波数を切り替えない場合における半導体光源110の最大出力を達成できない。しかしながら、期間T2をより長く設定することで、出力の低下を補うことができるため、この出力の低下が問題となることはない。   If the frequency of the PWM modulation signal is increased when the duty cycle is close to 100%, the integrated value of the current flowing through the semiconductor light source 110 over the period T2 decreases. This indicates that the total output of the semiconductor light sources 110 decreases in the period T2. Therefore, in the period T2, the output of the semiconductor light source 110 when the frequency of the PWM modulation signal is switched cannot achieve the maximum output of the semiconductor light source 110 when the frequency is not switched. However, by setting the period T2 longer, a decrease in output can be compensated for, so that the decrease in output does not pose a problem.

[1−3.効果等]
以上のように、本実施の形態では、赤色蛍光体を用いる期間T2におけるPWM変調信号の周波数を、緑色蛍光体を用いる期間T1におけるPWM変調信号の周波数よりも高くする。これにより半導体光源110に流れる電流の最大値を所定の値よりも低下させ、半導体光源110の出力光の強度が赤色蛍光体の励起限界強度を超えないように調整できる。従って蛍光体におけるエネルギー損失が軽減され、光源装置全体の効率を高めることができる。
[1-3. Effects]
As described above, in the present embodiment, the frequency of the PWM modulation signal in the period T2 using the red phosphor is set higher than the frequency of the PWM modulation signal in the period T1 using the green phosphor. Accordingly, the maximum value of the current flowing through the semiconductor light source 110 can be reduced below a predetermined value, and the intensity of the output light from the semiconductor light source 110 can be adjusted so as not to exceed the excitation limit intensity of the red phosphor. Therefore, energy loss in the phosphor is reduced, and the efficiency of the entire light source device can be increased.

(他の実施の形態)
以上のように、本出願において開示する技術の例示として、実施の形態1を説明した。しかしながら、本開示における技術はこれに限定されず、適宜変更、置換、付加、省略などを行った実施の形態にも適用可能である。また、上記実施の形態1で説明した各構成要素を組み合わせて、新たな実施の形態とすることも可能である。そこで、以下では他の実施の形態を例示する。
(Other embodiments)
As described above, Embodiment 1 has been described as an example of the technology disclosed in the present application. However, the technology according to the present disclosure is not limited to this, and can be applied to embodiments in which changes, substitutions, additions, omissions, and the like are made as appropriate. Further, a new embodiment can be obtained by combining the components described in the first embodiment. Therefore, another embodiment will be described below.

実施の形態1では、半導体光源駆動回路100の検知抵抗250による電圧を平均化抵抗230とコンデンサ220によって時間軸で平均化する。そして、この平均化された電圧と、目標電流値が示す基準電圧とを比較器210によって比較し、スイッチング電源200を制御している。これにより、半導体光源110を流れる電流は、入力されたPWM変調信号に従ってPWM変調されるように制御される。   In the first embodiment, the voltage by the detection resistor 250 of the semiconductor light source driving circuit 100 is averaged on the time axis by the averaging resistor 230 and the capacitor 220. The averaged voltage is compared with the reference voltage indicated by the target current value by the comparator 210 to control the switching power supply 200. As a result, the current flowing through the semiconductor light source 110 is controlled so as to be PWM-modulated according to the input PWM modulation signal.

しかしながら、検知抵抗250による電圧は、オフ期間も含めた期間で平均化される。オフ期間では半導体光源110に電流が流れていないため、検知抵抗250による電圧の値は0である。また、PWM変調信号のデューティサイクルの値が例えば5%以下のように小さい場合、検知抵抗250による電圧の値が0であるオフ期間が全体の期間の大部分を占める。従ってその場合、比較器210が比較に用いる平均の電圧値は0に近い値となる。そのためノイズ又は素子性能のばらつき等の影響を強く受けて電流制御の精度が低下し、光出力の強度制御の精度も低下する。   However, the voltage of the sensing resistor 250 is averaged over a period including the off period. Since no current flows through the semiconductor light source 110 during the off period, the voltage value of the detection resistor 250 is zero. When the value of the duty cycle of the PWM modulation signal is small, for example, 5% or less, the off period in which the voltage value of the detection resistor 250 is 0 occupies most of the entire period. Therefore, in this case, the average voltage value used for comparison by the comparator 210 is close to zero. Therefore, the accuracy of current control is reduced due to the influence of noise or variations in element performance, and the accuracy of intensity control of optical output is also reduced.

そこで、平均化抵抗230の直前又は直後に直列にスイッチを挿入し、スイッチはPWM変調器150からのPWM変調信号によりオンオフ制御される構成を想定する。スイッチはPWM変調信号がオンの間に導通し、PWM変調信号がオフの間は切断される。このような構成におけるコンデンサ220はオフ期間に充放電を行わず、従ってオフ期間の間、コンデンサ220の電荷が保存される。これにより、平均化抵抗230及びコンデンサ220は、オン期間の間のみの電圧を平均する。従ってコンデンサ220の出力電圧Vcは、デューティサイクルの値が変化してもほぼ一定となる。これによりデューティサイクルが例えば5%以下のように小さい場合でも、比較器210が比較に用いる出力電圧Vcが上記ほぼ一定のレベルに維持され、精度の高い制御が可能となる。   Therefore, a configuration is assumed in which a switch is inserted in series immediately before or immediately after the averaging resistor 230, and the switch is turned on and off by a PWM modulation signal from the PWM modulator 150. The switch conducts while the PWM modulation signal is on and disconnects while the PWM modulation signal is off. In such a configuration, the capacitor 220 does not perform charging / discharging during the off-period, so that the charge of the capacitor 220 is stored during the off-period. Thus, the averaging resistor 230 and the capacitor 220 average the voltage only during the ON period. Therefore, the output voltage Vc of the capacitor 220 becomes substantially constant even if the value of the duty cycle changes. Thus, even when the duty cycle is as small as 5% or less, for example, the output voltage Vc used for comparison by the comparator 210 is maintained at the above-described substantially constant level, and highly accurate control is possible.

また、実施の形態1では、蛍光体ホイール121は緑色蛍光体及び、励起限界強度が緑色蛍光体よりも小さい赤色蛍光体の2種類の蛍光体から構成されている。しかしながら、時分割切替え波長変換素子に用いる複数の蛍光体はこれに限らず、第1の蛍光体及び、第1の蛍光体よりも励起限界強度が小さい第2の蛍光体を含むように構成してもよい。   In the first embodiment, the phosphor wheel 121 is composed of two kinds of phosphors, a green phosphor and a red phosphor whose excitation limit intensity is smaller than the green phosphor. However, the plurality of phosphors used in the time-division switching wavelength conversion element are not limited to this, and are configured to include a first phosphor and a second phosphor having an excitation limit intensity smaller than that of the first phosphor. You may.

以上のように、本開示における技術の例示として、実施の形態を説明した。そのために、添付図面及び詳細な説明を提供した。   As described above, the embodiments have been described as examples of the technology in the present disclosure. For that purpose, the accompanying drawings and the detailed description have been provided.

従って、添付図面及び詳細な説明に記載された構成要素の中には、課題解決のために必須な構成要素だけでなく、上記技術を例示するために、課題解決のためには必須でない構成要素も含まれ得る。そのため、それらの必須ではない構成要素が添付図面や詳細な説明に記載されていることを以て、直ちにそれらの必須ではない構成要素が必須であるとの認定をするべきではない。   Therefore, among the components described in the accompanying drawings and the detailed description, not only those components that are essential for solving the problem, but also components that are not essential for solving the problem, in order to illustrate the above technology. May also be included. Therefore, based on the description of the non-essential components in the accompanying drawings and detailed description, it should not be immediately determined that the non-essential components are essential.

また、上述の実施の形態は、本開示における技術を例示するためのものであるから、特許請求の範囲又はその均等の範囲において種々の変更、置換、付加、省略等を行うことができる。   Further, since the above-described embodiments are intended to exemplify the technology in the present disclosure, various changes, substitutions, additions, omissions, and the like can be made within the scope of the claims or equivalents thereof.

本開示は、映像投影装置及び投写型映像表示装置に利用可能である。励起限界強度の異なる2種類以上の蛍光体を切替えて半導体光源の光を波長変換し、その光を用いて映像を表示する映像表示システムにおいて、半導体光源が出力する光の強度の最大値が各蛍光体の励起限界強度を超えないように調整し、効率を高めることができる。   The present disclosure is applicable to a video projection device and a projection type video display device. In an image display system in which light from a semiconductor light source is wavelength-converted by switching two or more types of phosphors having different excitation limit intensities and an image is displayed using the light, the maximum value of the intensity of light output from the semiconductor light source is determined by Adjustment is made so as not to exceed the excitation limit intensity of the phosphor, and the efficiency can be increased.

100 半導体光源駆動回路
110 半導体光源
120 時分割切替え波長変換素子
121 蛍光体ホイール
122 透過領域
123 緑色蛍光体領域
124 赤色蛍光体領域
130 光変調素子
140 投影レンズ
150 PWM変調器
160 波長変換素子駆動回路
200 スイッチング電源
210 比較器
220 コンデンサ
230 平均化抵抗
240 FET
250 検知抵抗
REFERENCE SIGNS LIST 100 semiconductor light source driving circuit 110 semiconductor light source 120 time division switching wavelength conversion element 121 phosphor wheel 122 transmission area 123 green phosphor area 124 red phosphor area 130 light modulation element 140 projection lens 150 PWM modulator 160 wavelength conversion element driving circuit 200 Switching power supply 210 Comparator 220 Capacitor 230 Averaging resistor 240 FET
250 detection resistor

Claims (4)

PWM変調信号に従って駆動される半導体光源と、
第1の蛍光体と、前記第1の蛍光体よりも小さい強度の入力光で励起強度が飽和する第2の蛍光体とを含む複数の蛍光体を順次選択的に切り替えながら、前記半導体光源の出力光を波長変換する時分割切替え波長変換素子とを備え、
前記第2の蛍光体が用いられる期間において前記半導体光源を駆動する電流をPWM変調するPWM変調信号の周波数は、前記第1の蛍光体が用いられる期間におけるPWM変調信号の周波数よりも高い、
映像投影装置。
A semiconductor light source driven according to a PWM modulation signal;
While selectively switching a plurality of phosphors sequentially including a first phosphor and a second phosphor whose excitation intensity is saturated with input light having an intensity smaller than that of the first phosphor, the semiconductor light source includes A time-division switching wavelength conversion element for wavelength-converting the output light,
The frequency of the PWM modulation signal that PWM modulates the current for driving the semiconductor light source during the period in which the second phosphor is used is higher than the frequency of the PWM modulation signal in the period in which the first phosphor is used.
Video projection device.
前記時分割切替え波長変換素子は、外部から入力された垂直同期信号に同期して前記複数の蛍光体を順次選択的に切り替える、
請求項1に記載の映像投影装置。
The time-division switching wavelength conversion element, selectively switches the plurality of phosphors sequentially in synchronization with a vertical synchronization signal input from the outside,
The video projection device according to claim 1.
前記映像投影装置はさらに、
外部から入力された映像信号に従って、前記時分割切替え波長変換素子からの出力光を変調して出力する光変調素子と、
前記光変調素子からの出力光を投射するための投影レンズとを備える、
請求項1又は2に記載の映像投影装置。
The image projection device further includes:
According to a video signal input from the outside, an optical modulator that modulates and outputs output light from the time-division switching wavelength converter,
And a projection lens for projecting output light from the light modulation element,
The image projection device according to claim 1.
請求項1〜3のいずれか1つに記載の映像投影装置を備える、投写型映像表示装置。   A projection-type image display device, comprising the image projection device according to claim 1.
JP2018160642A 2018-08-29 2018-08-29 Video projection device Active JP7122552B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018160642A JP7122552B2 (en) 2018-08-29 2018-08-29 Video projection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018160642A JP7122552B2 (en) 2018-08-29 2018-08-29 Video projection device

Publications (2)

Publication Number Publication Date
JP2020034695A true JP2020034695A (en) 2020-03-05
JP7122552B2 JP7122552B2 (en) 2022-08-22

Family

ID=69668063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018160642A Active JP7122552B2 (en) 2018-08-29 2018-08-29 Video projection device

Country Status (1)

Country Link
JP (1) JP7122552B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008047494A (en) * 2006-08-21 2008-02-28 Yokogawa Electric Corp Dimming control method, dimming control device and lighting system
JP2011075899A (en) * 2009-09-30 2011-04-14 Casio Computer Co Ltd Light source unit, light source device, and projector
JP2014063092A (en) * 2012-09-24 2014-04-10 Seiko Epson Corp Display device, projector, and control method for display device
JP2014191003A (en) * 2013-03-26 2014-10-06 Panasonic Corp Light source device and projection type display device using the same
JP2016170864A (en) * 2015-03-11 2016-09-23 富士通テン株式会社 Image display system and image display method
JP2017033890A (en) * 2015-08-06 2017-02-09 パナソニックIpマネジメント株式会社 Semiconductor light source driving device
JP2017129700A (en) * 2016-01-20 2017-07-27 セイコーエプソン株式会社 Display device and control method of display device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008047494A (en) * 2006-08-21 2008-02-28 Yokogawa Electric Corp Dimming control method, dimming control device and lighting system
JP2011075899A (en) * 2009-09-30 2011-04-14 Casio Computer Co Ltd Light source unit, light source device, and projector
JP2014063092A (en) * 2012-09-24 2014-04-10 Seiko Epson Corp Display device, projector, and control method for display device
JP2014191003A (en) * 2013-03-26 2014-10-06 Panasonic Corp Light source device and projection type display device using the same
JP2016170864A (en) * 2015-03-11 2016-09-23 富士通テン株式会社 Image display system and image display method
JP2017033890A (en) * 2015-08-06 2017-02-09 パナソニックIpマネジメント株式会社 Semiconductor light source driving device
JP2017129700A (en) * 2016-01-20 2017-07-27 セイコーエプソン株式会社 Display device and control method of display device

Also Published As

Publication number Publication date
JP7122552B2 (en) 2022-08-22

Similar Documents

Publication Publication Date Title
US9235109B2 (en) Light source driving device, light source driving method, and image display device
TWI446090B (en) Projection apparatus and projection method the same
US7378631B2 (en) Image projection apparatus for adjusting white balance in consideration of level of light emitted from LED and method thereof
TWI432877B (en) Projection device and projection method having a light source that has considered the influence of generated heat
KR100643774B1 (en) Image projector and white balance adjustment method for adjusting white balance in consideration of temperature and light emission level of light emitting diode light source
CN1988745A (en) Led illumination unit, projection display device using the same, and method of operating led illumination unit
US9223333B2 (en) Power supply apparatus, electronic apparatus, and power supply control method
US9270175B2 (en) Driving device, light-emitting device, projection device and control method
JP2007035639A (en) LIGHTING DEVICE AND METHOD FOR CONTROLLING BRIGHTNESS AND COLOR POSITION OF LIGHTING DEVICE
JP6589141B2 (en) Projection display device
US8594174B2 (en) Rotating pulse-width modulator
JP6678289B2 (en) Semiconductor light source driving device and projection type video display device
US9342083B2 (en) Driving device, flasher device, and projector
CN107765497B (en) Light emitting device, projection system, and image modulation method
JP2004334083A (en) Illumination optical system using semiconductor laser device as light source and projector utilizing the same
CN106371275B (en) A kind of laser projection carrying out time sequential pulse compensation to light source
JP5919905B2 (en) Driving device, light emitting device, and projection device
US20150029234A1 (en) Light source unit, projection apparatus, projection method and a program medium
JP7122552B2 (en) Video projection device
CN110753880B (en) Laser power management in laser projectors
CN113015294A (en) Current control circuit, method and projection equipment
CN206115129U (en) Light emitting device and a projection system
KR20100114900A (en) Method for the operation of and circuit arrangement for light sources
JP2009031333A (en) Driving method of projector, and projector
JP2015203741A (en) Projection type video display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220706

R151 Written notification of patent or utility model registration

Ref document number: 7122552

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

SZ03 Written request for cancellation of trust registration

Free format text: JAPANESE INTERMEDIATE CODE: R313Z03

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350