JP2020028858A - Final neutralization method in wet refining process for nickel oxide ore - Google Patents
Final neutralization method in wet refining process for nickel oxide ore Download PDFInfo
- Publication number
- JP2020028858A JP2020028858A JP2018156027A JP2018156027A JP2020028858A JP 2020028858 A JP2020028858 A JP 2020028858A JP 2018156027 A JP2018156027 A JP 2018156027A JP 2018156027 A JP2018156027 A JP 2018156027A JP 2020028858 A JP2020028858 A JP 2020028858A
- Authority
- JP
- Japan
- Prior art keywords
- neutralization
- slurry
- concentration
- final
- liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Manufacture And Refinement Of Metals (AREA)
- Removal Of Specific Substances (AREA)
Abstract
Description
本発明は、ニッケル酸化鉱石に対して高圧酸浸出処理を施すことでニッケルの回収を行う湿式製錬プロセスにおいて排出される排液の最終中和方法に関する。 The present invention relates to a final neutralization method of a wastewater discharged in a hydrometallurgical process in which nickel is recovered by subjecting nickel oxide ore to high-pressure acid leaching.
ニッケル酸化鉱石からニッケルを回収する方法は乾式法と湿式法に大別することができ、後者の湿式法としては高温加圧酸浸出(HPAL:High Pressure Acid Leachとも称する)プロセスが知られている。HPALプロセスは乾式法に比べてエネルギー消費量を抑えることができるうえ、低品位のニッケル酸化鉱石からニッケルを効率よく回収することができるという利点を有している。 The method of recovering nickel from nickel oxide ore can be roughly classified into a dry method and a wet method. As the latter wet method, a high-temperature pressurized acid leaching (HPAL: High Pressure Acid Leach) process is known. . The HPAL process has advantages in that energy consumption can be reduced as compared with the dry process and nickel can be efficiently recovered from low-grade nickel oxide ore.
このHPALプロセスでは、例えば特許文献1に示すような一連の湿式工程でニッケル酸化鉱石に対して処理を行う。すなわち、所定のNi品位、不純物品位となるように混合した複数種類の低品位ニッケル酸化鉱石に対して水を加えてスラリーの形態にした後、分級手段として例えば湿式篩に導入して粗大な鉱石や夾雑物を除去することで篩下側に所定の粒度の鉱石を含んだ鉱石スラリーを回収する。この鉱石スラリーをオートクレーブと称する圧力容器に硫酸と共に装入して高温加圧下で酸浸出処理を施すことにより、Niを硫酸浸出させて浸出スラリーを得る。
In this HPAL process, for example, a nickel oxide ore is treated in a series of wet processes as shown in
上記の浸出スラリーは残留遊離酸を含んでいるので予備中和工程において石灰石を用いて中和処理した後、固液分離工程に移送してNiを含んだ浸出液からなる貴液を浸出残渣から分離する。分離された浸出残渣は最終中和工程にて重金属類が除去された後、テーリングダムに送液される。一方、貴液は中和工程及び浄液工程で不純物が除去された後、硫化工程にて硫化水素ガスが添加されてNiCo混合硫化物が生成される。このNiCo混合硫化物を固液分離により回収する際に排出される貧液とも称する排液は、一部が上記予備中和工程後の固液分離工程で再利用され、残りは上記最終中和工程で処理される。 Since the above leaching slurry contains residual free acid, it is neutralized using limestone in the pre-neutralization step, and then transferred to the solid-liquid separation step to separate the noble liquid consisting of the leaching liquid containing Ni from the leaching residue. I do. The separated leaching residue is sent to a tailing dam after heavy metals are removed in a final neutralization step. On the other hand, in the noble liquid, after impurities are removed in the neutralization step and the purification step, hydrogen sulfide gas is added in the sulfurization step to generate NiCo mixed sulfide. A part of the waste liquid, which is also referred to as a poor liquid discharged when the NiCo mixed sulfide is recovered by solid-liquid separation, is reused in the solid-liquid separation step after the preliminary neutralization step, and the remainder is the final neutralization. Processed in the process.
上記のように、最終中和工程は、固液分離工程から排出される浸出残渣を含んだ酸性の濃縮スラリー、及び硫化工程から排出される酸性水溶液からなる貧液を系外に放出する前に、液中に溶存している金属成分を析出させて環境上の問題を生じない程度まで除去することを目的としている。そのため、一般に最終中和工程では石灰石を添加して中和処理する第1の中和処理と、消石灰を添加してより高いpHで中和処理する第2の中和処理とからなる2段階の中和処理が行われている。 As described above, the final neutralization step is performed before discharging the acidic concentrated slurry containing the leaching residue discharged from the solid-liquid separation step and the poor liquid composed of the acidic aqueous solution discharged from the sulfidation step to the outside of the system. It is another object of the present invention to precipitate a metal component dissolved in a liquid and remove it to such an extent that an environmental problem does not occur. Therefore, in the final neutralization step, a two-stage neutralization process is generally performed, in which limestone is added and neutralized by adding limestone and slaked lime is added and neutralized at a higher pH. Neutralization has been performed.
しかしながら、上記の2段階の中和処理では、処理条件によっては石灰石に比べて単価の高い消石灰の消費量が多くなりすぎ、高コストになることがあった。そこで、特許文献2には、鉱石スラリーの前処理段階において鉱石スラリーを粒径で選別することによって、最終中和工程における消石灰等の中和剤の使用量を効果的に削減する技術が提案されている。
However, in the above-described two-stage neutralization treatment, depending on the treatment conditions, the consumption of slaked lime having a higher unit price than that of limestone may be too large, resulting in high cost. Therefore,
上記の特許文献2の技術を採用することにより中和剤の使用量をある程度削減することができるものの、依然として中和剤の消費コストが高くなることがあった。本発明は上記のような状況に鑑みてなされたものであり、最終中和工程で消費される中和剤のコストの削減することが可能な最終中和方法を提供することを目的とする。
Although the use amount of the neutralizing agent can be reduced to some extent by employing the technique of
上記目的を達成するため、本発明の最終中和方法は、ニッケル酸化鉱石の高温加圧酸浸出で生成した浸出液からニッケル硫化物を回収する際に排出される排液に溶存する金属を除去する最終中和方法であって、鉄イオン濃度が1.0〜4.0g/Lに調整された排液に対して石灰石スラリーを添加してpH5.0〜5.4で第1の中和処理を行った後、消石灰スラリーを添加してより高いpHで第2の中和処理を行うことを特徴とする。 In order to achieve the above object, the final neutralization method of the present invention removes a metal dissolved in an effluent discharged when recovering nickel sulfide from a leaching solution generated by high-temperature pressure acid leaching of nickel oxide ore. A final neutralization method in which a limestone slurry is added to a wastewater having an iron ion concentration adjusted to 1.0 to 4.0 g / L and a first neutralization treatment is performed at pH 5.0 to 5.4. After that, the second neutralization treatment is performed at a higher pH by adding slaked lime slurry.
本発明によれば石灰石による反応効率を高めることができるので、最終中和方法全体として消費する中和剤の量を削減することができる。 According to the present invention, since the reaction efficiency of limestone can be increased, the amount of the neutralizing agent consumed in the final final neutralization method as a whole can be reduced.
以下、本発明の実施形態の最終中和方法を含んだニッケル酸化鉱石の湿式製錬プロセスについて図1を参照しながら説明する。この図1に示す湿式製錬プロセスは、原料としてのニッケル酸化鉱石に対して粉砕及び篩別等の前処理を行って所定の粒度にすると共に水を加えてスラリーの形態に調製する鉱石調合工程S1と、該鉱石調合工程S1で調製された鉱石スラリーに硫酸を添加して高温加圧下で浸出処理を施す高圧硫酸浸出工程S2と、該高圧硫酸浸出工程S2で得た浸出スラリーに中和剤を添加してpHを所定範囲に調整する予備中和工程S3と、該予備中和工程S3でpH調整された浸出スラリーを多段洗浄することでニッケル及びコバルトと共に不純物元素を含む貴液を浸出残渣から分離する固液分離工程S4と、該貴液にpH調整剤を添加することで不純物元素を含む中和澱物を生成し、これを分離除去してニッケル及びコバルトと共に亜鉛を含む中和終液を得る中和工程S5と、該中和終液に硫化剤を添加することで亜鉛硫化物を生成し、これを分離除去してニッケル及びコバルトを含むニッケル回収用母液を得る浄液工程S6と、該ニッケル回収用母液に硫化剤を添加することでニッケル及びコバルトを含む混合硫化物を生成した後、固液分離により該混合硫化物を回収する硫化程S7と、該硫化工程S7の固液分離の際に排出される貧液に溶存する金属を除去(無害化とも称する)する最終中和工程S8とを有している。以下、これら工程の各々について説明する。 Hereinafter, the hydrometallurgical process of nickel oxide ore including the final neutralization method of the embodiment of the present invention will be described with reference to FIG. In the hydrometallurgical process shown in FIG. 1, a nickel oxide ore as a raw material is subjected to a pretreatment such as pulverization and sieving so as to have a predetermined particle size, and water is added to prepare an ore blending step. S1, a high-pressure sulfuric acid leaching step S2 of adding sulfuric acid to the ore slurry prepared in the ore blending step S1 and subjecting the ore slurry to leaching under high temperature and pressure, and a neutralizing agent added to the leached slurry obtained in the high-pressure sulfuric acid leaching step S2. And a pre-neutralization step S3 for adjusting the pH to a predetermined range, and a leaching slurry containing an impurity element together with nickel and cobalt by washing the leaching slurry whose pH has been adjusted in the pre-neutralization step S3 in multiple stages. A neutralizing precipitate containing impurity elements by adding a pH adjuster to the noble solution, and separating and removing the neutralized precipitate containing zinc together with nickel and cobalt. A neutralization step S5 for obtaining a liquid, and a purification step S6 for generating a zinc sulfide by adding a sulfurizing agent to the neutralized final solution, separating and removing the zinc sulfide to obtain a nickel recovery mother liquor containing nickel and cobalt. And a sulfurization step S7 for adding a sulfurizing agent to the nickel recovery mother liquor to generate a mixed sulfide containing nickel and cobalt, and then recovering the mixed sulfide by solid-liquid separation. And a final neutralization step S8 for removing (also referred to as detoxification) metals dissolved in the poor solution discharged during liquid separation. Hereinafter, each of these steps will be described.
(1)鉱石調合工程
鉱石調合工程S1では、原料としてのニッケル酸化鉱石をジョークラッシャーなどの粉砕機に投入して粉砕した後、所定の目開きを有するスクリーンで篩別して所定の粒度を有する鉱石を作製する。上記篩別は湿式で行ってもよく、この場合は粉砕した鉱石を適量の水と共に湿式スクリーンに導入することで、所定の粒度を有する鉱石を所望のスラリー濃度を有する鉱石スラリーの形態で篩下側に回収することができる。
(1) Ore Mixing Step In the ore mixing step S1, nickel oxide ore as a raw material is put into a pulverizer such as a jaw crusher and pulverized, and then sieved with a screen having a predetermined opening to obtain ore having a predetermined particle size. Make it. The sieving may be performed by a wet method.In this case, the ore having a predetermined particle size is sieved in the form of an ore slurry having a desired slurry concentration by introducing the crushed ore into a wet screen together with an appropriate amount of water. Can be collected on the side.
この鉱石調合工程S1で処理されるニッケル酸化鉱石としては、主としてリモナイト鉱及びサプロライト鉱等のいわゆるラテライト鉱である。ラテライト鉱のニッケル含有量は、一般に0.8〜2.5質量%であり、水酸化物又はケイ苦土(ケイ酸マグネシウム)鉱物として含まれている。このニッケル酸化鉱石は、鉄の含有量が10〜50質量%であり、これは主として3価の水酸化物(ゲーサイト)の形態を有しており、一部2価の鉄がケイ苦土鉱物に含まれている。鉱石調合工程S1の原料には、上記のラテライト鉱のほか、ニッケル、コバルト、マンガン、銅等の有価金属を含有する例えば深海底に賦存するマンガン瘤等の酸化鉱石が用いられることがある。 The nickel oxide ore treated in the ore blending step S1 is mainly a so-called laterite ore such as limonite ore and saprolite ore. The nickel content of laterite ore is generally from 0.8 to 2.5% by mass and is included as hydroxide or formicite (magnesium silicate) mineral. This nickel oxide ore has an iron content of 10 to 50% by mass, which mainly has a form of trivalent hydroxide (goethite), and a part of divalent iron is made of silica Contained in minerals. In addition to the above-mentioned laterite ore, an oxide ore containing valuable metals such as nickel, cobalt, manganese, and copper, such as a manganese nodule existing on the deep sea floor, may be used as a raw material for the ore blending step S1.
(2)高圧硫酸浸出工程
高圧硫酸浸出工程S2では、上記鉱石調合工程S1で調製された鉱石スラリーをオートクレーブと称する圧力容器に硫酸と共に装入し、該鉱石スラリーに対して攪拌しながら3〜4.5MPaG、220〜280℃程度の高温高圧条件下で高圧酸浸出処理を施すことによって、浸出液と浸出残渣とからなる浸出スラリーを生成する。
(2) High-Pressure Sulfuric Acid Leaching Step In the high-pressure sulfuric acid leaching step S2, the ore slurry prepared in the ore blending step S1 is charged together with sulfuric acid into a pressure vessel called an autoclave, and the ore slurry is stirred for 3 to 4 times. A leaching slurry composed of a leaching solution and a leaching residue is generated by performing high-pressure acid leaching treatment under a high-temperature and high-pressure condition of about 0.5 MPaG and about 220 to 280 ° C.
この高圧硫酸浸出工程S2では、下記式1〜3で表される浸出反応と下記式4及び5で表される高温熱加水分解反応が生じ、ニッケル、コバルト等の硫酸塩としての浸出と、浸出された硫酸鉄のヘマタイトとしての固定化が行われる。但し、鉄イオンの固定化は完全には進行しないため、通常、得られる浸出スラリーの液部分には、ニッケル、コバルト等のほかに2価と3価の鉄イオンが含まれる。
In the high-pressure sulfuric acid leaching step S2, a leaching reaction represented by the following
[式1]
MO+H2SO4→MSO4+H2O
(式中Mは、Ni、Co、Fe、Zn、Cu、Mg、Cr、Mn等の金属である。)
[式2]
2Fe(OH)3+3H2SO4→Fe2(SO4)3+6H2O
[式3]
FeO+H2SO4→FeSO4+H2O
[式4]
2FeSO4+H2SO4+1/2O2→Fe2(SO4)3+H2O
[式5]
Fe2(SO4)3+3H2O→Fe2O3+3H2SO4
[Equation 1]
MO + H 2 SO 4 → MSO 4 + H 2 O
(In the formula, M is a metal such as Ni, Co, Fe, Zn, Cu, Mg, Cr, and Mn.)
[Equation 2]
2Fe (OH) 3 + 3H 2 SO 4 → Fe 2 (SO 4 ) 3 + 6H 2 O
[Equation 3]
FeO + H 2 SO 4 → FeSO 4 + H 2 O
[Equation 4]
2FeSO 4 + H 2 SO 4 + / O 2 → Fe 2 (SO 4 ) 3 + H 2 O
[Equation 5]
Fe 2 (SO 4 ) 3 + 3H 2 O → Fe 2 O 3 + 3H 2 SO 4
高圧硫酸浸出工程S2において上記オートクレーブに装入する硫酸の添加量には特に限定はないが、上記原料の鉱石中の鉄が浸出されるように過剰に添加するのが好ましい。なお、高圧硫酸浸出工程S2では、生成したヘマタイトを含む浸出残渣が後工程の固液分離工程S4においてろ過性を低下させることがないように、浸出液のpHを0.1〜1.0に調整することが好ましい。 The amount of sulfuric acid to be charged into the autoclave in the high-pressure sulfuric acid leaching step S2 is not particularly limited, but is preferably added in excess so that iron in the ore as the raw material is leached. In the high-pressure sulfuric acid leaching step S2, the pH of the leaching solution was adjusted to 0.1 to 1.0 so that the leaching residue containing the generated hematite did not deteriorate the filterability in the subsequent solid-liquid separation step S4. Is preferred.
(3)予備中和工程
予備中和工程S3では、上記高圧硫酸浸出工程S2にて得た浸出スラリーのpHを所定の範囲に調整する。すなわち、上記高圧硫酸浸出工程S2は、浸出率を向上させる観点から過剰の硫酸が添加されるため、オートクレーブから抜き出される浸出スラリーにはフリー硫酸(浸出反応に関与しなかった余剰の硫酸、以下遊離硫酸ともいう)が含まれている。そこで、予備中和工程S3では、次工程の固液分離工程S4における多段洗浄の際に効率よく洗浄が行われるように、浸出スラリーのpHを好ましくは2.0〜6.0程度の範囲内に調整する。
(3) Pre-neutralization step In the pre-neutralization step S3, the pH of the leached slurry obtained in the high-pressure sulfuric acid leaching step S2 is adjusted to a predetermined range. That is, in the high-pressure sulfuric acid leaching step S2, since excess sulfuric acid is added from the viewpoint of improving the leaching rate, the leaching slurry extracted from the autoclave contains free sulfuric acid (excess sulfuric acid not involved in the leaching reaction; Free sulfuric acid). Therefore, in the pre-neutralization step S3, the pH of the leached slurry is preferably in the range of about 2.0 to 6.0 so that washing is efficiently performed in the multi-stage washing in the next solid-liquid separation step S4. Adjust to
この浸出スラリーのpHが2.0より低いと、後工程の装置の接液部の腐食対策にかなりのコストがかかるので好ましくない。逆に浸出スラリーのpHが6.0より高いと、浸出スラリー中に浸出したニッケルが、洗浄の過程で析出して残渣として沈殿し、洗浄効率を低下させるおそれがあるので好ましくない。上記のpHの調整方法としては特に限定はないが、例えば炭酸カルシウム等の中和剤をスラリーの形態で添加することによって好適に調整することができる。 If the pH of the leached slurry is lower than 2.0, it is not preferable because a considerable cost is required for countermeasures against corrosion of the liquid contact portion of the apparatus in the subsequent process. Conversely, if the pH of the leaching slurry is higher than 6.0, nickel leached into the leaching slurry is not preferable because it may precipitate during the washing process and precipitate as a residue, thereby lowering the washing efficiency. The method for adjusting the pH is not particularly limited, but can be suitably adjusted by adding a neutralizing agent such as calcium carbonate in the form of a slurry.
(4)固液分離工程
固液分離工程S4では、上記予備中和工程S3にてpH調整された浸出スラリーに対して洗浄液を混合し、シックナー等の沈降分離設備により洗浄しながら、凝集剤供給設備等から供給される好適にはアニオン系の凝集剤を用いて固液分離を行う。これにより浸出残渣が除去され、ニッケル及びコバルトのほか亜鉛等の不純物元素を含む粗硫酸ニッケル水溶液からなる貴液が得られる。上記のようにシックナーを用いた場合は浸出スラリー中の浸出残渣が沈降物として濃縮され、その際、洗浄液による浸出スラリーの希釈の度合いに応じて、浸出残渣に付着するニッケル分を減少させることができる。シックナーから抜き出された浸出残渣を含むスラリーは、必要に応じて後述する最終中和工程S8で中和処理を施すことで重金属の除去処理を行った後、テーリングダムに移送される。
(4) Solid-Liquid Separation Step In the solid-liquid separation step S4, the washing liquid is mixed with the leached slurry whose pH has been adjusted in the pre-neutralization step S3, and the coagulant is supplied while being washed by a sedimentation separation facility such as a thickener. Solid-liquid separation is performed using a suitable anionic coagulant supplied from equipment or the like. As a result, the leaching residue is removed, and a noble liquid composed of a crude nickel sulfate aqueous solution containing impurity elements such as zinc in addition to nickel and cobalt is obtained. When the thickener is used as described above, the leaching residue in the leaching slurry is concentrated as sediment, and at this time, depending on the degree of dilution of the leaching slurry with the cleaning liquid, the nickel content attached to the leaching residue may be reduced. it can. The slurry containing the leaching residue extracted from the thickener is subjected to a neutralization treatment in a final neutralization step S8 described below to remove heavy metals, if necessary, and then transferred to a tailing dam.
この固液分離工程S4では、直列に連結した複数基のシックナーを用いた連続向流洗浄法(CCD法:Counter Current Decantation)により浸出スラリーを多段洗浄することが好ましい。この洗浄法は、先頭のシックナーに浸出スラリーを導入することで底部から抜き出される濃縮スラリーを後段のシックナーに順次移送すると共に、末端のシックナーに洗浄液を導入することでオーバーフローにより排出される上澄液を前段のシックナーに順次移送するものであり、系内に新たに導入する洗浄液の量を少量に抑えながらニッケル及びコバルトの回収率を95%以上確保することが可能になる。 In this solid-liquid separation step S4, it is preferable to wash the leached slurry in multiple stages by a continuous countercurrent washing method (CCD method: Counter Current Decantation) using a plurality of thickeners connected in series. In this washing method, the concentrated slurry extracted from the bottom is sequentially transferred to the subsequent thickener by introducing the leached slurry into the first thickener, and the supernatant discharged by overflow is introduced by introducing the washing liquid into the last thickener. The liquid is sequentially transferred to the former thickener, and it is possible to secure a recovery rate of nickel and cobalt of 95% or more while keeping the amount of the cleaning liquid newly introduced into the system small.
上記の洗浄液の種類としては特に限定はないが、ニッケルを含んでおらず、固液分離工程の際に浸出スラリーに悪影響を及ぼさないものが好ましい。特に洗浄液にはpH1.0〜3.0程度の水溶液を用いることが好ましい。洗浄液のpHが3.0よりも高いと浸出液中にアルミニウムが含まれる場合には嵩の高いアルミニウム水酸化物が生成され、浸出残渣の沈降性が悪化するおそれがあるからである。このようなpH1.0〜3.0程度の洗浄液としては、後工程の硫化工程S7において混合硫化物を固液分離により回収する時に液相側に排出される低pHの貧液が適しているので、これを繰り返して利用するのが好ましい。 The type of the above-mentioned washing liquid is not particularly limited, but preferably does not contain nickel and does not adversely affect the leached slurry during the solid-liquid separation step. In particular, it is preferable to use an aqueous solution having a pH of about 1.0 to 3.0 as the cleaning liquid. If the pH of the cleaning liquid is higher than 3.0, when aluminum is contained in the leachate, a bulky aluminum hydroxide is generated, and the sedimentation of the leach residue may be deteriorated. As such a washing solution having a pH of about 1.0 to 3.0, a poor solution having a low pH discharged to the liquid phase when the mixed sulfide is recovered by solid-liquid separation in the subsequent sulfurizing step S7 is suitable. Therefore, it is preferable to use this repeatedly.
(5)中和工程
中和工程S5では、上記固液分離工程S4において浸出残渣から分離された粗硫酸ニッケル水溶液からなる貴液に炭酸カルシウム等のpH調整剤を添加してpH調整することで該貴液の酸化を抑制しながら不純物元素を含む中和澱物を生成する。この中和澱物を固液分離により除去することで、ニッケル及びコバルトのほか、主に亜鉛からなる不純物元素を含むニッケル回収用母液の元となる中和終液が得られる。この中和工程S5では、中和終液のpHが4.0以下、好ましくは3.0〜3.5、より好ましくは3.1〜3.2になるように上記pH調整を行うのが好ましく、これにより貴液中に残留する主に3価の鉄イオンやアルミニウムイオンを中和澱物として除去できる。
(5) Neutralization Step In the neutralization step S5, a pH adjusting agent such as calcium carbonate is added to a noble solution composed of a crude nickel sulfate aqueous solution separated from the leaching residue in the solid-liquid separation step S4 to adjust the pH. A neutralized precipitate containing an impurity element is generated while suppressing oxidation of the noble solution. By removing the neutralized precipitate by solid-liquid separation, a neutralized final solution that is a base of a nickel recovery mother liquor containing an impurity element mainly composed of zinc in addition to nickel and cobalt is obtained. In the neutralization step S5, the pH is adjusted so that the pH of the neutralized final solution is 4.0 or less, preferably 3.0 to 3.5, and more preferably 3.1 to 3.2. Preferably, thereby, mainly trivalent iron ions and aluminum ions remaining in the noble solution can be removed as neutralized deposits.
(6)浄液工程
浄液工程S6では、例えば加圧された容器内に上記中和工程S5で得た中和終液を導入し、該容器の気相中への硫化水素ガスの吹き込みなどによる硫化剤の添加により硫化処理が施され、これによりニッケル及びコバルトに対して亜鉛を選択的に硫化して亜鉛硫化物を生成させる。この亜鉛硫化物を分離除去することで、ニッケル及びコバルトを含む硫酸溶液からなるニッケル回収用母液(脱亜鉛終液)が得られる。なお、このニッケル回収用母液は、通常は不純物成分として鉄、アルミニウム、マンガン等の金属イオンを各々数g/L程度含んでいる。
(6) Liquid Purification Step In the liquid purification step S6, for example, the neutralized final solution obtained in the neutralization step S5 is introduced into a pressurized container, and hydrogen sulfide gas is blown into the gas phase of the container. , A sulfurizing treatment is performed by adding a sulfurizing agent, whereby zinc is selectively sulfurized with respect to nickel and cobalt to generate zinc sulfide. By separating and removing the zinc sulfide, a mother liquor for nickel recovery (final dezincing solution) composed of a sulfuric acid solution containing nickel and cobalt is obtained. In addition, the mother liquor for nickel recovery usually contains several g / L of metal ions such as iron, aluminum and manganese as impurity components.
(7)硫化工程
硫化工程S7では、上記ニッケル回収用母液に対して硫化水素ガス等の硫化剤を吹き込み、これにより硫化反応を生じさせてニッケル及びコバルトを含む硫化物(ニッケルコバルト混合硫化物)を生成する。生成したニッケルコバルト混合硫化物はろ過などの固液分離により回収することができ、その際、液相側に貧液が排出される。なお、この硫化工程S7で処理されるニッケル回収用母液には前述したようにFe、Al、Mn等の不純物金属イオンが含まれている場合があるが、これら不純物成分はニッケル及びコバルトに比べて硫化物としての安定性が低く、よって上記ニッケルコバルト混合硫化物にはほとんど含有されない。
(7) Sulfurization Step In the sulfurization step S7, a sulfide agent such as hydrogen sulfide gas is blown into the mother liquor for nickel recovery, thereby causing a sulfurization reaction to cause sulfide containing nickel and cobalt (nickel-cobalt mixed sulfide). Generate The produced nickel-cobalt mixed sulfide can be recovered by solid-liquid separation such as filtration, and at that time, a poor liquid is discharged to the liquid phase side. Note that the mother liquor for nickel recovery treated in the sulfidation step S7 may contain impurity metal ions such as Fe, Al, and Mn as described above, but these impurity components are higher than those of nickel and cobalt. The stability as a sulfide is low, and thus it is hardly contained in the nickel-cobalt mixed sulfide.
(8)最終中和工程
最終中和工程S8では、上記硫化工程S7の固液分離の際に排出される鉄、アルミニウム、マンガン等の不純物金属イオン及び未反応のNiイオンを含む貧液に対して、所定のpH範囲に調整する中和処理を施すことで、これら金属イオンをその濃度が排出基準を満たすまで除去する。なお、この最終中和工程S8では、上記の固液分離工程S4において貴液を固液分離する際に排出される浸出残渣スラリーも併せて排液として処理してもよい。これにより浸出残渣スラリーの液相に含まれる重金属の濃度も上記貧液と同程度に低減することが可能になる。
(8) Final Neutralization Step In the final neutralization step S8, a poor solution containing impurity metal ions such as iron, aluminum, and manganese and unreacted Ni ions discharged during the solid-liquid separation in the sulfurization step S7 is performed. Then, by performing a neutralization treatment for adjusting the concentration to a predetermined pH range, these metal ions are removed until the concentration satisfies the emission standard. In the final neutralization step S8, the leaching residue slurry discharged when the noble liquid is separated into solid and liquid in the solid-liquid separation step S4 may be treated as drainage. This makes it possible to reduce the concentration of heavy metals contained in the liquid phase of the leaching residue slurry to the same extent as that of the poor liquid.
この最終中和工程S8では、上記貧液等の排液のpHの調整方法として、石灰石を中和剤として用いた第1の中和処理と、消石灰を中和剤として用いた第2の中和処理とからなる2段階で中和処理を行う。このように段階的にpH調整を行うことによって、排液中に溶存するFe、Al、Mn、Ni等の金属イオンをそれらの各々の濃度が1mg/L未満になるまで効率的かつ効果的に除去することができる。 In the final neutralization step S8, as a method for adjusting the pH of the drainage such as the poor liquid, a first neutralization treatment using limestone as a neutralizing agent and a second neutralization treatment using slaked lime as a neutralizing agent are performed. The neutralization process is performed in two stages including the sum process. By performing the stepwise pH adjustment, metal ions such as Fe, Al, Mn, and Ni dissolved in the wastewater can be efficiently and effectively reduced until their respective concentrations become less than 1 mg / L. Can be removed.
具体的には、先ず第1の中和処理では、硫化工程S7から排出される貧液及び必要に応じて処理される固液分離工程S4にて濃縮スラリーの形態で分離された浸出残渣スラリーを、好適には少なくとも2基の中和槽が直列に接続された第1中和処理槽群のうち最も上流側の中和槽に石灰石スラリーと共に装入して攪拌し、ここにブロワーで昇圧したエアーを金属イオンの酸化のため吹き込む。このようにして最も上流側の中和槽で処理された処理液はオーバーフローにより順次後段の中和槽に移送され、同様の処理が施される。この第1の中和処理では、石灰石スラリーを添加することによって、槽内の処理液のpHを5.0〜5.4に調整する。これにより、該処理液に含まれる3価のFe及び一部の2価のFe、並びにAlを主に析出させることができる。 Specifically, first, in the first neutralization treatment, the poor liquid discharged from the sulfurization step S7 and the leach residue slurry separated in the form of a concentrated slurry in the solid-liquid separation step S4, which is optionally processed, are used. Preferably, the most upstream neutralization tank of the first neutralization tank group, in which at least two neutralization tanks are connected in series, was charged with the limestone slurry and stirred, and the pressure was increased by a blower. Air is blown to oxidize metal ions. The processing solution processed in the neutralization tank on the most upstream side in this manner is sequentially transferred to the subsequent neutralization tank by overflow, and the same processing is performed. In the first neutralization treatment, the pH of the treatment liquid in the tank is adjusted to 5.0 to 5.4 by adding limestone slurry. Thereby, trivalent Fe and a part of divalent Fe and Al contained in the treatment liquid can be mainly precipitated.
次に、第2の中和処理では、上記第1中和処理槽群の最も下流側の中和槽から抜き出したスラリーを好ましくは固液分離し、固形分が除去された液相側を好適には少なくとも2基の中和槽が直列に接続された第2中和処理槽群のうち最も上流側の中和槽に消石灰スラリーと共に装入して撹拌し、ここにブロワーで昇圧したエアーを金属イオンの酸化のため吹き込む。このようにして第2中和処理槽群の最も上流側で処理された処理液はオーバーフローにより順次後段の中和槽に移送され、同様の処理が施される。この第2の中和処理では、消石灰スラリーを添加することによって、槽内の処理液のpHを8.0〜9.5、好ましくは8.5〜9.0に調整する。これにより、該処理液に含まれる残余の2価のFe、及びMnやNiを主に析出させることができる。 Next, in the second neutralization treatment, the slurry extracted from the most downstream neutralization tank of the first neutralization treatment tank group is preferably subjected to solid-liquid separation, and the liquid phase from which the solid content has been removed is preferably used. Is charged and stirred with slaked lime slurry into the most upstream neutralization tank of the second neutralization tank group in which at least two neutralization tanks are connected in series, and air pressurized by a blower is added thereto. Blow to oxidize metal ions. The processing solution processed at the most upstream side of the second neutralization processing tank group in this way is sequentially transferred to the subsequent neutralization tank by overflow and subjected to the same processing. In the second neutralization treatment, the pH of the treatment liquid in the tank is adjusted to 8.0 to 9.5, preferably 8.5 to 9.0 by adding slaked lime slurry. Thereby, the remaining divalent Fe, Mn, and Ni contained in the treatment liquid can be mainly deposited.
上記第2中和処理槽群の最も下流側の中和槽から抜き出したスラリーは、スラリーポンプで昇圧された後、シックナー等の固液分離装置により固液分離される。得られた固形分側の中和処理残渣は上記第1の中和処理後の固液分離で除去された固形分と共にテーリングダムに移送される。一方、液相側として排出される排水終液は上記したように金属イオンの濃度が1mg/L未満に低減されており、この濃度は一般的には排出基準を満たしているので系外に排出することができる。 The slurry extracted from the most downstream neutralization tank of the second neutralization tank group is pressurized by a slurry pump, and then subjected to solid-liquid separation by a solid-liquid separation device such as a thickener. The obtained neutralization residue on the solid content side is transferred to a tailing dam together with the solid content removed by the solid-liquid separation after the first neutralization treatment. On the other hand, in the final liquid discharged as the liquid phase, the concentration of metal ions is reduced to less than 1 mg / L as described above, and since this concentration generally satisfies the discharge standard, it is discharged outside the system. can do.
上記のように2段階に分けて中和処理を施すことによって、排液に含まれる鉄イオンを効率よく除去することができる。すなわち、最終中和工程S8で生成するFeの沈殿物は2価の水酸化鉄(II)(Fe(OH)2)及び3価の水酸化鉄(III)(Fe(OH)3)の2種類があり、水酸化鉄(III)は一般的にpH6未満の比較的低いpH領域で生成するのに対して、水酸化鉄(II)は上記pH領域よりも高いpH領域で生成する。 By performing the neutralization treatment in two stages as described above, iron ions contained in the wastewater can be efficiently removed. That is, the precipitate of Fe generated in the final neutralization step S8 is composed of divalent iron (II) hydroxide (Fe (OH) 2 ) and trivalent iron (III) hydroxide (Fe (OH) 3 ). There are various types, and iron (III) hydroxide is generally produced in a relatively low pH range of less than pH 6, whereas iron (II) hydroxide is produced in a pH range higher than the above pH range.
従って貧液中に3価の鉄よりも2価の鉄の含有量が多い場合は、上記第2の中和処理で沈殿させるFe量が相対的に増えるため、消石灰は石灰石に比べて一般に非常に高価であることを考慮すると、操業コスト削減という観点から好ましくない。そこで、本発明の実施形態の最終中和方法では、第1の中和処理でできるだけ多くのFeイオンを沈殿させるべく第1中和処理槽群において処理液中にエアーを吹き込んで2価の鉄イオンを3価の鉄イオンに酸化させると共に、石灰石にて極力pHを上昇させることで3価の鉄イオンと共に未反応の2価の鉄をできるだけ多く析出させている。これにより、消石灰の使用量を削減することができる。 Therefore, when the content of divalent iron in the poor solution is higher than that of trivalent iron, the amount of Fe precipitated in the second neutralization treatment is relatively increased, and thus slaked lime is generally much less than limestone. This is not preferable from the viewpoint of reducing operating costs. Therefore, in the final neutralization method according to the embodiment of the present invention, air is blown into the processing liquid in the first neutralization processing tank group to precipitate as much Fe ions as possible in the first neutralization processing, so that the divalent iron is removed. By oxidizing the ions to trivalent iron ions and increasing the pH as much as possible with limestone, unreacted divalent iron is precipitated as much as possible together with the trivalent iron ions. Thereby, the usage of slaked lime can be reduced.
但し、図3に示すように、石灰石の反応効率はpHの上昇と共に低下するため、第1の中和処理においてpHを高くしすぎると、かえって石灰石の使用量が増加してしまい、結果的に消石灰の使用量は削減できても最終中和工程全体としての中和剤のコストは従来とあまり変わらなくなるおそれがある。これに対して、本発明の実施形態の最終中和方法では、上記したように排液に対して第1の中和処理において石灰石スラリーを添加することによりpH5.0〜5.4の範囲内で適宜調整することで、最終中和工程S8全体としての中和剤コストを最適化することが可能になる。 However, as shown in FIG. 3, the reaction efficiency of limestone decreases with an increase in pH. Therefore, if the pH is too high in the first neutralization treatment, the amount of limestone used increases, and consequently the amount of limestone increases. Even though the amount of slaked lime can be reduced, the cost of the neutralizing agent as a whole in the final neutralization step may not be much different from the conventional one. On the other hand, in the final neutralization method of the embodiment of the present invention, as described above, the limestone slurry is added to the wastewater in the first neutralization treatment so that the pH falls within the range of 5.0 to 5.4. By appropriately adjusting the above, it is possible to optimize the cost of the neutralizing agent as the whole final neutralizing step S8.
すなわち、図4に示すように例えば石灰石の1トン当たりの単価が19.2$/トン、消石灰の1トン当たりの単価が108.0$/トンの場合、排液中のFe2+及びFe3+の合計のFeイオンの濃度が1.0〜4.0g/Lにおいて、石灰石スラリーの添加が行われる第1中和処理槽のpHが5.0〜5.4の範囲内であれば、中和剤のコストが最も低くなるので、このpH5.0〜5.4の範囲内、好ましくはそれらの極小値を示すpH値で制御することにより、最終中和工程S8の中和剤コストを最も安価に抑えることが可能になる。なお、排液中のFe濃度が1.0〜4.0g/Lの範囲から外れる場合は、上記中和工程S5での中和剤の添加量を調整したり、前述した連続向流洗浄法CCDに導入する洗浄液の量を調整したりすることで1.0〜4.0g/Lの範囲内にFe濃度が収まるようにすればよい。 That is, as shown in FIG. 4, for example, when the unit price per ton of limestone is 19.2 $ / ton and the unit price per ton of slaked lime is 108.0 $ / ton, Fe2 + and Fe3 + in the drainage liquid are used. If the total concentration of Fe ions is 1.0 to 4.0 g / L and the pH of the first neutralization tank to which the limestone slurry is added is within the range of 5.0 to 5.4, the medium Since the cost of the wetting agent is the lowest, the pH of the neutralizing agent in the final neutralization step S8 is most controlled by controlling the pH within the range of 5.0 to 5.4, preferably at a pH value showing their minimum value. It is possible to keep it inexpensive. When the Fe concentration in the drainage is out of the range of 1.0 to 4.0 g / L, the amount of the neutralizing agent added in the neutralizing step S5 is adjusted or the above-described continuous countercurrent cleaning method is used. The Fe concentration may be adjusted to fall within the range of 1.0 to 4.0 g / L by adjusting the amount of the cleaning solution introduced into the CCD.
上記の第1及び第2の中和処理では、処理液1m3に対してエアーを1.5〜3.0Nm3、好ましくは1.8〜2.0Nm3の割合で吹き込むのが好ましい。また、添加する石灰石スラリーは、平均粒子径が5〜15μm、好ましくは10μm程度であってスラリー濃度が20〜30質量%であるのが好ましく、添加する消石灰スラリーは平均粒子径が15〜30μm、好ましくは20μm程度であってスラリー濃度が20〜30質量%であるのが好ましい。これにより、これら中和剤をより効率よく反応させることができる。なお、上記の平均粒子径はレーザー回折式粒度分布測定装置によって測定した体積基準の50%径(D50)である。上記の平均粒子径であれば、石灰石及び消石灰のいずれもJIS K6220に準拠して測定した見掛比重は約1.2となる。 In the first and second neutralization treatment is carried out, the air from the treatment liquid 1m 3 1.5~3.0Nm 3, preferably preferably blown at a rate of 1.8~2.0Nm 3. The limestone slurry to be added has an average particle diameter of 5 to 15 μm, preferably about 10 μm, and preferably has a slurry concentration of 20 to 30% by mass. The slaked lime slurry to be added has an average particle diameter of 15 to 30 μm, Preferably, it is about 20 μm and the slurry concentration is 20 to 30% by mass. Thereby, these neutralizing agents can be made to react more efficiently. The above average particle diameter is a 50% diameter (D50) on a volume basis measured by a laser diffraction particle size distribution analyzer. With the above average particle diameter, the apparent specific gravity of both limestone and slaked lime measured according to JIS K6220 is about 1.2.
<実施例>
図1に示すようなニッケル酸化鉱石の湿式製錬プロセスの硫化工程S7から排出される貧液に対して、図2に示すような撹拌機を備えた2基の第1の中和処理用の中和槽11、12と、撹拌機を備えた2基の第2の中和処理用の中和槽21、22とが直列に接続された2段階の中和処理設備で中和処理した。なお、この実施例では固液分離工程S4からの浸出残渣スラリーは処理しなかった。
<Example>
The poor liquid discharged from the sulfurization step S7 of the hydrometallurgy process of nickel oxide ore as shown in FIG. 1 is subjected to two first neutralization treatments equipped with a stirrer as shown in FIG. Neutralization treatment was performed in a two-stage neutralization treatment facility in which neutralization tanks 11 and 12 and two
具体的には、第1の中和槽11にpH1.5の貧液を480m3/hrの流量で導入し、オーバーフローにより順次後段の中和槽12、21、22に移送した。その際、各槽において、ブロワーから15Nm3/minの流量で空気を吹き込んだ。2槽目の中和槽12のpHをpH計で連続的に測定し、その値が5.2になるように1槽目の中和槽11に平均粒子径(D50)10μmの石灰石に水を加えてスラリー濃度22質量%に調製した石灰石スラリーを添加した。また、4槽目の中和槽22のpHをpH計で連続的に測定し、その値が9.0になるように3槽目の中和槽21に平均粒子径(D50)20μmの消石灰に水を加えてスラリー濃度22質量%に調製した消石灰スラリーを添加した。
Specifically, a poor solution having a pH of 1.5 was introduced into the first neutralization tank 11 at a flow rate of 480 m 3 / hr, and was sequentially transferred to the
上記処理前の貧液の金属イオン濃度をICP発光分光分析法で測定したところ、Feは2.0g/L、Alは1.0g/L、Mnは1.5g/L、Niは0.1g/Lであった。この貧液を上記2段階の中和処理条件で処理して、4槽目の中和槽22から抜き出した排水中に含まれるFe、Al、Mn、及びNiの各々の濃度を全て1mg/L未満にするため、1日当たり石灰石を379トン、消石灰を17.5トン消費した。石灰石の1トン当たりの単価が19.2$/トン、消石灰の1トン当たりの単価が108.0$/トンの場合、これら中和剤のコストは1日当たり9.17×103$となった。 The metal ion concentration of the poor solution before the above treatment was measured by ICP emission spectroscopy. As a result, Fe was 2.0 g / L, Al was 1.0 g / L, Mn was 1.5 g / L, and Ni was 0.1 g. / L. The poor solution is treated under the above-described two-stage neutralization conditions, and the concentrations of Fe, Al, Mn, and Ni contained in the wastewater extracted from the fourth neutralization tank 22 are all 1 mg / L. 379 tonnes of limestone and 17.5 tonnes of slaked lime were consumed per day in order to reduce the amount. If the unit price per ton of limestone is 19.219 / ton and the unit price per ton of slaked lime is 108.0 $ / ton, the cost of these neutralizers is 9.17 × 10 3 per day. Was.
<比較例>
比較のため、2槽目の中和槽12のpHが5.8となるように1槽目の中和槽11に石灰石スラリーを添加した以外は上記実施例と同様にして貧液を処理した。その結果、4槽目の中和槽22から抜き出した排水中に含まれるFe、Al、Mn、及びNiの各々の濃度を全て1mg/L未満にするため、1日当たり石灰石を530トン、消石灰を5.8トン消費した。この場合、これら中和剤のコストは1日当たり10.80×103$となり、上記実施例よりも約18%コストが高くなった。
<Comparative example>
For comparison, a poor solution was treated in the same manner as in the above example except that limestone slurry was added to the first neutralization tank 11 so that the pH of the second neutralization tank 12 became 5.8. . As a result, in order to reduce the concentration of each of Fe, Al, Mn, and Ni contained in the wastewater extracted from the fourth neutralization tank 22 to less than 1 mg / L, 530 tons of limestone and slaked lime per day were used. We consumed 5.8 tons. In this case, the cost of these neutralizing agents was 10.80 × 10 3 $ per day, which was about 18% higher than the cost in the above example.
S1 鉱石調合工程
S2 高圧硫酸浸出工程
S3 予備中和工程
S4 固液分離工程
S5 中和工程
S6 浄液工程
S7 硫化工程
S8 最終中和工程
S1 Ore preparation process S2 High pressure sulfuric acid leaching process S3 Pre-neutralization process S4 Solid-liquid separation process S5 Neutralization process S6 Purification process S7 Sulfurization process S8 Final neutralization process
Claims (4)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018156027A JP2020028858A (en) | 2018-08-23 | 2018-08-23 | Final neutralization method in wet refining process for nickel oxide ore |
PH12019000320A PH12019000320A1 (en) | 2018-08-23 | 2019-08-22 | Final neutralization method in hydrometallurgical process of nickel oxide ore |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018156027A JP2020028858A (en) | 2018-08-23 | 2018-08-23 | Final neutralization method in wet refining process for nickel oxide ore |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2020028858A true JP2020028858A (en) | 2020-02-27 |
Family
ID=69623422
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018156027A Pending JP2020028858A (en) | 2018-08-23 | 2018-08-23 | Final neutralization method in wet refining process for nickel oxide ore |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2020028858A (en) |
PH (1) | PH12019000320A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7273269B1 (en) | 2022-07-28 | 2023-05-15 | 住友金属鉱山株式会社 | Hydrometallurgical method for nickel oxide ore |
-
2018
- 2018-08-23 JP JP2018156027A patent/JP2020028858A/en active Pending
-
2019
- 2019-08-22 PH PH12019000320A patent/PH12019000320A1/en unknown
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7273269B1 (en) | 2022-07-28 | 2023-05-15 | 住友金属鉱山株式会社 | Hydrometallurgical method for nickel oxide ore |
WO2024024930A1 (en) * | 2022-07-28 | 2024-02-01 | 住友金属鉱山株式会社 | Hydrometallurgical method for nickel oxide ore |
JP2024017958A (en) * | 2022-07-28 | 2024-02-08 | 住友金属鉱山株式会社 | Hydrometallurgical method for nickel oxide ore |
Also Published As
Publication number | Publication date |
---|---|
PH12019000320A1 (en) | 2021-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7563421B2 (en) | Hydrometallurgical process of nickel oxide ore | |
AU2012376440B2 (en) | Method for recovering chromite, and method for wet smelting of nickel oxide ore | |
JP5556608B2 (en) | Chromite recovery method and nickel oxide ore hydrometallurgical method | |
EP3296410B1 (en) | Mineral ore slurry pretreatment method, and method for manufacturing mineral ore slurry | |
JP6969262B2 (en) | Hydrometallurgical method for nickel oxide ore | |
JP5790839B2 (en) | Chromite recovery method | |
WO2020149122A1 (en) | Method for manufacturing nickel/cobalt mixed sulfide from nickel oxide ore by wet smelting method | |
JP2016113703A (en) | Neutralization method by wet type refining of nickel oxide ore | |
WO2019035319A1 (en) | Leaching treatment method, and wet smelting method of nickel oxide ore | |
JP7238686B2 (en) | Neutralization method | |
CA2977456C (en) | Wet smelting method for nickel oxide ore | |
JP5971364B1 (en) | Ore slurry pretreatment method, ore slurry production method | |
JP2020028858A (en) | Final neutralization method in wet refining process for nickel oxide ore | |
JP7147362B2 (en) | Method for reducing odor in hydrometallurgy of nickel oxide ore | |
JP6565511B2 (en) | Ore slurry processing method, nickel oxide ore hydrometallurgy method | |
JP7279546B2 (en) | Nickel oxide ore leaching method and hydrometallurgical method including the same | |
JP7200698B2 (en) | Hydrometallurgical method for nickel oxide ore | |
JP6977458B2 (en) | Hydrometallurgical method for nickel oxide ore | |
JP7147452B2 (en) | Filtration facility for removing zinc sulfide and method for producing nickel-cobalt mixed sulfide using the same | |
JP7273269B1 (en) | Hydrometallurgical method for nickel oxide ore | |
JP2018079435A (en) | Neutralization treatment method | |
JP2022104019A (en) | Neutralization treatment method, and hydrometallurgical method of nickel oxidized ore | |
JP2019049020A (en) | Wet type smelting method of nickel oxide ore |