[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2020017676A - ウェーハの加工方法 - Google Patents

ウェーハの加工方法 Download PDF

Info

Publication number
JP2020017676A
JP2020017676A JP2018140631A JP2018140631A JP2020017676A JP 2020017676 A JP2020017676 A JP 2020017676A JP 2018140631 A JP2018140631 A JP 2018140631A JP 2018140631 A JP2018140631 A JP 2018140631A JP 2020017676 A JP2020017676 A JP 2020017676A
Authority
JP
Japan
Prior art keywords
wafer
cutting
processing method
functional layer
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018140631A
Other languages
English (en)
Inventor
美玲 樋田
Yoshitama Toida
美玲 樋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Disco Corp
Original Assignee
Disco Abrasive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Disco Abrasive Systems Ltd filed Critical Disco Abrasive Systems Ltd
Priority to JP2018140631A priority Critical patent/JP2020017676A/ja
Publication of JP2020017676A publication Critical patent/JP2020017676A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laser Beam Processing (AREA)
  • Drying Of Semiconductors (AREA)
  • Dicing (AREA)

Abstract

【課題】コストを抑制しながらもプラズマエッチングを行うことができるウェーハの加工方法を提供すること。【解決手段】本発明に係るウェーハの加工方法は、保護部材配設ステップと、切削ステップと、プラズマエッチングステップと、機能層切断ステップと、チャンバークリーニングステップと、を備える。チャンバークリーニングステップは、該プラズマエッチングステップを実施して該ウェーハを搬出した後で、次のウェーハを搬入する前に、該エッチングチャンバーにプラズマ化した不活性ガスを供給し、該エッチングチャンバーの内部に付着した該プラズマエッチングステップでの反応生成物を除去するチャンバークリーニングステップと、を備える。【選択図】図2

Description

本発明は、ウェーハの加工方法、特にプラズマダイシングに関する。
シリコン基板等からなる半導体ウェーハは、個々のデバイスチップに分割するため、切削ブレードやレーザー光線を用いた加工方法が適用されることが知られている。これらの加工方法は、分割予定ライン(ストリート)を1本ずつ加工してウェーハをデバイスチップに分割する。近年の電子機器の小型化からデバイスチップの軽薄短小化、コスト削減が進み、サイズが従来のように10mmを超えるようなデバイスチップから2mm以下のようなサイズの小さなデバイスチップが数多く生産されている。サイズの小さなデバイスチップを製造する場合、1枚のウェーハに対する分割予定ラインの数が激増し、1ラインずつの加工では加工時間も長くなってしまう。
そこで、ウェーハの分割予定ライン全てを一括で加工するプラズマダイシングという手法が開発されている(例えば、特許文献1参照)。特許文献1に示されたプラズマダイシングは、マスクによって遮蔽された領域以外をプラズマエッチングによって除去し、ウェーハ単位で加工を実施するため、分割予定ラインの本数が多くなっても加工時間が劇的に長くなることがないという効果がある。
しかしながら、特許文献1に示されたプラズマダイシングは、エッチングによって除去する領域のみを正確に露出させるために、それぞれのウェーハの分割予定ラインにあった精密なマスクを準備する必要がある(例えば、特許文献2及び特許文献3参照)。
特開2006−114825号公報 特開2013−055120号公報 特開2014−199833号公報
しかしながら、特に、特許文献2及び特許文献3に示されたマスクは、製造コスト及び製造工数の抑制、マスクを位置合わせする技術の確立など、切削加工等に比べてコストが高く難易度の高い課題が残されている。
本発明は、かかる問題点に鑑みてなされたものであり、その目的は、コストを抑制しながらもプラズマエッチングを行うことができるウェーハの加工方法を提供することである。
上述した課題を解決し、目的を達成するために、本発明に係るウェーハの加工方法は、基板の表面に機能層が積層され複数のデバイスが形成されたウェーハを、該複数のデバイスを区画する分割予定ラインに沿って分割するウェーハの加工方法であって、該ウェーハの表面の機能層側に保護部材を配設する保護部材配設ステップと、該ウェーハの裏面に切削ブレードを切り込ませ、該機能層に至らない深さの切削溝を該分割予定ラインに沿って該基板に形成する切削ステップと、エッチングチャンバーに収容されたチャックテーブルで該ウェーハの保護部材側を保持し、該ウェーハの裏面側にプラズマ化したガスを供給して該ウェーハの裏面側及び該切削溝の底に残存する基板をエッチングして除去し、該基板を該分割予定ラインに沿って分割するプラズマエッチングステップと、該プラズマエッチングステップを実施した後に、ウェーハの裏面側からレーザー光線の集光点をエッチングした該切削溝の底に位置づけて照射し、該機能層を切断する機能層切断ステップと、該プラズマエッチングステップを実施して該ウェーハを搬出した後で、次のウェーハを搬入する前に、該エッチングチャンバーにプラズマ化した不活性ガスを供給し、該エッチングチャンバーの内部に付着した該プラズマエッチングステップでの反応生成物を除去するチャンバークリーニングステップと、を備える。
本発明に係るウェーハの加工方法において、該チャンバークリーニングステップは、該エッチングチャンバーの外部でプラズマ化した不活性ガスを該エッチングチャンバーに供給してもよい。
本願発明のウェーハの加工方法は、コストを抑制しながらもプラズマエッチングを行うことができるという効果を奏する。
図1は、実施形態1に係るウェーハの加工方法の加工対象のウェーハの一例を示す斜視図である。 図2は、実施形態1に係るウェーハの加工方法の流れを示すフローチャートである。 図3は、図2に示されたウェーハの加工方法の切削ステップを一部断面で示す側面図である。 図4は、図2に示されたウェーハの加工方法の切削ステップ後のウェーハの要部の断面図である。 図5は、図2に示されたウェーハの加工方法のプラズマエッチングステップで用いられるエッチング装置の構成を示す断面図である。 図6は、図2に示されたウェーハの加工方法のプラズマエッチングステップ後のウェーハの要部の断面図である。 図7は、図2に示されたウェーハの加工方法の機能層切断ステップを示す断面図である。 図8は、図2に示されたウェーハの加工方法の機能層切断ステップ後のウェーハの要部の断面図である。 図9は、図2に示されたウェーハの加工方法のチャンバークリーニングステップを示す一部断面図である。 図10は、図2に示されたウェーハの加工方法の仕上げ研削ステップを示す側断面図である。 図11は、図2に示されたウェーハの加工方法の貼り替えステップを示すウェーハの断面図である。 図12は、図2に示されたウェーハの加工方法のダイアタッチフィルム破断ステップにおいて、ウェーハを拡張装置に保持した状態を示す断面図である。 図13は、図2に示されたウェーハの加工方法のダイアタッチフィルム破断ステップにおいて、ダイアタッチフィルムをデバイス毎に破断した状態を示す断面図である。 図14は、実施形態2に係るウェーハの加工方法の流れを示すフローチャートである。 図15は、図14に示されたウェーハの加工方法の予備研削ステップを示す側断面図である。 図16は、図14に示されたウェーハの加工方法の予備研削ステップ後のウェーハの要部の断面図である。 図17は、実施形態3に係るウェーハの加工方法のプラズマエッチングステップ後のウェーハの要部の断面図である。 図18は、実施形態4に係るウェーハの加工方法のプラズマエッチングステップで用いられるエッチング装置の構成を示す断面図である。
本発明を実施するための形態(実施形態)につき、図面を参照しつつ詳細に説明する。以下の実施形態に記載した内容により本発明が限定されるものではない。また、以下に記載した構成要素には、当業者が容易に想定できるもの、実質的に同一のものが含まれる。さらに、以下に記載した構成は適宜組み合わせることが可能である。また、本発明の要旨を逸脱しない範囲で構成の種々の省略、置換又は変更を行うことができる。
[実施形態1]
本発明の実施形態1に係るウェーハの加工方法を図面に基づいて説明する。図1は、実施形態1に係るウェーハの加工方法の加工対象のウェーハの一例を示す斜視図である。図2は、実施形態1に係るウェーハの加工方法の流れを示すフローチャートである。
実施形態に係るウェーハの加工方法は、図1に示すウェーハ1の加工方法である。実施形態1では、ウェーハ1は、シリコン、サファイア、又はガリウムヒ素などを基板2とする円板状の半導体ウェーハや光デバイスウェーハである。ウェーハ1は、図1に示すように、基板2の表面3に樹脂を含む機能層4が積層されて複数のデバイス5が形成されている。機能層4は、SiOF、BSG(SiOB)等の無機物系の膜やポリイミド系、パリレン系等のポリマー膜である有機物系の膜からなる低誘電率絶縁体被膜(Low−k膜)により構成されている。機能層4は、基板2の表面3に積層されている。
デバイス5は、表面3の交差する複数の分割予定ライン6で区画された各領域にそれぞれ形成されている。即ち、分割予定ライン6は、複数のデバイス5を区画するものである。デバイス5を構成する回路は、機能層4により支持されている。なお、実施形態1において、デバイス5は、切削加工によりウェーハ1から分割されるデバイスよりも小型であり、例えば、1mm×1mm程度の大きさである。また、ウェーハ1は、分割予定ライン6の少なくとも一部において、基板2の表面3側に図示しない金属膜とTEG(Test Element Group)とのうち少なくとも一方が形成されている。TEGは、デバイス5に発生する設計上や製造上の問題を見つけ出すための評価用の素子である。
実施形態に係るウェーハの加工方法は、ウェーハ1を分割予定ライン6に沿って個々のデバイス5に分割するとともに、デバイス5を仕上がり厚さ100まで薄化する方法である。ウェーハの加工方法は、図2に示すように、保護部材配設ステップST1と、切削ステップST2と、プラズマエッチングステップST3と、機能層切断ステップST4と、チャンバークリーニングステップST5と、仕上げ研削ステップST6と、貼り替えステップST7と、ダイアタッチフィルム破断ステップST8とを備える。
(保護部材配設ステップ)
保護部材配設ステップST1は、ウェーハ1の基板2の表面3の機能層4側に保護部材である粘着テープ200を配設するステップである。実施形態1において、保護部材配設ステップST1は、図1に示すように、ウェーハ1よりも大径な粘着テープ200を機能層4側に貼着し、粘着テープ200の外周縁に環状フレーム201を貼着する。実施形態1では、保護部材として粘着テープ200を用いるが、本発明では、保護部材は、粘着テープ200に限定されない。ウェーハの加工方法は、ウェーハ1の機能層4側に粘着テープ200を貼着すると、切削ステップST2に進む。
(切削ステップ)
図3は、図2に示されたウェーハの加工方法の切削ステップを一部断面で示す側面図である。図4は、図2に示されたウェーハの加工方法の切削ステップ後のウェーハの要部の断面図である。
切削ステップST2は、ウェーハ1の基板2の裏面7に図3に示す切削装置10の切削ブレード12を切り込ませ、機能層4に至らない深さの切削溝300を分割予定ライン6に沿って基板2に形成するステップである。実施形態1において、切削ステップST2では、図3に示すように、切削ユニット11を2つ備えた、即ち、2スピンドルのダイサ、いわゆるフェイシングデュアルタイプの切削装置10のチャックテーブル13の保持面14に粘着テープ200を介してウェーハ1の機能層4側を吸引保持する。切削ステップST2では、切削装置10の図示しない赤外線カメラがウェーハ1の裏面7を撮像して分割予定ラインを検出し、ウェーハ1と各切削ユニット11の切削ブレード12との位置合わせを行なうアライメントを遂行する。
切削ステップST2では、ウェーハ1と各切削ユニット11の切削ブレード12とを分割予定ライン6に沿って相対的に移動させながら切削ブレード12を裏面7に切り込ませて、ウェーハ1の裏面7側に切削溝300を形成する。実施形態1で用いる切削装置10の一対の切削ユニット11のうちの一方の切削ユニット11(以下、符号11−1で記す)の切削ブレード12(以下、符号12−1で記す)の厚さは、他方の切削ユニット11(以下、符号11−2で記す)の切削ブレード12(以下、符号12−2で記す)の厚さよりも厚い。実施形態1の切削ステップST2では、一方の切削ユニット11−1の切削ブレード12−1を裏面7に仕上げ厚さ100分切り込ませて、第1切削溝301をウェーハ1の裏面7に形成する。なお、実施形態1では、切削ステップST2において、一方の切削ユニット11−1の切削ブレード12−1を裏面7に仕上げ厚さ100分切り込ませるが、本発明は、一方の切削ユニット11−1の切削ブレード12−1を裏面7に仕上がり厚さ100よりも浅い深さ切り込ませても良く、仕上げ厚さ100より厚い切り残し部を溝底側に残すのが望ましい。
切削ステップST2では、第1切削溝301を形成した後、他方の切削ユニット11−2の切削ブレード12−2を第1切削溝301の溝底303に切り込ませて、第1切削溝301より細い第2切削溝302を第1切削溝301の溝底303に形成する。切削ステップST2では、第1切削溝301と第2切削溝302とを形成して、ウェーハ1の裏面7にウェーハ1の仕上がり厚さ100を超えるとともに機能層4に至らない深さの切削溝300を形成して、プラズマエッチングステップST3でのプラズマ化したエッチングガスの切削溝300への侵入を促進させる。なお、実施形態1において、切削溝300は、第1切削溝301と第2切削溝302とで構成される。ウェーハの加工方法は、図4に示すように、ウェーハ1の全ての分割予定ライン6の裏面7側に第1切削溝301及び第2切削溝302を形成すると、プラズマエッチングステップST3に進む。なお、実施形態1において、切削ステップST2では、ウェーハ1を太い切削ブレード12−1で切削した後に、細い切削ブレード12−2で切削する所謂ステップカットを実施したが、本発明は、ウェーハ1を1枚の切削ブレードで切削する所謂シングルカットを実施しても良い。
(プラズマエッチングステップ)
図5は、図2に示されたウェーハの加工方法のプラズマエッチングステップで用いられるエッチング装置の構成を示す断面図である。図6は、図2に示されたウェーハの加工方法のプラズマエッチングステップ後のウェーハの要部の断面図である。
プラズマエッチングステップST3は、図5に示すエッチング装置20のチャックテーブル21で粘着テープ200側を保持したウェーハ1の裏面7側にプラズマ化したエッチングガスを供給し、切削溝300の底304の残存部2−1(図4に示す)をエッチングして除去し、分割予定ライン6に沿った分割溝310で基板2を分割するステップである。
プラズマエッチングステップST3では、エッチング装置20の制御ユニット22が、ゲート作動ユニット23を作動してゲート24を図5中の下方に移動させ、ハウジング25の開口26を開ける。次に、図示しない搬出入手段によって切削ステップST2が実施されたウェーハ1を開口26を通してハウジング25内の密閉空間27に搬送し、下部電極28を構成する被加工物保持部29のチャックテーブル21(静電チャック、ESC:Electrostatic chuck)上に粘着テープ200を介してウェーハ1の機能層4側を載置する。このとき、制御ユニット22は、昇降駆動ユニット30を作動して上部電極31を上昇させておく。制御ユニット22は、被加工物保持部29内に設けられた電極32,33に電力を印加してチャックテーブル21上にウェーハ1を吸着保持する。
制御ユニット22は、ゲート作動ユニット23を作動してゲート24を上方に移動させ、ハウジング25の開口26を閉じる。制御ユニット22は、昇降駆動ユニット30を作動して上部電極31を下降させ、上部電極31を構成するガス噴出部34の下面と下部電極28を構成するチャックテーブル21に保持されたウェーハ1との間の距離をプラズマエッチング処理に適した所定の電極間距離に位置付ける。
制御ユニット22は、ガス排出ユニット35を作動してハウジング25内の密閉空間27を真空排気して、密閉空間27の圧力を所定の圧力に維持するとともに、冷媒供給ユニット36を作動させて下部電極28内に設けられた冷媒導入通路37、冷却通路38及び冷媒排出通路39に冷媒であるヘリウムガスを循環させて、下部電極28の異常昇温を抑制する。
次に、制御ユニット22は、ウェーハ1に対してプラズマ化したSFガスを供給してウェーハ1の裏面7全体をエッチングするとともに切削溝300を基板2の表面3に向かって進行させるエッチングステップと、エッチングステップに次いでプラズマ化したCガスをウェーハ1に供給してウェーハ1の裏面7、切削溝301,302の内面及び切削溝300の底304に被膜を堆積させる被膜堆積ステップとを交互に繰り返す。なお、被膜堆積ステップ後のエッチングステップは、切削溝300の底304の被膜を除去して切削溝300の底304をエッチングする。このように、プラズマエッチングステップST3は、所謂ボッシュ法でウェーハ1をプラズマエッチングする。
なお、エッチングステップでは、制御ユニット22は、SFガス供給ユニット40を作動しエッチングガスであるSFガスを上部電極31の複数の噴出口41から下部電極28のチャックテーブル21上に保持されたウェーハ1に向けて噴出する。そして、制御ユニット22は、プラズマ発生用のSFガスを供給した状態で、高周波電源42から上部電極31にプラズマを作り維持する高周波電力を印加し、高周波電源42から下部電極28にイオンを引き込むための高周波電力を印加する。これにより、下部電極28と上部電極31との間の空間にSFガスからなる等方性を有するプラズマ化したエッチングガスが発生し、このプラズマ化したエッチングガスがウェーハ1に引き込まれて、ウェーハ1の裏面7、切削溝301,302の内面及び切削溝300の底304をエッチングして、切削溝300を基板2の表面3に向かって進行させる。
また、被膜堆積ステップでは、制御ユニット22は、Cガス供給ユニット43を作動しエッチングガスであるCガスを上部電極31の複数の噴出口41から下部電極28のチャックテーブル21上に保持されたウェーハ1に向けて噴出する。そして、制御ユニット22は、プラズマ発生用のCガスを供給した状態で、高周波電源42から上部電極31にプラズマを作り維持する高周波電力を印加し、高周波電源42から下部電極28にイオンを引き込むための高周波電力を印加する。これにより、下部電極28と上部電極31との間の空間にCガスからなるプラズマ化したエッチングガスが発生し、このプラズマ化したエッチングガスがウェーハ1に引き込まれて、ウェーハ1に被膜を堆積させる。
プラズマエッチングステップST3では、制御ユニット22は、切削溝300の深さ即ちウェーハ1の厚さに応じて、エッチングステップと被膜堆積ステップとを繰り返す回数が予め設定されている。プラズマエッチングステップST3において、エッチングステップと被膜堆積ステップとを予め設定された回数繰り返されたウェーハ1は、図6に示すように、始めのエッチンングステップによって裏面7全体がエッチングされて、厚さ101分薄化されている。また、エッチングステップと被膜堆積ステップとを予め設定された回数繰り返されたウェーハ1は、図6に示すように、エッチングステップにおいて切削溝300の底304の残存部2−1がエッチングされ除去され、第2切削溝302が機能層4に到達して、切削溝300が基板2を分割する分割溝310となる。ウェーハ1は、基板2が分割溝310により分割され、分割溝310内に機能層4が露出して、分割溝310の底に機能層4が残っている。ウェーハの加工方法は、プラズマエッチングステップST3を終了すると、機能層切断ステップST4に進む。なお、切削溝300の底304から基板2が完全に除去されずに、わずかに残された状態であっても良い。
(機能層切断ステップ)
図7は、図2に示されたウェーハの加工方法の機能層切断ステップを示す断面図である。図8は、図2に示されたウェーハの加工方法の機能層切断ステップ後のウェーハの要部の断面図である。
機能層切断ステップST4は、プラズマエッチングステップST3で基板2が分割された後、ウェーハ1の裏面7側から図7に示すレーザー加工装置50が機能層4に対して吸収性を有する波長のレーザー光線51の集光点51−1を分割溝310の底の機能層4に位置づけて照射し、機能層4を分割溝310に沿って切断するステップである。
機能層切断ステップST4では、レーザー加工装置50が、チャックテーブルに粘着テープ200を介してウェーハ1の機能層4側を保持し、図7に示すように、レーザー光線照射ユニット52とチャックテーブルとを分割予定ライン6に沿って相対的に移動させながらレーザー光線照射ユニット52から機能層4に対して吸収性を有する波長(例えば、355nm)のレーザー光線51の集光点51−1を分割溝310の底に露出した機能層4に設定して、レーザー光線51を機能層4に照射する。機能層切断ステップST4では、各分割予定ライン6において、分割溝310の底で露出した機能層4にアブレーション加工を施して、分割溝310の底で露出した機能層4を切断して、ウェーハ1を個々のデバイス5に分割する。なお、機能層切断ステップST4では、図示しない分割予定ライン6に形成された金属膜やTEGも分割する。なお、実施形態1において、機能層4が切断されたウェーハ1は、分割溝310の内面にアブレーション加工により生じたデブリが付着している。ウェーハの加工方法は、図8に示すように、全ての分割予定ライン6において分割溝310の底で露出した機能層4を分割すると、チャンバークリーニングステップST5に進む。
図9は、図2に示されたウェーハの加工方法のチャンバークリーニングステップを示す一部断面図である。チャンバークリーニングステップST5は、搬出入手段によって機能層切断ステップST4が実施されたウェーハ1を開口26を通してハウジング25(エッチングチャンバー)の外に搬出した後、密閉空間27にプラズマ化した不活性ガスを供給し、図9に示すように、密閉空間27の内部に付着したプラズマエッチングステップでの反応生成物500を除去するステップである。
チャンバークリーニングステップST5では、制御ユニット22が、ガス排出ユニット35を作動してハウジング25(エッチングチャンバー)内の密閉空間27を真空排気して、密閉空間27の圧力を所定の圧力に維持するとともに、冷媒供給ユニット36を作動させて下部電極28内に設けられた冷媒導入通路37、冷却通路38及び冷媒排出通路39に冷媒であるヘリウムガスを循環させて、下部電極28の異常昇温を抑制する。
続いて、チャンバークリーニングステップST5では、制御ユニット22が、密閉空間27の圧力を所定の圧力に維持するとともに、下部電極28の異常昇温を抑制した状態で、ガス供給ユニット44を作動して不活性ガスを上部電極31の複数の噴出口41を通じ、下部電極28に向けて噴出する。そして、制御ユニット22は、不活性ガスを供給した状態で、高周波電源42から上部電極31にプラズマを作り維持する高周波電力を印加し、高周波電源42から下部電極28にイオンを引き込むための高周波電力を印加する。これにより、下部電極28と上部電極31との間の空間に不活性ガスからなる等方性を有するプラズマ化した不活性ガスが発生し、このプラズマ化した不活性ガスが密閉空間27の内部に付着した反応生成物500を除去する。ウェーハの加工方法は、チャンバークリーニングステップST5によりハウジング25(エッチングチャンバー)内の反応生成物500を除去すると、続いて、仕上げ研削ステップST6に進む。なお、ガス供給ユニット44から供給する不活性ガスは、アルゴンガス(Ar)、ヘリウムガス(He)等の希ガスや、希ガスに窒素ガス(N)、又は水素ガス(H)等を混合した混合ガス等で構成することができる。チャンバークリーニングステップST5の実施条件の1つを以下に例示する。
(チャンバークリーニングステップST5の実施条件)
高周波電源42の出力:2W
密閉空間27内の圧力:10Pa
不活性ガス:アルゴンガス(Ar)、ヘリウムガス(He)等の希ガスや、希ガスに窒素ガス(N)、又は水素ガス(H)等を混合した混合ガス
クリーニング時間:5〜10分
(仕上げ研削ステップ)
図10は、図2に示されたウェーハの加工方法の仕上げ研削ステップを示す側断面図である。仕上げ研削ステップST6は、プラズマエッチングステップST3、機能層切断ステップST4及びチャンバークリーニングステップST5の後に、ウェーハ1の裏面7を研削してウェーハ1を仕上がり厚さ100にするステップである。
仕上げ研削ステップST6では、研削装置60が、チャックテーブル61の保持面62に粘着テープ200を介してウェーハ1の機能層4側を吸引保持する。仕上げ研削ステップST6では、図10に示すように、スピンドル63により仕上げ研削用の研削ホイール64を回転しかつチャックテーブル61を軸心回りに回転しながら研削水を供給するとともに、仕上げ研削用砥石65をチャックテーブル61に所定の送り速度で近づけることによって、仕上げ研削用砥石65でウェーハ1即ちデバイス5の裏面7を仕上げ研削する。仕上げ研削ステップST6では、仕上がり厚さ100になるまでウェーハ1即ちデバイス5を研削する。仕上げ研削ステップST6では、仕上がり厚さ100になるまでウェーハ1即ちデバイス5を研削すると、第1切削溝301が除去されて、第1切削溝301と第2切削溝302との間の段差が除去される。ウェーハの加工方法は、仕上がり厚さ100までウェーハ1即ちデバイス5を薄化すると貼り替えステップST7に進む。
(貼り替えステップ)
図11は、図2に示されたウェーハの加工方法の貼り替えステップを示すウェーハの断面図である。貼り替えステップST7は、プラズマエッチングステップST3、機能層切断ステップST4、チャンバークリーニングステップST5及び仕上げ研削ステップST6を実施した後に、ウェーハ1の裏面7にダイアタッチフィルム202を装着するとともにエキスパンドテープ203を貼着して、粘着テープ200を剥離するステップである。
貼り替えステップST7では、仕上げ研削ステップST6において仕上げ研削されたウェーハ1即ちデバイス5の裏面7にデバイス5を接着するためのダイアタッチフィルム202を貼着する。貼り替えステップST7では、図11に示すように、外周縁に環状フレーム204が貼着されたエキスパンドテープ203に積層されたダイアタッチフィルム202をウェーハ1の裏面7に貼着するとともに、機能層4から粘着テープ200を剥がす。なお、エキスパンドテープ203の伸縮性は、ダイアタッチフィルム202の伸縮性よりも大きい。ウェーハの加工方法は、粘着テープ200を機能層4から剥がすと、ダイアタッチフィルム破断ステップST8に進む。
(ダイアタッチフィルム破断ステップ)
図12は、図2に示されたウェーハの加工方法のダイアタッチフィルム破断ステップにおいて、ウェーハを拡張装置に保持した状態を示す断面図である。図13は、図2に示されたウェーハの加工方法のダイアタッチフィルム破断ステップにおいて、ダイアタッチフィルムをデバイス毎に破断した状態を示す断面図である。
ダイアタッチフィルム破断ステップST8は、貼り替えステップST7を実施した後、ダイアタッチフィルム202を冷却して伸縮性を低下されてからエキスパンドテープ203を引き延ばして拡張し、ダイアタッチフィルム202を個々のデバイス5に沿って破断するステップである。実施形態1において、ダイアタッチフィルム破断ステップST8では、図12に示すように、機能層4側を上方に向けた状態で、拡張装置70が、クランプ部71で環状フレーム204を挟み込んで、貼り替えステップST7後のウェーハ1を固定する。このとき、図12に示すように、拡張装置70は、円筒状の拡張ドラム72をエキスパンドテープ203のウェーハ1と環状フレーム204との間の領域に当接させておく。拡張ドラム72は、環状フレーム204の内径より小さくウェーハ1の外径より大きい内径および外径を有し、クランプ部71により固定される環状フレーム204と同軸となる位置に配置される。
実施形態1において、ダイアタッチフィルム破断ステップST8では、拡張装置70が冷却装置73を作動し、ダイアタッチフィルム202を冷却して、ダイアタッチフィルム202の伸縮性を低下させる。実施形態1では、冷却装置73は、図12に示すように、裏面7側からエキスパンドテープ203に常温よりも低い温度の冷気74を噴射して、エキスパンドテープ203を介してダイアタッチフィルム202を冷却するが、本発明では、図12に示す構成に限定されない。
実施形態1において、ダイアタッチフィルム破断ステップST8では、冷却装置73が所定時間、ダイアタッチフィルム202を冷却した後、図13に示すように、拡張装置70がクランプ部71を下降させる。すると、エキスパンドテープ203が拡張ドラム72に当接しているために、エキスパンドテープ203が面方向に拡張される。ダイアタッチフィルム破断ステップST8では、拡張の結果、エキスパンドテープ203は、放射状の引張力が作用する。このようにウェーハ1の裏面7にダイアタッチフィルム202を介して貼着されたエキスパンドテープ203に放射状に引張力が作用すると、ウェーハ1が、機能層切断ステップST4において、個々のデバイス5に分割されているために、引張力がダイアタッチフィルム202のデバイス5間に位置する部分に集中する。そして、冷却されてエキスパンド性が低下したダイアタッチフィルム202は、図13に示すように、デバイス5間に位置する部分が破断して、デバイス5毎に分割される。実施形態1において、ウェーハの加工方法は、ダイアタッチフィルム破断ステップST8において、所謂クールエキスパンド技術を利用して、ダイアタッチフィルム202を破断する。
なお、実施形態1では、ダイアタッチフィルム破断ステップST8において、クランプ部71を下降させてエキスパンドテープ203を拡張したが、本発明は、これに限定されることなく、拡張ドラム72を上昇させても良く、要するに、拡張ドラム72をクランプ部71に対して相対的に上昇させ、クランプ部71を拡張ドラム72に対して相対的に下降させれば良い。ウェーハの加工方法は、ダイアタッチフィルム202をデバイス5毎に分割すると、終了する。なお、その後、デバイス5は、ダイアタッチフィルム202毎、図示しないピックアップによりエキスパンドテープ203からピックアップされる。
実施形態1に係るウェーハの加工方法は、切削ステップST2において裏面7から分割予定ライン6に沿って切削溝300を形成した後、プラズマエッチングステップST3において裏面7側からプラズマエッチングすることで、切削溝300を基板2の表面3に向かって進行させて、ウェーハ1を分割するため、マスクを不要としたプラズマダイシングを実現することができる。このために、ウェーハの加工方法は、切削加工により分割するデバイスよりも小型であるためにプラズマエッチングで分割するのに好適なデバイス5を備えるウェーハ1の加工方法において、高価なマスクが不要となる。その結果、ウェーハの加工方法は、コストを抑制しながらもウェーハ1にプラズマエッチングを行ってウェーハ1を個々のデバイス5に分割することができる。
また、ウェーハの加工方法は、貼り替えステップST7において、ウェーハ1の裏面7にダイアタッチフィルム202を装着後、ダイアタッチフィルム破断ステップST8において、ダイアタッチフィルム202を冷却して破断する所謂クールエキスパンド技術を利用する。その結果、ウェーハの加工方法は、ダイアタッチフィルム202をデバイス5毎に分割する際に、レーザーアブレーション加工を行う必要がないので、レーザー光線を照射するためのアライメントを行う必要がなく、効率的にダイアタッチフィルム202付きのデバイス5を形成できる、という効果も奏する。
また、ウェーハの加工方法は、機能層切断ステップST4において、レーザー光線51を用いたアブレーション加工で、分割溝310の底で露出した機能層4を切断するので、プラズマエッチングステップST3後に、分割予定ライン6に位置する基板2が残存したとしても、機能層切断ステップST4後にウェーハ1を個々のデバイス5に分割することが可能となる。また、ウェーハの加工方法は、機能層切断ステップST4では、裏面7側からレーザー光線51を照射し、機能層切断ステップST4後に、プラズマ化した不活性ガスをハウジング25(エッチングチャンバー)に供給して、ハウジング25(エッチングチャンバー)内に付着した反応生成物500を除去するチャンバークリーニングステップST5を実施するので、連続加工でもハウジング25(エッチングチャンバー)内の清掃のタイミングを遅らせることができるという効果も奏する。
また、ウェーハの加工方法は、切削ステップST2及び仕上げ研削ステップST6前の保護部材配設ステップST1において、機能層4側に粘着テープ200が貼着されている。このために、切削ステップST2及び仕上げ研削ステップST6時に生じるコンタミがデバイス5に付着することを抑制することができる。
また、ウェーハの加工方法は、機能層切断ステップST4において、切削溝300の溝底に残った機能層4にレーザー光線51を照射して分割するので、Low−k膜等の機能層4が積層されたウェーハ1を個々のデバイス5に分割することができる。また、ウェーハの加工方法は、機能層切断ステップST4前の保護部材配設ステップST1において、機能層4側に粘着テープ200が貼着され、機能層切断ステップST4において、裏面7側からレーザー光線51を切削溝300の溝底の機能層4に照射するので、アブレーション加工時に生じるデブリがデバイス5に付着することを抑制することができる。
また、ウェーハの加工方法は、切削ステップST2において、第1切削溝301を形成した後に第1切削溝301の溝底303に第1切削溝301よりも細い第2切削溝302を形成すると共に、プラズマエッチングステップST3においてボッシュ法でウェーハ1をプラズマエッチングする。このために、ウェーハの加工方法は、プラズマエッチングステップST3のエッチングステップにおいて、SFガスからなるプラズマを切削溝300の底304を通してウェーハ1に引き込むことができる。その結果、ウェーハの加工方法は、効率的にウェーハ1の基板2を分割することができる。
また、ウェーハの加工方法は、切削ステップST2において、ウェーハ1の仕上がり厚さ100より深い切削溝300を形成することで、裏面7側に仕上がり厚さ100以上の段差を設け、プラズマエッチングステップST3後に残されるウェーハ1の厚さが仕上がり厚さになりつつ、所望の深さの切削溝300を形成できる。
また、ウェーハの加工方法は、プラズマエッチングステップST3において、基板2を分割予定ライン6に沿って分割するために、個々に分割されたデバイス5の側面がプラズマエッチングによって除去された面である。このために、ウェーハの加工方法は、切削加工による欠けが個々に分割されたデバイス5の側面に残らず、抗折強度が高いデバイス5を製造できる、という効果も奏する。
また、ウェーハの加工方法は、仕上げ研削ステップST6において、ウェーハ1の裏面7を研削して、第1切削溝301と第2切削溝302との間の段差を除去し、所望の仕上げ厚さに薄化するので、所定寸法のデバイス5を得ることができる。
また、ウェーハの加工方法は、貼り替えステップST7と、ダイアタッチフィルム破断ステップST8とを備えるので、基板などに固定可能なデバイス5を得ることができる。
なお、本発明に係るウェーハの加工方法において、チャンバークリーニングステップST5に用いられる不活性ガスは、ハウジング25(エッチングチャンバー)の外部でプラズマ化した不活性ガスを該ハウジング25(エッチングチャンバー)に供給するようにしてもよい。
〔実施形態2〕
本発明の実施形態2に係るウェーハの加工方法を図面に基づいて説明する。図14は、実施形態2に係るウェーハの加工方法の流れを示すフローチャートである。図15は、図14に示されたウェーハの加工方法の予備研削ステップを示す側断面図である。図16は、図14に示されたウェーハの加工方法の予備研削ステップ後のウェーハの要部の断面図である。なお、図14、図15及び図16は、実施形態1と同一部分に同一符号を付して説明を省略する。
実施形態2に係るウェーハの加工方法は、図14に示すように、予備研削ステップST10を備えること以外、実施形態1と同じである。予備研削ステップST10は、プラズマエッチングステップST3の前に、ウェーハ1の裏面7を予め研削するステップである。実施形態2において、ウェーハの加工方法は、予備研削ステップST10を保護部材配設ステップST1の後でかつ切削ステップST2の前に実施するが、本発明では、プラズマエッチングステップST3の前であれば、保護部材配設ステップST1の前又は切削ステップST2の後に実施しても良い。
予備研削ステップST10では、研削装置80が、チャックテーブル81の保持面82に粘着テープ200を介してウェーハ1の機能層4側を吸引保持する。予備研削ステップST10では、図15に示すように、スピンドル83により粗研削用の研削ホイール84を回転しかつチャックテーブル81を軸心回りに回転しながら研削水を供給するとともに、粗研削用砥石85をチャックテーブル81に所定の送り速度で近づけることによって、粗研削用砥石85でウェーハ1の裏面7を粗研削する。なお、粗研削用砥石85は、仕上げ研削用砥石65よりも大きな砥粒を有する研削砥石である。
予備研削ステップST10では、図16に示すように、仕上がり厚さ100とプラズマエッチングステップST3において除去される厚さ101とを合わせた厚さ以上になるまでウェーハ1を研削する。実施形態2において、ウェーハの加工方法は、仕上がり厚さ100とプラズマエッチングステップST3において除去される厚さ101とを合わせた厚さ以上になるまでウェーハ1を研削するとプラズマエッチングステップST3に進む。なお、本発明は、予備研削ステップST10では、仕上がり厚さ100とプラズマエッチングステップST3において除去される厚さ101とを合わせた厚さと略等しくなる厚さにウェーハ1を薄化するのが望ましい。
実施形態2に係るウェーハの加工方法は、切削ステップST2において裏面7から分割予定ライン6に沿って切削溝300を形成した後、プラズマエッチングステップST3において裏面7側からプラズマエッチングするので、マスクを不要としたプラズマダイシングを実現することができる。その結果、ウェーハの加工方法は、実施形態1と同様に、コストを抑制しながらもウェーハ1にプラズマエッチングを行ってウェーハ1を個々のデバイス5に分割することができる。
また、実施形態2に係るウェーハの加工方法は、プラズマエッチングステップST3の前に予備研削ステップST10を実施してウェーハ1を薄化するので、プラズマエッチングステップST3時のウェーハ1の基板2の除去量を抑制することができる。その結果、実施形態2に係るウェーハの加工方法は、プラズマエッチングステップST3において生じる所謂アウトガスの量を抑制することができる。
また、実施形態2に係るウェーハの加工方法は、切削ステップST2の前に予備研削ステップST10を実施してウェーハ1の裏面7を研削するので、予備研削ステップST10の前においてウェーハ1の裏面7が梨地面(細かい凹凸を有する面)であっても、切削ステップST2の前に裏面7を平坦化することができる。その結果、実施形態2に係るウェーハの加工方法は、切削ステップST2において、赤外線カメラが撮像した画像に基づいてアライメントを遂行した際の切削ブレード12−1,12−2と分割予定ライン6との位置ずれを抑制することができる。
〔実施形態3〕
本発明の実施形態3に係るウェーハの加工方法を図面に基づいて説明する。図17は、実施形態3に係るウェーハの加工方法のプラズマエッチングステップ後のウェーハの要部の断面図である。なお、図17は、実施形態1と同一部分に同一符号を付して説明を省略する。
実施形態3に係るウェーハの加工方法は、プラズマエッチングステップST3において、ボッシュ法の代わりに、異方性エッチングによりウェーハ1をエッチングすること以外、実施形態1と同じである。実施形態3に係るウェーハの加工方法は、プラズマエッチングステップST3では、図17に点線で示すエッチング前のウェーハ1の裏面7及び切削溝300の形状を維持した状態で、図17に実線で示すように、基板2全体を裏面7側からエッチングして、基板2を分割予定ライン6に沿って分割する。
実施形態3に係るウェーハの加工方法は、切削ステップST2において裏面7から分割予定ライン6に沿って切削溝300を形成した後、プラズマエッチングステップST3において裏面7側からプラズマエッチングするので、マスクを不要としたプラズマダイシングを実現することができる。その結果、ウェーハの加工方法は、実施形態1と同様に、コストを抑制しながらもウェーハ1にプラズマエッチングを行ってウェーハ1を個々のデバイス5に分割することができる。
また、実施形態3に係るウェーハの加工方法は、プラズマエッチングステップST3において、異方性エッチングによりウェーハ1の基板2を裏面7側からエッチングするので、ボッシュ法でエッチングする場合よりもウェーハ1の基板2を薄化することができる。その結果、ウェーハ1の加工方法は、仕上げ研削ステップST6における基板2の研削量を抑制することができる。
なお、実施形態3に係るウェーハの加工方法は、実施形態2と同様に、予備研削ステップST10を実施しても良い。
〔実施形態4〕
本発明の実施形態4に係るウェーハの加工方法を図面に基づいて説明する。図18は、実施形態4に係るウェーハの加工方法のプラズマエッチングステップで用いられるエッチング装置の構成を示す断面図である。なお、図18は、実施形態1と同一部分に同一符号を付して説明を省略する。
実施形態4に係るウェーハの加工方法は、プラズマエッチングステップST3で用いられる図18に示すエッチング装置20−4の構成が、エッチング装置20と異なること以外、実施形態1と同じである。
エッチング装置20−4は、電極28,31に高周波電力を印加して密閉空間27内でエッチングガスなどをプラズマするものではなく、プラズマ化したエッチングガスなどをハウジング25内の密閉空間27に導入するリモートプラズマ方式のプラズマエッチング装置である。エッチング装置20−4は、図18に示すように、図示しない不活性ガス供給ユニットから不活性ガスが供給される配管45がハウジング25の外壁を貫通して接続している。なお、不活性ガス供給ユニットが供給する不活性ガスは、アルゴンガス(Ar)、ヘリウムガス(He)等の希ガスや、希ガスに窒素ガス(N)、又は水素ガス(H)等を混合した混合ガス等で構成することができる。
また、エッチング装置20−4は、図18に示すように、ガス供給ユニット40,43からのエッチングガスが供給される供給管46がハウジング25の上壁に貫通して接続し、供給管46内を流れるエッチングガスに高周波電力を加えるための電極47が供給管46に設けられている。供給管46は、ガス供給ユニット40,43から供給されるエッチンングガスをハウジング25内の密閉空間27に導入する。電極47は、高周波電源42から高周波電力が印加されて、供給管46内を流れるガスをプラズマ化する。また、エッチング装置20−4は、供給管46から密閉空間27に供給されるプラズマ化されたエッチングガスを分散させる分散部材48を備える。
実施形態4に係るウェーハの加工方法は、実施形態1と同様に、プラズマエッチングステップST3において、エッチング装置20−4の制御ユニット22が、ウェーハ1をハウジング25内の密閉空間27に収容した後、チャックテーブル21上に吸着保持する。実施形態4に係るウェーハの加工方法のプラズマエッチングステップST3では、制御ユニット22が、ガス排出ユニット35を作動して密閉空間27を真空排気するとともに、不活性ガス供給ユニットを作動して密閉空間27内に不活性ガスを供給し、密閉空間27の圧力を所定の圧力に維持するとともに、冷媒供給ユニット36を作動させてヘリウムガスを循環させて、下部電極28の異常昇温を抑制する。
実施形態4に係るウェーハの加工方法は、プラズマエッチングステップST3において、実施形態1と同様に、ボッシュ法でウェーハ1をプラズマエッチングする。なお、プラズマエッチングステップST3のエッチングステップでは、制御ユニット22は、SFガス供給ユニット40を作動するとともに高周波電源42から電極47にプラズマを作り維持する高周波電力を印加して、SFガスをプラズマ化して、供給管46から下部電極28のチャックテーブル21上に保持されたウェーハ1に向けて噴出する。そして、制御ユニット22は、高周波電源42から下部電極28にイオンを引き込むための高周波電力を印加して、ウェーハ1の裏面7、切削溝301,302の内面及び切削溝300の底304をエッチングする。
また、プラズマエッチングステップST3の被膜堆積ステップでは、制御ユニット22は、Cガス供給ユニット43を作動しCガスを高周波電源42から電極47に印加する高周波電力でプラズマ化して、供給管46から下部電極28のチャックテーブル21上に保持されたウェーハ1に向けて噴出する。そして、制御ユニット22は、高周波電源42から下部電極28にイオンを引き込むための高周波電力を印加して、ウェーハ1に被膜を堆積させる。
実施形態4に係るウェーハの加工方法は、切削ステップST2において裏面7から分割予定ライン6に沿って切削溝300を形成した後、プラズマエッチングステップST3において裏面7側からプラズマエッチングするので、マスクを不要としたプラズマダイシングを実現することができる。その結果、ウェーハの加工方法は、実施形態1と同様に、コストを抑制しながらもウェーハ1にプラズマエッチングを行ってウェーハ1を個々のデバイス5に分割することができる。
また、実施形態4に係るウェーハの加工方法は、プラズマエッチングステップST3において、リモートプラズマ方式のエッチング装置20−4を用いるので、エッチング装置20−4ではプラズマ化したエッチングガスに混入するイオンが供給管46の内面に衝突してハウジング25内の密閉空間27に到達することを抑制できるので、より幅の狭い切削溝300であっても基板2をデバイス5毎に分割することができる。
なお、実施形態4に係るウェーハの加工方法は、実施形態2と同様に、予備研削ステップST10を実施しても良い。
なお、本発明は、上記実施形態に限定されるものではない。即ち、本発明の骨子を逸脱しない範囲で種々変形して実施することができる。例えば、本発明では、分割予定ライン6に形成される機能層4、金属膜及びTEGを切削ステップST2の前に、表面からレーザー光線を照射して、アブレーションで除去しても良い。また、本発明では、プラズマエッチングステップST3において、プラズマエッチングガスに樹脂で構成される機能層4をエッチングするために酸素ガスを混入しても良い。この場合、機能層切断ステップST4を実施することなく、切削溝300の底304に残った機能層4を除去することができる。若しくは、本発明は、酸素ガスによって機能層4を部分的に除去し、径方向に拡張する外力を加える事で(具体的には、粘着テープ200を拡張する事で)部分的に除去された部分を破断起点に機能層4を引きちぎって分割しても良い。また、本発明は、ウェーハ1の裏面7に予め酸化被膜が形成されている場合、プラズマエッチングステップST3において、この酸化被膜をマスクとしてプラズマエッチングを行っても良い。また、本発明は、仕上げ研削ステップST6及び予備研削ステップST10の双方において、粗研削用砥石85を用いてウェーハ1の裏面7を粗研削した後に、仕上げ研削用砥石65でウェーハ1の裏面7を仕上げ研削しても良いし、ウェーハ1の裏面7を租研削のみしても良いし、ウェーハ1の裏面7を仕上げ研削のみしても良い。また、本発明では、デバイス5のサイズが上記実施形態で説明した寸法に限定されない。
1 ウェーハ
2 基板
2−1 残存部
3 表面
4 機能層
5 デバイス
6 分割予定ライン
7 裏面
12,12−1,12−2 切削ブレード
21 チャックテーブル
51 レーザー光線
51−1 集光点
100 仕上がり厚さ
200 粘着テープ(保護部材)
202 ダイアタッチフィルム
203 エキスパンドテープ
300 切削溝
304 底
310 分割溝
ST1 保護部材配設ステップ
ST2 切削ステップ
ST3 プラズマエッチングステップ
ST4 機能層切断ステップ
ST5 チャンバークリーニングステップ
ST6 仕上げ研削ステップ
ST7 貼り替えステップ
ST8 ダイアタッチフィルム破断ステップ
ST10 予備研削ステップ

Claims (2)

  1. 基板の表面に機能層が積層され複数のデバイスが形成されたウェーハを、該複数のデバイスを区画する分割予定ラインに沿って分割するウェーハの加工方法であって、
    該ウェーハの表面の機能層側に保護部材を配設する保護部材配設ステップと、
    該ウェーハの裏面に切削ブレードを切り込ませ、該機能層に至らない深さの切削溝を該分割予定ラインに沿って該基板に形成する切削ステップと、
    エッチングチャンバーに収容されたチャックテーブルで該ウェーハの保護部材側を保持し、該ウェーハの裏面側にプラズマ化したガスを供給して該ウェーハの裏面側及び該切削溝の底に残存する基板をエッチングして除去し、該基板を該分割予定ラインに沿って分割するプラズマエッチングステップと、
    該プラズマエッチングステップを実施した後に、ウェーハの裏面側からレーザー光線の集光点をエッチングした該切削溝の底に位置づけて照射し、該機能層を切断する機能層切断ステップと、
    該プラズマエッチングステップを実施して該ウェーハを搬出した後で、次のウェーハを搬入する前に、該エッチングチャンバーにプラズマ化した不活性ガスを供給し、該エッチングチャンバーの内部に付着した該プラズマエッチングステップでの反応生成物を除去するチャンバークリーニングステップと、
    を備えるウェーハの加工方法。
  2. 該チャンバークリーニングステップは、該エッチングチャンバーの外部でプラズマ化した不活性ガスを該エッチングチャンバーに供給する請求項1に記載のウェーハの加工方法。
JP2018140631A 2018-07-26 2018-07-26 ウェーハの加工方法 Pending JP2020017676A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018140631A JP2020017676A (ja) 2018-07-26 2018-07-26 ウェーハの加工方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018140631A JP2020017676A (ja) 2018-07-26 2018-07-26 ウェーハの加工方法

Publications (1)

Publication Number Publication Date
JP2020017676A true JP2020017676A (ja) 2020-01-30

Family

ID=69581645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018140631A Pending JP2020017676A (ja) 2018-07-26 2018-07-26 ウェーハの加工方法

Country Status (1)

Country Link
JP (1) JP2020017676A (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005033173A (ja) * 2003-06-16 2005-02-03 Renesas Technology Corp 半導体集積回路装置の製造方法
JP2006303077A (ja) * 2005-04-19 2006-11-02 Matsushita Electric Ind Co Ltd 半導体チップの製造方法
JP2012204644A (ja) * 2011-03-25 2012-10-22 Tokyo Electron Ltd プラズマ処理装置及びプラズマ処理方法
JP2015095508A (ja) * 2013-11-11 2015-05-18 株式会社ディスコ ウェーハの加工方法
JP2015162544A (ja) * 2014-02-27 2015-09-07 東京エレクトロン株式会社 プラズマ処理装置のクリーニング方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005033173A (ja) * 2003-06-16 2005-02-03 Renesas Technology Corp 半導体集積回路装置の製造方法
JP2006303077A (ja) * 2005-04-19 2006-11-02 Matsushita Electric Ind Co Ltd 半導体チップの製造方法
JP2012204644A (ja) * 2011-03-25 2012-10-22 Tokyo Electron Ltd プラズマ処理装置及びプラズマ処理方法
JP2015095508A (ja) * 2013-11-11 2015-05-18 株式会社ディスコ ウェーハの加工方法
JP2015162544A (ja) * 2014-02-27 2015-09-07 東京エレクトロン株式会社 プラズマ処理装置のクリーニング方法

Similar Documents

Publication Publication Date Title
US9379015B2 (en) Wafer processing method
US11114342B2 (en) Wafer processing method
JP2009283802A (ja) 半導体装置の製造方法
JP7106382B2 (ja) ウェーハの加工方法
JP2020061499A (ja) ウェーハの加工方法
JP7061022B2 (ja) ウェーハの加工方法
JP2019212772A (ja) ウェーハの加工方法
JP2020017676A (ja) ウェーハの加工方法
US11456213B2 (en) Processing method of wafer
JP2019212839A (ja) ウェーハの加工方法
JP2020061459A (ja) ウェーハの加工方法
JP2020061494A (ja) ウェーハの加工方法
JP7146555B2 (ja) ウェーハの加工方法
JP2019212771A (ja) ウェーハの加工方法
JP7083716B2 (ja) ウェーハの加工方法
JP7138534B2 (ja) ウェーハの加工方法
US20200185275A1 (en) Manufacturing method of device chip
JP2019212769A (ja) ウェーハの加工方法
JP2020017677A (ja) ウェーハの加工方法
JP2020061460A (ja) ウェーハの加工方法
JP2020017629A (ja) ウェーハの加工方法
JP2020061463A (ja) ウェーハの加工方法
JP2020061496A (ja) ウェーハの加工方法
JP2020061440A (ja) ウェーハの加工方法
JP2020061495A (ja) ウェーハの加工方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220510

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221101