[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2020091216A - Component state detection device - Google Patents

Component state detection device Download PDF

Info

Publication number
JP2020091216A
JP2020091216A JP2018228944A JP2018228944A JP2020091216A JP 2020091216 A JP2020091216 A JP 2020091216A JP 2018228944 A JP2018228944 A JP 2018228944A JP 2018228944 A JP2018228944 A JP 2018228944A JP 2020091216 A JP2020091216 A JP 2020091216A
Authority
JP
Japan
Prior art keywords
electronic component
light
parallel light
parallel
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018228944A
Other languages
Japanese (ja)
Inventor
陽太郎 山下
Yotaro Yamashita
陽太郎 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ueno Seiki Co Ltd
Original Assignee
Ueno Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ueno Seiki Co Ltd filed Critical Ueno Seiki Co Ltd
Priority to JP2018228944A priority Critical patent/JP2020091216A/en
Publication of JP2020091216A publication Critical patent/JP2020091216A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Supply And Installment Of Electrical Components (AREA)

Abstract

To provide a component state detection device capable of efficiently detecting a state of an electronic component.SOLUTION: A component state detection device 10 for detecting a state of an electronic component W includes: parallel light generation means 11 having a light source 14, an optical member 16 in which a predetermined pattern is formed and light emitted from the light source 14 passes to be pattern light corresponding to the pattern, and a first telecentric lens 17 for emitting incident pattern light to parallel light P of which principal ray is parallel to an optical axis; imaging means 12 having a second telecentric lens 19 through which reflected light Q generated by reflecting the parallel light P to an electronic component W transmits; and image analysis means 13 for detecting the state of the electronic component W on the basis of a captured image of the imaging means 12.SELECTED DRAWING: Figure 1

Description

本発明は、電子部品の状態を検知する部品状態検出装置に関する。 The present invention relates to a component state detection device that detects a state of an electronic component.

従来、ダイオード、トランジスタ、コンデンサ、インダクタ、IC(Integrated Circuit)等の電子部品をトレイやキャリアテープのポケットに収容する際、電子部品がポケット内の所定位置に配されているか否かを非接触式のセンサによって判定していた。例えば、非接触式センサによってキャリアテープのポケット外に物体が検出された場合、電子部品が所定位置に配されていないとの判定をし、同センサによって物体が検出されない場合、電子部品が所定位置に配されているとの判定をする。 Conventionally, when electronic parts such as diodes, transistors, capacitors, inductors, ICs (Integrated Circuits) are stored in a pocket of a tray or a carrier tape, it is a non-contact type whether or not the electronic parts are arranged at predetermined positions in the pocket. It was judged by the sensor. For example, if an object is detected outside the pocket of the carrier tape by the non-contact type sensor, it is determined that the electronic component is not placed at the predetermined position, and if the object is not detected by the sensor, the electronic component is placed at the predetermined position. It is determined that it is distributed to.

但し、上述した方法は、薄い電子部品(例えば、0.1mmの厚みの電子部品)の配置を安定的に検出できない。この点、位相シフト法を利用して3次元情報を導出する方法を採用すれば(特許文献1参照)、薄い電子部品の配置を安定的に検出できることが考えられる。また、位相シフト法を利用すると、電子部品の配置に加え電子部品の形状等の検出も可能となることが期待される。 However, the method described above cannot stably detect the arrangement of thin electronic components (for example, electronic components having a thickness of 0.1 mm). In this respect, it is conceivable that the arrangement of thin electronic components can be stably detected by adopting a method of deriving three-dimensional information using the phase shift method (see Patent Document 1). In addition, it is expected that the phase shift method can detect the shape of the electronic component in addition to the arrangement of the electronic component.

特開2007−240465号公報JP, 2007-240465, A

しかしながら、位相シフト法を利用した電子部品の状態(配置や形状等)の検出は、1つの電子部品に対し複数回の撮像を行う必要があり、単位時間当たりに多くの電子部品の状態を検出することを要する装置において、この方法を採用することはできないという課題があった。
本発明は、かかる事情に鑑みてなされたもので、電子部品の状態を効率的に検出可能な部品状態検出装置を提供することを目的とする。
However, in order to detect the state (arrangement, shape, etc.) of electronic components using the phase shift method, it is necessary to perform imaging for one electronic component multiple times, and the state of many electronic components can be detected per unit time. There is a problem that this method cannot be adopted in a device that needs to do so.
The present invention has been made in view of such circumstances, and an object thereof is to provide a component state detection device capable of efficiently detecting the state of an electronic component.

前記目的に沿う本発明に係る部品状態検出装置は、電子部品の状態を検出する部品状態検出装置において、光源、所定のパターンが形成され、前記光源から発せられた光が通過して該パターンに対応したパターン光となる光学部材、及び、入射する前記パターン光を、主光線が光軸に対して平行な平行光にして出射する第1のテレセントリックレンズを有する平行光生成手段と、前記平行光が前記電子部品に反射して生じる反射光が透過する第2のテレセントリックレンズを有する撮像手段と、前記撮像手段の撮像画像を基に前記電子部品の状態を検知する画像解析手段とを備える。 The component state detecting device according to the present invention in accordance with the above-mentioned object, in the component state detecting device for detecting the state of an electronic component, a light source, a predetermined pattern is formed, the light emitted from the light source passes through the pattern. An optical member which becomes a corresponding pattern light; a parallel light generating means having a first telecentric lens for emitting the incident pattern light into a parallel light whose principal ray is parallel to the optical axis; and the parallel light. Is provided with an image pickup means having a second telecentric lens through which reflected light generated by being reflected by the electronic component is transmitted, and an image analysis means for detecting the state of the electronic component based on an image picked up by the image pickup means.

本発明に係る部品状態検出装置は、入射するパターン光を主光線が光軸に対して平行な平行光にして出射する第1のテレセントリックレンズを有する平行光生成手段と、平行光が電子部品に反射して生じる反射光が透過する第2のテレセントリックレンズを有する撮像手段と、撮像手段の撮像画像を基に電子部品の状態を検知する画像解析手段とを備えるので、1つの撮像画像を基にその撮像画像中にとらえられた反射光から電子部品の状態を検知でき、1つの電子部品に対し1回の撮像のみを行った、効率的な処理で電子部品の状態を検出可能である。 The component state detecting device according to the present invention includes a parallel light generation unit having a first telecentric lens that emits incident pattern light into parallel light whose principal ray is parallel to the optical axis, and parallel light to an electronic component. Since the image pickup means having the second telecentric lens through which the reflected light generated by the reflection is transmitted and the image analysis means for detecting the state of the electronic component based on the picked-up image of the image pickup means are provided, based on one picked-up image The state of the electronic component can be detected from the reflected light captured in the captured image, and the state of the electronic component can be detected by efficient processing in which one image of the electronic component is captured only once.

本発明の第1の実施の形態に係る部品状態検出装置の説明図である。It is explanatory drawing of the component state detection apparatus which concerns on the 1st Embodiment of this invention. (A)、(B)、(C)はそれぞれ、電子部品の配置と撮像画像中の明部との関係を示す説明図である。(A), (B), (C) is an explanatory view showing the relationship between the arrangement of electronic components and the bright part in the captured image. (A)、(B)は電子部品の位置と光の関係についての平行光と非平行光の差異を示す説明図である。(A) And (B) is explanatory drawing which shows the difference of the parallel light and non-parallel light regarding the relationship between the position of an electronic component, and light. (A)、(B)はそれぞれ、光学部材、第1のテレセントリックレンズ及び電子部品の配置と平行光の焦点との関係を示す説明図である。(A) And (B) is explanatory drawing which shows the relationship of arrangement|positioning of an optical member, a 1st telecentric lens, and an electronic component, and the focus of parallel light, respectively. (A)、(B)はそれぞれ、本発明の第2の実施の形態に係る部品状態検出装置の説明図である。(A) And (B) is explanatory drawing of the component state detection apparatus which concerns on the 2nd Embodiment of this invention, respectively. 吸着部材に吸着された電子部品の配置を検知する変形例を示す説明図である。It is explanatory drawing which shows the modification which detects the arrangement|positioning of the electronic component adsorbed by the adsorption member. 電子部品の変形と撮像画像中の明部との関係を示す説明図である。It is explanatory drawing which shows the relationship between the deformation|transformation of an electronic component, and the bright part in a captured image. (A)、(B)は、電子部品のリードの形状が正常か否かを判定する変形例を示す説明図である。(A) And (B) is explanatory drawing which shows the modification which determines whether the shape of the lead of an electronic component is normal.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
図1、図2(A)に示すように、本発明の第1の実施の形態に係る部品状態検出装置10は、電子部品Wの状態を検出する装置であって、平行光Pを電子部品Wに照射する平行光生成手段11と、平行光Pの電子部品Wでの反射により生じる反射光Qをとらえる位置に設けられて、電子部品Wを撮像する撮像手段12と、撮像手段12の撮像画像Rを基に電子部品Wの状態を検知する画像解析手段13を備えている。以下、詳細に説明する。
Subsequently, embodiments of the present invention will be described with reference to the accompanying drawings to provide an understanding of the present invention.
As shown in FIGS. 1 and 2A, a component state detection device 10 according to the first exemplary embodiment of the present invention is a device for detecting the state of an electronic component W, and is configured to detect parallel light P as an electronic component. The parallel light generation means 11 for irradiating W, the image pickup means 12 provided at a position for capturing the reflected light Q generated by the reflection of the parallel light P by the electronic component W, and the image pickup means 12 for image pickup. An image analysis unit 13 for detecting the state of the electronic component W based on the image R is provided. The details will be described below.

平行光生成手段11は、図1に示すように、光源14、所定のパターン(本実施の形態ではスリット15)が形成された光学部材16及びテレセントリックレンズ17(第1のテレセントリックレンズ)を有している。本実施の形態において、光源14はLED照明であり、光学部材16は板状のストライプレチクル(複数のスリットが等間隔で形成されたフォトマスク)であるが、これらに限定されない。光源14から照射された光は光学部材16を通過して、スリット15(即ち、光学部材16に形成されたパターン)に対応したパターン光となる。 As shown in FIG. 1, the parallel light generating means 11 has a light source 14, an optical member 16 having a predetermined pattern (slit 15 in this embodiment), and a telecentric lens 17 (first telecentric lens). ing. In the present embodiment, the light source 14 is an LED illumination and the optical member 16 is a plate-shaped stripe reticle (a photomask in which a plurality of slits are formed at equal intervals), but the invention is not limited thereto. The light emitted from the light source 14 passes through the optical member 16 and becomes pattern light corresponding to the slit 15 (that is, the pattern formed on the optical member 16).

テレセントリックレンズ17は、中空部材18内に固定され、テレセントリックレンズ17に入射するパターン光を、主光線が光軸(テレセントリックレンズ17の光軸)に対して平行な複数(スリット15と同数)の平行光Pにして出射する。平行光Pは、図1、図2(A)に示すように、キャリアテープTのポケットT1に収容されて所定位置に配された電子部品Wの表面Sで反射され、当該電子部品Wの表面Sには、平行光Pの各反射領域に他の領域に比べて明るい直線状の明部Kが表れる。各明部Kは平行である。
以下、本実施の形態において、電子部品Wは、撮像手段12によって撮像される位置に配されているものとする。
The telecentric lens 17 is fixed in the hollow member 18, and the pattern light incident on the telecentric lens 17 has a plurality of (the same number as the slit 15) parallel rays whose principal rays are parallel to the optical axis (the optical axis of the telecentric lens 17). Light P is emitted. The parallel light P is reflected by the surface S of the electronic component W housed in the pocket T1 of the carrier tape T and arranged at a predetermined position as shown in FIGS. In S, a straight bright portion K that is brighter than other areas appears in each reflection area of the parallel light P. Each bright part K is parallel.
Hereinafter, in the present embodiment, it is assumed that the electronic component W is arranged at a position where an image is picked up by the image pickup means 12.

ここで、電子部品Wの表面Sに照射されるのが平行光Pであることから、図3(A)に示すように、電子部品Wの位置が異なり電子部品Wの表面Sと平行光生成手段11との距離が変わったとしても、隣り合う平行光Pの一方が電子部品Wの表面Sに到達する位置と他方が電子部品Wの表面Sに到達する位置の間隔は変わらず、隣り合う明部K間の距離は変わらない。従って、本実施の形態では、電子部品Wの表面Sと平行光生成手段11との距離が変わっても、電子部品Wの表面Sに表れる各明部K間の距離は一定の値となる。なお、電子部品Wの位置が異なる場合に加え、電子部品Wとは厚みが異なる電子部品を採用する場合にも、電子部品の表面と平行光生成手段11との距離が変わることとなる。 Here, since the parallel light P is irradiated on the surface S of the electronic component W, the position of the electronic component W is different and the parallel light P is generated on the surface S of the electronic component W, as shown in FIG. 3A. Even if the distance from the means 11 changes, the distance between the position at which one of the adjacent parallel light beams P reaches the surface S of the electronic component W and the position at which the other parallel light beam P reaches the surface S of the electronic component W do not change and are adjacent to each other. The distance between the bright parts K does not change. Therefore, in the present embodiment, even if the distance between the surface S of the electronic component W and the parallel light generating means 11 changes, the distance between the bright portions K appearing on the surface S of the electronic component W has a constant value. In addition to the case where the position of the electronic component W is different and the case where an electronic component having a different thickness from the electronic component W is adopted, the distance between the surface of the electronic component and the parallel light generating means 11 is changed.

これに対し、図3(B)に示すように、電子部品Wの表面Sに対し平行ではない2つの光Uが照射されている場合、電子部品Wの表面Sと光Uを照射する機構との距離が変わると、一方の光Uが電子部品Wの表面Sに到達する位置と他方の光Uが電子部品Wの表面Sに到達する位置の間隔が変わる。
また、本実施の形態では、平行光P(平行光Pの主光線)が、光学部材16に対して垂直で電子部品Wの表面に対して斜めとなる(非平行かつ非垂直となる)向きに進行するように、光源14、光学部材16及びテレセントリックレンズ17が配置されている。
On the other hand, as shown in FIG. 3(B), when two lights U that are not parallel to the surface S of the electronic component W are irradiated, a surface S of the electronic component W and a mechanism for irradiating the light U are provided. When the distance is changed, the distance between the position where one light U reaches the surface S of the electronic component W and the position where the other light U reaches the surface S of the electronic component W is changed.
Further, in the present embodiment, the direction in which the parallel light P (the chief ray of the parallel light P) is perpendicular to the optical member 16 and oblique to the surface of the electronic component W (non-parallel and non-perpendicular). The light source 14, the optical member 16, and the telecentric lens 17 are arranged so as to proceed to the.

撮像手段12は、図1に示すように、平行光Pの電子部品Wの表面での反射により生じた反射光Qが透過するテレセントリックレンズ19(第2のテレセントリックレンズ)と、テレセントリックレンズ19を透過した反射光Qを電気信号に変換するイメージセンサ20等を備えて、電子部品Wを撮像した撮像画像(例えば、図2(A)、(B)、(C)にそれぞれ示す撮像画像R、R1、R2)を得る。撮像手段12には、マイクロコンピュータ等によって構成可能な画像解析手段13が接続されており、画像解析手段13は撮像手段12から撮像画像を受信することができる。 As shown in FIG. 1, the image pickup unit 12 transmits the telecentric lens 19 (second telecentric lens) through which the reflected light Q generated by the reflection of the parallel light P on the surface of the electronic component W is transmitted, and the telecentric lens 19. An image sensor 20 for converting the reflected light Q into an electric signal is provided, and imaged images of the electronic component W (for example, imaged images R and R1 shown in FIGS. 2A, 2B, and 2C, respectively). , R2). An image analysis unit 13 that can be configured by a microcomputer or the like is connected to the image pickup unit 12, and the image analysis unit 13 can receive a picked-up image from the image pickup unit 12.

撮像手段12は、テレセントリックレンズ19を有するため、撮像手段12と被写体との距離が異なっても被写界深度内で像(例えば、電子部品Wの像)の寸法は変化しない。そして、平行光Pの電子部品Wの表面での反射により生じた反射光の中で、主光線が撮像手段12(テレセントリックレンズ19)の光軸に対し平行な反射光Qのみ(実質的に反射光Qのみを意味する)がイメージセンサ20に到達する。
なお、図1、図2(A)、(B)、(C)では、主光線が撮像手段12の光軸に対し非平行な反射光を記載していない。
Since the imaging unit 12 has the telecentric lens 19, the size of the image (for example, the image of the electronic component W) does not change within the depth of field even if the distance between the imaging unit 12 and the subject is different. Then, of the reflected light generated by the reflection of the parallel light P on the surface of the electronic component W, only the reflected light Q whose principal ray is parallel to the optical axis of the image pickup means 12 (telecentric lens 19) (substantially reflected (Meaning only light Q) reaches the image sensor 20.
Note that FIGS. 1, 2A, 2B, and 2C do not describe reflected light in which the chief ray is not parallel to the optical axis of the imaging unit 12.

次に、撮像画像中の電子部品Wの像、表面Sの像、及び明部Kの像を、それぞれ電子部品W’、表面S’、及び明部K’として(即ち、明部K’は撮像画像中にとらえられた反射光Q)、電子部品Wの配置と撮像画像中の明部K’間の距離との関係について説明する。
電子部品Wの表面Sの平行光Pに対する角度が異なる場合、図2(A)、(B)、(C)に示すように、電子部品Wの表面Sにおいて平行光Pが到達する位置が相違し、各平行光Pに対応する各反射光Q間の距離が異なることとなる。従って、表面Sが撮像手段12の光軸に対して垂直な電子部品Wの撮像によって得られた撮像画像R(図2(A)参照)と、表面Sが撮像手段12の光軸に対して非垂直な電子部品Wの撮像によって得られた撮像画像R1、R2(図2(B)、(C)参照)とでは、明度K’間の距離がそれぞれ相違する。平行光Pと表面Sのなす角度が図2(A)の例より大きい図2(B)の例では、明度K’の間隔が図2(A)の例より狭くなり、同角度が図2(A)の例より小さい図2(C)の例では、明度K’の間隔が図2(A)の例より広くなる。
Next, the image of the electronic component W, the image of the surface S, and the image of the bright portion K in the captured image are referred to as the electronic component W′, the surface S′, and the bright portion K′ (that is, the bright portion K′ is The relationship between the reflected light Q) captured in the captured image, the arrangement of the electronic component W, and the distance between the bright portions K′ in the captured image will be described.
When the angle of the surface S of the electronic component W with respect to the parallel light P is different, the position where the parallel light P reaches on the surface S of the electronic component W is different as shown in FIGS. 2(A), (B), and (C). However, the distances between the reflected lights Q corresponding to the parallel lights P are different. Therefore, the captured image R (see FIG. 2A) obtained by capturing an image of the electronic component W in which the surface S is perpendicular to the optical axis of the image pickup means 12 and the surface S with respect to the optical axis of the image pickup means 12. The distances between the lightness values K′ are different from the captured images R1 and R2 (see FIGS. 2B and 2C) obtained by capturing the non-vertical electronic component W. In the example of FIG. 2B in which the angle formed by the parallel light P and the surface S is larger than the example of FIG. 2A, the interval of the lightness K′ is narrower than in the example of FIG. In the example of FIG. 2(C), which is smaller than the example of (A), the interval of the lightness K′ is wider than in the example of FIG. 2(A).

画像解析手段13には、撮像画像中の明部K’間の距離として、ポケットT1内での電子部品Wの配置が正常である際の範囲(以下、「正常範囲」と言う)が予め設定されている。画像解析手段13は、撮像手段12から取得した撮像画像を解析して、撮像画像中の電子部品W’の表面S’上の明部K’を検出し、撮像画像中の明部K’間の距離が正常範囲内であれば、電子部品WのポケットT1内での配置が正常であると判定し、撮像画像中の明部K’間の距離が正常範囲外であれば、電子部品WのポケットT1内での配置が正常でないと判定する。本実施の形態では、撮像手段12の光軸に対し電子部品Wの表面Sが垂直に配されている状態を、電子部品Wが正常に配置されている状態とする。 In the image analysis means 13, a range (hereinafter referred to as “normal range”) when the arrangement of the electronic components W is normal in the pocket T1 is preset as the distance between the bright portions K′ in the captured image. Has been done. The image analysis unit 13 analyzes the picked-up image acquired from the image pickup unit 12, detects a bright portion K′ on the surface S′ of the electronic component W′ in the picked-up image, and detects a bright portion K′ in the picked-up image. Is within the normal range, it is determined that the electronic component W is properly placed in the pocket T1. If the distance between the bright portions K′ in the captured image is outside the normal range, the electronic component W is detected. It is determined that the arrangement of the inside of the pocket T1 is not normal. In the present embodiment, a state in which the surface S of the electronic component W is arranged perpendicular to the optical axis of the image pickup means 12 is a state in which the electronic component W is normally arranged.

ここで、撮像手段12は被写体までの距離が変わっても被写界深度内で像の寸法が変化しないことから、撮像手段12から電子部品Wの表面Sまでの距離が異なる場合でも、撮像手段12に対する電子部品Wの表面Sの角度が変化しない限り、撮像画像における電子部品Wの表面Sの明部K間の距離や各明部Kの幅が変わらない。
従って、画像解析手段13は、設定された1つの正常範囲を基にして、厚みの異なる電子部品について、その配置が正常か否かを判定できる。
Here, the image pickup means 12 does not change the size of the image within the depth of field even if the distance to the subject changes. Therefore, even if the distance from the image pickup means 12 to the surface S of the electronic component W is different, the image pickup means As long as the angle of the surface S of the electronic component W with respect to 12 does not change, the distance between the bright portions K of the surface S of the electronic component W in the captured image and the width of each bright portion K do not change.
Therefore, the image analysis unit 13 can determine whether or not the arrangement of the electronic components having different thicknesses is normal, based on the one set normal range.

また、部品状態検出装置10では、図4(A)に示すように、光学部材16とテレセントリックレンズ17の主面(平行光Pに対して垂直な面)が平行で、正常に配置された電子部品Wの表面Sが光学部材16及びテレセントリックレンズ17の主面に対して非平行である。そのため、全ての平行光Pの焦点が合う仮想面Jは正常配置された電子部品Wの表面Sに対し非平行である。 Further, in the component state detecting device 10, as shown in FIG. 4A, the main surface (the surface perpendicular to the parallel light P) of the optical member 16 and the telecentric lens 17 is parallel, and the normally arranged electrons are arranged. The surface S of the component W is not parallel to the main surfaces of the optical member 16 and the telecentric lens 17. Therefore, the virtual plane J on which all the parallel lights P are focused is not parallel to the surface S of the electronic component W normally arranged.

この点、光学部材16を、図4(B)に示すように、テレセントリックレンズ17の主面に対して非平行に(即ち、平行光Pに対し傾斜して)配置し、光学部材16が配された仮想面とテレセントリックレンズ17の主面が配された仮想面と正常配置された電子部品Wの表面Sが配された仮想面とが同一直線(紙面に対し直交する直線)上で交わるようにすることによって、全ての平行光Pの焦点が正常配置された電子部品Wの表面Sで合うようになる。従って、正常配置された電子部品Wの表面Sで全ての平行光Pの焦点を合わせるべく(又は、当該表面Sに全ての平行光Pの焦点を近付けるべく)、光学部材16をテレセントリックレンズ17の主面に対し非平行に配置してもよい。 In this regard, as shown in FIG. 4B, the optical member 16 is arranged non-parallel to the main surface of the telecentric lens 17 (that is, inclined with respect to the parallel light P), and the optical member 16 is arranged. The virtual surface on which the main surface of the telecentric lens 17 is arranged and the virtual surface on which the surface S of the electronic component W that is normally arranged are arranged on the same straight line (a straight line orthogonal to the paper surface). By doing so, all the parallel lights P are focused on the surface S of the electronic component W normally arranged. Therefore, in order to focus all the parallel light P on the surface S of the electronic component W which is normally arranged (or to bring all the parallel light P to the surface S), the optical member 16 is moved to the telecentric lens 17. It may be arranged non-parallel to the main surface.

次に、図5(A)、(B)を参照して、複数(本実施の形態では2つ)の平行光生成手段31、32を備える、本発明の第2の実施の形態に係る部品状態検出装置30について説明する。なお、部品状態検出装置30において、部品状態検出装置10と同様の構成については、同じ符号を付して詳細な説明を省略し、電子部品Wは、キャリアテープTのポケットT1に収容された状態で、撮像手段12によって撮像される位置に配されているとする。 Next, referring to FIGS. 5A and 5B, a component according to a second embodiment of the present invention, which includes a plurality (two in the present embodiment) of parallel light generating means 31 and 32. The state detection device 30 will be described. In the component state detecting device 30, the same components as those of the component state detecting device 10 are designated by the same reference numerals and detailed description thereof will be omitted, and the electronic component W is stored in the pocket T1 of the carrier tape T. Then, it is assumed that it is arranged at a position where an image is taken by the imaging means 12.

平行光生成手段31は、光源33、複数のスリットが形成された光学部材34及び中空部材35内に設けられたテレセントリックレンズ36(第1のテレセントリックレンズ)を備えて、主光線がテレセントリックレンズ36の光軸に対して平行な平行光P1を電子部品Wの表面Sに照射する。平行光P1が電子部品Wの表面Sで反射することによって、電子部品Wの表面Sには複数の直線状の明部K1が平行に表れる。 The parallel light generating means 31 includes a light source 33, an optical member 34 having a plurality of slits formed therein, and a telecentric lens 36 (first telecentric lens) provided in a hollow member 35, and a chief ray of the telecentric lens 36. The parallel light P1 parallel to the optical axis is applied to the surface S of the electronic component W. When the parallel light P1 is reflected by the surface S of the electronic component W, a plurality of straight bright portions K1 appear on the surface S of the electronic component W in parallel.

平行光生成手段32は、光源37、複数のスリットが形成された光学部材38及び中空部材39内に設けられたテレセントリックレンズ40(第1のテレセントリックレンズ)を有して、主光線がテレセントリックレンズ40の光軸に対して平行な平行光P2を、平行光生成手段31とは異なる角度で電子部品Wの表面Sに照射する。電子部品Wの表面Sには、平行光P2の電子部品Wの表面Sでの反射によって、複数の直線状の明部K2が表れる。 The parallel light generating means 32 has a light source 37, an optical member 38 having a plurality of slits formed therein, and a telecentric lens 40 (first telecentric lens) provided in the hollow member 39, and the chief ray is the telecentric lens 40. The parallel light P2, which is parallel to the optical axis of, is applied to the surface S of the electronic component W at an angle different from that of the parallel light generating means 31. On the surface S of the electronic component W, a plurality of linear bright portions K2 appear due to the reflection of the parallel light P2 on the surface S of the electronic component W.

明部K1と明部K2は非平行である。本実施の形態では明部K1、K2が実質的に交差するように、平行光生成手段31、32が配置されている。
光源37から発せられる光の色(波長)は光源33から発せられる光の色(波長)と異なり、電子部品Wの表面S上の明部K1の色と明部K2の色は相違する。なお、光源33、37から同色の光を発するようにしてもよい。
The bright portion K1 and the bright portion K2 are non-parallel. In the present embodiment, the parallel light generation means 31, 32 are arranged so that the bright portions K1, K2 substantially intersect.
The color (wavelength) of the light emitted from the light source 37 is different from the color (wavelength) of the light emitted from the light source 33, and the colors of the bright portion K1 and the bright portion K2 on the surface S of the electronic component W are different. The light sources 33 and 37 may emit light of the same color.

撮像手段12には、撮像手段12から撮像画像を取得する図示しない画像解析手段が接続されている。画像解析手段には、撮像画像における電子部品W’の表面S’上の明部K1’(明部K1の像)の間隔及び明部K2’(明部K2の像)の間隔としてそれぞれ、ポケットT1内での電子部品Wの配置が正常である際の範囲(以下、「正常範囲」と言う)が予め設定されている。
画像解析手段は、取得した撮像画像から明部K1’、K2’を検出し、撮像画像における電子部品W’の表面S’上の明部K1’の間隔及び明部K2’の間隔を基に、電子部品Wの配置を検知する。明部K1、K2は色が異なることから、画像解析手段は撮像画像中の明部K1’、K2’を明確に区別して検出することができる。
An image analysis unit (not shown) that acquires a captured image from the image capturing unit 12 is connected to the image capturing unit 12. In the image analysis means, pockets are respectively provided as intervals between bright portions K1′ (images of bright portions K1) and surfaces of bright portions K2′ (images of bright portions K2) on the surface S′ of the electronic component W′ in the captured image. A range (hereinafter, referred to as a “normal range”) when the arrangement of the electronic components W is normal in T1 is set in advance.
The image analysis means detects the bright portions K1′ and K2′ from the acquired captured image, and based on the spacing between the bright portions K1′ and the bright portions K2′ on the surface S′ of the electronic component W′ in the captured image. , The placement of the electronic component W is detected. Since the bright portions K1 and K2 have different colors, the image analysis unit can clearly distinguish and detect the bright portions K1′ and K2′ in the captured image.

部品状態検出装置30では、明部K1、K2が非平行であることから、電子部品Wの表面Sが正常な位置から如何なる向きに傾いても、電子部品Wが傾いていることを検出可能である。
なお、検出対象の電子部品は、キャリアテープのポケットに収容されているものに限定されないのは言うまでもなく、例えば、トレイに収容された電子部品や、図6に示すように、収容状態にない電子部品も検出対象にすることができる。
Since the bright parts K1 and K2 are not parallel to each other, the component state detection device 30 can detect that the electronic component W is tilted regardless of the direction in which the surface S of the electronic component W is tilted from the normal position. is there.
Needless to say, the electronic parts to be detected are not limited to those housed in the pockets of the carrier tape. For example, the electronic parts housed in the tray or the electronic parts that are not in the housed state as shown in FIG. Parts can also be detected.

図6に示す例では、電子部品Wが回転体50に昇降可能(進退可能の一例)に取り付けられた吸着部材51に吸着されており、電子部品Wの表面Sに対し、平行光P3を照射する平行光生成手段52と、平行光P3の照射によって明部が表れた電子部品Wの表面Sを撮像する撮像手段53とを設けて、電子部品Wが水平配置された状態(正常に配置された状態)で吸着部材51に吸着されているか否かが検知される。 In the example shown in FIG. 6, the electronic component W is adsorbed by the adsorbing member 51 attached to the rotating body 50 so as to be able to move up and down (an example of advancing and retreating), and the surface S of the electronic component W is irradiated with the parallel light P3. The parallel light generating means 52 and the image pickup means 53 for imaging the surface S of the electronic component W in which the bright portion is exposed by the irradiation of the parallel light P3 are provided, and the electronic component W is horizontally arranged (normally arranged). It is detected whether or not it is adsorbed to the adsorbing member 51 in the state of ().

そして、電子部品に対する検知は、電子部品の配置だけに限定されず、例えば、電子部品の形状についても検知することができる。
図6に示す例において電子部品Wが変形している場合、図7に示すように、撮像手段53が撮像した撮像画像R3における電子部品W’の表面S’上の複数の明部K3’の一部又は全部が等間隔でなくなったり、直線状ではなくなったりする。画像解析手段は、撮像画像R3における電子部品W’の表面S’上の隣り合う明部K3’間の距離が他と異なっている場合や、直線状でない明部K3’が存在する場合に、電子部品Wに変形が生じていると判定する。よって、画像解析手段は、撮像画像R3中の明部K3’(撮像画像中にとらえられた反射光Q3)の配置に基づいて電子部品Wの状態(配置及び形状の双方又は一方)を検知できる。
The detection of the electronic component is not limited to the arrangement of the electronic component, and for example, the shape of the electronic component can also be detected.
When the electronic component W is deformed in the example shown in FIG. 6, as shown in FIG. 7, a plurality of bright portions K3′ on the surface S′ of the electronic component W′ in the captured image R3 captured by the image capturing unit 53 are displayed. Some or all may not be evenly spaced or may not be straight. The image analysis means, when the distance between the adjacent bright portions K3′ on the surface S′ of the electronic component W′ in the captured image R3 is different from the others, or when there is a non-linear bright portion K3′, It is determined that the electronic component W is deformed. Therefore, the image analysis means can detect the state of the electronic component W (either the arrangement and/or the shape) based on the arrangement of the bright portion K3′ (the reflected light Q3 captured in the captured image) in the captured image R3. ..

更に、図6に示す例において電子部品Wの代わりに、図8(A)、(B)に示すように、本体部LにリードMが接続された電子部品W1を適用した場合、リードMに平行光P3が照射されることによって、撮像画像中のリードMの像に表れる明部K4の像を基にリードMが正常な形状であるか否かが判定可能である。
この例では、形状が正常なリードM上の明部K4の間隔(図8(A)参照)に比べて、先端側が浮いた状態のリードM上の明部K4の間隔(図8(B)参照)が狭くなる。形状の検知が可能な電子部品の部位はリードに限定されないことや、電子部品の特定部位についての検知対象は形状だけでなく配置であってもよいことは言うまでもない。
Further, instead of the electronic component W in the example shown in FIG. 6, when the electronic component W1 in which the lead M is connected to the body portion L is applied as shown in FIGS. By irradiating the parallel light P3, it is possible to determine whether or not the lead M has a normal shape based on the image of the bright portion K4 appearing in the image of the lead M in the captured image.
In this example, as compared with the interval of the bright portion K4 on the lead M having a normal shape (see FIG. 8A), the interval of the bright portion K4 on the lead M with the tip side floating (FIG. 8(B)). (See) becomes narrower. It goes without saying that the part of the electronic component capable of detecting the shape is not limited to the lead, and the detection target for the specific part of the electronic component may be not only the shape but also the arrangement.

以上、本発明の実施の形態を説明したが、本発明は、上記した形態に限定されるものでなく、要旨を逸脱しない条件の変更等は全て本発明の適用範囲である。
例えば、光学部材において、光源から照射された光を透過させる部分は貫通孔である必要はなく、透光材によって形成されていてもよい。
また、画像解析手段は撮像された撮像画像内での反射光(明部)の間隔ではなく、反射光の幅や大きさの変化から電子部品の状態を検知するようにしてもよいし、フーリエ変換により反射光の周波数成分を取得し、当該周波数成分の変化から電子部品の状態を検知するようにしてもよい。
そして、3つ以上の平行光生成手段を設けてもよい。
更に、光学部材はスリットが形成されたものに限定されず、例えば、電子部品の表面に前後方向及び左右方向にそれぞれ等間隔(平面状に等間隔)で点状の明部が表れる光学部材を採用してもよい。
Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and changes in conditions and the like without departing from the gist are all within the scope of application of the present invention.
For example, in the optical member, the portion that transmits the light emitted from the light source does not need to be a through hole, and may be formed of a light transmissive material.
Further, the image analysis means may detect the state of the electronic component based on the change in the width or size of the reflected light instead of the interval of the reflected light (bright portion) in the captured image. The frequency component of the reflected light may be acquired by the conversion, and the state of the electronic component may be detected from the change in the frequency component.
Further, three or more parallel light generating means may be provided.
Further, the optical member is not limited to one having slits formed therein, and for example, an optical member in which dot-shaped bright portions appear at equal intervals (planar intervals) in the front-rear direction and the left-right direction on the surface of the electronic component. May be adopted.

10:部品状態検出装置、11:平行光生成手段、12:撮像手段、13:画像解析手段、14:光源、15:スリット、16:光学部材、17:テレセントリックレンズ、18:中空部材、19:テレセントリックレンズ、20:イメージセンサ、30:部品状態検出装置、31、32:平行光生成手段、33:光源、34:光学部材、35:中空部材、36:テレセントリックレンズ、37:光源、38:光学部材、39:中空部材、40:テレセントリックレンズ、50:回転体、51:吸着部材、52:平行光生成手段、53:撮像手段、J:仮想面、K、K’、K1、K1’、K2、K2’、K3’、K4:明部、L:本体部、M:リード、P、P1、P2、P3:平行光、Q、Q3:反射光、R、R1、R2、R3:撮像画像、S、S’:表面、T:キャリアテープ、T1:ポケット、U:光、W、W’、W1:電子部品 10: Component state detection device, 11: Parallel light generation means, 12: Imaging means, 13: Image analysis means, 14: Light source, 15: Slit, 16: Optical member, 17: Telecentric lens, 18: Hollow member, 19: Telecentric lens, 20: Image sensor, 30: Component state detection device, 31, 32: Parallel light generating means, 33: Light source, 34: Optical member, 35: Hollow member, 36: Telecentric lens, 37: Light source, 38: Optical Member, 39: Hollow member, 40: Telecentric lens, 50: Rotating body, 51: Adsorption member, 52: Parallel light generating means, 53: Imaging means, J: Virtual surface, K, K′, K1, K1′, K2 , K2′, K3′, K4: bright part, L: body part, M: lead, P, P1, P2, P3: parallel light, Q, Q3: reflected light, R, R1, R2, R3: captured image, S, S': surface, T: carrier tape, T1: pocket, U: light, W, W', W1: electronic component

Claims (5)

電子部品の状態を検出する部品状態検出装置において、
光源、所定のパターンが形成され、前記光源から発せられた光が通過して該パターンに対応したパターン光となる光学部材、及び、入射する前記パターン光を、主光線が光軸に対して平行な平行光にして出射する第1のテレセントリックレンズを有する平行光生成手段と、
前記平行光が前記電子部品に反射して生じる反射光が透過する第2のテレセントリックレンズを有する撮像手段と、
前記撮像手段の撮像画像を基に前記電子部品の状態を検知する画像解析手段とを備えることを特徴とする部品状態検出装置。
In a component state detection device that detects the state of electronic components,
A light source, an optical member in which a predetermined pattern is formed, and light emitted from the light source passes through to become pattern light corresponding to the pattern, and the incident pattern light, the chief ray is parallel to the optical axis. Parallel light generating means having a first telecentric lens for emitting parallel light and emitting the parallel light;
An image pickup unit having a second telecentric lens, through which reflected light generated when the parallel light is reflected by the electronic component is transmitted;
An image analysis unit for detecting the state of the electronic component based on an image captured by the image capturing unit.
請求項1記載の部品状態検出装置において、前記平行光生成手段は複数あって、複数の該平行光生成手段はそれぞれ、異なる角度で前記電子部品に前記平行光を照射することを特徴とする部品状態検出装置。 2. The component state detecting device according to claim 1, wherein there are a plurality of the parallel light generating means, and the plurality of the parallel light generating means respectively irradiate the electronic component with the parallel light at different angles. State detection device. 請求項2記載の部品状態検出装置において、前記複数の平行光生成手段は、それぞれ異なる色の前記平行光を出射することを特徴とする部品状態検出装置。 The component state detection device according to claim 2, wherein the plurality of parallel light generation units emit the parallel light beams of different colors. 請求項1〜3のいずれか1項に記載の部品状態検出装置において、前記光学部材は板状物であって、前記平行光に対し傾斜して配置されていることを特徴とする部品状態検出装置。 The component state detection device according to any one of claims 1 to 3, wherein the optical member is a plate-shaped object and is arranged to be inclined with respect to the parallel light. apparatus. 請求項1〜4のいずれか1項に記載の部品状態検出装置において、前記画像解析手段は、前記撮像画像中にとらえられた前記反射光の配置に基づいて前記電子部品の状態を検知することを特徴とする部品状態検出装置。 The component state detection device according to any one of claims 1 to 4, wherein the image analysis unit detects a state of the electronic component based on an arrangement of the reflected light captured in the captured image. A component state detection device characterized by:
JP2018228944A 2018-12-06 2018-12-06 Component state detection device Pending JP2020091216A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018228944A JP2020091216A (en) 2018-12-06 2018-12-06 Component state detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018228944A JP2020091216A (en) 2018-12-06 2018-12-06 Component state detection device

Publications (1)

Publication Number Publication Date
JP2020091216A true JP2020091216A (en) 2020-06-11

Family

ID=71013742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018228944A Pending JP2020091216A (en) 2018-12-06 2018-12-06 Component state detection device

Country Status (1)

Country Link
JP (1) JP2020091216A (en)

Similar Documents

Publication Publication Date Title
JP6818702B2 (en) Optical inspection equipment and optical inspection method
KR101379538B1 (en) Rotational misalignment measuring device of bonded substrate, rotational misalignment measuring method of bonded substrate, and method of manufacturing bonded substrate
JP4500157B2 (en) Optical system for shape measuring device
US20080079935A1 (en) Inspecting lighting head system and method of operation
JP2014038049A (en) Three-dimensional measuring apparatus, three-dimensional measuring method, program, and base plate manufacturing method
JP2008030119A (en) Method and apparatus for microfabrication of material
US8811665B2 (en) Processing system
KR20170074169A (en) Inspection apparatus
JP2015190826A (en) Substrate inspection device
JP7183156B2 (en) Method and apparatus for inspecting defects on transparent substrate and method for emitting incident light
CN103926797B (en) A kind of double-sided overlay system and method for lithographic equipment
KR20190032475A (en) Machine vision systems and alignment devices for substrate alignment
JP6916616B2 (en) Lithography equipment, article manufacturing methods, and measuring equipment
JP2020091216A (en) Component state detection device
CN109506570B (en) Displacement sensor
JP2016015371A (en) Thickness measurement apparatus, thickness measurement method and exposure apparatus
TW201901112A (en) Optical inspection equipment
JP4853968B2 (en) Wafer positioning method and positioning apparatus
JP2021085815A (en) Light irradiation device, inspection system, and light irradiation method
US20060124839A1 (en) Optical navigation system having a ring pixel array
JP5708501B2 (en) Detection method and detection apparatus
JP2011191253A (en) Laser shape recognition sensor and measuring device
JPH05118999A (en) X-ray analyzing device
US20110205553A1 (en) Method for focusing an object plane and optical assembly
JP2008096233A (en) Optical member inspection device