[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2020088257A - 半導体装置、半導体装置の製造方法、半導体装置の使用方法及び電力変換装置 - Google Patents

半導体装置、半導体装置の製造方法、半導体装置の使用方法及び電力変換装置 Download PDF

Info

Publication number
JP2020088257A
JP2020088257A JP2018223097A JP2018223097A JP2020088257A JP 2020088257 A JP2020088257 A JP 2020088257A JP 2018223097 A JP2018223097 A JP 2018223097A JP 2018223097 A JP2018223097 A JP 2018223097A JP 2020088257 A JP2020088257 A JP 2020088257A
Authority
JP
Japan
Prior art keywords
electrode
electrodes
semiconductor device
semiconductor chip
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018223097A
Other languages
English (en)
Inventor
佳敬 木村
Yoshitaka Kimura
佳敬 木村
和成 中田
Kazunari Nakada
和成 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2018223097A priority Critical patent/JP2020088257A/ja
Publication of JP2020088257A publication Critical patent/JP2020088257A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49113Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting different bonding areas on the semiconductor or solid-state body to a common bonding area outside the body, e.g. converging wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Inverter Devices (AREA)

Abstract

【課題】半導体装置の改善を図ることが可能な技術を提供する。【解決手段】半導体装置は、主電極と、当該半導体装置を制御する制御回路と当該半導体装置とを電気的に接続するための複数の第1電極とを備える。複数の第1電極は、半導体装置を制御するための制御電極と、主電極と電気的に接続された第2電極とを有する。【選択図】図6

Description

本発明は、半導体装置に関する。
特許文献1には、半導体装置に関する技術が記載されている。
特開2011−199150号公報
半導体装置については、その改善が望まれる。
そこで、本発明は上述の点に鑑みて成されたものであり、半導体装置の改善を図ることが可能な技術を提供することを目的とする。
本発明にかかる半導体装置の一態様は、主電極と、前記半導体装置を制御する制御回路と前記半導体装置とを電気的に接続するための複数の第1電極とを備え、前記複数の第1電極は、前記半導体装置を制御するための制御電極と、前記主電極と電気的に接続された第2電極とを有する。
また、本発明にかかる半導体装置の製造方法の一態様は、主電極と、前記半導体装置を制御する制御回路と前記半導体装置とを電気的に接続するための複数の第1電極とを形成する第1工程と、前記複数の第1電極のうち、前記半導体装置を制御するための制御電極以外の第2電極と前記主電極とを電気的に接続する第2工程とを備える。
また、本発明にかかる半導体装置の使用方法の一態様は、第1及び第2工程を備える。前記半導体装置は、主電極と、前記半導体装置を制御する制御回路と前記半導体装置とを電気的に接続するための複数の第1電極と備える。前記第1工程は、前記複数の第1電極のうち、前記半導体装置を制御するための制御電極以外の第2電極と前記主電極とが電気的に接続された前記半導体装置を含む装置を製造する工程であり、前記第2工程は、前記制御回路と前記複数の第1電極とが電気的に接続された前記半導体装置と前記制御回路とを含む装置を製造する工程である。
また、本発明にかかる半導体装置の一態様は、第1及び第2主面を有する半導体層と、前記第1主面上の第1主電極と、前記第1主面上の第1電極と、前記第2主面上の第2主電極と、前記半導体層内において、前記第1主電極及び前記第1電極の下方に位置する、前記第2主電極から前記第1主電極に電流を流すためのセル領域とを備える。
本発明によれば、半導体装置の改善が可能となる。
半導体チップの構造の一例を示す上面図である。 半導体チップの構造の一例を示す裏面図である。 半導体チップの回路構成の一例を示す図である。 半導体チップの構造の一例を示す上面図である。 半導体チップの構造の一例を示す上面図である。 半導体モジュールの製造方法の一例を説明するための図である。 半導体モジュールの製造方法の一例を説明するための図である。 半導体モジュールの製造方法の一例を説明するための図である。 半導体チップの構造の一例を示す上面図である。 半導体チップの構造の一例を示す上面図である。 半導体チップの断面構造の一例を示す図である。 半導体チップの断面構造の一例を示す図である。 半導体チップの通電可能領域及び通電不可領域の一例を示す図である。 半導体チップの構造の一例を示す上面図である。 半導体チップの断面構造の一例を示す図である。 半導体チップの断面構造の一例を示す図である。 半導体チップでの電流の流れの一例を示す図である。 半導体チップの通電可能領域の一例を示す図である。 半導体チップの構造の一例を示す上面図である。 半導体チップの構造の一例を示す上面図である。 電力変換システムの構成の一例を示す図である。
実施の形態1.
図1及び2は、それぞれ、本実施の形態にかかる半導体チップ1の構造の一例を示す上面図及び裏面図である。半導体チップ1は、例えば、自動車及びエアーコンディショナー等の電力機器の制御に用いられるパワー半導体チップである。半導体チップ1は半導体装置とも言える。以下では、図1及び2に示される第1方向DR1及び第2方向DR2を用いて半導体チップ1の構造を説明する。第1方向DR1及び第2方向DR2は、半導体チップ1の厚み方向に垂直な方向である。第1方向DR1は第2方向DR2に垂直な方向である。なお、半導体チップ1の使用用途は上記の限りではない。
図1及び2に示されるように、半導体チップ1は、半導体層14と、第1主電極2と、第2主電極9と、電極3〜6とを備える。電極3〜6は、半導体チップ1を制御する制御回路と半導体チップ1とを電気的に接続するための電極である。電極3は、半導体チップ1を制御するための制御電極である。第1主電極2、第2主電極9及び電極3〜6のそれぞれは電極パッドと呼ばれることがある。本実施の形態と、後述の実施の形態1及び2において、単に制御回路と言えば、半導体チップ1を制御する制御回路を意味する。
半導体層14は、複数の層から成り、上面側の第1主面14aと、裏面側の第2主面14bとを備える。第1主電極2及び電極3〜6は第1主面14a上に位置する。第2主電極9は第2主面14b上に位置する。複数の電極3〜6は、例えば第1方向DR1に沿って一列に並んでいる。複数の電極3〜6は、第1主面14aの周端部上に位置する。具体的には、複数の電極3〜6は、第1主面14aについての第2方向DR2における両端部の一方の端部上に位置する。複数の電極3〜6のそれぞれは、第2方向DR2において第1主電極2と並んでいる。第2主電極9は、第2主面14bの大部分を占めるように第2主面14b上に位置する。第2主電極9は、第2主面14bにおいて、周端部を除く部分の上に位置する。第1主電極2及び電極3〜6のそれぞれは、半導体層14を介して第2主電極9と対向する。
図3は半導体チップ1の回路構成の一例を示す図である。図3に示されるように、半導体チップ1の回路構成は、例えば、半導体チップ1の主回路としてのIGBT(Insulated Gate Bipolar Transistor)110と、半導体チップ1に流れる主電流を検出するための電流検出用IGBT111と、半導体チップ1の温度を検出するための温度検出用ダイオード112とを備える。IGBT110のゲート103及びコレクタ109は、電流検出用IGBT111のゲート及びコレクタとそれぞれ接続されている。
本例では、第1主電極2及び第2主電極9は、IGBT110のエミッタ102及びコレクタ109としてそれぞれ機能する電極である。電極3は、IGBT110のゲート103として機能する電極である。ゲート103の電位を制御することによってIGBT110を制御することができることから、電極3は、IGBT110を制御するための制御電極であると言える。電極4は、電流検出用IGBT111のエミッタとして機能する電極である。電極5及び6は、温度検出用ダイオード112のアノード及びカソードとしてそれぞれ機能する電極である。
以後、第1主電極2及び第2主電極9をそれぞれエミッタ電極2及びコレクタ電極9と呼ぶことがある。また、電極3をゲート電極3と呼ぶことがある。
以上のような構成を有する半導体チップ1を制御する制御回路は、ゲート電極3に対して制御信号を与えることによって、例えば半導体チップ1をスイッチング動作させる。これにより、半導体チップ1に流れる主電流、つまりIGBT110に流れる主電流が、制御回路によって制御される。主電流は、半導体チップ1の厚み方向に流れる。具体的には、主電流は、裏面側のコレクタ電極9から上面側のエミッタ電極2に流れる。
また制御回路は、電流検出用IGBT111のエミッタとして機能する電極4に流れる電流に基づいて、半導体チップ1に流れる主電流を検出する。そして、制御回路は、検出した主電流がしきい値以上である場合、ゲート電極3に制御信号を与えて、半導体チップ1(言い換えれば、IGBT110)を強制的にオフ状態にする。これにより、半導体チップ1を過電流から保護することができる。
また、制御回路は、温度検出用ダイオード112のアノード及びカソードとしてそれぞれ機能する電極5及び6を用いて温度検出用ダイオード112の順方向電圧を検出する。そして、制御回路は、検出した順方向電圧に基づいて半導体チップ1の温度を検出する。制御回路は、検出した温度がしきい値以上である場合、ゲート電極3に制御信号を与えて、半導体チップ1(言い換えれば、IGBT110)を強制的にオフ状態にする。これにより、半導体チップ1を過熱から保護することができる。
なお、電極3〜6の配置は上記の例に限られない。例えば図4に示されるように、電極3〜6は、第1主面14aの四隅の角部にそれぞれ配置されてもよい。また、制御回路と半導体チップ1とを接続するための電極が果たす役割は上記の例に限られない。つまり、制御回路と半導体チップ1とを接続するための電極は、上記の例とは異なる回路に接続されてもよい。また、制御回路と半導体チップ1とを接続するための電極の数は、上記の例に限られず、4個よりも少なくてもよいし、4個よりも多くてもよい。図5は、制御回路と半導体チップ1とを接続するための電極の数が5個の場合の半導体チップ1の構造の一例を示す上面図である。図5の例では、半導体チップ1は、制御回路と半導体チップ1とを接続するための電極として、電極3〜7を備える。ゲート電極3は第1主面14aの中央部に配置されており、ゲート電極3を取り込むようにエミッタ電極2が配置されている。電極4〜7は、図1に示される電極3〜6と同様に、第1主面14aの周端部に配置されている。
<半導体チップの使用方法の一例について>
ここでは、上記の半導体チップ1を使用して2種類の半導体モジュールを製造する方法について説明する。具体的には、半導体チップ1及び制御回路のうち、半導体チップ1だけを備える半導体モジュール(以後、第1半導体モジュールと呼ぶことがある)を製造する方法と、半導体チップ1及び制御回路の両方を備える半導体モジュール(以後、第1半導体モジュールと呼ぶことがある)を製造する方法とを説明する。半導体モジュールも、半導体チップ1と同様に半導体装置であると言える。
<第1半導体モジュールの製造方法>
図6及び7は、第1半導体モジュール250の製造方法の一例を説明するための図である。半導体チップ1を製造した後に、図6に示されるように、半導体チップ1のコレクタ電極9を、例えば半田等の合金を用いて、コレクタ電極用の板状導電部材200のダイパッド部分200aに対して接合する。これにより、半導体チップ1が板状導電部材200上に搭載される。
また、導電性のワイヤ210を用いて、ゲート電極用の板状導電部材201にゲート電極3を接続する。また、ワイヤ210を用いて、エミッタ電極用の板状導電部材202にエミッタ電極2を接続する。図6の例では、3本のワイヤ210を通じて、板状導電部材202とエミッタ電極2とが接続されている。板状導電部材201及び202はリードあるいはリード端子とも呼ばれる。
ここで、第1半導体モジュール250には、制御回路が搭載されていないことに起因して、制御回路と半導体チップ1とを接続するための複数の電極3〜6のうち、電極3以外の電極4〜6は未使用となっている。本例では、図6に示されるように、ワイヤ210を用いて、未使用の電極4〜6のそれぞれを、エミッタ電極用の板状導電部材202に接続する。これにより、電極4〜6がエミッタ電極2と同電位になる。
図6に示される構造が得られた後、図7に示されるように、板状導電部材200のリード部分200bと、板状導電部材201及び202とが露出するように、絶縁性の樹脂あるいはゲルから成るパッケージ220で図6に示される構造を覆って、半導体チップ1の全体をパッケージ220で封止する。これにより、第1半導体モジュール250が完成する。
第1半導体モジュール250では、例えば、コレクタ電極用の板状導電部材200に高電圧が印加され、エミッタ電極用の板状導電部材202の電位が基準電位となる。図6に示されるように、エミッタ電極2だけではなく、電極4〜6もエミッタ電極用の板状導電部材202に接続することによって、電極4〜6において、電位が固定されていない電極が存在しなくなる。
なお、ゲート電極3は、DLB(Direct Lead Bonding)技術が使用されて、板状導電部材201に接続されてもよい。同様に、エミッタ電極2と電極4〜6は、DLB技術が使用されて、板状導電部材202に接続されてもよい。
<第2半導体モジュールの製造方法>
図8は第2半導体モジュール400の製造方法の一例を説明するための図である。第2半導体モジュール400は、半導体チップ1と、制御回路が形成された半導体チップ301とを備える。半導体チップ301は、制御IC(integrated circuit)とも言える。半導体チップ301の一方の主面301a上には、半導体チップ1の電極3〜6とそれぞれ電気的に接続される電極303〜306が位置している。なお、電極303〜306の配置は図8の例に限られない。
第2半導体モジュール400を製造する場合には、半導体チップ1及び301が製造された後、上記と同様に、半導体チップ1が板状導電部材上に搭載され、半導体チップ301が板状導電部材上に搭載される。そして、図8に示されるように、半導体チップ1の電極3〜6を、例えばワイヤ210を用いて、半導体チップ301の電極303〜306にそれぞれ接続する。これにより、半導体チップ301の制御回路と、半導体チップ1のIGBT110、電流検出用IGBT111及び温度検出用ダイオード112とが電気的に接続される。その後、半導体チップ1及び301を覆うようにパッケージが形成されて、第2半導体モジュール400が完成する。
第2半導体モジュール400では、半導体チップ301が、半導体チップ1の温度と、半導体チップ1に流れる主電流とを検出し、検出した温度及び主電流に基づいて半導体チップ1のスイッチング動作を制御する。
以上のように、制御回路を備える第1半導体モジュール250では、制御回路と半導体チップ1とを接続するための複数の電極3〜6のうち、未使用の電極4〜6が第1主電極2と電気的に接続されている。これにより、電極4〜6の電位が安定する。
これに対して、未使用の電極4〜6が第1主電極2に接続されておらす、電極4〜6の電位が不安定である場合、電極4〜6が半導体チップ1の電気的特性に影響を与えることがある。例えば、電位が不安定な電極4〜6に接続された回路がアンテナとして機能してノイズの発信源となる可能性がある。本例では、電極4に接続された電流検出用IGBT111の電位と、電極5及び6に接続された温度検出用ダイオード112の電位が安定せず、これらが、回路上でアンテナとなり、ノイズの発信源となる可能性がある。
本例にかかる第1半導体モジュール250では、電極4〜6の電位が安定することから、電極4〜6が半導体チップ1の電気的特性に影響を与える可能性が低減する。例えば、電流検出用IGBT111と温度検出用ダイオード112がノイズの発信源となる可能性を低減することができる。よって、第1半導体モジュール250の改善を図ることができる。その結果、図9に示されるような、電極4〜6を備えていない半導体チップ1Z(つまり、電流検出用IGBT111及び温度検出用ダイオード112を備えていない半導体チップ1Z)を備える半導体モジュールと同様に、第1半導体モジュール250を使用することができる。
また本例のように、電極4〜6が未使用の場合に、電極4〜6を第1主電極2と電気的に接続することによって、同じ種類の半導体チップ1を用いて、2種類の半導体モジュール(第1半導体モジュール250及び第2半導体モジュール400)を製造することができる。よって、半導体モジュールの製造工期の短縮化、ウエハプロセスでの在庫の減少及びチップの在庫の減少等を実現することができる。その結果、半導体モジュールの生産性を向上することができる。
なお上記の例では、電極3〜6のすべてが第1主電極2と電気的に接続されているが、電極3〜6の一部だけが第1主電極2と電気的に接続されてもよい。この場合であっても、第1主電極2と電気的に接続された電極が半導体チップ1の電気的特性に影響を与える可能性が低減することから、半導体チップ1の改善を実現することができる。
実施の形態2.
本実施の形態にかかる半導体チップ1の構造を説明する前に、上記の実施の形態1にかかる半導体チップ1の断面構造の一例について説明する。図11は、図10に示される実施の形態1にかかる半導体チップ1の矢視A−Aにおける断面構造の一例を示す図である。図12は、図10に示される実施の形態1にかかる半導体チップ1の矢視B−Bにおける断面構造の一例を示す図である。図10において、A−Aの距離とB−Bの距離とは同じとなっている。図12には電極6の下方の構造が示されているが、電極3〜5の下方の構造も図12と同様である。
上述の半導体層14は、例えばN型の半導体基板である。以後、半導体層14を半導体基板14と呼ぶことがある。図11及び12に示されるように、半導体基板14の第1主面14a上にはエミッタ電極2が位置する。半導体基板14の第2主面14b上にはコレクタ電極9が位置する。半導体基板14の第2主面14b側の表層部にはP型の拡散領域16が位置する。半導体基板14内において、拡散領域16の上側にはN型の拡散領域15が位置する。拡散領域15及び16はそれぞれバッファ層及びコレクタ層と呼ばれることがある。
図11に示されるように、エミッタ電極2の下方(より詳細には直下)においては、半導体基板14の第1主面14a側の表層部にP型の拡散領域13が位置する。半導体基板14内において、エミッタ電極2の下方では、拡散領域13と拡散領域15との間が、N型領域140となっている。N型領域140は、半導体基板14において拡散領域が形成されていない部分である。拡散領域13はキャリア層と呼ばれることがある。
一方で、電極3〜6の下方においては、図12に示されるように、半導体基板14内にP型の拡散領域24が存在する。拡散領域24は、第1主面14aから、拡散領域15の上方のN型領域140まで存在している。
また、エミッタ電極2の下方では、半導体基板14内に複数の構造17が存在する。各構造17は、トレンチ型のゲート構造21と一対のN型の拡散領域18とを備える。拡散領域18はエミッタ層と呼ばれることがある。複数の構造17は、第1方向DR2に沿って延在しつつ、第2方向DR2に沿って並んでいる。複数の構造17は、エミッタ電極2の下方に位置するが、電極3〜6の下方には位置しない。
各構造17のゲート構造21は、第1方向DR1に沿って延在している。また各構造17のゲート構造21は、半導体基板14内において、第1主面14aから第2主面14b側に延びている。ゲート構造21は、ゲート電極19及びゲート絶縁膜20を備える。ゲート電極19は、第1主面14aから第2主面14b側に延びて、半導体基板14のN型領域140内にまで達している。各ゲート構造21のゲート電極19は電極3と電気的に接続されている。これにより、電極3に電圧を印加すると、各ゲート構造21のゲート電極19に電圧が印加される。
ゲート絶縁膜20は、ゲート電極19の側面及び底面を覆っている。ゲート電極19の上面は、第1主面14aから露出しており、絶縁膜23で覆われている。一対の拡散領域18は、拡散領域13の上面側の表層部に位置する。一対の拡散領域18は、第1方向DR1に沿って延在しており、ゲート構造21の上端部を第2方向DR2で挟んでいる。各拡散領域18の上面は第1主面14aから露出している。拡散領域18の上面の一部は絶縁膜23で覆われている。エミッタ電極2は、各拡散領域18と接触しつつ、各ゲート電極19上の絶縁膜23を覆うように、第1主面14a上に位置する。
図12に示されるように、絶縁膜23は、第1主面14a上において、エミッタ電極2が存在する領域だけではなく、電極3〜6が存在する領域にも形成されている。電極3〜6は絶縁膜23を介して第1主面14a上に位置する。
図11に示されるように、半導体チップ1は、半導体基板14内に位置し、コレクタ電極9からエミッタ電極2に電流を流すための複数のセル領域22を備える。セル領域22はセル構造とも言える。複数のセル領域22は、エミッタ電極2の下方に位置するが、電極3〜6の下方には位置しない。言い換えれば、複数のセル領域22は、エミッタ電極2の直下に位置するが、電極3〜6の直下には位置しない。各セル領域22は、第1主面14aから第2主面14bにかけて存在する。
各セル領域22は構造17を含む。また、各セル領域22は、拡散領域13、N型領域140、拡散領域15及び拡散領域16の一部を含む。具体的には、セル領域22は、拡散領域13における、一対の拡散領域18の下方の部分と、N型領域140における、一対の拡散領域18の下方の部分と、拡散領域15における、一対の拡散領域18の下方の部分と、拡散領域16における、一対の拡散領域18の下方の部分とを含む。
以上のような構造を有する実施の形態1にかかる半導体チップ1では、電極3を介して各セル領域22のゲート電極19に電圧を印加すると、各セル領域22において、P型の拡散領域13における、ゲート絶縁膜20周辺の部分の導電型がN型に反転する。これにより、各セル領域22において、電流が流れる経路が、第2主面14bから第1主面14aかけて形成される。この状態で、コレクタ電極9に高電位を印加し、エミッタ電極2に低電位を印加すると、図11に示されるように、各セル領域22において、コレクタ電極9からエミッタ電極2にかけて電流50が流れる。これにより、半導体チップ1の厚み方向DR3において主電流が流れる。一方で、各セル領域22において、ゲート電極19の電位を0Vに設定すると、拡散領域13における、ゲート絶縁膜20周辺の部分の導電型はP型を維持する。したがって、半導体基板14内には、電流が流れる経路が形成されず、半導体チップ1では主電流が流れない。
このように、各セル領域22のゲート電極19に印加する電圧を制御することによって、半導体チップ1に主電流を流すか否かの制御を行うことができる。
実施の形態1にかかる半導体チップ1では、電極3〜6の下方(詳細には直下)には、セル領域22が存在しない。このため、実施の形態1にかかる半導体チップ1では、エミッタ電極2の下方の部分でしか、厚み方向DR3に主電流を流すことができない。
図13は、実施の形態1にかかる半導体チップ1が備える半導体基板14において、厚み方向に主電流を流すことができる通電可能領域30と、厚み方向に主電流を流すことができない通電不可領域31とを示す図である。実施の形態1での半導体基板14では、エミッタ電極2の下方の部分にはセル領域22が存在するものの、電極3〜6の下方の部分にはセル領域22が存在しない。したがって、エミッタ電極2の下方の部分が通電可能領域30となり、電極3〜6の下方の部分が通電不可領域31となる。半導体基板14の通電可能領域30では、第1方向DR1に沿って延在する複数のゲート構造21が、第2方向DR2に沿って並ぶように縞状に形成されている。また、通電可能領域30では、第1方向DR1に沿って延在する複数の拡散領域18が、第2方向DR2に沿って並ぶように縞状に形成されている。
実施の形態1にかかる半導体チップ1では、電極3〜6の下方の部分において、厚み方向(言い換えれば縦方向)に主電流を流すことができない。したがって、より多くの主電流を半導体チップ1に流す場合には、半導体チップ1のチップ面積を大きくする必要がある。
そこで、本実施の形態では、より多くの主電流を流すことが可能な半導体チップについて説明する。
図14は、本実施の形態にかかる半導体チップ1Aの構造の一例を示す上面図である。図15は、図14の矢視C−Cにおける半導体チップ1Aの断面構造の一例を示す図である。図16は、図14の矢視D−Dにおける半導体チップ1Aの断面構造の一例を示す図である。以下に、実施の形態1にかかる半導体チップ1との相違点を中心に、半導体チップ1Aの構造について説明する。
半導体チップ1Aは、エミッタ電極2の替わりにエミッタ電極40を備える。図14に示されるように、エミッタ電極40は3つの凸部41a,41b,41cを備える。凸部41a,41b,41cは、電極3と電極4の間と、電極4と電極5の間と、電極5と電極6の間にそれぞれ位置する。図15に示されるように、半導体チップ1Aは、電極3〜6とエミッタ電極6を絶縁するための絶縁膜41を備える。
図15及び16に示されるように、半導体チップ1Aのエミッタ電極40の下方の構造は、実施の形態1にかかる半導体チップ1のエミッタ電極2の下方の構造と同じである。半導体チップ1Aでは、エミッタ電極40の凸部41a,41b,41cの下方にも、セル領域22が形成されている。図16には凸部41aの下方の構造が示されているが、凸部41b及び41cの下方の構造も図16と同様である。
半導体チップ1Aでの電極3〜6の下方の構造は、実施の形態1と異なっている。図15に示されるように、電極3〜6の下方の構造は、エミッタ電極40の下方の構造と同様となっている。したがって、半導体チップ1Aでは、電極3〜6の下方にもセル領域22が存在する。図15には電極3の下方の構造が示されているが、電極4〜6の下方の構造も図15と同様である。
各電極3〜6の下方には、例えば、複数のセル領域22が存在する。図15に示されるように、電極3の下方では、セル領域22の拡散領域18の上面の全領域が絶縁膜23で覆われている。これより、電極3が拡散領域18(エミッタ層)に接触しないようになっている。同様に、電極4〜6のそれぞれの下方では、セル領域22の拡散領域18の上面の全領域が絶縁膜23で覆われている。これより、電極4〜6が拡散領域18に接触しないようになっている。
半導体チップ1Aでは、エミッタ電極40及び電極3〜6の下方において、第1方向DR1に沿って延在する複数のセル領域22が、第2方向DR2に沿って並ぶように縞状に形成されている。したがって、電極3の下方の一つのセル領域22に着目した場合、そのセル領域22は、電極3の下方から、エミッタ電極40の凸部41a,41b,41cの下を通って、電極6の下方まで連続的に存在する。
以上のような構造を有する半導体チップ1Aにおいて、エミッタ電極40の下方では、実施の形態1と同様に、コレクタ電極9からエミッタ電極40まで厚み方向DR3に電流50が流れる(図15参照)。
一方で、電極3〜6のそれぞれの下方では、厚み方向DR3に沿って、コレクタ電極9から拡散領域18まで流れてきた電流は、当該拡散領域18の上方にエミッタ電極40が存在しないことから、そのまま厚み方向に流れることはできない。拡散領域18まで流れてきた電流は、当該拡散領域18内を第1方向DR1に沿って流れていき、当該拡散領域18において上方にエミッタ電極40が存在する箇所からエミッタ電極40に流れる。
図17は、半導体チップ1Aにおいて主電流が流れる方向の一例を示す図である。図17に示されるように、エミッタ電極40が存在する部分では、主電流は、紙面の奥側から手前側に向かう方向60に沿ってエミッタ電極40まで流れる。一方で、電極3〜6が存在する部分では、主電流は、拡散領域18までは厚み方向に沿って流れる。その後、主電流は、拡散領域18内を矢印61の方向に流れる。電極3の下方の拡散領域18まで流れてきた主電流はエミッタ電極40の凸部41aに流れる。電極4の下方の拡散領域18まで流れてきた主電流は凸部41a及び41bに流れる。電極5の下方の拡散領域18まで流れてきた主電流は凸部41b及び41cに流れる。電極6の下方の拡散領域18まで流れてきた主電流は凸部41cに流れる。
このように、半導体チップ1Aでは、電極3〜6の下方にもセル領域22が存在することから、半導体基板14では、エミッタ電極40の下方だけではなく、電極3〜6の下方においても、厚み方向DR3に主電流を流すことができる。よって、実施の形態1にかかる半導体チップ1と比較して、半導体チップ1Aでは、より多くの主電流を流すことができる。見方を変えれば、実施の形態にかかる半導体チップ1と半導体チップ1Aとで、厚み方向DR3に流す主電流の量を同じにした場合、実施の形態にかかる半導体チップ1よりも半導体チップ1Aの方が、チップ面積を小さくすることができる。よって、半導体チップ1Aの改善を実現することができる。
図18は、半導体チップ1Aの半導体基板14において、厚み方向に主電流を流すことができる通電可能領域32を示す図である。通電可能領域32は、図13に示される通電可能領域30よりも大きくなっている。実施の形態1にかかる半導体チップ1について、通電可能領域30の面積をαとし、通電不可領域31の面積をβとすると、半導体チップ1の通電可能領域30の面積を(α+β)とすることができる。よって、半導体チップ1Aについて、実施の形態1の半導体チップ1と同じ電流密度を実現する場合、チップ面積をβだけ小さくすることができる。その結果、半導体チップ1Aを製造する際にチップコストを削減することができる。
また、本実施の形態にかかる半導体チップ1Aを用いて、上述の第1半導体モジュール250及び第2半導体モジュール400を製造することによって、第1半導体モジュール250及び第2半導体モジュール400のサイズを小さくすることができる。見方を変えれば、第1半導体モジュール250及び第2半導体モジュール400に流すことが可能な電流を増大することが可能となる。
実施の形態3.
図19は、本実施の形態にかかる半導体チップ1Bの構造の一例を示す上面図である。半導体チップ1Bは、上述の半導体チップ1Aにおいて、エミッタ電極40の形状と電極3〜6の配置を変更したものである。以下に、実施の形態2にかかる半導体チップ1Aとの相違点を中心に、半導体チップ1Bの構造について説明する。
半導体チップ1Bでは、エミッタ電極40が、2つの部分電極42及び43に分割されている。そして、電極3〜6が2つの部分電極42及び43の間に挟まれている。電極3〜6は、第2方向DR2に沿って一列に並んでいる。電極3〜6は、第1方向DR1における第1主面14aの中央部上に位置している。半導体チップ1Bでは、半導体チップ1Aと同様に、エミッタ電極40(部分電極42及び43)及び電極3〜6の下方において、第1方向DR1に沿って延在する複数のセル領域22が、第2方向DR2に沿って並んでいる。
実施の形態2にかかる半導体チップ1Aでは、上述の図17に示されるように、電極3及び4の下方の拡散領域18に流れてきた主電流は、電極3及び電極4の間の位置する、エミッタ電極40の凸部41aに流れる。このため、幅の狭い凸部41aに電流が集中して、凸部41aの短絡耐量が低下する可能性がある。また、電極4及び5の下方の拡散領域18に流れてきた主電流は、電極4及び電極5の間の位置する凸部41bに流れる。このため、凸部41bに電流が集中して、凸部41bの短絡耐量が低下する可能性がある。また、電極5及び6の下方の拡散領域18に流れてきた主電流は、電極5及び電極6の間の位置する凸部41cに流れる。このため、凸部41cに電流が集中して、凸部41cの短絡耐量が低下する可能性がある。
このように、半導体チップ1Aでは、エミッタ電極40は他の電極間に挟まれる部分を有することから、当該部分に電流で集中して、エミッタ電極40に電流密度の偏りが発生する可能性がある。その結果、エミッタ電極40の短絡耐量が低下する可能性がある。
これに対して、本実施の形態にかかる半導体チップ1Bでは、エミッタ電極40は、他の電極間に挟まれる部分を有していないことから、エミッタ電極40に電流密度の偏りが発生する可能性を低減することができる。よって、エミッタ電極40の短絡耐量が向上し、その結果、半導体チップ1Aの改善が実現される。本実施の形態にかかる半導体チップ1Bにおいては、電極3〜6の下方の拡散領域18まで流れてきた主電流は、拡散領域18内を矢印62の方向に流れる。電極3の下方の拡散領域18まで流れてきた主電流は、電極3を挟む部分電極42及び43に流れる。同様に、電極4の下方の拡散領域18まで流れてきた主電流と、電極5の下方の拡散領域18まで流れてきた主電流と、電極6の下方の拡散領域18まで流れてきた主電流とは、部分電極42及び43に流れる。
また、本実施の形態にかかる半導体チップ1Bを用いて、上述の第1半導体モジュール250及び第2半導体モジュール400を製造することによって、第1半導体モジュール250及び第2半導体モジュール400の短絡耐量を向上することができる。
なお、半導体チップ1Bの構造は上記の例に限られない。例えば、図20に示されるように、エミッタ電極40が電極3〜6を取り囲んでもよい。この場合でも、エミッタ電極40は、他の電極間に挟まれる部分を有していないことから、エミッタ電極40に電流密度の偏りが発生する可能性を低減することができる。
以上の実施の形態1〜3では、半導体チップ1,1A,1Bは、IGBTを備えていたが、IGBTの替わりに他の種類の半導体素子を備えてもよい。例えば、半導体チップ1,1A,1Bは、MOS(metal-oxide-semiconductor)トランジスタを備えてもよい。この場合、例えば、第1主電極2及び40はソース電極となり、第2主電極9はドレイン電極となる。
実施の形態4.
本実施の形態は、上述した実施の形態1〜3にかかる半導体装置(半導体チップあるいは半導体モジュール)を電力変換装置に適用したものである。実施の形態1〜3にかかる半導体装置の適用は特定の電力変換装置に限定されるものではないが、以下、実施の形態4として、三相のインバータに実施の形態1〜3にかかる半導体装置を適用した場合について説明する。
図21は、本実施の形態にかかる電力変換装置を適用した電力変換システムの構成を示すブロック図である。
図21に示す電力変換システムは、電源500、電力変換装置600、負荷700から構成される。電源500は、直流電源であり、電力変換装置600に直流電力を供給する。電源500は種々のもので構成することが可能であり、例えば、直流系統、太陽電池、蓄電池で構成することができるし、交流系統に接続された整流回路やAC/DCコンバータで構成することとしてもよい。また、電源500を、直流系統から出力される直流電力を所定の電力に変換するDC/DCコンバータによって構成することとしてもよい。
電力変換装置600は、電源500と負荷700の間に接続された三相のインバータであり、電源500から供給された直流電力を交流電力に変換し、負荷700に交流電力を供給する。電力変換装置600は、図21に示されるように、直流電力を交流電力に変換して出力する主変換回路601と、主変換回路601の各スイッチング素子を駆動する駆動信号を出力する駆動回路602と、駆動回路602を制御する制御信号を駆動回路602に出力する制御回路603とを備えている。
負荷700は、電力変換装置600から供給された交流電力によって駆動される三相の電動機である。なお、負荷700は特定の用途に限られるものではなく、各種電気機器に搭載された電動機であり、例えば、ハイブリッド自動車や電気自動車、鉄道車両、エレベーター、もしくは、空調機器向けの電動機として用いられる。
以下、電力変換装置600の詳細を説明する。主変換回路601は、スイッチング素子と還流ダイオードを備えており(図示せず)、スイッチング素子がスイッチングすることによって、電源500から供給される直流電力を交流電力に変換し、負荷700に供給する。主変換回路601の具体的な回路構成は種々のものがあるが、本実施の形態にかかる主変換回路601は2レベルの三相フルブリッジ回路であり、6つのスイッチング素子とそれぞれのスイッチング素子に逆並列された6つの還流ダイオードから構成することができる。主変換回路601の各スイッチング素子には、上述した実施の形態1〜3のいずれかにかかる半導体装置を適用する。6つのスイッチング素子は2つのスイッチング素子ごとに直列接続され上下アームを構成し、各上下アームはフルブリッジ回路の各相(U相、V相、W相)を構成する。そして、各上下アームの出力端子、すなわち主変換回路601の3つの出力端子は、負荷700に接続される。
駆動回路602は、主変換回路601のスイッチング素子を駆動する駆動信号を生成し、主変換回路601のスイッチング素子の制御電極に供給する。具体的には、後述する制御回路603からの制御信号に従い、スイッチング素子をオン状態にする駆動信号とスイッチング素子をオフ状態にする駆動信号とを各スイッチング素子の制御電極に出力する。スイッチング素子をオン状態に維持する場合、駆動信号はスイッチング素子の閾値電圧以上の電圧信号(オン信号)であり、スイッチング素子をオフ状態に維持する場合、駆動信号はスイッチング素子の閾値電圧以下の電圧信号(オフ信号)となる。
制御回路603は、負荷700に所望の電力が供給されるよう主変換回路601のスイッチング素子を制御する。具体的には、負荷700に供給すべき電力に基づいて主変換回路601の各スイッチング素子がオン状態となるべき時間(オン時間)を算出する。例えば、出力すべき電圧に応じてスイッチング素子のオン時間を変調するPWM制御によって主変換回路601を制御することができる。そして、各時点においてオン状態となるべきスイッチング素子にはオン信号を、オフ状態となるべきスイッチング素子にはオフ信号が出力されるよう、駆動回路602に制御指令(制御信号)を出力する。駆動回路602は、この制御信号に従い、各スイッチング素子の制御電極にオン信号又はオフ信号を駆動信号として出力する。実施の形態1〜3で説明した半導体チップ1,1A,1Bを制御する上述の制御回路は、例えば、駆動回路602及び制御回路603を備える。
本実施の形態にかかる電力変換装置では、主変換回路601のスイッチング素子として実施の形態1〜3にかかる半導体装置を適用するため、電力変換装置の改善を実現することができる。
本実施の形態では、2レベルの三相インバータに実施の形態1〜3にかかる半導体装置を適用する例を説明したが、実施の形態1〜3にかかる半導体装置の適用は、これに限られるものではなく、種々の電力変換装置に適用することができる。本実施の形態では、2レベルの電力変換装置としたが3レベルやマルチレベルの電力変換装置であっても構わないし、単相負荷に電力を供給する場合には単相のインバータに実施の形態1〜3にかかる半導体装置を適用しても構わない。また、直流負荷等に電力を供給する場合にはDC/DCコンバータやAC/DCコンバータに実施の形態1〜3にかかる半導体装置を適用することも可能である。
また、実施の形態1〜3にかかる半導体装置を適用した電力変換装置は、上述した負荷が電動機の場合に限定されるものではなく、例えば、放電加工機やレーザー加工機、又は誘導加熱調理器や非接触器給電システムの電源装置として用いることもでき、さらには太陽光発電システムや蓄電システム等のパワーコンディショナーとして用いることも可能である。
本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。
1,1A,1B 半導体チップ、2,40 第1主電極、9 第2主電極、3〜6 電極、202 板状導電部材、250 第1半導体モジュール、400 第2半導体モジュール、600 電力変換装置、601 主変換回路、602 駆動回路、603 制御回路。

Claims (8)

  1. 半導体装置であって、
    主電極と、
    前記半導体装置を制御する制御回路と前記半導体装置とを電気的に接続するための複数の第1電極と
    を備え、
    前記複数の第1電極は、
    前記半導体装置を制御するための制御電極と、
    前記主電極と電気的に接続された第2電極と
    を有する、半導体装置。
  2. 請求項1に記載の半導体装置であって、
    前記複数の第1電極における、前記制御電極以外のすべての電極が、前記第2電極となっている、半導体装置。
  3. 請求項1及び請求項2のいずれか一つに記載の半導体装置であって、
    前記主電極及び前記第2電極がワイヤボンディングされた導電部材をさらに備える、半導体装置。
  4. 半導体装置の製造方法であって、
    主電極と、前記半導体装置を制御する制御回路と前記半導体装置とを電気的に接続するための複数の第1電極とを形成する第1工程と、
    前記複数の第1電極のうち、前記半導体装置を制御するための制御電極以外の第2電極と前記主電極とを電気的に接続する第2工程と
    を備える、半導体装置の製造方法。
  5. 半導体装置の使用方法であって、
    前記半導体装置は、
    主電極と、
    前記半導体装置を制御する制御回路と前記半導体装置とを電気的に接続するための複数の第1電極と
    備え、
    前記複数の第1電極のうち、前記半導体装置を制御するための制御電極以外の第2電極と前記主電極とが電気的に接続された前記半導体装置を含む装置を製造する第1工程と、
    前記制御回路と前記複数の第1電極とが電気的に接続された前記半導体装置と前記制御回路とを含む装置を製造する第2工程と
    を備える、半導体装置の使用方法。
  6. 第1及び第2主面を有する半導体層と、
    前記第1主面上の第1主電極と、
    前記第1主面上の第1電極と、
    前記第2主面上の第2主電極と、
    前記半導体層内において、前記第1主電極及び前記第1電極の下方に位置する、前記第2主電極から前記第1主電極に電流を流すためのセル領域と
    を備える、半導体装置。
  7. 請求項6に記載の半導体装置であって、
    前記第1主面上の第2電極をさらに備え、
    前記第1主電極は、前記第1及び第2電極に挟まれる部分を有しない、半導体装置。
  8. 請求項1から請求項3、請求項6及び請求項7のいずれか一つ記載の半導体装置を有し、入力される電力を変換して出力する主変換回路と、
    前記半導体装置を駆動する駆動信号を前記半導体装置に出力する駆動回路と、
    前記駆動回路を制御する制御信号を前記駆動回路に出力する制御回路と
    を備える、電力変換装置。
JP2018223097A 2018-11-29 2018-11-29 半導体装置、半導体装置の製造方法、半導体装置の使用方法及び電力変換装置 Pending JP2020088257A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018223097A JP2020088257A (ja) 2018-11-29 2018-11-29 半導体装置、半導体装置の製造方法、半導体装置の使用方法及び電力変換装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018223097A JP2020088257A (ja) 2018-11-29 2018-11-29 半導体装置、半導体装置の製造方法、半導体装置の使用方法及び電力変換装置

Publications (1)

Publication Number Publication Date
JP2020088257A true JP2020088257A (ja) 2020-06-04

Family

ID=70910109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018223097A Pending JP2020088257A (ja) 2018-11-29 2018-11-29 半導体装置、半導体装置の製造方法、半導体装置の使用方法及び電力変換装置

Country Status (1)

Country Link
JP (1) JP2020088257A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024053151A1 (ja) * 2022-09-05 2024-03-14 株式会社日立製作所 半導体装置およびその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024053151A1 (ja) * 2022-09-05 2024-03-14 株式会社日立製作所 半導体装置およびその製造方法

Similar Documents

Publication Publication Date Title
JP6717270B2 (ja) 半導体モジュール
CN110495087B (zh) 半导体模块以及电力变换装置
US20160336251A1 (en) Semiconductor device
US11322432B2 (en) Semiconductor module and power conversion apparatus
WO2014041722A1 (ja) 半導体装置
US10229869B2 (en) Semiconductor device and power conversion device including a bent control side frame
JP2020025027A (ja) 電力用半導体装置及びその製造方法、並びに、電力変換装置
JP2020092223A (ja) 半導体装置および電力変換装置
JP6756407B2 (ja) 半導体モジュール及び電力変換装置
US11784639B2 (en) Semiconductor device, semiconductor module, relay unit, battery unit, and vehicle
JP2020088257A (ja) 半導体装置、半導体装置の製造方法、半導体装置の使用方法及び電力変換装置
US20240072030A1 (en) Semiconductor power module having more efficient heat dissipation and improved switching behavior
US11217514B2 (en) Power semiconductor device, method for manufacturing power semiconductor device, and power conversion device
JP7268760B2 (ja) 半導体モジュール、電力変換装置及び移動体
JP2011014744A (ja) 半導体装置
JP6541896B1 (ja) 半導体モジュールおよび電力変換装置
US20240072045A1 (en) Semiconductor device
WO2019102519A1 (ja) 半導体モジュール、電力変換装置、および移動体
WO2022039276A1 (ja) 半導体装置
US12128772B2 (en) Semiconductor unit, battery unit, and vehicle
JP6690777B2 (ja) 主変換回路、電力変換装置及び移動体
CN116314063A (zh) 半导体装置及电力变换装置
US20220230953A1 (en) Semiconductor device and power conversion device