JP2020050917A - Martensitic stainless steel for high hardness and high corrosion resistant applications, excellent in cold workability, and manufacturing method therefor - Google Patents
Martensitic stainless steel for high hardness and high corrosion resistant applications, excellent in cold workability, and manufacturing method therefor Download PDFInfo
- Publication number
- JP2020050917A JP2020050917A JP2018182063A JP2018182063A JP2020050917A JP 2020050917 A JP2020050917 A JP 2020050917A JP 2018182063 A JP2018182063 A JP 2018182063A JP 2018182063 A JP2018182063 A JP 2018182063A JP 2020050917 A JP2020050917 A JP 2020050917A
- Authority
- JP
- Japan
- Prior art keywords
- less
- stainless steel
- martensitic stainless
- cold
- mass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
Description
本発明は、冷間加工用の部品に関して、軟化特性に優れて強冷間加工が可能な高硬度・高耐食部品用のマルテンサイト系ステンレス鋼及びその製造方法に関するものである。 The present invention relates to a part for cold working and relates to a martensitic stainless steel for high hardness and high corrosion resistant parts which has excellent softening properties and can be subjected to strong cold working, and a method for producing the same.
近年、高硬度・高耐食マルテンサイト系ステンレス鋼のニーズが高く、自動車部品やねじ締結部品等の多くに使用されている(特許文献1〜4)。これら高硬度・高耐食マルテンサイト系ステンレス鋼部品、特に、大型の自動車部品等において、複雑形状に冷間鍛造等の冷間加工によって成型される。このため、冷間加工前に軟化焼鈍を行い、軟化焼鈍後のステンレス鋼において、Hv硬さで200以下、好ましくはHv硬さで180以下の軟化状態であることが望まれる。冷間加工後に焼き入れを行い、高硬度・高耐食マルテンサイト系ステンレス鋼となる。 In recent years, there is a great need for high hardness and high corrosion resistant martensitic stainless steel, and it is used for many automobile parts and screw fastening parts (Patent Documents 1 to 4). These high hardness and high corrosion resistant martensitic stainless steel parts, particularly large automobile parts, are formed into a complex shape by cold working such as cold forging. For this reason, it is desired that the softening annealing is performed before the cold working and that the stainless steel after the softening annealing is in a softened state having an Hv hardness of 200 or less, preferably an Hv hardness of 180 or less. After cold working, quenching is performed to obtain high hardness and high corrosion resistance martensitic stainless steel.
しかしながら、高硬度・高耐食マルテンサイト系ステンレス鋼には、C,N,Mo,Ni等合金元素が多く添加されているため、軟化焼鈍で十分に軟質化して優れた冷間加工性(冷間鍛造性)を確保することが難しい。例えば、特許文献5には冷間鍛造性を向上させるための成分設計と軟化焼鈍技術が提案されているが、本発明に求められる水準まで軟質化できていない。 However, since high-hardness, high-corrosion-resistant martensitic stainless steel contains a large amount of alloying elements such as C, N, Mo, and Ni, it is sufficiently softened by softening annealing and has excellent cold workability (cold workability). It is difficult to secure forgeability). For example, Patent Document 5 proposes a component design and a soft annealing technique for improving cold forgeability, but fails to soften to a level required for the present invention.
このように従来の技術では、高硬度・高耐食用途のマルテンサイト系ステンレス鋼を軟化焼鈍で十分に軟質化させて複雑形状へ冷間加工(冷間鍛造)することができない。 As described above, according to the conventional technique, it is not possible to sufficiently soften martensitic stainless steel for high hardness and high corrosion resistance by softening annealing and cold-work (cold forging) into a complex shape.
本発明の解決すべき課題は、複雑形状の冷間加工、もしくは冷間鍛造部品用素材として、軟質化特性を著しく改善した高硬度・高耐食性用途のマルテンサイト系ステンレス鋼及びその製造方法を安価に提供することである。なお、本発明が対象とする、軟化焼鈍後のステンレス鋼においては、鋼組織はフェライトと炭窒化物からなり、マルテンサイト組織ではない。一方、本発明のステンレス鋼を冷間加工した後に焼き入れを行い、最終製品はマルテンサイト組織を有していることから、本発明のステンレス鋼をマルテンサイト系ステンレス鋼と呼ぶこととする。 The problem to be solved by the present invention is to provide a martensitic stainless steel for high-hardness and high-corrosion-resistant use, which has significantly improved softening properties, as a material for cold working of a complex shape or a cold forged part, and a method for manufacturing the same. It is to provide to. In the stainless steel after softening and annealing, which is a target of the present invention, the steel structure is composed of ferrite and carbonitride, and is not a martensite structure. On the other hand, the stainless steel of the present invention is quenched after cold working, and the final product has a martensitic structure. Therefore, the stainless steel of the present invention is referred to as a martensitic stainless steel.
本発明者等は、上記課題を解決するために種々検討した結果、成分調整された高耐食高硬度用途のマルテンサイト系ステンレス鋼において、高温の軟化焼鈍により微細な炭窒化物の分散状態を制御することで、Hv硬さで200以下まで軟質化して冷間加工性が著しく向上する知見を得た。また、転位や結晶粒界をピン止めしないような微細な脱酸生成物の組成をAl含有系に制御するとより好ましい。 The present inventors have conducted various studies to solve the above-described problems, and as a result, in a martensitic stainless steel for high corrosion resistance and high hardness applications in which components are adjusted, control the dispersion state of fine carbonitrides by softening annealing at high temperature. By doing so, it was found that the Hv hardness was softened to 200 or less and the cold workability was remarkably improved. Further, it is more preferable to control the composition of a fine deoxidation product that does not pin the dislocations and the grain boundaries to an Al-containing system.
本発明は、上記知見に基づいてなされたものであり、その要旨とするところは以下の通りである。
(1)質量%で、
C:0.12〜0.70%、
Si:1.0%以下、
Mn:1.5%以下、
S:0.01%以下、
P:0.05%以下、
Ni:1.5%以下、
Cr:10.5〜16.0%、
Mo:0.9〜3.0%、
N:0.01〜0.14%、
Al:0.008〜1.0%を含有し、
残部Feおよび不可避的不純物からなる化学成分を有し、
C+N/2:0.14〜0.70%であり、
かつ、1.0μm以上の炭窒化物が1600μm2中に10個以上であり、Hv硬さが200以下であることを特徴とするマルテンサイト系ステンレス鋼。
(2)更に質量%で、
O:0.001〜0.008%以下を含有し、
直径が1〜5μmの酸化物の平均Al濃度が15〜40質量%であることを特徴とする前記(1)に記載のマルテンサイト系ステンレス鋼。
(3)更に質量%で、
Cu:1.5%以下、
W:1.5%以下、
Co:1.5%以下、
B:0.01%以下、
Sn:0.3%以下、
Sb:0.3%以下の内、1種類以上を含有することを特徴とする前記(1)または(2)に記載のマルテンサイト系ステンレス鋼。
(4)更に質量%で、
Nb:0.1%以下、
Ti:0.1%以下、
V:0.2%以下、
Ta:0.2%以下の内、1種類以上を含有することを特徴とする前記(1)〜(3)のいずれか1つに記載のマルテンサイト系ステンレス鋼。
(5)更に質量%で、
Mg:0.01%以下、
Ca:0.01%以下、
Hf:0.01%以下、
REM:0.01%以下の内、1種類以上を含有することを特徴とする前記(1)〜(4)のいずれか1つに記載のマルテンサイト系ステンレス鋼。
The present invention has been made based on the above findings, and the gist thereof is as follows.
(1) In mass%,
C: 0.12 to 0.70%,
Si: 1.0% or less,
Mn: 1.5% or less,
S: 0.01% or less,
P: 0.05% or less,
Ni: 1.5% or less,
Cr: 10.5 to 16.0%,
Mo: 0.9 to 3.0%,
N: 0.01 to 0.14%,
Al: contains 0.008 to 1.0%,
Having a chemical composition consisting of the balance Fe and unavoidable impurities,
C + N / 2: 0.14 to 0.70%,
A martensitic stainless steel characterized in that there are at least 10 carbonitrides of not less than 1.0 μm in 1600 μm 2 and the Hv hardness is not more than 200.
(2) Further, in mass%,
O: contains 0.001 to 0.008% or less,
The martensitic stainless steel according to (1), wherein the oxide having a diameter of 1 to 5 μm has an average Al concentration of 15 to 40% by mass.
(3) Further in mass%,
Cu: 1.5% or less,
W: 1.5% or less,
Co: 1.5% or less,
B: 0.01% or less,
Sn: 0.3% or less,
Sb: The martensitic stainless steel according to the above (1) or (2), which contains one or more kinds of 0.3% or less.
(4) In mass%,
Nb: 0.1% or less,
Ti: 0.1% or less,
V: 0.2% or less,
The martensitic stainless steel according to any one of the above (1) to (3), wherein one or more of Ta: 0.2% or less are contained.
(5) Further, in mass%,
Mg: 0.01% or less,
Ca: 0.01% or less,
Hf: 0.01% or less,
REM: The martensitic stainless steel according to any one of the above (1) to (4), which contains one or more kinds of 0.01% or less.
(6)軟化焼鈍処理として、
870℃よりも高く、C濃度と下記(a)式で表される炭化物の固溶温度:Tよりも20〜120℃低い温度範囲で1〜48hの熱処理を施し、引き続き平均60℃/h以下の冷却速度でTよりも250℃低い温度まで除冷することを特徴とする前記(1)〜(5)のいずれか1つに記載のマルテンサイト系ステンレス鋼の製造方法。
log(C) = −6100/(T+273) + 4 ・・・・・(a)
(a)式で「C」はC濃度(質量%)、「T」は炭化物の固溶温度(℃)を意味する。
(6) As the soft annealing treatment,
The heat treatment is performed at a temperature higher than 870 ° C. and a C concentration and a solid solution temperature of carbide represented by the following formula (a): 20 to 120 ° C. lower than T for 1 to 48 hours, and subsequently an average of 60 ° C./h or less. The method for producing martensitic stainless steel according to any one of the above (1) to (5), wherein cooling is performed at a cooling rate of 250 ° C. lower than T.
log (C) =-6100 / (T + 273) +4 (a)
In the formula (a), “C” means C concentration (% by mass), and “T” means solid solution temperature (° C.) of carbide.
本発明によれば、複雑部品形状に強冷間鍛造(冷間加工)もしくはニアネット成形が可能となり、自動車用等の冷間鍛造(冷間加工)による部品コストの大幅な低減効果を発揮できる高硬度・高耐食性用途のマルテンサイト系ステンレス鋼を提供できる。 ADVANTAGE OF THE INVENTION According to this invention, strong cold forging (cold working) or near-net forming is possible for a complicated component shape, and the effect of a large reduction in component cost by cold forging (cold working) for automobiles can be exhibited. A martensitic stainless steel for high hardness and high corrosion resistance can be provided.
以下に本発明の各要件について説明する。なお、以下の説明における(%)は特に断りがない限り、質量(%)である。 Hereinafter, each requirement of the present invention will be described. In the following description, (%) is mass (%) unless otherwise specified.
本発明が対象とする、冷間加工性に優れる高硬度・高耐食性用途のマルテンサイト系ステンレス鋼は、鋼を軟化焼鈍することで軟質化したステンレス鋼であり、鋼組織はフェライトと炭窒化物からなる。軟質化した本発明のステンレス鋼を素材として冷間加工を行い、その後に焼き入れ処理を行って高硬度化し、最終製品とする。なお、後述の本発明の成分組成を含有することにより、焼き入れ処理により大半がマルテンサイト組織となり、マルテンサイト系ステンレス鋼とすることができる。具体的には、1000〜1200℃からの焼き入れ処理で組織の約8割以上がマルテンサイト組織になる鋼である。 The present invention is directed to a martensitic stainless steel having a high hardness and high corrosion resistance, which is excellent in cold workability, is a stainless steel softened by softening and annealing the steel, and has a steel structure of ferrite and carbonitride. Consists of Cold working is performed using the softened stainless steel of the present invention as a raw material, followed by quenching treatment to increase the hardness to obtain a final product. In addition, by containing the component composition of the present invention described below, most of the steel has a martensite structure by quenching, and can be a martensitic stainless steel. Specifically, about 80% or more of the structure is a steel having a martensite structure by a quenching treatment from 1000 to 1200 ° C.
本発明の軟質による冷間加工性向上の効果は、製品の焼入れ処理後の硬さで500Hv以上になる高硬度・高耐食用途のマルテンサイト系ステンレス鋼で著しく発揮される。最高焼入れで500Hv未満の鋼については従来の技術で冷間加工性を十分に確保でき本発明の効果が不明瞭になる。そのため、焼入れ硬さを支配するC,N,C+N/2の含有量を限定し、本発明の効果が明瞭な範囲を規定する。 The effect of improving the cold workability by the softness of the present invention is remarkably exhibited in a martensitic stainless steel having high hardness and high corrosion resistance of 500 Hv or more after quenching. For steels with a maximum quenching of less than 500 Hv, sufficient cold workability can be ensured by conventional techniques, and the effect of the present invention becomes unclear. Therefore, the content of C, N, C + N / 2, which controls the quenching hardness, is limited, and the range where the effect of the present invention is clear is defined.
Cを0.12%以上、C+N/2を0.14%以上に限定する。しかしながら、Cを0.70%超、C+N/2を0.70%超含有させると粗大な炭化物や微細な窒化物が増加して冷間加工性が劣化するため、上限を該値に規定する。Cの好ましい範囲は0.14〜0.40%、C+N/2の好ましい範囲は0.18〜0.45%である。 C is limited to 0.12% or more, and C + N / 2 is limited to 0.14% or more. However, if the content of C exceeds 0.70% and C + N / 2 exceeds 0.70%, coarse carbides and fine nitrides increase and the cold workability deteriorates. . The preferred range of C is 0.14 to 0.40%, and the preferred range of C + N / 2 is 0.18 to 0.45%.
Nは上述した焼入れ硬さに加えて製品の耐食性の確保のために0.01%以上含有させる。しかしながら、Nを0.14%超含有させると粗大な炭窒化物が生成し、冷間加工性が劣化するため上限を0.14%にする。好ましい範囲は0.02〜0.11%である。更に好ましくは、0.04〜0.10%である。 N is contained in an amount of 0.01% or more in order to secure the corrosion resistance of the product in addition to the quenching hardness described above. However, when N is contained in more than 0.14%, coarse carbonitrides are generated, and the cold workability is deteriorated, so the upper limit is made 0.14%. The preferred range is 0.02 to 0.11%. More preferably, it is 0.04 to 0.10%.
Siは、軟化焼鈍時のフェライト組織を固溶強化し、炭素窒化物を微細分散させて冷間加工性を劣化させる元素であるため、含有量を1.0%以下に限定する。好ましくは、0.7%以下である。Siは含有しなくてもよい。 Since Si is an element that solid-solution strengthens the ferrite structure during soft annealing and finely disperses carbon nitride to deteriorate cold workability, its content is limited to 1.0% or less. Preferably, it is 0.7% or less. Si does not have to be contained.
Mnは、軟化焼鈍後の強度を上昇させて冷間加工性を劣化させるため、含有量を1.5%以下に限定する。好ましくは1.2%以下である。Mnは含有しなくてもよい。 Mn limits the content to 1.5% or less because it increases the strength after soft annealing and deteriorates cold workability. Preferably it is 1.2% or less. Mn may not be contained.
Sは、硫化物を形成して冷間加工性を劣化させるため、含有量を0.01%以下に限定する。好ましくは0.008%以下である。 S forms a sulfide and deteriorates the cold workability, so the content is limited to 0.01% or less. Preferably it is 0.008% or less.
Pは、粒界偏析して冷間加工性を劣化させるため、含有量を0.05%以下に限定する。 Since P segregates at the grain boundaries and deteriorates cold workability, the content of P is limited to 0.05% or less.
Niは、マルテンサイト系ステンレス鋼の製品の靭性、耐食性を向上させる元素であるため、含有させてもよい。しかしながら、1.5%を超えて含有させると軟化焼鈍後の強度がHv硬さで200以下に軟質化せずに冷間加工性が劣化する。そのため、1.5%以下に限定する。好ましくは、1.3%以下である。Niは含有しなくてもよい。 Ni is an element that improves the toughness and corrosion resistance of the martensitic stainless steel product, and therefore may be included. However, when the content exceeds 1.5%, the strength after softening annealing is not softened to 200 or less in Hv hardness, and the cold workability deteriorates. Therefore, it is limited to 1.5% or less. Preferably, it is at most 1.3%. Ni may not be contained.
Crは、ステンレス鋼の高耐食性の機能を得るための基本元素であり、10.5%以上を含有させる。しかしながら、16.0%を超えて含有させると本発明の特徴である高硬度の製品硬さを得ることができず、また、従来の技術で冷間加工性を確保できる。そのため、16.0%以下に限定する。好ましいCrの範囲は、11.0〜15.0%である。 Cr is a basic element for obtaining the function of high corrosion resistance of stainless steel, and contains 10.5% or more. However, when the content exceeds 16.0%, the product hardness of high hardness which is a feature of the present invention cannot be obtained, and the cold workability can be secured by the conventional technology. Therefore, it is limited to 16.0% or less. The preferable range of Cr is 11.0 to 15.0%.
Moは、高耐食性マルテンサイト系ステンレス鋼を得るため含有させる。なお、軟化焼鈍時に炭窒化物の粗大化を阻害して、素材を軟化し難くする元素であり、本発明の軟質・高冷間加工性の効果が明瞭になる0.9%以上に限定する。0.9%未満では公知の軟化焼鈍方法で冷間加工性が確保でき、本発明の有効性が明瞭でなくなる。一方、3.0%を超えて過度に含有させると、後述の炭窒化物の成長を抑制するため、本発明の手法でも炭窒化物が粗大化し難く、軟化し難くなり、冷間加工性が劣化する。そのため、3.0%以下に限定する。好ましい範囲は、1.0〜2.5%である。 Mo is contained to obtain a high corrosion resistant martensitic stainless steel. In addition, it is an element which inhibits coarsening of carbonitride during softening annealing and makes it difficult to soften the material, and is limited to 0.9% or more, at which the effect of the soft and high cold workability of the present invention becomes clear. . If it is less than 0.9%, cold workability can be ensured by a known softening annealing method, and the effectiveness of the present invention is not clear. On the other hand, if the content is excessively more than 3.0%, the growth of carbonitrides described later is suppressed, so that even with the method of the present invention, carbonitrides are hardly coarsened and softened, and cold workability is reduced. to degrade. Therefore, it is limited to 3.0% or less. A preferred range is 1.0-2.5%.
Alは、脱酸で脱酸生成物を低減するのに有効な元素であるため0.008%以上含有させる。しかしながら、1.0%を超えて添加しても脱酸効果は飽和するばかりか粗大な酸化物が生成して冷間加工性が著しく劣化する。そのため、上限を1.0%に限定する。好ましくは0.01〜0.2%である。 Al is an element effective for reducing deoxidation products by deoxidation, so that Al is contained in an amount of 0.008% or more. However, the addition of more than 1.0% not only saturates the deoxidizing effect, but also forms a coarse oxide and significantly deteriorates the cold workability. Therefore, the upper limit is limited to 1.0%. Preferably it is 0.01-0.2%.
本発明のマルテンサイト系ステンレス鋼(軟化焼鈍後)の炭窒化物の分布は、マルテンサイト系ステンレス鋼の軟化焼鈍時の軟化挙動(軟化焼鈍後の軟化挙動)に影響を与え、軟化焼鈍後の鋼中で炭窒化物が微細分散していると、(軟化焼鈍後の)冷間加工において、転位や結晶粒界の動きをピンニングして冷間加工し難い。炭窒化物サイズは大きい方がよく、1600μm2中に1.0μm以上の炭窒化物個数が10個以上であれば、1.0μm未満の微細な炭窒化物が減少するため、200Hv以下の軟質化特性が得られる。図1に、13Cr−2Mo−0.16C−0.1N系鋼を公知の方法(650℃−4hの低温焼鈍)で軟化焼鈍した場合の金属組織を示す。ラスマルテンサイト組織の界面にサブミクロンの棒状炭化物が析出しており、軟化焼鈍後もHv硬さで305あり、冷間加工性に劣る。一方、後述の本発明の方法で軟化焼鈍した鋼の例を図2に示す。図2において、1600μm2中に1.0μmサイズ以上の炭窒化物が10個以上あり、Hv硬さで200以下まで軟質化している。炭窒化物サイズは大きい方がよく、1600μm2中に1μm以上のサイズの炭窒化物個数が10個以上で軟質化特性が得られている。好ましくは、1600μm2中に2μm以上のサイズ以上の炭窒化物が10個以上である。ここで炭窒化物サイズとは、炭窒化物の(長径+短径)/2を示す。 The distribution of carbonitride in the martensitic stainless steel (after soft annealing) of the present invention affects the softening behavior (softening behavior after soft annealing) of the martensitic stainless steel, and after the soft annealing. If carbonitrides are finely dispersed in the steel, it is difficult to perform cold working by pinning the movement of dislocations and grain boundaries in cold working (after softening annealing). The larger the carbonitride size is, the better. If the number of carbonitrides of 1.0 μm or more in 1600 μm 2 is 10 or more, the number of fine carbonitrides of less than 1.0 μm is reduced. Chemical properties are obtained. FIG. 1 shows a microstructure of a 13Cr-2Mo-0.16C-0.1N system steel when soft-annealed by a known method (low-temperature annealing at 650 ° C. for 4 hours). Submicron rod-shaped carbides are precipitated at the interface of the lath martensite structure, and have a Hv hardness of 305 even after softening annealing, which is inferior in cold workability. On the other hand, FIG. 2 shows an example of steel softened and annealed by the method of the present invention described later. In FIG. 2, there are 10 or more carbonitrides having a size of 1.0 μm or more in 1600 μm 2 , and softened to an Hv hardness of 200 or less. The larger the carbonitride size is, the better, the softening property is obtained when the number of carbonitrides having a size of 1 μm or more in 1600 μm 2 is 10 or more. Preferably, 1600 .mu.m carbonitride or more sizes 2μm in 2 is 10 or more. Here, the carbonitride size refers to (long diameter + short diameter) / 2 of carbonitride.
公知技術よりも軟質化して複雑形状へ冷間加工して効果が著しく発揮されるためには、本発明のステンレス鋼(軟化焼鈍後)のHv硬さで200以下に限定する。更に、Hv硬さで180以下になると、複雑形状の大型部品への冷間鍛造も可能となり、飛躍的に工業的・経済的な効果が大きくなるため、好ましくは、Hv硬さで180以下である。 In order to achieve a remarkable effect by cold working to a complicated shape by softening compared to the known technology, the Hv hardness of the stainless steel (after soft annealing) of the present invention is limited to 200 or less. Further, when the Hv hardness is 180 or less, cold forging to a large-sized component having a complicated shape becomes possible, and the industrial and economical effect is greatly increased. is there.
次に請求項2記載の本発明の各要件について説明する。
脱酸生成物は熱間圧延時に分解・微細化するため軟化焼鈍時の素材の軟質化を抑制する。そのため、脱酸元素のAl量とO量や凝固条件等で脱酸生成物の組成を制御すると共に、脱酸生成物が転位や結晶粒界をピン止めせず、冷間加工割れを誘発しないサイズに制御することで軟質化を更に促進することができるので好ましい。以下にその要件について述べる。
Next, each requirement of the present invention described in claim 2 will be described.
Since the deoxidized product is decomposed and refined during hot rolling, it suppresses softening of the material during soft annealing. Therefore, the composition of the deoxidized product is controlled by the Al content and the O content of the deoxidizing element, the solidification conditions, and the like, and the deoxidized product does not pin dislocations or crystal grain boundaries and does not induce cold working cracks. Controlling the size is preferable because softening can be further promoted. The requirements are described below.
Oは、Al含有鋼での微細な脱酸生成物(酸化物)の組成やサイズに大きく影響を与える。凝固時の脱酸生成物の平均直径を5μm以下の微細にして冷間加工割れに対して実質的に無害化し、且つ、脱酸生成物を熱的に安定化して熱間圧延時の1μm未満サイズへの分解・微細化を抑制することが重要になる。そのため、鋼中のOを0.014%以下程度に制限すると、粗大酸化物生成を抑えられるので好ましい。さらに鋼中のOを0.001〜0.008%にすることがより好ましい。OはT.Oを意味する。O含有量範囲を左記のより好ましい範囲とすることに加え、Al含有量を好適範囲である0.01〜0.2%とすることにより、脱酸生成物(酸化物)中の平均Al濃度が15〜40質量%になり、脱酸生成物が熱的に安定化して分解・微細化が抑制される。Oが0.001%未満の場合、工業的な実施が困難となり、0.008%を超えて含有させると脱酸生成物中の平均Al濃度が40%を超えて、粗大な酸化物が生成するため冷間加工性が劣化していく懸念がある。好ましくは、0.002〜0.006%である。 O greatly affects the composition and size of fine deoxidation products (oxides) in Al-containing steel. The average diameter of the deoxidized product during solidification is reduced to 5 μm or less to make it substantially harmless to cold working cracks, and the deoxidized product is thermally stabilized to less than 1 μm during hot rolling. It is important to suppress decomposition and miniaturization into sizes. Therefore, it is preferable to limit O in the steel to about 0.014% or less because formation of coarse oxides can be suppressed. More preferably, the content of O in steel is set to 0.001 to 0.008%. O is T. Means O. The average Al concentration in the deoxidized product (oxide) is obtained by setting the O content range to the more preferable range shown on the left and setting the Al content to the preferable range of 0.01 to 0.2%. Is 15 to 40% by mass, and the deoxidized product is thermally stabilized to suppress decomposition and miniaturization. If O is less than 0.001%, it is difficult to carry out industrially, and if it exceeds 0.008%, the average Al concentration in the deoxidized product exceeds 40% and a coarse oxide is formed. Therefore, there is a concern that the cold workability may deteriorate. Preferably, it is 0.002 to 0.006%.
鋼中の微細な脱酸生成物は凝固時に生成し、熱力学的に不安定な場合、熱間圧延等の熱加工で分解・微細化が進み、軟化焼鈍時に転位や結晶粒界の動きをピンニングして軟化を阻害する。マルテンサイト系ステンレス鋼の場合、鋳片の1500〜1300℃の間の平均冷却速度が1〜500℃/sの範囲で、凝固時に生じる脱酸生成物の平均サイズが5μm以下となって分解・微細化を抑制することによって軟質化することができる。平均冷却速度が1℃/sよりも遅くなると脱酸生成物が5μmを超えて粗大化し、本発明の軟質化効果が不明瞭となるばかりか、冷間加工性も劣化する。一方、500℃/sよりも平均冷却速度が大きいと脱酸生成物が1μm未満に微細化するため熱的に安定化させても素材の軟質化を促進し難くなる。そのため、本発明で規定する微細な酸化物のサイズを1〜500℃/sの平均冷却速度で凝固させた時に生成するサイズである、1〜5μmのサイズに限定すると好ましい。ここで酸化物のサイズとは、酸化物の平均直径であり、(長径+短径)/2である。 Fine deoxidation products in steel are generated during solidification, and when thermodynamically unstable, decomposition and refinement progress by hot working such as hot rolling, and the movement of dislocations and grain boundaries during softening annealing. Pinning inhibits softening. In the case of martensitic stainless steel, when the average cooling rate of the cast slab between 1500 and 1300 ° C. is in the range of 1 to 500 ° C./s, the average size of the deoxidized product generated at the time of solidification becomes 5 μm or less. Softening can be achieved by suppressing the miniaturization. If the average cooling rate is lower than 1 ° C./s, the deoxidized product becomes coarser than 5 μm, and not only the softening effect of the present invention becomes unclear, but also the cold workability deteriorates. On the other hand, if the average cooling rate is higher than 500 ° C./s, the deoxidized product becomes finer than 1 μm, so that it becomes difficult to promote the softening of the material even when thermally stabilized. Therefore, it is preferable to limit the size of the fine oxide specified in the present invention to a size of 1 to 5 μm, which is a size generated when solidified at an average cooling rate of 1 to 500 ° C./s. Here, the size of the oxide is the average diameter of the oxide, and is (major axis + minor axis) / 2.
ここで、酸化物の平均Al濃度は、1〜5μmサイズの酸化物について評価する。酸化物のサイズ分布のピークが約1〜5μmとなり、該サイズが酸化物(脱酸生成物)の代表的な組成を示すためである。1μm未満では分析精度のため規定し難く、5μm超ではスラグ系酸化物等のイレギュラーな酸化物になる可能性があるため除外した。また、酸化物中の平均組成とは、非金属介在物中のS元素を除いてOを含めて質量%で換算して求めた値である。軟化焼鈍時に転位や結晶粒界の動きをピンニングし難いAl含有の熱力学的に安定(熱間圧延時に分解して微細化しない)な脱酸生成物を生成させることが軟化焼鈍時の軟質化促進に有効である。 Here, the average Al concentration of the oxide is evaluated for an oxide having a size of 1 to 5 μm. This is because the peak of the size distribution of the oxide is about 1 to 5 μm, and the size indicates a typical composition of the oxide (deoxidation product). If it is less than 1 μm, it is difficult to define it because of analytical accuracy, and if it is more than 5 μm, it may be an irregular oxide such as a slag-based oxide, so it was excluded. In addition, the average composition in the oxide is a value obtained by converting in terms of mass% including O, excluding S element in nonmetallic inclusions. The generation of Al-containing thermodynamically stable (not decomposed during hot rolling and not miniaturized) Al-containing deoxidation products that are difficult to pin the movement of dislocations and grain boundaries during soft annealing is softening during soft annealing. It is effective for promotion.
次に請求項3記載の本発明の各要件について説明する。
Cuは、製品の耐食性を向上させるため、必要に応じて含有させてもよい。しかしながら、1.5%を超えて含有させても、その効果は飽和し、冷間加工性を劣化させるため、含有量は1.5%以下とする。好ましくは、0.35%以下である。
Next, each requirement of the present invention described in claim 3 will be described.
Cu may be contained as necessary to improve the corrosion resistance of the product. However, even if the content exceeds 1.5%, the effect is saturated and the cold workability is deteriorated. Therefore, the content is set to 1.5% or less. Preferably, it is at most 0.35%.
Co,Wは、製品の靭性や耐食性を向上させるため、必要に応じて含有させてもよい。しかしながら、1.5%を超えて含有させても、その効果は飽和し、冷間加工性を劣化させるため、含有量は1.5%以下とする。好ましくは、1.0%以下である。 Co and W may be contained as needed to improve the toughness and corrosion resistance of the product. However, even if the content exceeds 1.5%, the effect is saturated and the cold workability is deteriorated. Therefore, the content is set to 1.5% or less. Preferably, it is 1.0% or less.
Bは、製品の靭性を向上させるため、必要に応じて含有させてもよい。しかしながら、0.01%を超えて含有させても、その効果は飽和するし、逆に粗大なボライドを生成して冷間加工性を劣化させるため、含有量は0.01%以下とする。好ましくは、0.006%以下である。 B may be contained as necessary to improve the toughness of the product. However, if the content exceeds 0.01%, the effect is saturated and conversely, coarse boride is generated to deteriorate the cold workability, so the content is set to 0.01% or less. Preferably, it is 0.006% or less.
Sn,Sbは、製品の耐食性を向上させるため、必要に応じて含有させてもよい。しかしながら、0.3%を超えて含有させても、その効果は飽和するし、熱間製造性が著しく劣化させるため、含有量は0.3%以下とする。好ましくは、0.1%以下である。 Sn and Sb may be contained as needed in order to improve the corrosion resistance of the product. However, if the content exceeds 0.3%, the effect is saturated and the hot workability is remarkably deteriorated. Therefore, the content is set to 0.3% or less. Preferably, it is 0.1% or less.
次に請求項4記載の本発明の各要件について説明する。
Nb,Tiは、製品の靭性や耐食性を向上させるため、必要に応じて含有させてもよい。しかしながら、0.1%を超えて含有させても、その効果は飽和するし、逆に粗大な炭窒化物を生成して冷間加工性が劣化させるため、含有量は0.1%以下とする。好ましくは、0.06%以下である。
Next, each requirement of the present invention described in claim 4 will be described.
Nb and Ti may be contained as necessary to improve the toughness and corrosion resistance of the product. However, even if the content exceeds 0.1%, the effect is saturated, and conversely, coarse carbonitrides are generated to deteriorate the cold workability, so that the content is 0.1% or less. I do. Preferably, it is 0.06% or less.
V,Taは、製品の靭性や耐食性を向上させるため、必要に応じて含有させてもよい。しかしながら、0.2%を超えて含有させても、その効果は飽和するし、逆に粗大な炭窒化物を生成して冷間加工性が劣化させるため、含有量は0.2%以下とする。好ましくは、0.1%以下である。 V and Ta may be contained as necessary in order to improve the toughness and corrosion resistance of the product. However, even if the content exceeds 0.2%, the effect is saturated, and conversely, coarse carbonitrides are generated and the cold workability is deteriorated, so that the content is 0.2% or less. I do. Preferably, it is 0.1% or less.
次に請求項5記載の本発明の各要件について説明する。
Mg,Ca,Hf、REMは、脱酸生成物の熱力学的な安定度を増加して軟化焼鈍時の軟質化に効果があるため、必要に応じて含有させてもよい。しかしながら、0.01%を超えて添加しても、その効果は飽和するし、逆に粗大な酸化物を生成して冷間加工性を劣化させるため、含有量を0.01%以下とする。好ましくは、0.005%以下である。
REM(希土類元素)は、一般的な定義に従い、スカンジウム(Sc)、イットリウム(Y)の2元素と、ランタン(La)からルテチウム(Lu)までの15元素(ランタノイド)の総称を指す。単独で含有させてもよいし、混合物であってもよい。
Next, each requirement of the present invention described in claim 5 will be described.
Mg, Ca, Hf, and REM increase the thermodynamic stability of the deoxidized product and are effective in softening during softening annealing. Therefore, Mg, Ca, Hf, and REM may be contained as necessary. However, even if added over 0.01%, the effect is saturated and conversely, a coarse oxide is generated to deteriorate the cold workability, so the content is made 0.01% or less. . Preferably, it is 0.005% or less.
REM (rare earth element) is a general definition of two elements, scandium (Sc) and yttrium (Y), and 15 elements (lanthanoids) from lanthanum (La) to lutetium (Lu) according to a general definition. They may be contained alone or in a mixture.
本発明のステンレス鋼は、上述してきた元素以外は、Feおよび不可避的不純物からなる化学成分から構成される。
代表的な不可避的不純物としては、前述のP、Sに加え、Zn,Bi,Pb,Ge,Se,Ag,Se,Te等が挙げられ、通常、鉄鋼の製造プロセスで不可避的不純物として、0.1%程度の範囲で混入する。
また、任意添加元素について、代表的なものを上記(3)〜(5)で規定しているが、本明細書中に記載されていない元素であっても、本発明の効果を損なわない範囲で含有させることができる。
The stainless steel of the present invention is composed of a chemical component consisting of Fe and inevitable impurities, other than the above-mentioned elements.
Typical unavoidable impurities include P, S, Zn, Bi, Pb, Ge, Se, Ag, Se, Te, and the like. Is mixed in a range of about 1%.
In addition, typical optional elements are defined in the above (3) to (5), but elements that are not described in the present specification do not impair the effects of the present invention. Can be contained.
次に請求項6記載の本発明の各要件について説明する。
前記に記載の炭窒化物のサイズ・分散状態にして軟質化したステンレス鋼とするためには、軟化焼鈍処理として、870℃以上の高温で、かつ、下記(a)式で計算される炭化物の固溶温度:Tよりも20〜120℃低い温度範囲で1〜48hの保定熱処理を施し、引き続き平均60℃/h以下の冷却速度で徐冷することが好ましい。保定熱処理時間が1hよりも短いと炭素窒化物サイズが微細となり、軟質化が期待できず、逆に48hよりも長いと効果は飽和するし、工業的に経済合理性を失う。そのため、保定熱処理時間を1〜48hに限定する。好ましい範囲は、2〜10hである。なお、(a)式でC量による炭化物の固溶温度を計算できる。
log(C) = −6100/(T+273) + 4 ・・・・・(a)
(a)式で「C」はC濃度(質量%)、「T」は炭化物の固溶温度(℃)を意味する。
Next, each requirement of the present invention described in claim 6 will be described.
In order to make the stainless steel softened by the size and dispersion of the carbonitride described above, it is necessary to carry out the softening and annealing treatment at a high temperature of 870 ° C. or more and at the high temperature of carbide calculated by the following equation (a). Solid solution temperature: It is preferable to perform a holding heat treatment for 1 to 48 hours in a temperature range lower than T by 20 to 120 ° C., and then gradually cool at an average cooling rate of 60 ° C./h or less. If the retention heat treatment time is shorter than 1 hour, the size of the carbon nitride becomes fine and softening cannot be expected. Conversely, if it is longer than 48 hours, the effect is saturated and industrial economic rationality is lost. Therefore, the retention heat treatment time is limited to 1 to 48 h. A preferred range is from 2 to 10 h. Note that the solid solution temperature of the carbide based on the C content can be calculated by the equation (a).
log (C) =-6100 / (T + 273) +4 (a)
In the formula (a), “C” means C concentration (% by mass), and “T” means solid solution temperature (° C.) of carbide.
保定熱処理温度が870℃もしくは(T−120)℃よりも低温になると炭窒化物サイズが微細になり、軟質化が期待できず、逆に(T−20)℃よりも高温で保定熱処理を実施するとフィルム状の粒界炭化物となり、冷間加工性が劣化する。なお、保定熱処理温度の好ましい範囲は、900℃以上で、かつ、Tよりも30〜100℃低い温度である。 When the temperature of the heat treatment is 870 ° C or lower than (T-120) ° C, the size of the carbonitride becomes finer and the softening cannot be expected. Conversely, the heat treatment is performed at a temperature higher than (T-20) ° C. Then, it becomes a film-like grain boundary carbide, and the cold workability deteriorates. The preferred range of the retention heat treatment temperature is 900 ° C. or higher and 30 to 100 ° C. lower than T.
保定熱処理温度からの徐冷の冷却速度について、平均60℃/h超の冷却速度で徐冷すると、炭窒化物が微細となり、軟質化が期待できない。 Regarding the cooling rate of the slow cooling from the retention heat treatment temperature, if the cooling rate is an average of more than 60 ° C./h, the carbonitride becomes fine and softening cannot be expected.
徐冷終了温度について、(T−250)℃まで徐冷しなかった場合、炭窒化物の微細化や硬質なマルテンサイト組織の生成により軟質化が期待できない。そのため、(T−250)℃よりも低い温度まで徐冷することが好ましい。なお、(T−250)℃よりも低い温度では特に冷却速度は規定しなくともよい。 Regarding the temperature of the end of slow cooling, if the temperature is not gradually cooled to (T-250) ° C., softening cannot be expected due to the refinement of carbonitrides and the formation of hard martensite structure. Therefore, it is preferable to gradually cool to a temperature lower than (T-250) ° C. At a temperature lower than (T-250) ° C., the cooling rate need not be particularly specified.
上記の本発明の軟化焼鈍方法で炭化物サイズ、分散状態が決まるため、本発明の焼鈍方法の後に従来の焼鈍方法を適用しても効果は継続されるので、従来の焼鈍方法と組み合わせてもよい。 Since the size of the carbide and the dispersion state are determined by the above-described softening annealing method of the present invention, the effect is continued even if the conventional annealing method is applied after the annealing method of the present invention, so that it may be combined with the conventional annealing method. .
以上説明した本発明によれば、軟質化特性を有して複雑形状に強冷間加工できる高硬度・高耐食性用途のマルテンサイト系ステンレス鋼を安価に提供できる。 According to the present invention described above, a martensitic stainless steel having a softening property and capable of strong cold working into a complex shape for high hardness and high corrosion resistance can be provided at low cost.
《実施例1》
150kgの真空溶解炉にて表1、表2に示す化学組成の鋼を溶解し、直径200mmの鋳型に鋳造した。なお、Al,Si,Mn等の脱酸元素添加量と脱酸元素の溶鋼へ投入から鋳型への出鋼時間でO量を変化させた。その後、1200℃加熱後に熱間鍛造して直径70mmまで加工した。次に、800℃で1時間焼鈍し、直径66mmにピーリングした後、熱間圧延を想定して1150℃の熱間押し出しにより直径14mmの棒鋼に熱間加工、常温まで空冷した。その後、軟化焼鈍として、表1、表2に示す各温度で5hの保定熱処理を施し、20℃/hで650℃まで徐冷した。そして、軟質化状況、冷間加工性および炭窒化物や微細酸化物の状態に及ぼす成分の影響について調査した。表3、表4に調査結果について示す。
<< Example 1 >>
Steel having the chemical composition shown in Tables 1 and 2 was melted in a 150 kg vacuum melting furnace and cast into a mold having a diameter of 200 mm. The amount of O was varied depending on the amount of the deoxidizing element added, such as Al, Si, and Mn, and the time from the introduction of the deoxidizing element to the molten steel to the tapping time to the mold. Then, after heating at 1200 ° C., hot forging was performed to process to a diameter of 70 mm. Next, it was annealed at 800 ° C. for 1 hour, peeled to a diameter of 66 mm, hot-extruded at 1150 ° C. as hot roll into steel bars having a diameter of 14 mm assuming hot rolling, and air-cooled to room temperature. Thereafter, as softening annealing, a holding heat treatment was performed for 5 hours at each temperature shown in Tables 1 and 2, and the temperature was gradually cooled to 650 ° C. at 20 ° C./h. Then, the effects of components on the state of softening, cold workability, and the state of carbonitrides and fine oxides were investigated. Tables 3 and 4 show the survey results.
軟質化状況について、前記棒鋼20mm長さを長手方向中心断面に埋め込み研磨し、荷重1kgで断面の中心部のHv硬さを評価した。 Regarding the state of softening, the bar of 20 mm length was embedded in the center section in the longitudinal direction and polished, and the Hv hardness at the center of the section was evaluated under a load of 1 kg.
冷間加工性は、得られた棒鋼からφ8mm,高さ12mmの圧縮試験片を作成し、高さ方向に10/sの歪み速度で端面圧縮加工を施し、割れなく冷間圧縮加工が可能か否かで判断した。75%の加工率で冷間圧縮加工が可能であれば○、割れが発生した場合を×、80%の加工率で冷間圧縮加工が可能であれば◎で評価した。なお、加工率とは、(12−H)/12×100(%)であり、Hは冷間圧縮加工後の試験片の厚さ(mm)である。 For cold workability, is it possible to make a compression test piece of φ8 mm and height 12 mm from the obtained steel bar, apply end face compression at a strain rate of 10 / s in the height direction, and perform cold compression without cracking? Judgment was made based on no. When cold compression was possible at a processing rate of 75%, it was evaluated as ○, when cracks occurred, ×, and when cold compression was possible at a processing rate of 80%, it was evaluated as ◎. The working ratio is (12−H) / 12 × 100 (%), and H is the thickness (mm) of the test piece after cold compression working.
炭窒化物の分散状態は、埋め込み研磨面を王水にてエッチングし、SEM・EDSにて評価した。1600μm2中に直径1μmサイズ以上の炭窒化物が10個以上ある場合を○、1600μm2中に直径2μmサイズ以上の炭窒化物が10個以上ある場合を◎で評価した。なお直径のサイズとは(長径+短径)/2で計算される。炭窒化物とはEDS分析にてCr、Fe、C、Nを主体とする析出物である。 The dispersed state of the carbonitride was evaluated by etching the buried polished surface with aqua regia and SEM / EDS. ○ a case where 1600 .mu.m carbonitride or more in diameter 1μm size during 2 is 10 or more, carbonitride or more in diameter 2μm size in 1600 .mu.m 2 were evaluated when there 10 or more in ◎. The size of the diameter is calculated by (major axis + minor axis) / 2. Carbonitride is a precipitate mainly composed of Cr, Fe, C, and N in EDS analysis.
酸化物の組成評価について、炭窒化物の影響を除くため1150℃から空冷の焼入れ処理した材料について、表層を#500研磨した鋼材を非水溶液中(3%のマレイン酸+1%のテトラメチルアンモニウムクロイド+残部メタノール)で電解(100mV定電圧)して、マトリックスを溶解し、フィルターでろ過して、酸化物を抽出した。その後、フィルター上に残った酸化物について、SEM・EDSにて、直径1〜5μmサイズの酸化物を20個選定して組成分析を実施した。なお、熱押し加工材についても同様に酸化物の組成分析を実施し、本焼入れ処理で酸化物の状態が変化していないことを確認している。直径のサイズとは(長径+短径)/2で計算される。酸化物とはEDS分析にてOとAl,Mn,Si,Fe,Cr,Ti等の組成が主体の非金属介在物を示し、Sを除いたものを100%換算で各元素の質量%を算出した。 Regarding the oxide composition evaluation, a steel material whose surface layer was polished # 500 in a non-aqueous solution (3% maleic acid + 1% tetramethylammonium chloride) The mixture was electrolyzed (constant voltage of 100 mV) with methanol) to dissolve the matrix, and the solution was filtered with a filter to extract an oxide. After that, the oxide remaining on the filter was subjected to composition analysis by SEM / EDS by selecting 20 oxides having a diameter of 1 to 5 μm. In addition, the composition analysis of the oxide was similarly performed on the hot-pressed material, and it was confirmed that the state of the oxide did not change during the main quenching treatment. The diameter size is calculated by (major axis + minor axis) / 2. An oxide is a nonmetallic inclusion mainly composed of O, Al, Mn, Si, Fe, Cr, Ti, and the like by EDS analysis. Excluding S, the mass% of each element is calculated as 100%. Calculated.
粗大な酸化物の評価について、前記の埋め込み研磨材を光学顕微鏡にて観察し、長径が30μm以上の粗大な酸化物がある場合、備考欄に記載した。 Regarding the evaluation of the coarse oxide, the embedded abrasive was observed with an optical microscope, and when there was a coarse oxide having a major axis of 30 μm or more, it was described in the remarks column.
本発明のマルテンサイト系ステンレス鋼は、高硬度・高耐食性用途であり、冷間加工後に焼き入れ処理を施して最終製品とした段階で、高硬度・高耐食性を具備していることが要求される。
高硬度特性については、冷間加工後にT+50℃の温度から空冷の焼き入れを行い、Hv硬さ評価を行った。Hv500以上であれば本発明の要件を具備している。実施例において、焼き入れ後にHv500未満の場合に表2の備考欄に「焼き入れ硬さ不足」と記載した。
耐食性特性については、冷間加工後にT+50℃の温度から空冷の焼き入れを行い、表面を#500研磨後にJISの中性塩水噴霧試験で24hの塩水噴霧で耐食性評価を行い、赤錆が発生しなければ良好な耐食性を具備している。実施例において、赤錆びが発生した場合(端部除く)に表2の備考欄に「耐食性不足」と記載した。
The martensitic stainless steel of the present invention is used for high hardness and high corrosion resistance, and is required to have high hardness and high corrosion resistance at the stage of performing a quenching treatment after cold working to obtain a final product. You.
Regarding the high hardness characteristics, Hv hardness was evaluated by performing air cooling quenching from a temperature of T + 50 ° C. after cold working. If the Hv is 500 or more, the requirements of the present invention are satisfied. In the examples, when the Hv is less than 500 after quenching, "Insufficient quenching hardness" is described in the remarks column of Table 2.
Regarding the corrosion resistance property, after cold working, air cooling quenching was performed from a temperature of T + 50 ° C. After polishing the surface # 500, the corrosion resistance was evaluated by JIS neutral salt water spray test for 24 hours with salt water spray, and no red rust was generated. It has good corrosion resistance. In the examples, when red rust was generated (excluding the end portion), "Insufficient corrosion resistance" was described in the remarks column of Table 2.
表3、表4の実施例1〜46が本発明例である。製品の硬さについて、本発明鋼ではHv硬さで200以下が得られており、また、大半で好ましいHv硬さ180以下が得られた。冷間加工性について、本発明鋼では全て○または◎であり、優れた冷間加工性を示していた。炭窒化物の分散状態は、本発明鋼では全て○または◎であり、優れた冷間加工性に資する炭窒化物の分散状態を示していた。 Examples 1 to 46 in Tables 3 and 4 are examples of the present invention. Regarding the hardness of the product, the steel of the present invention obtained an Hv hardness of 200 or less, and a preferable Hv hardness of 180 or less was obtained in most cases. Regarding the cold workability, the steels of the present invention were all ○ or ◎, indicating excellent cold workability. The dispersion state of carbonitrides was all ○ or ◎ in the steels of the present invention, indicating the dispersion state of carbonitrides contributing to excellent cold workability.
実施例3〜44、46は、Al含有量が0.01〜0.2%の好適範囲にあり、本発明鋼の1〜5μmサイズの酸化物の平均Al濃度は15〜40質量%であり、軟質化に資する酸化物状態を示していた。 In Examples 3 to 44 and 46, the Al content is in a preferable range of 0.01 to 0.2%, and the average Al concentration of the oxide of the present invention in the size of 1 to 5 μm is 15 to 40% by mass. , Indicating an oxide state contributing to softening.
一方、比較鋼である実施例47〜61では、鋼の成分組成が本発明の規定範囲を満たしておらず、所要の特性を満足していないことがわかる。 On the other hand, in Examples 47 to 61, which are comparative steels, it is understood that the component composition of the steel does not satisfy the specified range of the present invention and does not satisfy the required characteristics.
《実施例2》
次に、軟化焼鈍材の製造方法の影響を調査した。前述で製造した本発明鋼Cの熱間押し出し材のφ14mm棒鋼について、表5に示す種々の条件で軟化焼鈍を施し、軟質化、冷間加工性および炭窒化物の状態に及ぼす製造方法の影響について調査した。なお、軟化焼鈍時には微細酸化物の状態は変化しないため本項では調査は実施していない。表5に軟化焼鈍材の製造方法と調査結果を示す。
<< Example 2 >>
Next, the influence of the manufacturing method of the soft annealed material was investigated. The hot-extruded φ14 mm steel bar of the steel C of the present invention manufactured as described above was subjected to softening annealing under various conditions shown in Table 5, and the effect of the manufacturing method on softening, cold workability and carbonitride state. Was investigated. In addition, since the state of the fine oxide does not change during the soft annealing, the investigation is not performed in this section. Table 5 shows the method of producing the soft annealed material and the results of the investigation.
本発明例ではいずれも優れた冷間加工性に資する炭窒化物の分散状態を示し、冷間鍛造性に優れていた。実施例72では、表5の備考に「軟化焼鈍追加」と記載したように、本発明の軟化焼鈍後に、従来の850℃−2h保定後、30℃/hで700℃まで徐冷して脱炉の軟化焼鈍を付与しているが、本発明の効果が引き継がれている。 In each of the examples of the present invention, the dispersion state of carbonitride contributing to excellent cold workability was exhibited, and the cold forgeability was excellent. In Example 72, as described in the remarks of Table 5, "Addition of softening annealing", after softening annealing of the present invention, after holding at 850 ° C for 2 hours in the past, gradually cooling down to 700 ° C at 30 ° C / h to remove Although the softening annealing of the furnace is given, the effect of the present invention is inherited.
一方、比較例である実施例73〜77では、軟化焼鈍条件が本発明の規定範囲を満たしておらず、本発明の炭窒化物の分散状態や優れた冷間鍛造性を満足していないことがわかる。 On the other hand, in Examples 73 to 77 which are comparative examples, the softening and annealing conditions did not satisfy the specified range of the present invention, and did not satisfy the dispersion state of carbonitride and the excellent cold forgeability of the present invention. I understand.
以上の各実施例から明らかなように、本発明により、冷間鍛造性などの冷間加工性に優れる高硬度・高耐食用途のマルテンサイト系ステンレス鋼の軟化焼鈍材を安定的に提供することができ、冷間鍛造で大量生産することで部品の製造コストを大幅に低減でき、産業上極めて有用である。 As is clear from the above examples, the present invention stably provides a softened and annealed material of martensitic stainless steel for high hardness and high corrosion resistance, which is excellent in cold workability such as cold forgeability. By mass-producing by cold forging, the manufacturing cost of parts can be greatly reduced, which is extremely useful in industry.
Claims (6)
C:0.12〜0.70%、
Si:1.0%以下、
Mn:1.5%以下、
S:0.01%以下、
P:0.05%以下、
Ni:1.5%以下、
Cr:10.5〜16.0%、
Mo:0.9〜3.0%、
N:0.01〜0.14%、
Al:0.008〜1.0%を含有し、
残部Feおよび不可避的不純物からなる化学成分を有し、
C+N/2:0.14〜0.70%であり、
かつ、1.0μm以上の炭窒化物が1600μm2中に10個以上であり、Hv硬さが200以下であることを特徴とするマルテンサイト系ステンレス鋼。 In mass%,
C: 0.12 to 0.70%,
Si: 1.0% or less,
Mn: 1.5% or less,
S: 0.01% or less,
P: 0.05% or less,
Ni: 1.5% or less,
Cr: 10.5 to 16.0%,
Mo: 0.9 to 3.0%,
N: 0.01 to 0.14%,
Al: contains 0.008 to 1.0%,
Having a chemical composition consisting of the balance Fe and unavoidable impurities,
C + N / 2: 0.14 to 0.70%,
A martensitic stainless steel characterized in that there are at least 10 carbonitrides of not less than 1.0 μm in 1600 μm 2 and the Hv hardness is not more than 200.
O:0.001〜0.008%以下を含有し、
直径が1〜5μmの酸化物の平均Al濃度が15〜40質量%であることを特徴とする請求項1に記載のマルテンサイト系ステンレス鋼。 In mass%,
O: contains 0.001 to 0.008% or less,
The martensitic stainless steel according to claim 1, wherein the oxide having a diameter of 1 to 5 µm has an average Al concentration of 15 to 40% by mass.
Cu:1.5%以下、
W:1.5%以下、
Co:1.5%以下、
B:0.01%以下、
Sn:0.3%以下、
Sb:0.3%以下の内、1種類以上を含有することを特徴とする請求項1または請求項2に記載のマルテンサイト系ステンレス鋼。 In mass%,
Cu: 1.5% or less,
W: 1.5% or less,
Co: 1.5% or less,
B: 0.01% or less,
Sn: 0.3% or less,
The martensitic stainless steel according to claim 1 or 2, wherein one or more of Sb: 0.3% or less are contained.
Nb:0.1%以下、
Ti:0.1%以下、
V:0.2%以下、
Ta:0.2%以下の内、1種類以上を含有することを特徴とする請求項1〜請求項3のいずれか1項に記載のマルテンサイト系ステンレス鋼。 In mass%,
Nb: 0.1% or less,
Ti: 0.1% or less,
V: 0.2% or less,
The martensitic stainless steel according to any one of claims 1 to 3, wherein one or more types are contained among Ta: 0.2% or less.
Mg:0.01%以下、
Ca:0.01%以下、
Hf:0.01%以下、
REM:0.01%以下の内、1種類以上を含有することを特徴とする請求項1〜請求項4のいずれか1項に記載のマルテンサイト系ステンレス鋼。 In mass%,
Mg: 0.01% or less,
Ca: 0.01% or less,
Hf: 0.01% or less,
The martensitic stainless steel according to any one of claims 1 to 4, wherein at least one of REM: 0.01% or less is contained.
870℃よりも高く、C濃度と下記(a)式で表される炭化物の固溶温度:Tよりも20〜120℃低い温度範囲で1〜48hの熱処理を施し、引き続き平均60℃/h以下の冷却速度でTよりも250℃低い温度まで除冷することを特徴とする請求項1〜請求項5のいずれか1項に記載のマルテンサイト系ステンレス鋼の製造方法。
log(C) = −6100/(T+273) + 4 ・・・・・(a)
(a)式で「C」はC濃度(質量%)、「T」は炭化物の固溶温度(℃)を意味する。 As soft annealing treatment,
The heat treatment is performed at a temperature higher than 870 ° C. and a C concentration and a solid solution temperature of carbide represented by the following formula (a): 20 to 120 ° C. lower than T for 1 to 48 hours, and subsequently an average of 60 ° C./h or less. The method for producing martensitic stainless steel according to any one of claims 1 to 5, wherein the cooling is performed at a cooling rate of 250 ° C lower than T.
log (C) =-6100 / (T + 273) +4 (a)
In the formula (a), “C” means C concentration (% by mass), and “T” means solid solution temperature (° C.) of carbide.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018182063A JP2020050917A (en) | 2018-09-27 | 2018-09-27 | Martensitic stainless steel for high hardness and high corrosion resistant applications, excellent in cold workability, and manufacturing method therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018182063A JP2020050917A (en) | 2018-09-27 | 2018-09-27 | Martensitic stainless steel for high hardness and high corrosion resistant applications, excellent in cold workability, and manufacturing method therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2020050917A true JP2020050917A (en) | 2020-04-02 |
Family
ID=69995935
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018182063A Pending JP2020050917A (en) | 2018-09-27 | 2018-09-27 | Martensitic stainless steel for high hardness and high corrosion resistant applications, excellent in cold workability, and manufacturing method therefor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2020050917A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111593259A (en) * | 2020-05-20 | 2020-08-28 | 樟树市兴隆高新材料有限公司 | Valve steel and preparation method thereof |
JP2021017626A (en) * | 2019-07-22 | 2021-02-15 | 大同特殊鋼株式会社 | Martensitic stainless steel and fastening member |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62156255A (en) * | 1985-12-27 | 1987-07-11 | Aichi Steel Works Ltd | Martensitic heat resisting steel |
JPH04210451A (en) * | 1990-12-13 | 1992-07-31 | Sumitomo Metal Ind Ltd | High strength and high corrosion resistant stainless steel excellent in cold workability |
JPH059663A (en) * | 1991-07-09 | 1993-01-19 | Sumitomo Metal Ind Ltd | High strength stainless steel having high corrosion resistance and excellent cold workability |
JP2003041348A (en) * | 2001-07-30 | 2003-02-13 | Sanyo Special Steel Co Ltd | Martensitic stainless steel with high hardness superior in corrosion resistance, toughness and cold workability, and product thereof |
JP2003293095A (en) * | 2002-04-04 | 2003-10-15 | Walsin Lihwa Corp | High-strength martensitic stainless steel material |
JP2007277639A (en) * | 2006-04-07 | 2007-10-25 | Daido Steel Co Ltd | Martensitic steel |
-
2018
- 2018-09-27 JP JP2018182063A patent/JP2020050917A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62156255A (en) * | 1985-12-27 | 1987-07-11 | Aichi Steel Works Ltd | Martensitic heat resisting steel |
JPH04210451A (en) * | 1990-12-13 | 1992-07-31 | Sumitomo Metal Ind Ltd | High strength and high corrosion resistant stainless steel excellent in cold workability |
JPH059663A (en) * | 1991-07-09 | 1993-01-19 | Sumitomo Metal Ind Ltd | High strength stainless steel having high corrosion resistance and excellent cold workability |
JP2003041348A (en) * | 2001-07-30 | 2003-02-13 | Sanyo Special Steel Co Ltd | Martensitic stainless steel with high hardness superior in corrosion resistance, toughness and cold workability, and product thereof |
JP2003293095A (en) * | 2002-04-04 | 2003-10-15 | Walsin Lihwa Corp | High-strength martensitic stainless steel material |
JP2007277639A (en) * | 2006-04-07 | 2007-10-25 | Daido Steel Co Ltd | Martensitic steel |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021017626A (en) * | 2019-07-22 | 2021-02-15 | 大同特殊鋼株式会社 | Martensitic stainless steel and fastening member |
JP7326957B2 (en) | 2019-07-22 | 2023-08-16 | 大同特殊鋼株式会社 | Martensitic stainless steel and fasteners |
CN111593259A (en) * | 2020-05-20 | 2020-08-28 | 樟树市兴隆高新材料有限公司 | Valve steel and preparation method thereof |
CN111593259B (en) * | 2020-05-20 | 2021-11-23 | 樟树市兴隆高新材料有限公司 | Valve steel and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110366603B (en) | Wear-resistant steel sheet and method for producing wear-resistant steel sheet | |
JP7267702B2 (en) | MARTENSITE STAINLESS STEEL BAR FOR HIGH HARDNESS AND HIGH CORROSION RESISTANCE WITH EXCELLENT COLD WORKABILITY AND METHOD FOR MANUFACTURING SAME | |
JP5231101B2 (en) | Machine structural steel with excellent fatigue limit ratio and machinability | |
JP6821097B1 (en) | Martensitic stainless steel for high hardness and corrosion resistance with excellent cold workability and its manufacturing method | |
CN109923234B (en) | Steel plate for carburizing and method for manufacturing steel plate for carburizing | |
KR101965520B1 (en) | Rolled steel bar or rolled wire material for cold-forged component | |
JP6945664B2 (en) | Martensitic stainless steel for high hardness and corrosion resistance with excellent cold workability and its manufacturing method | |
JP2008127594A (en) | High strength hot forged non-heat treated steel component having excellent fatigue limit ratio | |
KR20170118879A (en) | A bolt wire rod excellent in pickling resistance and resistance to delamination after tempering tempering, | |
JP6073167B2 (en) | Case-hardening steel with excellent surface fatigue strength and cold forgeability | |
JP2008127596A (en) | High strength cold forged non-heat treated steel having excellent fatigue limit ratio | |
KR101892526B1 (en) | High-carbon hot-rolled steel sheet and method for manufacturing the same | |
KR20160138230A (en) | High-carbon hot-rolled steel sheet and method for producing same | |
JP2011241466A (en) | Rolled steel material for induction hardening and method for manufacturing the same | |
JP2020050917A (en) | Martensitic stainless steel for high hardness and high corrosion resistant applications, excellent in cold workability, and manufacturing method therefor | |
JP4299744B2 (en) | Hot rolled wire rod for cold forging and method for producing the same | |
JP2004183064A (en) | Steel for case hardening having excellent cold workability and coarse grain prevention property when carburized, and production method therefor | |
JP4369250B2 (en) | High temperature carburizing steel and method for producing the same | |
JP2012001765A (en) | Bar steel for steering rack bar and method for manufacturing bar steel | |
TWI776112B (en) | Matian loose iron series stainless steel with excellent cold workability and high hardness and high corrosion resistance and its production method | |
JP3552286B2 (en) | Manufacturing method of machine structural steel having excellent machinability, cold forgeability and fatigue strength after quenching and tempering, and a method of manufacturing the member | |
JP4196485B2 (en) | Machine structural steel with excellent machinability, cold forgeability and hardenability | |
JP6347153B2 (en) | Steel material and manufacturing method thereof | |
JP7111029B2 (en) | Method for manufacturing steel parts | |
JP4144500B2 (en) | Non-tempered steel with excellent balance between strength and machinability and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210621 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220617 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220628 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20230110 |