[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2019220375A - Positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing the same, positive electrode containing the active material, nonaqueous electrolyte secondary battery having the positive electrode, and method for manufacturing the nonaqueous electrolyte secondary battery - Google Patents

Positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing the same, positive electrode containing the active material, nonaqueous electrolyte secondary battery having the positive electrode, and method for manufacturing the nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2019220375A
JP2019220375A JP2018117726A JP2018117726A JP2019220375A JP 2019220375 A JP2019220375 A JP 2019220375A JP 2018117726 A JP2018117726 A JP 2018117726A JP 2018117726 A JP2018117726 A JP 2018117726A JP 2019220375 A JP2019220375 A JP 2019220375A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
secondary battery
electrolyte secondary
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018117726A
Other languages
Japanese (ja)
Other versions
JP7043989B2 (en
Inventor
眞也 大谷
Shinya Otani
眞也 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2018117726A priority Critical patent/JP7043989B2/en
Priority to PCT/JP2019/024375 priority patent/WO2019244955A1/en
Priority to CN201980041784.3A priority patent/CN112771695B/en
Priority to US17/252,765 priority patent/US20210257665A1/en
Priority to EP19821775.4A priority patent/EP3813163B1/en
Publication of JP2019220375A publication Critical patent/JP2019220375A/en
Application granted granted Critical
Publication of JP7043989B2 publication Critical patent/JP7043989B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

To provide a positive electrode active material for a nonaqueous electrolyte secondary battery, which shows an excellent initial coulomb efficiency and a superior high-rate discharge performance when used at an electric potential under 4.5 V (vs.Li/Li), and a nonaqueous electrolyte secondary battery.SOLUTION: A positive electrode active material for a nonaqueous electrolyte secondary battery comprises a lithium transition metal composite oxide. The lithium transition metal composite oxide has an α-NaFeOtype crystalline structure, where the mole ratio Li/Me of Li to a transition metal(Me) is 1<Li/Me. The lithium transition metal composite oxide contains Ni, Co and Mn, or Ni and Mn as the transition metal(Me), and the mole ratio Mn/Me of Mn to Me is Mn/Me≥0.45. As to the positive electrode active material, the ratio a/b of a discharge capacity (a) of 4.35 V (vs.Li/Li) to 3.0 V (vs.Li/Li) to a discharge capacity (b) of 3.0 V (vs.Li/Li) to 2.0 V (vs.Li/Li) satisfies 17≤a/b≤25.SELECTED DRAWING: Figure 1

Description

本発明は、非水電解質二次電池用正極活物質、その製造方法、前記活物質を含有する正極、及び前記正極を備えた非水電解質二次電池、及び前記非水電解質二次電池の製造方法に関する。   The present invention relates to a positive electrode active material for a non-aqueous electrolyte secondary battery, a method for producing the same, a positive electrode containing the active material, a non-aqueous electrolyte secondary battery including the positive electrode, and production of the non-aqueous electrolyte secondary battery About the method.

近年、ハイブリット自動車等の車載用途では、高エネルギー密度、高出力性能なリチウムイオン電池に代表される非水電解質二次電池が強く求められている。
従来、非水電解質二次電池用正極活物質として、α−NaFeO型結晶構造を有するリチウム遷移金属複合酸化物が検討され、LiCoOを用いた非水電解質二次電池が広く実用化されている。LiCoOの放電容量は120〜130mAh/g程度である。前記リチウム遷移金属複合酸化物を構成する遷移金属(Me)として、地球資源として豊富なMnを用い、前記リチウム遷移金属複合酸化物を構成する遷移金属に対するLiのモル比Li/Meがほぼ1であり、遷移金属中のMnのモル比Mn/Meが0.5以下であるいわゆる「LiMeO型」活物質を用いた非水電解質二次電池も実用化されている。例えば、LiNi1/2Mn1/2やLiNi1/3Co1/3Mn1/3を含有する正極活物質の放電容量は150〜180mAh/gである。
2. Description of the Related Art In recent years, non-aqueous electrolyte secondary batteries typified by lithium ion batteries having high energy density and high output performance have been strongly demanded for use in vehicles such as hybrid vehicles.
Conventionally, as a positive electrode active material for a non-aqueous electrolyte secondary battery, a lithium transition metal composite oxide having an α-NaFeO 2 type crystal structure has been studied, and a non-aqueous electrolyte secondary battery using LiCoO 2 has been widely put into practical use. I have. The discharge capacity of LiCoO 2 is about 120 to 130 mAh / g. As the transition metal (Me) constituting the lithium transition metal composite oxide, Mn, which is abundant as an earth resource, is used, and the molar ratio Li / Me of Li to the transition metal constituting the lithium transition metal composite oxide is approximately 1. In addition, a non-aqueous electrolyte secondary battery using a so-called “LiMeO 2 type” active material in which the molar ratio Mn / Me of Mn in the transition metal is 0.5 or less has also been put to practical use. For example, the discharge capacity of the positive electrode active material containing LiNi 1/2 Mn 1/2 O 2 or LiNi 1/3 Co 1/3 Mn 1/3 O 2 is 150 to 180 mAh / g.

一方、α−NaFeO型結晶構造を有するリチウム遷移金属複合酸化物の中でも、遷移金属(Me)中のMnのモル比が大きく、遷移金属(Me)に対するLiのモル比Li/Meが1を超えるいわゆる「リチウム過剰型」活物質が知られている。この活物質は、電池を組立てて、最初に行う充電過程において、4.5〜5.0V(vs.Li/Li)の電位範囲内に、充電電気量に対して電位変化が比較的平坦な領域が観察されるという特徴があり、上記平坦な領域に至る初期充電を行うことにより、以降の充電電位をそれほど貴としなくても、「LiMeO型」活物質に比べて高い放電容量を有することから、注目されている(特許文献1参照)。 On the other hand, among lithium transition metal composite oxides having an α-NaFeO 2 type crystal structure, the molar ratio of Mn in the transition metal (Me) is large, and the molar ratio of Li to transition metal (Me), Li / Me, is 1 More so-called "lithium-rich" active materials are known. This active material has a relatively flat potential change with respect to the amount of charged electricity within a potential range of 4.5 to 5.0 V (vs. Li / Li + ) in a charging process performed first after a battery is assembled. The initial charge up to the flat area allows a higher discharge capacity compared to the “LiMeO 2 type” active material even if the subsequent charge potential is not so noble. Therefore, it has attracted attention (see Patent Document 1).

特許文献1には、「α−NaFeO型結晶構造を有するリチウム遷移金属複合酸化物の固溶体を含むリチウム二次電池用活物質であって、前記固溶体が含有するLi,Co,Ni及びMnの組成比が、Li1+(1/3)xCo1−x−yNi(1/2)yMn(2/3)x+(1/2)y(x+y≦1、0≦y、1−x−y=z)を満たし、・・・で表され、かつ、X線回折測定による(003)面と(104)面の回折ピークの強度比が、充放電前においてI(003)/I(104)≧1.56であり、放電末においてI(003)/I(104)>1であり、4.3V(vs.Li/Li)を超え4.8V以下(vs.Li/Li)の正極電位範囲に充電電気量に対して出現する電位変化が比較的平坦な領域に少なくとも至る初期充電を行う工程を経た場合に、4.3V(vs.Li/Li)以下の電位領域において放電可能な電気量が177mAh/g以上となることを特徴とするリチウム二次電池用活物質。」(請求項3)が記載されている。 Patent Literature 1 discloses an active material for a lithium secondary battery including a solid solution of a lithium transition metal composite oxide having an α-NaFeO 2 type crystal structure, wherein Li, Co, Ni, and Mn contained in the solid solution are contained. The composition ratio is Li1 + (1/3) xCo1 - xyNi (1/2) yMn (2/3) x + (1/2) y (x + y≤1, 0≤y, 1-x −y = z), expressed by..., And the intensity ratio of the diffraction peaks of the (003) plane and the (104) plane measured by X-ray diffraction is I (003) / I ( 104) ≧ 1.56, and I (003) / I (104) > 1 at the end of discharge, exceeding 4.3 V (vs. Li / Li + ) and 4.8 V or less (vs. Li / Li + ). ) In the positive electrode potential range, where the potential change that appears with respect to the amount of charged electricity is relatively flat When passing through the step of performing initial charging reaching even without, 4.3V (vs.Li/Li +) or less of the lithium secondary battery electric quantity capable discharge in potential region is characterized to be a 177 mAh / g or more Active material. "(Claim 3).

そして、段落[0062]には、「本発明に係るリチウム二次電池用活物質を用い、使用時において、充電時の正極の最大到達電位が4.3V(vs.Li/Li)以下となるような充電方法を採用しても、充分な放電容量を取り出すことのできるリチウム二次電池を製造するためには、次に述べる、本発明に係るリチウム二次電池用活物質に特徴的な挙動を考慮した充電工程を該リチウム二次電池の製造工程中に設けることが重要である。即ち、本発明に係るリチウム二次電池用活物質を正極に用いて定電流充電を続けると、正極電位4.3V〜4.8Vの範囲に、電位変化が比較的平坦な領域が比較的長い期間に亘って観察される。・・・ここで採用した充電条件は、電流0.1ItA、電圧(正極電位)4.5V(vs.Li/Li)の定電流定電圧充電であるが、充電電圧をさらに高く設定しても、この比較的長い期間に亘る電位平坦領域は、xの値が1/3以下の材料を用いた場合にはほとんど観察されない。逆に、xの値が2/3を超える材料では、電位変化が比較的平坦な領域が観察される場合であっても短いものとなる。また、従来のLi[Co1−2xNiMn]O(0≦x≦1/2)系材料でもこの挙動は観察されない。この挙動は、本発明に係るリチウム二次電池用活物質に特徴的なものである。」と記載されている。 The paragraph [0062] states that the maximum active potential of the positive electrode during charging is 4.3 V (vs. Li / Li + ) or less when the active material for a lithium secondary battery according to the present invention is used. In order to manufacture a lithium secondary battery capable of taking out a sufficient discharge capacity even if a charging method as described above is adopted, the following is a characteristic of the active material for a lithium secondary battery according to the present invention. It is important to provide a charging step in consideration of the behavior in the manufacturing process of the lithium secondary battery, that is, when the active material for the lithium secondary battery according to the present invention is used as the positive electrode and the constant current charging is continued, A region where the potential change is relatively flat is observed over a relatively long period in the range of the potential of 4.3 V to 4.8 V. The charging conditions adopted here are that the current is 0.1 ItA and the voltage ( Positive electrode potential) 4.5 V (vs. Li / L +) Of is a constant-current constant-voltage charging, setting even higher charging voltage, the potential flat region over the relatively long period of time, when the value of x was used 1/3 of the material rarely observed. Conversely, a material value of x exceeds 2/3, becomes shorter even if the potential change is relatively flat areas observed. Further, the conventional Li [Co 1- 2x Ni x Mn x] O 2 this behavior in (0 ≦ x ≦ 1/2 ) material is not observed. this behavior is characteristic of the active material for a lithium secondary battery according to the present invention. " It is described.

一方、「リチウム過剰型」活物質を用いた電池を、4.5V(vs.Li/Li+)以上の初期充電過程を経て使用する場合、「LiMeO型」活物質を用いた電池と比較して、初回クーロン効率が低く、高率放電性能が劣ることが知られている。
そこで、「リチウム過剰型」活物質を用いた電池の初回クーロン効率、高率放電性能を向上させる技術として、正極活物質の酸処理が知られている。(特許文献2〜6)
On the other hand, when the battery using the “lithium-excess type” active material is used through an initial charging process of 4.5 V (vs. Li / Li + ) or more, it is compared with the battery using the “LiMeO 2 type” active material. It is known that the initial coulomb efficiency is low and the high rate discharge performance is inferior.
Therefore, acid treatment of a positive electrode active material is known as a technique for improving the initial coulomb efficiency and high-rate discharge performance of a battery using a “lithium-excess type” active material. (Patent Documents 2 to 6)

特許文献2には、「一般式:Li1+uNiCoMn2+α(0.1≦u<0.3、0.03≦x≦0.25、0.03≦y≦0.25、0.4≦z<0.6、x+y+z+u+t=1、0≦α<0.3、0≦t<0.1、Aは2価から6価までの価数のいずれかをとる金属元素のうち少なくとも1種)で表され、一次粒子が凝集した二次粒子で構成されたリチウム過剰金属複合酸化物からなる非水系電解質二次電池用正極活物質の製造方法であって、少なくともニッケル、コバルト、マンガンを含む水酸化物、オキシ水酸化物、酸化物、及び炭酸塩の少なくとも1種からなる一次粒子が凝集した二次粒子とリチウム化合物を混合してリチウム混合物を得る混合工程と、前記リチウム混合物を、酸化性雰囲気中にて800〜1050℃の温度で焼成して焼成物を得る焼成工程と、酸洗前後での焼成物のリチウム含有量の差を酸洗前の焼成物のリチウム含有量で除したリチウム除去率が10〜30%、且つ酸洗終了時の酸洗スラリーの25℃基準におけるpHが1〜4となるように制御して酸洗を前記焼成物に施した後、水洗する酸洗工程と、前記酸洗工程を経た焼成物を、酸化性雰囲気中にて200〜600℃の温度で熱処理する熱処理工程を含むことを特徴とする非水系電解質二次電池用正極活物質の製造方法。」(請求項5)が記載されている。
そして、「この酸洗に用いる酸は、解離定数の高い強酸性を示す酸が好ましく、塩酸、硝酸、硫酸などの無機酸のいずれかとすることがより好ましく、塩酸、硫酸のいずれかとすることがさらに好ましい。」(段落[0073])、「そこで、強酸を用いない場合、結晶構造からリチウムを引き抜くことが難しく、また一次粒子の表面に微細な凹凸を形成するだけの溶解を引き起こせないため、界面抵抗を下げることが出来ないことがある。」(段落[0074])と記載され、上記正極活物質の評価は、負極にLi金属を用いたコイン型電池を作製し、初期充放電を0.05C、4.8V充電及び2.5V放電で行い、充電容量に対する放電容量の比を初期充放電効率としたこと、電圧範囲2.0〜4.55Vにおいて、0.1Cで充放電した際の放電容量を分母に、充電0.1C、放電2Cで充放電を行ったときの放電容量を分子としたときの割合(%)を負荷効率としたことが記載されている(段落[0096]〜[0101]、[0103])。
Patent Document 2, "the general formula: Li 1 + u Ni x Co y Mn z A t O 2 + α (0.1 ≦ u <0.3,0.03 ≦ x ≦ 0.25,0.03 ≦ y ≦ 0 .25, 0.4 ≦ z <0.6, x + y + z + u + t = 1, 0 ≦ α <0.3, 0 ≦ t <0.1, A is a metal having any valence from divalent to hexavalent A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, comprising a lithium-excess metal composite oxide composed of secondary particles in which primary particles are aggregated. A mixing step of obtaining a lithium mixture by mixing a lithium compound with secondary particles in which primary particles made of at least one of hydroxides, oxyhydroxides, oxides, and carbonates containing cobalt and manganese are aggregated, The lithium mixture is placed in an oxidizing atmosphere at 800 A baking step of baking at a temperature of 501050 ° C. to obtain a baked product, and a lithium removal rate obtained by dividing the difference in lithium content of the baked product before and after pickling by the lithium content of the baked product before pickling is 10 to 10. An acid pickling step in which the pickled slurry is subjected to pickling by controlling the pH of the pickled slurry at 30 ° C. at the end of the pickling at 25 ° C. to be 1 to 4 to 1 to 4 and then washed with water; A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, comprising: a heat treatment step of heat-treating the fired product after the step at a temperature of 200 to 600 ° C. in an oxidizing atmosphere. ” ) Is described.
Then, "The acid used for this pickling is preferably an acid showing a strong acidity with a high dissociation constant, more preferably one of inorganic acids such as hydrochloric acid, nitric acid and sulfuric acid, and one of hydrochloric acid and sulfuric acid. (Paragraph [0073]), "If a strong acid is not used, it is difficult to extract lithium from the crystal structure, and it is not possible to cause dissolution to form fine irregularities on the surface of primary particles. In some cases, the interfacial resistance cannot be reduced. ”(Paragraph [0074]), and the evaluation of the positive electrode active material was performed by preparing a coin-type battery using Li metal for the negative electrode and performing initial charge / discharge. The charging and discharging were performed at 0.05 C, 4.8 V charging and 2.5 V discharging, and the ratio of the discharging capacity to the charging capacity was defined as the initial charging / discharging efficiency. Using the discharge capacity at the time of charging as a denominator, the load efficiency is defined as the ratio (%) when the discharge capacity at the time of charging and discharging at 0.1 C of charge and 2 C of discharge is taken as the numerator (paragraph [ 0096] to [0101], [0103]).

特許文献3には、「α−NaFeO構造を有するリチウム遷移金属複合酸化物を含むリチウム二次電池用正極活物質であって、前記リチウム遷移金属複合酸化物は、前記遷移金属(Me)がCo、Ni及びMnを含み、前記遷移金属中のMnのモル比Mn/MeがMn/Me≧0.5であり、CuKα線源を用いたエックス線回折パターンにおける2θ=44±1°の回折ピークの半値幅が0.265°以上で、且つ、P元素を含有することを特徴とするリチウム二次電池用正極活物質。」(請求項1)、「前記リチウム遷移金属複合酸化物は、リン酸処理後の熱処理によりPを含有させたものであることを特徴とする請求項1又は2に記載のリチウム二次電池用正極活物質。」(請求項3)が記載されている。
そして、上記のリン酸処理後に熱処理をされた各実施例に係る活物質を用いたリチウム二次電池を作製し、電流0.1C、電圧4.6Vの定電流定電圧充電、電流0.05C、終止電圧2.0Vの定電流放電を2サイクル行った後、電流0.2C、電圧4.3Vの定電流定電圧充電と、電流0.5C、終止電圧2.0Vの定電流放電の充放電試験を30サイクル行い、30サイクル目の放電容量を30サイクル目0.5C放電容量として記録したことが記載されている(段落[0075]〜[0085]、[0123]〜[0130])。
Patent Literature 3 discloses “a positive electrode active material for a lithium secondary battery including a lithium transition metal composite oxide having an α-NaFeO 2 structure, wherein the lithium transition metal composite oxide contains the transition metal (Me). A diffraction peak of 2θ = 44 ± 1 ° in an X-ray diffraction pattern using a CuKα radiation source, containing Co, Ni and Mn, wherein the molar ratio Mn / Me of Mn in the transition metal is Mn / Me ≧ 0.5. A positive electrode active material for a lithium secondary battery, wherein the half-value width is 0.265 ° or more and contains a P element. ”(Claim 1) The positive electrode active material for a lithium secondary battery according to claim 1, wherein P is contained by heat treatment after the acid treatment. ”(Claim 3).
Then, a lithium secondary battery using the active material according to each example, which was heat-treated after the above-described phosphoric acid treatment, was manufactured. After performing two cycles of constant current discharge at a final voltage of 2.0 V, a constant current constant voltage charge of a current of 0.2 C and a voltage of 4.3 V and a constant current discharge of a current of 0.5 C and a final voltage of 2.0 V are performed. It describes that a discharge test was performed for 30 cycles, and the discharge capacity at the 30th cycle was recorded as a 0.5C discharge capacity at the 30th cycle (paragraphs [0075] to [0085] and [0123] to [0130]).

特許文献4には、「リチウム遷移金属複合酸化物を含有するリチウム二次電池用正極活物質であって、前記リチウム遷移金属複合酸化物は、α−NaFeO構造を有し、遷移金属(Me)がCo、Ni及びMnを含み、前記遷移金属に対するリチウム(Li)のモル比Li/Meが1.2より大きく且つ1.6より小さく、窒素ガス吸着法を用いた吸着等温線からBJH法で求めた微分細孔容積の最大値を示す細孔径が60nmまでの範囲内の細孔領域にて0.055cc/g以上0.08cc/g以下の細孔容積を有し、1000℃において空間群R3−mに帰属される単一相を示す、リチウム二次電池用正極活物質。」(請求項1)、「遷移金属元素としてCo,Ni及びMnを含む前駆体を作製する前駆体作製工程、前記前駆体とLi塩を混合して800℃以上の温度で熱処理して酸化物を作製する焼成工程、及び、前記酸化物を酸処理する酸処理工程を経て、前記リチウム遷移金属複合酸化物を作製する、請求項1〜6のいずれかに記載のリチウム二次電池用正極活物質の製造方法。」(請求項9)、「前記酸処理工程は、硫酸を用いる、請求項9〜12のいずれかに記載のリチウム二次電池用正極活物質の製造方法。」(請求項13)が記載されている。
また、上記の実施例として、リチウム遷移金属複合酸化物を硫酸処理した後、乾燥して得た活物質を正極に用い、負極に金属リチウムを用いたリチウム二次電池を作製し、初期充放電工程として、電流0.1C、電圧4.6Vの定電流定電圧充電、及び電流0.1C、終止電圧2.0Vの定電流放電を2サイクル行い、次に、電流0.1C、電圧4.3Vの定電流定電圧充電、及び電流1C、終止電圧2.0Vの定電流放電を行い、この放電電気量を1C容量として記録したことが記載されている(段落[0076]〜[0087]、[0108]〜[0115])。
Patent Literature 4 discloses “a positive electrode active material for a lithium secondary battery containing a lithium transition metal composite oxide, wherein the lithium transition metal composite oxide has an α-NaFeO 2 structure, and a transition metal (Me ) Contains Co, Ni and Mn, the molar ratio Li / Me of lithium (Li) to the transition metal is greater than 1.2 and less than 1.6, and the BJH method Has a pore volume of 0.055 cc / g or more and 0.08 cc / g or less in a pore region in which the pore diameter showing the maximum value of the differential pore volume obtained in the above is up to 60 nm, and has a space at 1000 ° C. (Claim 1), "Precursor preparation for preparing a precursor containing Co, Ni and Mn as transition metal elements, showing a single phase belonging to group R3-m". Process, the precursor and L The lithium transition metal composite oxide is produced through a firing step of mixing a salt and heat-treating the mixture at a temperature of 800 ° C. or higher to produce an oxide, and an acid treatment step of treating the oxide with an acid. The method for producing a positive electrode active material for a lithium secondary battery according to any one of Claims 1 to 6. (Claim 9), "The acid treatment step uses sulfuric acid. Method for producing positive electrode active material for lithium secondary battery "(Claim 13).
Further, as the above-described example, a lithium secondary battery using a lithium transition metal composite oxide, sulfuric acid treatment, and drying was used as a positive electrode, and a lithium secondary battery using metal lithium as a negative electrode. As a process, constant-current constant-voltage charging at a current of 0.1 C and a voltage of 4.6 V, and constant-current discharging at a current of 0.1 C and a final voltage of 2.0 V are performed in two cycles. It is described that constant-current constant-voltage charging of 3 V and constant-current discharging at a current of 1 C and a final voltage of 2.0 V were performed, and the amount of discharged electricity was recorded as a 1 C capacity (paragraphs [0076] to [0087]. [0108] to [0115]).

特許文献5には、「α−NaFeO構造を有するリチウム遷移金属複合酸化物を含む正極活物質であって、前記リチウム遷移金属複合酸化物は、遷移金属(Me)がCo、Ni及びMnを含み、Liと遷移金属(Me)のモル比(Li/Me)が1<Li/Meであり、Mnと遷移金属(Me)のモル比(Mn/Me)が0.5<Mn/Meであり、Ceを含有することを特徴とするリチウム二次電池用正極活物質。」(請求項1)が記載され、実施例1〜5として、「出発物質のリチウム遷移金属複合酸化物Li1.18Co0.10Ni0.17Mn0.55」を、pH1.6の硫酸セリウム溶液に投入し、400℃で熱処理することにより、Ceを含むリチウム遷移金属複合酸化物を作製したことが記載されている(段落[0079]〜[0082])。そして、これらのリチウム遷移金属複合酸化物を正極活物質とし、負極を金属リチウムとした電池を作製し、0.1C、4.6V−2.0Vの初期充放電工程に供し、放電容量を充電電気量で割った値(%)を初期効率とし、0.2C、4.45Vの定電流定電圧充電、及び0.5C、2.0Vの定電流放電を30サイクル行い、1サイクル目の放電容量に対する30サイクル目の放電容量の比(%)を放電容量維持率として電池の評価を行った結果が表1に示されている(段落[0090]〜[0097])。 Patent Literature 5 discloses “a positive electrode active material including a lithium transition metal composite oxide having an α-NaFeO 2 structure, in which the transition metal (Me) is Co, Ni, and Mn. When the molar ratio of Li and transition metal (Me) (Li / Me) is 1 <Li / Me, and the molar ratio of Mn and transition metal (Me) (Mn / Me) is 0.5 <Mn / Me. And a positive electrode active material for a lithium secondary battery characterized by containing Ce ”(Claim 1), and as Examples 1 to 5,“ Lithium transition metal composite oxide Li 1. 18 Co 0.10 Ni 0.17 Mn 0.55 O 2 ”was charged into a cerium sulfate solution having a pH of 1.6 and heat-treated at 400 ° C. to produce a lithium-transition metal composite oxide containing Ce. Is described (paragraph [0079] to [0082]). Then, a battery was prepared in which the lithium transition metal composite oxide was used as a positive electrode active material and the negative electrode was metallic lithium, subjected to an initial charge / discharge step of 0.1 C, 4.6 V-2.0 V, and charged to a discharge capacity. Using the value (%) divided by the quantity of electricity as the initial efficiency, 30 cycles of constant current constant voltage charging at 0.2 C and 4.45 V and constant current discharging at 0.5 C and 2.0 V are performed, and the first cycle discharge is performed. Table 1 shows the results of evaluation of the battery with the ratio (%) of the discharge capacity at the 30th cycle to the capacity as the discharge capacity retention ratio (paragraphs [0090] to [0097]).

特許文献6には、「過リチウム化された金属酸化物を酸処理する段階と、酸処理された前記過リチウム化された金属酸化物を金属陽イオンでドーピング処理する段階と、を含み、前記過リチウム化された金属酸化物は、下記の化学式4で表示される化合物を含む複合正極活物質の製造方法:[化4] xLiMO−(1−x)LiM’O 前記式で、Mは、平均酸化数+4を持つ、4周期及び5周期遷移金属から選択される少なくとも一つの金属であり、M’は、平均酸化数+3を持つ、4周期及び5周期遷移金属から選択される少なくとも一つの金属であり、0<x<1である。」(請求項13)が記載されている。そして、その実施例として、0.55LiMnO−0.45LiNi0.5Co0.2Mn0.3組成の物質をHNO水溶液に添加した後、80℃で乾燥する酸処理を行い、酸処理された前記物質をAl等の硝酸塩水溶液500mLに投入し、300℃で5時間熱処理を行い、金属陽イオンでドーピングされた活物質を得たこと(段落[0137]〜[0147])、LiNi0.5Co0.2Mn0.3活物質の場合、該酸処理条件で充放電曲線の変化がなく、酸溶液との反応によってLiイオンが脱離されていないが、LiMnOは、酸処理時に酸溶液のHとLiイオンの置換によって放電曲線が大きく変化したこと(段落[0159])、負極をリチウムメタルとして、初期充放電を0.1C、4.7−2.5Vの定電流充放電で行い初期効率を評価し、0.5C、4.6V定電圧定電流充電、放電電流をそれぞれ0.2,0.33,1,2,及び3C、2.5Vの定電流放電を行ってレート特性を評価したこと(段落[0165]〜[0166])が記載されている。 Patent Document 6 discloses that “including a step of acid-treating a perlithiated metal oxide and a step of doping the acid-treated perlithiated metal oxide with a metal cation, The method for producing a composite cathode active material containing a compound represented by the following Chemical Formula 4 is a method for preparing a composite cathode active material comprising the compound represented by the following Chemical Formula 4: xLi 2 MO 3- (1-x) LiM′O 2 , M is at least one metal selected from 4-period and 5-period transition metals having an average oxidation number +4, and M ′ is selected from 4-period and 5-period transition metals having an average oxidation number +3. At least one metal, and 0 <x <1 ”(claim 13). Then, as an example, after adding a substance of 0.55Li 2 MnO 3 -0.45LiNi 0.5 Co 0.2 Mn 0.3 O 2 composition in HNO 3 aqueous solution, the acid treatment and drying at 80 ° C. Then, the acid-treated substance was put into 500 mL of an aqueous solution of nitrate such as Al, and heat-treated at 300 ° C. for 5 hours to obtain an active material doped with a metal cation (paragraphs [0137] to [0147]. ), In the case of the LiNi 0.5 Co 0.2 Mn 0.3 O 2 active material, the charge-discharge curve does not change under the acid treatment conditions, and Li ions are not desorbed by the reaction with the acid solution. Li 2 MnO 3 is the discharge curve by substitution of H + and Li + ions in acid solution to the acid treatment has changed significantly (paragraph [0159]), a negative electrode as lithium metal, 0.1 C the initial charge and discharge The initial efficiency was evaluated by charging and discharging at a constant current of 4.7 to 2.5 V, and the charging and discharging currents of 0.5 C, 4.6 V constant voltage and constant current were respectively 0.2, 0.33, 1, 2, and It describes that a constant current discharge of 3 C and 2.5 V was performed to evaluate the rate characteristics (paragraphs [0165] to [0166]).

特許第4877660号公報Japanese Patent No. 4877660 特開2015−122235号公報JP 2015-122235 A 特開2016−15298号公報JP 2016-15298 A 国際公開2015/083330International Publication 2015/083330 特開2016−126935号公報JP-A-2006-126935 特開2014−170739号公報JP 2014-170739 A

特許文献2〜6に記載されるように、「リチウム過剰型」活物質を正極に用い、正極電位が4.5V(Li/Li+)以上の初期充放電(以下、「過充電化成」ともいう。)を経て使用されることを前提とする非水電解質二次電池において、「リチウム過剰型」活物質を塩酸、リン酸、硫酸、又は硝酸等で酸処理すると、初回クーロン効率や高率放電性能が向上することが知られているが、強酸で処理した場合の効果が示されているだけであり、また、過充電化成をしない場合の効果については不明である。 As described in Patent Documents 2 to 6, a lithium-rich type active material is used for a positive electrode, and a positive electrode potential is 4.5 V (Li / Li + ) or higher for initial charge and discharge (hereinafter, also referred to as “overcharge formation”). In a non-aqueous electrolyte secondary battery that is supposed to be used after passing through, the “Lithium-excess type” active material is treated with hydrochloric acid, phosphoric acid, sulfuric acid, nitric acid, or the like. Although it is known that the discharge performance is improved, only the effect when treated with a strong acid is shown, and the effect when overcharging is not performed is unknown.

ところで、非水電解質二次電池には、誤って満充電状態(SOC100%)を超えてさらに充電がされた場合に安全性が確保されることが規格(例えば自動車用電池に対して「GB/T(中国勧奨国家標準)」)によって定められている。安全性が向上したことを評価する方法としては、充電制御回路が壊れた場合を想定し、満充電状態を超えてさらに電流を強制的に印加したときに、電池電圧の急上昇が観察されたSOCを記録する方法がある。より高いSOCに至るまで、電池電圧の急上昇が観察されない場合、安全性が向上したと評価される。
ここで、SOCとはState Of Chargeの略で、電池の充電状態をそのときの残存容量と満充電時の容量との比率で表したものであり、満充電状態を「SOC100%」と表記する。また、本明細書中の「初回」充放電とは、非水電解質を注液後に行われる、1回目の充電及び放電をさす。「初期」充放電とは、非水電解質を注液後、電池の出荷前製造工程にて行われる1回または複数回の充電及び放電をさす。
特許文献1に記載された「4.3V(vs.Li/Li)を超え4.8V以下(vs.Li/Li)の正極電位範囲に充電電気量に対して出現する電位変化が比較的平坦な領域」は「リチウム過剰型」活物質に特徴的に観察される。上記の電位変化が比較的平坦な領域が観察される充電を一度でも行うと、次に4.8Vに至る充電を行っても、上記平坦な領域は観察されることがない。したがって、正極に「リチウム過剰型」活物質を含み、上記の電位変化が比較的平坦な領域が観察される初期充放電を行わず、通常使用の満充電(SOC100%)を上記の電位変化が平坦な領域が観察されない正極電位とする非水電解質二次電池を提案した。この電池は、SOC100%を超えて、さらに充電された場合、上記電位変化が比較的平坦な領域が初めて観察され、より高いSOCに至るまで電池電圧の急上昇が観察されない。
By the way, non-aqueous electrolyte secondary batteries are required to ensure safety if they are charged more than the full charge state (SOC 100%) by mistake (for example, “GB / T (Chinese Recommended National Standard) ”). As a method of evaluating the improvement in safety, assuming that the charge control circuit is broken, when a current is forcibly applied beyond the full charge state, a sharp increase in the battery voltage is observed. There is a way to record. If no sharp increase in battery voltage is observed until a higher SOC is reached, the safety is evaluated to be improved.
Here, the SOC is an abbreviation of State of Charge, and represents the state of charge of the battery as a ratio of the remaining capacity at that time to the capacity at the time of full charge, and the full charge state is described as "SOC 100%". . In addition, the “first time” charge / discharge in this specification refers to the first charge / discharge performed after injecting a nonaqueous electrolyte. “Initial” charge / discharge refers to one or more times of charging and discharging performed in a manufacturing process before shipment of a battery after injecting a non-aqueous electrolyte.
The potential change appearing with respect to the amount of charge in the positive electrode potential range of more than 4.3 V (vs. Li / Li + ) and 4.8 V or less (vs. Li / Li + ) described in Patent Document 1 is compared. The “flat region” is characteristically observed in the “lithium-rich” active material. If charging is performed once even in a region where the potential change is relatively flat, the flat region is not observed even when charging up to 4.8 V is performed next. Therefore, the positive electrode contains a “lithium-excess type” active material, does not perform the initial charge / discharge in which the above-mentioned region where the change in potential is relatively flat is observed, and the above-mentioned change in potential changes the full charge (SOC 100%) in normal use. A non-aqueous electrolyte secondary battery with a positive electrode potential where no flat region is observed was proposed. When the battery is further charged with the SOC exceeding 100%, a region where the potential change is relatively flat is observed for the first time, and no rapid increase in the battery voltage is observed until the battery reaches a higher SOC.

しかし、「リチウム過剰型」活物質を、初期充放電を含めて4.5V(vs.Li/Li+)以上の充電電位を経ることなく使用する場合の初回クーロン効率、及び高率放電性能について、今まで検討されたことはなく、酸処理との関係性も不明であった。
そこで、本発明は、4.5V(vs.Li/Li)未満の電位で使用したとき、優れた初回クーロン効率、及び高率放電性能を示す非水電解質二次電池用正極活物質、その製造方法、前記正極活物質を含有する非水電解質二次電池用正極、前記正極を備えた非水電解質二次電池、及び前記非水電解質二次電池の製造方法を提供することを課題とする。
However, the initial coulomb efficiency and high-rate discharge performance when the “lithium excess” active material is used without passing a charge potential of 4.5 V (vs. Li / Li + ) or more including the initial charge and discharge. It has not been studied so far, and its relationship with acid treatment was unknown.
Therefore, the present invention provides a positive electrode active material for a non-aqueous electrolyte secondary battery, which exhibits excellent initial coulomb efficiency and high rate discharge performance when used at a potential lower than 4.5 V (vs. Li / Li + ). It is an object to provide a manufacturing method, a positive electrode for a non-aqueous electrolyte secondary battery containing the positive electrode active material, a non-aqueous electrolyte secondary battery including the positive electrode, and a method for manufacturing the non-aqueous electrolyte secondary battery. .

本発明の一側面は、リチウム遷移金属複合酸化物を含有する非水電解質二次電池用正極活物質であって、前記リチウム遷移金属複合酸化物は、α−NaFeO型結晶構造を有し、遷移金属(Me)に対するLiのモル比Li/Meが1<Li/Meであり、遷移金属(Me)としてNi、Co及びMn、又はNi及びMnを含み、Meに対するMnのモル比Mn/MeがMn/Me≧0.45であり、前記正極活物質は、4.35V(vs.Li/Li)から3.0V(vs.Li/Li)までの放電容量(a)と3.0V(vs.Li/Li)から2.0V(vs.Li/Li)までの放電容量(b)の比a/bが17≦a/b≦25である、非水電解質二次電池用正極活物質である。 One aspect of the present invention is a positive electrode active material for a non-aqueous electrolyte secondary battery containing a lithium transition metal composite oxide, wherein the lithium transition metal composite oxide has an α-NaFeO 2 type crystal structure, The molar ratio Li / Me of Li to the transition metal (Me) is 1 <Li / Me, and the transition metal (Me) contains Ni, Co and Mn, or Ni and Mn, and the molar ratio of Mn to Me is Mn / Me. Is Mn / Me ≧ 0.45, and the positive electrode active material has a discharge capacity (a) from 4.35 V (vs. Li / Li + ) to 3.0 V (vs. Li / Li + ) and A nonaqueous electrolyte secondary battery in which the ratio a / b of the discharge capacity (b) from 0 V (vs. Li / Li + ) to 2.0 V (vs. Li / Li + ) is 17 ≦ a / b ≦ 25. Positive electrode active material.

本発明の他の一側面は、リチウム遷移金属複合酸化物を含有する非水電解質二次電池用正極活物質の製造方法であって、α−NaFeO型結晶構造を有し、遷移金属(Me)に対するLiのモル比Li/Meが1<Li/Meであり、遷移金属(Me)としてNi、Co及びMn、又はNi及びMnを含み、Meに対するMnのモル比Mn/MeがMn/Me≧0.45であるリチウム遷移金属複合酸化物を、pKaが3.1以上の酸で処理して、4.35V(vs.Li/Li)から3.0V(vs.Li/Li)までの放電容量(a)と3.0V(vs.Li/Li)から2.0V(vs.Li/Li)までの放電容量(b)の比a/bが17≦a/b≦25である正極活物質を製造する、非水電解質二次電池用正極活物質の製造方法である。 Another aspect of the present invention is a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery containing a lithium transition metal composite oxide, which has an α-NaFeO 2 type crystal structure and has a transition metal (Me ), The molar ratio of Li / Me is 1 <Li / Me, and the transition metal (Me) contains Ni, Co and Mn, or Ni and Mn, and the molar ratio of Mn to Me, Mn / Me, is Mn / Me. The lithium transition metal composite oxide with ≧ 0.45 is treated with an acid having a pKa 1 of 3.1 or more to change from 4.35 V (vs. Li / Li + ) to 3.0 V (vs. Li / Li + ). ) And the ratio a / b of the discharge capacity (b) from 3.0 V (vs. Li / Li + ) to 2.0 V (vs. Li / Li + ) is 17 ≦ a / b. A positive electrode for a non-aqueous electrolyte secondary battery, producing a positive electrode active material satisfying ≦ 25 It is a method of manufacturing the substance.

本発明のさらに他の一側面は、前記非水電解質二次電池用正極活物質を含有する非水電解質二次電池用正極である。   Yet another aspect of the present invention is a positive electrode for a non-aqueous electrolyte secondary battery, comprising the positive electrode active material for a non-aqueous electrolyte secondary battery.

本発明のさらに他の一側面は、前記の非水電解質二次電池用正極を備え、前記正極が含有する正極活物質は、CuKα線を用いたエックス線回折図において、20〜22°の範囲に回折ピークが観察される、非水電解質二次電池である。又は、前記の非水電解質二次電池用正極を備え、前記正極は正極電位が5.0V(vs.Li/Li)に至る充電を行ったとき、4.5〜5.0V(vs.Li/Li)の正極電位範囲内に、充電電気量に対して電位変化が比較的平坦な領域が観察される、非水電解質二次電池である。 Still another aspect of the present invention includes the positive electrode for a nonaqueous electrolyte secondary battery, wherein the positive electrode active material contained in the positive electrode is in a range of 20 to 22 ° in an X-ray diffraction diagram using CuKα rays. This is a nonaqueous electrolyte secondary battery in which a diffraction peak is observed. Alternatively, the battery includes the positive electrode for a non-aqueous electrolyte secondary battery, and the positive electrode is charged to reach a positive electrode potential of 5.0 V (vs. Li / Li + ), and is 4.5 to 5.0 V (vs. This is a non-aqueous electrolyte secondary battery in which a region where the change in potential is relatively flat with respect to the amount of charged electricity is observed within the positive electrode potential range of (Li / Li + ).

本発明の他の一側面は、前記の非水電解質二次電池の製造方法であって、初期充放電工程における正極の最大到達電位を4.5V(vs.Li/Li)未満とする、前記の非水電解質二次電池の製造方法である。 Another aspect of the present invention is the method for manufacturing a nonaqueous electrolyte secondary battery described above, wherein a maximum ultimate potential of the positive electrode in the initial charge / discharge step is less than 4.5 V (vs. Li / Li + ). This is a method for manufacturing the nonaqueous electrolyte secondary battery.

本発明によれば、4.5V(vs.Li/Li)未満の電位で使用したとき、優れた初回クーロン効率、及び高率放電性能を示す非水電解質二次電池用正極活物質、その製造方法、前記正極活物質を含有する正極、前記正極を備えた非水電解質二次電池、及び前記非水電解質二次電池の製造方法を提供することができる。 According to the present invention, when used at a potential of less than 4.5 V (vs. Li / Li + ), a positive electrode active material for a nonaqueous electrolyte secondary battery exhibiting excellent initial coulomb efficiency and high rate discharge performance, A manufacturing method, a positive electrode containing the positive electrode active material, a nonaqueous electrolyte secondary battery including the positive electrode, and a method for manufacturing the nonaqueous electrolyte secondary battery can be provided.

非水電解質二次電池に用いたリチウム過剰型正極活物質のエックス線回折測定において「20〜22°の範囲に回折ピークが観察される」ことを説明する図The figure explaining that "a diffraction peak is observed in the range of 20 to 22 degrees" in the X-ray diffraction measurement of the lithium-rich type positive electrode active material used for the nonaqueous electrolyte secondary battery. 非水電解質二次電池に用いたリチウム過剰型正極活物質のエックス線回折測定において「20〜22°の範囲に回折ピークが観察され」ないことを説明する図The figure explaining that "the diffraction peak is not observed in the range of 20 to 22 degrees" in the X-ray diffraction measurement of the lithium-rich type positive electrode active material used for the nonaqueous electrolyte secondary battery. リチウム過剰型正極活物質の充電電気量に対する電位変化を示す図The figure which shows the electric potential change with respect to the charge electric quantity of a lithium excess type positive electrode active material. 「充電電気量に対して電位変化が比較的平坦な領域」を説明する図Diagram for explaining “region where potential change is relatively flat with respect to charged electricity amount” 本実施形態に係る非水電解液二次電池の外観斜視図External perspective view of a nonaqueous electrolyte secondary battery according to the present embodiment 本実施形態に係る非水電解液二次電池を複数個備えた蓄電装置の概略図Schematic diagram of a power storage device including a plurality of nonaqueous electrolyte secondary batteries according to the present embodiment

本発明の構成及び作用効果について、技術思想を交えて説明する。但し、作用機構については推定を含んでおり、その正否は、本発明を制限するものではない。なお、本発明は、その本質又は主要な特徴から逸脱することなく、他のいろいろな形で実施することができる。そのため、後述の実施形態又は実施例は、あらゆる点で単なる例示に過ぎず、限定的に解釈してはならない。さらに、特許請求の範囲の均等範囲に属する変形や変更は、すべて本発明の範囲内のものである。   The configuration, operation and effect of the present invention will be described together with technical ideas. However, the mechanism of action includes an estimation, and its correctness does not limit the present invention. Note that the present invention can be embodied in various other forms without departing from its essential characteristics or main features. Therefore, the embodiments or examples described below are merely examples in all aspects and should not be interpreted in a limited manner. Further, all modifications and changes belonging to the equivalent scope of the claims are within the scope of the present invention.

本発明の一実施形態は、リチウム遷移金属複合酸化物を含有する非水電解質二次電池用正極活物質であって、前記リチウム遷移金属複合酸化物は、α−NaFeO型結晶構造を有し、遷移金属(Me)に対するLiのモル比Li/Meが1<Li/Meであり、遷移金属(Me)としてNi、Co及びMn、又はNi及びMnを含み、Meに対するMnのモル比Mn/MeがMn/Me≧0.45であり、前記正極活物質は、4.35V(vs.Li/Li)から3.0V(vs.Li/Li)までの放電容量(a)と3.0V(vs.Li/Li)から2.0V(vs.Li/Li)までの放電容量(b)の比a/bが17≦a/b≦25である、非水電解質二次電池用正極活物質である。 One embodiment of the present invention is a positive electrode active material for a non-aqueous electrolyte secondary battery containing a lithium transition metal composite oxide, wherein the lithium transition metal composite oxide has an α-NaFeO 2 type crystal structure. The molar ratio of Li to transition metal (Me) is 1 <Li / Me, and the transition metal (Me) contains Ni, Co and Mn, or Ni and Mn, and the molar ratio of Mn to Me is Mn / Me is Mn / Me ≧ 0.45, and the positive electrode active material has a discharge capacity (a) from 4.35 V (vs. Li / Li + ) to 3.0 V (vs. Li / Li + ) and 3 Non-aqueous electrolyte secondary, wherein the ratio a / b of the discharge capacity (b) from 0.0 V (vs. Li / Li + ) to 2.0 V (vs. Li / Li + ) is 17 ≦ a / b ≦ 25 It is a positive electrode active material for batteries.

本発明の他の一実施形態は、非水電解質二次電池用正極活物質の製造方法であって、α−NaFeO型結晶構造を有し、遷移金属(Me)に対するLiのモル比Li/Meが1<Li/Meであり、遷移金属(Me)としてNi、Co及びMn、又はNi及びMnを含み、Meに対するMnのモル比Mn/MeがMn/Me≧0.45であるリチウム遷移金属複合酸化物を、pKaが3.1以上の酸で処理して、4.35V(vs.Li/Li)から3.0V(vs.Li/Li)までの放電容量(a)と3.0V(vs.Li/Li)から2.0V(vs.Li/Li)までの放電容量(b)の比a/bが17≦a/b≦25である正極活物質を製造する、非水電解質二次電池用正極活物質の製造方法である。 Another embodiment of the present invention is a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, which has an α-NaFeO 2 type crystal structure, and has a molar ratio Li / Li / metal transition metal (Me). A lithium transition where Me is 1 <Li / Me, Ni, Co and Mn, or Ni and Mn as transition metals (Me), and the molar ratio of Mn to Me Mn / Me is Mn / Me ≧ 0.45. The metal composite oxide is treated with an acid having a pKa 1 of 3.1 or more, and a discharge capacity (a) from 4.35 V (vs. Li / Li + ) to 3.0 V (vs. Li / Li + ). And a positive electrode active material having a discharge capacity (b) ratio a / b of 17 ≦ a / b ≦ 25 from 3.0 V (vs. Li / Li + ) to 2.0 V (vs. Li / Li + ). This is a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery to be produced.

本発明のさらに他の一実施形態は、前記非水電解質二次電池用正極活物質を含有する非水電解質二次電池用正極である。   Still another embodiment of the present invention is a positive electrode for a non-aqueous electrolyte secondary battery containing the positive electrode active material for a non-aqueous electrolyte secondary battery.

本発明のさらに他の一実施形態は、前記の非水電解質二次電池用正極を備え、前記正極が含有する正極活物質は、CuKα線を用いたエックス線回折図において、20〜22°の範囲に回折ピークが観察される、非水電解質二次電池である。   Still another embodiment of the present invention includes the positive electrode for a non-aqueous electrolyte secondary battery, wherein the positive electrode active material contained in the positive electrode has a range of 20 to 22 ° in an X-ray diffraction diagram using CuKα radiation. This is a nonaqueous electrolyte secondary battery in which a diffraction peak is observed.

本発明のさらに他の一実施形態は、前記の非水電解質二次電池用正極を備え、前記正極は正極電位が5.0V(vs.Li/Li)に至る充電を行ったとき、4.5〜5.0V(vs.Li/Li)の正極電位範囲内に、充電電気量に対して電位変化が比較的平坦な領域が観察される、非水電解質二次電池である。
上記の非水電解質二次電は、4.5V(vs.Li/Li)未満の電位で使用されることが好ましい。
Still another embodiment of the present invention includes the positive electrode for a non-aqueous electrolyte secondary battery, wherein the positive electrode is charged when the positive electrode potential reaches 5.0 V (vs. Li / Li + ). This is a non-aqueous electrolyte secondary battery in which a region where a change in potential relative to the amount of charged electricity is relatively flat is observed within a positive electrode potential range of 0.5 to 5.0 V (vs. Li / Li + ).
The above non-aqueous electrolyte secondary battery is preferably used at a potential of less than 4.5 V (vs. Li / Li + ).

本発明のさらに他の一実施形態は、前記の非水電解質二次電池の製造方法であって、初期充放電工程における正極の最大到達電位を4.5V(vs.Li/Li)未満とする、前記の非水電解質二次電池の製造方法である。 Yet another embodiment of the present invention is the above-described method for producing a non-aqueous electrolyte secondary battery, wherein the maximum ultimate potential of the positive electrode in the initial charge / discharge step is less than 4.5 V (vs. Li / Li + ). The method for producing a non-aqueous electrolyte secondary battery described above.

上記した本発明の一実施形態に係る非水電解質二次電池用正極活物質(以下、「本実施形態に係る正極活物質」という。)、本発明の他の一実施形態に係る非水電解質二次電池用正極活物質の製造方法(以下、「本実施形態に係る正極活物質の製造方法」という。)、本発明のさらに他の一実施形態に係る非水電解質二次電池用正極(以下、「本実施形態に係る非水電解質二次電池用正極」という。)、本発明のさらに他の一実施形態に係る非水電解質二次電池(以下、「本実施形態に係る非水電解質二次電池」という。)、本発明のさらに他の一実施形態に係る非水電解質二次電池の製造方法(以下、「本実施形態に係る非水電解質二次電池の製造方法」という。)について、以下、詳細に説明する。   The above-described positive electrode active material for a non-aqueous electrolyte secondary battery according to one embodiment of the present invention (hereinafter, referred to as “the positive electrode active material according to the present embodiment”), and the non-aqueous electrolyte according to another embodiment of the present invention. A method for producing a positive electrode active material for a secondary battery (hereinafter, referred to as “a method for producing a positive electrode active material according to the present embodiment”), a positive electrode for a nonaqueous electrolyte secondary battery according to still another embodiment of the present invention ( Hereinafter, “the positive electrode for a non-aqueous electrolyte secondary battery according to the present embodiment”), a non-aqueous electrolyte secondary battery according to still another embodiment of the present invention (hereinafter, “a non-aqueous electrolyte according to the present embodiment”) A method for manufacturing a nonaqueous electrolyte secondary battery according to still another embodiment of the present invention (hereinafter, referred to as a "method for manufacturing a nonaqueous electrolyte secondary battery according to this embodiment"). Will be described in detail below.

<リチウム遷移金属複合酸化物の組成>
本実施形態に係る正極活物質に含有されるリチウム遷移金属複合酸化物(以下、「本実施形態に係るリチウム遷移金属複合酸化物」という。)は、一般式Li1+αMe1−α(0<α、MeはNi及びMn、又はNi、Mn及びCoを含む遷移金属元素)で表される、いわゆる「リチウム過剰型」活物質である。典型的には、Li1+α(NiCoMn1−α(x+y+z=1)と表すことができる。SOC100%を超えて、さらに充電された時により高いSOCに至るまで電池電圧の急上昇が観察されないものとするために遷移金属元素Meに対するLiのモル比Li/Me、すなわち(1+α)/(1−α)は1.05以上であることが好ましく、1.10以上であることがより好ましい。放電容量の低下を抑制するためには、Li/Meは1.4以下であることが好ましく、1.35以下であることがより好ましい。
遷移金属元素Meに対するMnのモル比Mn/Me、すなわちzは、層状構造の安定化の観点から、0.45以上である。また、充放電容量の観点から、Mn/Meは0.65以下であることが好ましく、0.6以下であることがより好ましい。
遷移金属元素Meに対するNiのモル比Ni/Me、すなわちxは、非水電解質二次電池の充放電サイクル性能を向上させるために、0.2以上とすることが好ましく、0.5以下とすることが好ましい。
遷移金属元素Meに対するCoのモル比Co/Me、すなわちyは、活物質粒子の導電性を高めるために0.03以上であることが好ましい。材料コストを削減するためには、0.40以下であることが好ましく、0.30以下とすることがより好ましい。
なお、本実施形態に係るリチウム遷移金属複合酸化物は、本発明の効果を損なわない範囲で、Na,K等のアルカリ金属、Mg,Ca等のアルカリ土類金属、Fe等の3d遷移金属に代表される遷移金属など少量の他の金属を含有することを排除するものではない。
<Composition of lithium transition metal composite oxide>
The lithium transition metal composite oxide (hereinafter, referred to as “lithium transition metal composite oxide according to the present embodiment”) contained in the positive electrode active material according to the present embodiment has a general formula Li 1 + α Me 1−α O 2 ( 0 <α, Me is a so-called “lithium-rich” active material represented by Ni and Mn or a transition metal element containing Ni, Mn and Co). Typically, it can be represented as Li 1 + α (Ni x Co y Mn z) 1-α O 2 (x + y + z = 1). In order to prevent a sudden increase in the battery voltage from being observed when the SOC exceeds 100% and the SOC is further increased to a higher SOC, the molar ratio of Li to the transition metal element Li / Me, that is, (1 + α) / (1− α) is preferably at least 1.05, more preferably at least 1.10. In order to suppress a decrease in the discharge capacity, Li / Me is preferably 1.4 or less, more preferably 1.35 or less.
The molar ratio Mn / Me of Mn to the transition metal element Me, that is, z, is 0.45 or more from the viewpoint of stabilization of the layered structure. Further, from the viewpoint of charge / discharge capacity, Mn / Me is preferably 0.65 or less, more preferably 0.6 or less.
The molar ratio Ni / Me of Ni to the transition metal element Me, that is, x, is preferably 0.2 or more and 0.5 or less in order to improve the charge / discharge cycle performance of the nonaqueous electrolyte secondary battery. Is preferred.
The molar ratio Co / Me of Co to the transition metal element Me, that is, y, is preferably 0.03 or more in order to increase the conductivity of the active material particles. In order to reduce the material cost, it is preferably 0.40 or less, more preferably 0.30 or less.
Note that the lithium transition metal composite oxide according to the present embodiment is converted into an alkali metal such as Na and K, an alkaline earth metal such as Mg and Ca, and a 3d transition metal such as Fe within a range that does not impair the effects of the present invention. It does not preclude the inclusion of small amounts of other metals, such as the typical transition metals.

<リチウム遷移金属複合酸化物の結晶構造>
本実施形態に係るリチウム遷移金属複合酸化物は、α−NaFeO型結晶構造を有している。上記リチウム遷移金属複合酸化物は、合成後(活物質としての充放電前)、空間群P312に帰属されると共に、CuKα管球を用いたエックス線回折図上、2θ=20〜22°の範囲に超格子ピーク(Li[Li1/3Mn2/3]O型の単斜晶に見られるピーク)が確認される。このピークは、4.5V(vs.Li/Li+)以上の電位で充電を行わない限り、消失しない(図1参照)。ところが、一度でも4.5V(vs.Li/Li+)以上の電位で充電を行うと、結晶中のLiの脱離に伴って結晶の対称性が変化することにより、この超格子ピークが消失して、上記リチウム遷移金属複合酸化物は空間群R3−mに帰属されるようになる(図2参照)。ここで、P312は、R3−mにおける3a、3b、6cサイトの原子位置を細分化した結晶構造モデルであり、R3−mにおける原子配置に秩序性が認められるときに該P312モデルが採用される。なお、「R3−m」は本来「R3m」の「3」の上にバー「−」を施して表記する。
<Crystal structure of lithium transition metal composite oxide>
The lithium transition metal composite oxide according to the present embodiment has an α-NaFeO 2 type crystal structure. The lithium transition metal complex oxide, (before charge and discharge of the active material) after the synthesis, with belonging to the space group P3 1 12, drawing X-ray diffraction using a CuKα tube, the 2 [Theta] = 20 to 22 ° A superlattice peak (a peak observed in a monoclinic Li [Li 1/3 Mn 2/3 ] O 2 type) is confirmed in the range. This peak does not disappear unless charging is performed at a potential of 4.5 V (vs. Li / Li + ) or higher (see FIG. 1). However, once charging is performed at a potential of 4.5 V (vs. Li / Li + ) or more, the superlattice peak disappears because the symmetry of the crystal changes with the elimination of Li in the crystal. Then, the lithium transition metal composite oxide comes to belong to the space group R3-m (see FIG. 2). Here, P3 1 12 is a crystal structure model obtained by subdividing the atomic positions of the 3a, 3b, and 6c sites in R3-m. When order is recognized in the atomic arrangement in R3-m, the P3 1 12 model Is adopted. Note that “R3-m” is originally described by adding a bar “−” to “3” of “R3m”.

<回折ピークの確認方法>
本実施形態に係る正極活物質が、CuKα線を用いたエックス線回折図において、20〜22°の範囲に回折ピークが観察されることの確認は、以下のとおりの手順及び条件により、行う。また、「観察される」とは、回折角17〜19°の範囲内の強度の最大値と最小値との差分(I18)に対する回折角20〜22°の範囲内の強度の最大値と最小値との差分(I21)の比、すなわち「I21/I18」の値が0.001〜0.1の範囲であることをさす。
測定に供する試料は、正極作製前の活物質粉末(充放電前粉末)であれば、そのまま測定に供する。電池を解体して取り出した電極から試料を採取する場合には、電池を解体する前に、当該電池の公称容量(Ah)の10分の1となる電流値(A)で、指定される電圧の下限となる電池電圧に至るまで定電流放電を行い、放電末状態とする。解体した結果、金属リチウム電極を負極に用いた電池であれば、以下に述べる追加作業は行わず、正極板から採取された正極合剤を測定対象とする。金属リチウム電極を負極に用いた電池でない場合は、正極電位を正確に制御するため、電池を解体して電極を取り出した後に、金属リチウム電極を対極とした電池を組立て、正極合剤1gあたり10mAの電流値で、正極の電位が2.0V(vs.Li/Li)となるまで定電流放電を行い、放電末状態に調整した後、再解体する。取り出した正極板は、ジメチルカーボネートを用いて電極に付着した電解液を十分に洗浄し室温にて一昼夜の乾燥後、アルミニウム箔集電体上の合剤を採取する。採取した合剤をめのう乳鉢で軽くほぐし、エックス線回折測定用試料ホルダーに配置して測定に供する。上記の電池の解体から再解体までの作業、及び正極の洗浄、乾燥作業は、露点−60℃以下のアルゴン雰囲気中で行う。
<How to confirm diffraction peaks>
Confirmation that the positive electrode active material according to this embodiment has a diffraction peak observed in the range of 20 to 22 ° in an X-ray diffraction diagram using CuKα radiation is performed according to the following procedure and conditions. Further, “observed” means the maximum value of the intensity within the diffraction angle of 20 to 22 ° with respect to the difference (I 18 ) between the maximum value and the minimum value of the intensity within the diffraction angle of 17 to 19 °. The ratio of the difference (I 21 ) from the minimum value, that is, the value of “I 21 / I 18 ” is in the range of 0.001 to 0.1.
If the sample to be subjected to the measurement is an active material powder before preparation of the positive electrode (powder before charge and discharge), the sample is subjected to the measurement as it is. When a sample is collected from an electrode taken out after disassembly of a battery, a voltage specified by a current value (A) that is one-tenth of a nominal capacity (Ah) of the battery before disassembly of the battery. The battery is discharged at a constant current until the battery voltage reaches the lower limit of the above, and the battery is brought to a discharge end state. As a result of disassembly, if the battery uses a metal lithium electrode as the negative electrode, the additional work described below is not performed, and the positive electrode mixture collected from the positive electrode plate is measured. When the battery is not a battery using a metal lithium electrode as the negative electrode, in order to accurately control the positive electrode potential, after disassembling the battery and taking out the electrode, a battery using the metal lithium electrode as a counter electrode is assembled, and 10 mA per 1 g of the positive electrode mixture is obtained. At a current value of, a constant current discharge is performed until the potential of the positive electrode becomes 2.0 V (vs. Li / Li + ), adjusted to a discharge end state, and then disassembled. The removed positive electrode plate is sufficiently washed with dimethyl carbonate to adhere the electrolytic solution to the electrodes, dried at room temperature for 24 hours, and then the mixture on the aluminum foil current collector is collected. The collected mixture is lightly loosened in an agate mortar, placed in a sample holder for X-ray diffraction measurement, and provided for measurement. The operations from the disassembly to re-disassembly of the battery, and the washing and drying operations of the positive electrode are performed in an argon atmosphere having a dew point of −60 ° C. or less.

<エックス線回折測定>
本明細書において、エックス線回折測定は、次の条件にて行う。線源はCuKα、加速電圧は30kV、加速電流は15mAとする。サンプリング幅は0.01deg、スキャンスピードは1.0deg/min、発散スリット幅は0.625deg、受光スリットは開放、散乱スリットは8.0mmとする。
<X-ray diffraction measurement>
In this specification, X-ray diffraction measurement is performed under the following conditions. The source is CuKα, the acceleration voltage is 30 kV, and the acceleration current is 15 mA. The sampling width is 0.01 deg, the scan speed is 1.0 deg / min, the divergence slit width is 0.625 deg, the light receiving slit is open, and the scattering slit is 8.0 mm.

図1は、本実施形態に係る正極活物質(リチウム過剰型正極活物質)を用いた非水電解質二次電池に対して、正極合剤1gあたり10mAの電流値で、充電上限電位を4.35V(vs.Li/Li)、放電下限電位を2.0V(vs.Li/Li)として初回の充放電を行った後の放電末状態における本実施形態に係る非水電解質二次電池の正極に含有される活物質粉末について、上記の手順で測定したエックス線回折図である。図1では、20〜22°の範囲に回折ピークが観察される。
図2は、上記と同じ正極活物質を用いた非水電解質二次電池に対して、正極合剤1gあたり10mAの電流値で、充電上限電位を4.6V(vs.Li/Li+)、放電下限電位を2.0V(vs.Li/Li)として充放電を行った後の放電末状態における非水電解質二次電池の正極に含有される活物質粉末について、上記の手順で測定したエックス線回折図である。図2では、20〜22°の範囲に回折ピークが観察されない。すなわち、4.6V(Li/Li+)で充電を行った電池では、リチウム過剰型正極活物質の20〜22°の範囲の回折ピークが消失することがわかる。
上記と同じ正極活物質を用いた非水電解質二次電池に対して、正極合剤1gあたり10mAの電流値で、充電上限電位を4.6V(vs.Li/Li)、放電下限電位を2.0V(vs.Li/Li)として、初回の充放電を行った後、さらに充電上限電位4.35V(vs.Li/Li)、放電下限電位を2.0V(vs.Li/Li)として充放電を行った放電末状態における非水電解質二次電池の正極に含有される活物質粉末について、上記の手順で測定したところ、図2と同様のエックス線回折図が得られた。すなわち、一度でも4.5V以上の電位まで充電を行うと、20〜22°の範囲のピークは消失し、20〜22°の範囲の回折ピークが再び現れることはない。
FIG. 1 shows that the charging upper limit potential of the nonaqueous electrolyte secondary battery using the positive electrode active material (lithium-excess type positive electrode active material) according to the present embodiment is 4 mA at a current value of 10 mA per 1 g of the positive electrode mixture. Non-aqueous electrolyte secondary battery according to the present embodiment in a discharge end state after performing initial charge / discharge at 35 V (vs. Li / Li + ) and a discharge lower limit potential of 2.0 V (vs. Li / Li + ). FIG. 5 is an X-ray diffraction diagram of the active material powder contained in the positive electrode measured by the above procedure. In FIG. 1, diffraction peaks are observed in the range of 20 to 22 °.
FIG. 2 shows that, for a nonaqueous electrolyte secondary battery using the same positive electrode active material as described above, the charging upper limit potential was 4.6 V (vs. Li / Li + ) at a current value of 10 mA per 1 g of the positive electrode mixture, The active material powder contained in the positive electrode of the non-aqueous electrolyte secondary battery in the discharge end state after charging / discharging at a discharge lower limit potential of 2.0 V (vs. Li / Li + ) was measured by the above procedure. It is an X-ray diffraction diagram. In FIG. 2, no diffraction peak is observed in the range of 20 to 22 °. That is, in the battery charged at 4.6 V (Li / Li + ), the diffraction peak in the range of 20 to 22 ° of the lithium-excess type positive electrode active material disappears.
For a non-aqueous electrolyte secondary battery using the same positive electrode active material as described above, the charging upper limit potential was set to 4.6 V (vs. Li / Li + ) and the discharge lower limit potential was set to 10 mA per 1 g of the positive electrode mixture. as 2.0V (vs.Li/Li +), after charge and discharge for the first time, further charging upper limit potential 4.35V (vs.Li/Li +), the discharge lower limit voltage 2.0V (vs.Li/ When the active material powder contained in the positive electrode of the non-aqueous electrolyte secondary battery in the discharge end state charged and discharged as Li + ) was measured by the above procedure, an X-ray diffraction diagram similar to that in FIG. 2 was obtained. . That is, once charging is performed to a potential of 4.5 V or more, the peak in the range of 20 to 22 ° disappears, and the diffraction peak in the range of 20 to 22 ° does not appear again.

<正極活物質の放電容量比>
本実施形態に係る正極活物質は、さらに、4.35V(vs.Li/Li)から3.0V(vs.Li/Li)までの放電容量(a)と3.0V(vs.Li/Li)から2.0V(vs.Li/Li)までの放電容量(b)の比a/bが17≦a/b≦25である。
<Discharge capacity ratio of positive electrode active material>
The positive electrode active material according to this embodiment further has a discharge capacity (a) from 4.35 V (vs. Li / Li + ) to 3.0 V (vs. Li / Li + ) and a discharge capacity (a) of 3.0 V (vs. Li / Li + ). / Li +) ratio a / b from 2.0V (vs.Li/Li +) to the discharge capacity (b) is 17 ≦ a / b ≦ 25.

放電容量比a/bは、以下のようにして求める。
評価対象が活物質である場合は、N−メチルピロリドンを分散媒とし、活物質、アセチレンブラック(AB)及びポリフッ化ビニリデン(PVdF)を90:5:5の割合の塗布用ペーストを作製し、該塗布ペーストを厚さ20μmのアルミニウム箔集電体の片方の面に塗布して、正極板を作製し、金属リチウムを対極として、評価用の非水電解質二次電池を組み立てる。正極合剤1gあたり15mAの電流値で、充電上限電位を4.35V(vs.Li/Li)、充電終止条件は電流値が1/5に減衰した時点とする定電流定電圧充電を行う。10分間の休止を設けた後、同じ電流値で放電下限電位を2.0V(vs.Li/Li)とする、定電流放電を行い、放電開始から3.0V(vs.Li/Li)までの放電容量(a)と3.0V(vs.Li/Li)から2.0V(vs.Li/Li)までの放電容量(b)の比a/bを求める。
評価対象が二次電池である場合は、当該電池の公称容量(Ah)の10分の1となる電流値(A)で、指定される電圧の下限となる電池電圧に至るまで定電流放電を行い、放電末状態とする。露点−60℃以下のアルゴン雰囲気中で電池を解体し、正極板を取得したのち、金属リチウムを対極とした評価用の非水電解質二次電池を組み立てる。作製した電池は、正極合剤1gあたり15mAの電流値で、2.0V(vs.Li/Li)まで定電流放電する。その後、同じ電流値で充電上限電位を4.35V(vs.Li/Li)、充電終止条件は電流値が1/5に減衰した時点とする定電流定電圧充電を行う。10分間の休止を設けた後、同じ電流で2.0V(vs.Li/Li)まで定電流放電し、同様にa/bを評価する。
後述の実験例によると、この放電容量比a/bが17≦a/b≦25である場合、初回クーロン効率及び高率放電性能に優れた正極活物質、この正極活物質を含有する本実施形態に係る非水電解質二次電池用正極、及びこの正極を備えた本実施形態に係る非水電解質二次電池が得られることがわかった。
The discharge capacity ratio a / b is determined as follows.
When the evaluation target is an active material, N-methylpyrrolidone is used as a dispersion medium, and an active material, acetylene black (AB) and polyvinylidene fluoride (PVdF) are prepared as a paste for application in a ratio of 90: 5: 5, The coating paste is applied to one surface of an aluminum foil current collector having a thickness of 20 μm to prepare a positive electrode plate, and a nonaqueous electrolyte secondary battery for evaluation is assembled using lithium metal as a counter electrode. At a current value of 15 mA per 1 g of the positive electrode mixture, constant-current constant-voltage charging is performed with a charging upper limit potential of 4.35 V (vs. Li / Li + ) and a charge termination condition at a time when the current value attenuates to 1/5. . After providing a break of 10 minutes, a discharge lower limit voltage at the same current value is 2.0V (vs.Li/Li +), was treated with constant current discharge, the discharge start 3.0V (vs.Li/Li + ) And the ratio a / b of the discharge capacity (b) from 3.0 V (vs. Li / Li + ) to 2.0 V (vs. Li / Li + ).
When the evaluation target is a secondary battery, a constant current discharge is performed at a current value (A) that is 1/10 of the nominal capacity (Ah) of the battery until the battery voltage reaches the lower limit of the specified voltage. Perform the discharge end state. After disassembling the battery in an argon atmosphere having a dew point of −60 ° C. or less and obtaining a positive electrode plate, a nonaqueous electrolyte secondary battery for evaluation using metal lithium as a counter electrode is assembled. The produced battery is discharged at a constant current of 2.0 V (vs. Li / Li + ) at a current value of 15 mA per 1 g of the positive electrode mixture. Thereafter, constant-current constant-voltage charging is performed with the same current value, a charging upper-limit potential of 4.35 V (vs. Li / Li + ), and a condition for terminating the charging at a time when the current value attenuates to 1/5. After a pause of 10 minutes, a constant current discharge is performed to 2.0 V (vs. Li / Li + ) at the same current, and a / b is similarly evaluated.
According to the experimental example described later, when the discharge capacity ratio a / b is 17 ≦ a / b ≦ 25, the positive electrode active material excellent in the initial coulomb efficiency and the high-rate discharge performance, and the present active material containing this positive electrode active material It was found that the positive electrode for a nonaqueous electrolyte secondary battery according to the embodiment and the nonaqueous electrolyte secondary battery according to the present embodiment including the positive electrode were obtained.

<非水電解質二次電池の4.5V(vs.Li/Li+)を超え充電された時の挙動>
本実施形態に係る非水電解質二次電池は、上記の正極活物質を含有する正極を備え、この正極活物質は、CuKα線を用いたエックス線回折図において、20〜22°の範囲のピークが観察されるから、本実施形態に係る非水電解質二次電池は、初期充放電工程における正極の最大到達電位を4.5V(vs.Li/Li+)未満とする、本実施形態に係る非水電解質二次電池の製造方法により製造されている。また、本実施形態に係る非水電解質二次電池は、通常使用時において、4.5V(vs.Li/Li+)以上の充電過程を経ていない。したがって、4.5V(vs.Li/Li+)を超え、5.0V(vs.Li/Li+)に至る充電がされると、前記正極には、「4.5〜5.0V(vs.Li/Li)の正極電位範囲内に、充電電気量に対して電位変化が比較的平坦な領域」(以下「電位変化が平坦な領域」ともいう。)が観察される(図3の実線参照)。この平坦な領域の存在により、本実施形態に係る非水電解質二次電池には、より高いSOCに至るまで電池電圧の急上昇が観察されない。
<Behavior of non-aqueous electrolyte secondary battery when charged over 4.5 V (vs. Li / Li + )>
The nonaqueous electrolyte secondary battery according to the present embodiment includes a positive electrode containing the above positive electrode active material, and the positive electrode active material has a peak in the range of 20 to 22 ° in an X-ray diffraction diagram using CuKα radiation. As can be observed, the non-aqueous electrolyte secondary battery according to the present embodiment has a non-aqueous electrolyte secondary battery according to the present embodiment in which the maximum ultimate potential of the positive electrode in the initial charge / discharge step is less than 4.5 V (vs. Li / Li + ). It is manufactured by a method for manufacturing a water electrolyte secondary battery. In addition, the non-aqueous electrolyte secondary battery according to the present embodiment does not go through a charging process of 4.5 V (vs. Li / Li + ) or more during normal use. Therefore, when the charge exceeds 4.5 V (vs. Li / Li + ) and reaches 5.0 V (vs. Li / Li + ), “4.5 to 5.0 V (vs. .Li / Li + ) in the positive electrode potential range, a region where the potential change is relatively flat with respect to the amount of charged electricity (hereinafter also referred to as a “region where the potential change is flat”) is observed (FIG. 3). See solid line). Due to the presence of the flat region, in the nonaqueous electrolyte secondary battery according to the present embodiment, a rapid increase in battery voltage is not observed until a higher SOC is reached.

図3の実線は、リチウム過剰型活物質を含有する正極を備えた非水電解質二次電池に対して、初回に4.6V(vs.Li/Li+)に至る充電を行った場合の充電カーブの一例を示している。ここでは、充電開始から4.35V(vs.Li/Li+)到達までの容量を基準(SOC100%)として容量をSOCに換算した。SOCが200%付近で正極電位が急激に上昇するまで、比較的平坦な充電カーブを有する。一方、図3の破線は、上述の4.6V(vs.Li/Li+)に至る充電を行った非水電解質二次電池を2.0V(vs.Li/Li+)まで放電した後、再度上限電位を4.6V(vs.Li/Li+)とし、充電を行った場合の充電カーブである。図からわかるように、一度でも4.5V(vs.Li/Li+)以上の充電履歴を経た正極では、電位変化が平坦な領域は現れない。 The solid line in FIG. 3 shows the charge when the charge up to 4.6 V (vs. Li / Li + ) is initially performed on the nonaqueous electrolyte secondary battery including the positive electrode containing the lithium-rich type active material. An example of a curve is shown. Here, the capacity was converted to SOC based on the capacity from the start of charging until reaching 4.35 V (vs. Li / Li + ) (SOC 100%). It has a relatively flat charging curve until the positive electrode potential rises sharply when the SOC is around 200%. On the other hand, the dashed line in FIG. 3 indicates that after discharging the non-aqueous electrolyte secondary battery charged up to 4.6 V (vs. Li / Li + ) to 2.0 V (vs. Li / Li + ), It is a charging curve when the upper limit potential is again set to 4.6 V (vs. Li / Li + ) and charging is performed. As can be seen from the figure, in a positive electrode that has undergone a charge history of 4.5 V (vs. Li / Li + ) or more even once, a region where the potential change is flat does not appear.

<電位変化が平坦な領域の確認方法>
ここで、電位変化が平坦な領域が観察されることの確認は、以下の手順による。解体して取り出した正極を作用極、リチウム金属を対極とした試験電池を作製し、前記試験電池を正極合剤1gあたり10mAの電流値で2.0V(vs.Li/Li)まで放電したのち、30分の休止を行う。その後正極合剤1gあたり10mAの電流値で5.0V(vs.Li/Li)まで定電流充電を行う。ここで、充電開始から4.45V(vs.Li/Li)到達時の容量X(mAh)に対する、各電位における容量Y(mAh)との比をZ(=Y/X*100(%))とする。横軸に電位、縦軸に分母を電位変化の差分、分子を容量比変化の差分としたdZ/dVをとり、dZ/dVカーブを得る。
図4の実線は、リチウム過剰型活物質を正極活物質として用いた正極とリチウム金属を用いた負極とを備えた非水電解質二次電池を組み立て、初回の充電を4.5V(vs.Li/Li)未満とした本実施形態に係る非水電解質二次電池について、4.6V(vs.Li/Li)に至る充電を行ったときのdZ/dVカーブの一例である。dZ/dVカーブは計算式からも分かるように、容量比変化に対し、電位変化が小さいときはdZ/dVの値が大きくなり、容量比変化に対し、電位変化が大きいときはdZ/dVの値が小さくなる。リチウム過剰型活物質の4.5V(vs.Li/Li)を超えた電位領域での充電過程では、電位変化が平坦な領域が見え始めたところで、dZ/dVの値は大きくなる。その後、電位変化が平坦な領域が終了し、電位が再び上昇した場合は、dZ/dVの値は小さくなる。すなわち、dZ/dVカーブにおいて、ピークが観察される。ここで、4.5V(vs.Li/Li)から5.0V(vs.Li/Li)の範囲におけるdZ/dVの最大値が150以上を示す場合、電位変化が平坦な領域が観察されると判断する。一方、破線は、上記した非水電解質二次電池と同様の構成の電池で、初回に上限4.6V(vs.Li/Li)、下限2.0V(vs.Li/Li)とした充放電を行い、10分の休止を挟んだのち、2回目の充電を上限4.6V(vs.Li/Li)として充電を行ったときのdZ/dVカーブである。破線では、実線のようなピークは観察されない。すなわち、リチウム過剰型活物質を含有する正極を備えた非水電解質二次電池を一度でも4.5V(vs.Li/Li)の電位変化が平坦な領域が終了するまで充電を行うと、以降の4.5V(vs.Li/Li)以上の電位での充電工程では、dZ/dVカーブにおいてピークが観察されない。なお、本明細書において、通常使用時とは、当該非水電解質二次電池について推奨され、又は指定される充放電条件を採用して当該非水電解質二次電池を使用する場合であり、当該非水電解質二次電池のための充電器が用意されている場合は、その充電器を適用して当該非水電解質二次電池を使用する場合をいう。
<Confirmation method of area where potential change is flat>
Here, the following procedure confirms that a region where the potential change is flat is observed. A test battery was prepared in which the positive electrode taken out of the disassembly was used as a working electrode and a lithium metal as a counter electrode, and the test battery was discharged to 2.0 V (vs. Li / Li + ) at a current value of 10 mA per 1 g of the positive electrode mixture. After that, a pause of 30 minutes is performed. Thereafter, constant current charging is performed to 5.0 V (vs. Li / Li + ) at a current value of 10 mA per 1 g of the positive electrode mixture. Here, the ratio of the capacity Y (mAh) at each potential to the capacity X (mAh) when reaching 4.45 V (vs. Li / Li + ) from the start of charging is Z (= Y / X * 100 (%)). ). The dZ / dV curve is obtained by taking dZ / dV, where the horizontal axis represents the potential, the vertical axis represents the difference in potential change using the denominator, and the numerator the difference in capacitance ratio change.
The solid line in FIG. 4 indicates that a nonaqueous electrolyte secondary battery including a positive electrode using a lithium-rich type active material as a positive electrode active material and a negative electrode using lithium metal was assembled, and the first charge was 4.5 V (vs. Li). / Li +) for a non-aqueous electrolyte secondary battery according to the present embodiment is less than an example of dZ / dV curve when performing charging leading to 4.6V (vs.Li/Li +). As can be seen from the calculation formula, the dZ / dV curve has a large dZ / dV value when the potential change is small with respect to the capacitance ratio change, and a dZ / dV value when the potential change is large with respect to the capacitance ratio change. The value decreases. In the charging process of the lithium-rich type active material in a potential region exceeding 4.5 V (vs. Li / Li + ), the value of dZ / dV increases when a region where the potential change is flat starts to be seen. Thereafter, when the region where the potential change is flat ends and the potential rises again, the value of dZ / dV decreases. That is, a peak is observed in the dZ / dV curve. Here, when the maximum value of dZ / dV in the range of 4.5 V (vs. Li / Li + ) to 5.0 V (vs. Li / Li + ) is 150 or more, a region where the potential change is flat is observed. Judge that it will be. On the other hand, the broken line is a battery having the same configuration as the above-described nonaqueous electrolyte secondary battery, and initially has an upper limit of 4.6 V (vs. Li / Li + ) and a lower limit of 2.0 V (vs. Li / Li + ). It is a dZ / dV curve when charging and discharging are performed, and after a pause of 10 minutes, charging is performed with the upper limit of the second charging being 4.6 V (vs. Li / Li + ). In the broken line, a peak like the solid line is not observed. That is, when a non-aqueous electrolyte secondary battery provided with a positive electrode containing a lithium-rich type active material is charged at least once until the region where the potential change of 4.5 V (vs. Li / Li + ) is flat is completed, In the subsequent charging step at a potential of 4.5 V (vs. Li / Li + ) or higher, no peak is observed in the dZ / dV curve. In the present specification, the normal use is a case where the nonaqueous electrolyte secondary battery is used by adopting recommended or specified charge / discharge conditions for the nonaqueous electrolyte secondary battery. When a charger for a non-aqueous electrolyte secondary battery is provided, it refers to a case where the non-aqueous electrolyte secondary battery is used by applying the charger.

<リチウム遷移金属複合酸化物の前駆体の製造方法>
本実施形態に係る正極活物質の製造方法は、基本的に、活物質に含まれるリチウム遷移金属複合酸化物を構成する金属元素(Li,Ni,Co,Mn)を、目的とする組成どおりに含有する原料を調製し、これを焼成することによって得ることができる。
目的とする組成のリチウム遷移金属複合酸化物を作製するにあたり、Li,Ni,Co,Mnのそれぞれの化合物の粉末を混合・焼成するいわゆる「固相法」や、あらかじめNi,Co,Mnを一粒子中に存在させた共沈前駆体を作製しておき、これにLi塩を混合・焼成する「共沈法」が知られている。「固相法」による合成過程では、特にMnはNi,Coに対して均一に固溶しにくいため、各元素が一粒子中に均一に分布した試料を得ることは困難である。これまで文献などにおいては、固相法によってNiやCoの一部にMnを固溶(LiNi1−xMnなど)しようという試みが多数なされているが、「共沈法」を選択する方が原子レベルで均一相を得ることが容易である。そこで、後述する実施例においては、「共沈法」を採用した。
<Method for producing precursor of lithium transition metal composite oxide>
The method for producing a positive electrode active material according to the present embodiment basically involves converting the metal elements (Li, Ni, Co, Mn) constituting the lithium transition metal composite oxide contained in the active material into the desired composition. It can be obtained by preparing a raw material to be contained and baking it.
In preparing a lithium transition metal composite oxide having a desired composition, a so-called “solid phase method” in which powders of the respective compounds of Li, Ni, Co, and Mn are mixed and fired, or Ni, Co, and Mn are previously mixed with one another A “coprecipitation method” is known in which a coprecipitation precursor that has been present in particles is prepared, and a Li salt is mixed with the precursor and calcined. In the synthesis process using the “solid phase method”, Mn is particularly difficult to uniformly dissolve in Ni and Co, so that it is difficult to obtain a sample in which each element is uniformly distributed in one particle. Previously in such literature, but attempts to solid solution Mn in a part of Ni or Co by the solid phase method (such as LiNi 1-x Mn x O 2 ) have been made a large number, select "coprecipitation method" It is easier to obtain a homogeneous phase at the atomic level. Therefore, in the examples described later, the “coprecipitation method” was adopted.

本実施形態に係る正極活物質の製造方法において、リチウム遷移金属複合酸化物の前駆体の製造は、Ni、Co及びMnを含有する原料水溶液を滴下し、溶液中でNi、Co及びMnを含有する化合物を共沈させて前駆体を作製することが好ましい。
共沈前駆体を作製するにあたって、Ni,Co,MnのうちMnは酸化されやすく、Ni,Co,Mnが2価の状態で均一に分布した共沈前駆体を作製することが容易ではないため、Ni,Co,Mnの原子レベルでの均一な混合は不十分なものとなりやすい。したがって、本発明においては、共沈前駆体に分布して存在するMnの酸化を抑制するために、溶存酸素を除去することが好ましい。溶存酸素を除去する方法としては、酸素を含まないガスをバブリングする方法が挙げられる。酸素を含まないガスとしては、限定されるものではないが、窒素ガス、アルゴンガス、二酸化炭素(CO)等を用いることができる。
In the method for producing a positive electrode active material according to this embodiment, the production of the precursor of the lithium transition metal composite oxide is performed by dropping a raw material aqueous solution containing Ni, Co, and Mn, and containing Ni, Co, and Mn in the solution. It is preferable to prepare a precursor by co-precipitating the compound to be formed.
In preparing a coprecipitated precursor, Mn of Ni, Co, and Mn is easily oxidized, and it is not easy to prepare a coprecipitated precursor in which Ni, Co, and Mn are uniformly distributed in a divalent state. , Ni, Co, and Mn at the atomic level tend to be insufficient. Therefore, in the present invention, it is preferable to remove dissolved oxygen in order to suppress the oxidation of Mn distributed in the coprecipitated precursor. As a method of removing dissolved oxygen, a method of bubbling a gas containing no oxygen can be used. Examples of the gas containing no oxygen include, but are not limited to, nitrogen gas, argon gas, carbon dioxide (CO 2 ), and the like.

溶液中でNi、Co及びMnを含有する化合物を共沈させて前駆体を作製する工程におけるpHは限定されるものではないが、前記共沈前駆体を共沈水酸化物前駆体として作製しようとする場合には、10.5〜14とすることができる。タップ密度を大きくするためには、pHを制御することが好ましい。pHを11.5以下とすることにより、タップ密度を1.00g/cm以上とすることができ、高率放電性能を向上させることができる。さらに、pHを11.0以下とすることにより、粒子成長を促進できるので、原料水溶液滴下終了後の撹拌継続時間を短縮できる。
また、前記共沈前駆体を共沈炭酸塩前駆体として作製しようとする場合には、pHを7.5〜11とすることができる。pHを9.4以下とすることにより、タップ密度を1.25g/cc以上とすることができ、高率放電性能を向上させることができる。さらに、pHを8.0以下とすることにより、粒子成長を促進できるので、原料水溶液滴下終了後の撹拌継続時間を短縮できる。
The pH in the step of preparing a precursor by coprecipitating a compound containing Ni, Co and Mn in a solution is not limited, but it is intended to prepare the coprecipitated precursor as a coprecipitated hydroxide precursor. In this case, it can be set to 10.5 to 14. In order to increase the tap density, it is preferable to control the pH. By setting the pH to 11.5 or less, the tap density can be 1.00 g / cm 3 or more, and high-rate discharge performance can be improved. Further, by setting the pH to 11.0 or less, the particle growth can be promoted, so that the stirring continuation time after the completion of the dropwise addition of the raw material aqueous solution can be shortened.
When the coprecipitated precursor is to be prepared as a coprecipitated carbonate precursor, the pH can be adjusted to 7.5 to 11. By adjusting the pH to 9.4 or less, the tap density can be increased to 1.25 g / cc or more, and high-rate discharge performance can be improved. Further, by adjusting the pH to 8.0 or less, the particle growth can be promoted, so that the stirring continuation time after completion of the dropwise addition of the raw material aqueous solution can be reduced.

前記共沈前駆体の原料は、Ni源としては、水酸化ニッケル、炭酸ニッケル、硫酸ニッケル、硝酸ニッケル、酢酸ニッケル等を、Co源としては、硫酸コバルト、硝酸コバルト、酢酸コバルト等を、Mn源としては酸化マンガン、炭酸マンガン、硫酸マンガン、硝酸マンガン、酢酸マンガン等を一例として挙げることができる。   The raw materials of the coprecipitation precursor include nickel hydroxide, nickel carbonate, nickel sulfate, nickel nitrate, nickel acetate and the like as a Ni source, cobalt sulfate, cobalt nitrate, cobalt acetate and the like as a Co source, and a Mn source. Examples thereof include manganese oxide, manganese carbonate, manganese sulfate, manganese nitrate, manganese acetate and the like.

前記原料水溶液の滴下速度は、生成する共沈前駆体の1粒子内における元素分布の均一性に大きく影響を与える。好ましい滴下速度については、反応槽の大きさ、攪拌条件、pH、反応温度等にも影響されるが、30mL/min以下が好ましい。放電容量を向上させるためには、滴下速度は10mL/min以下がより好ましく、5mL/min以下が最も好ましい。   The dropping rate of the raw material aqueous solution greatly affects the uniformity of element distribution within one particle of the generated coprecipitated precursor. The preferred dropping rate is affected by the size of the reaction tank, stirring conditions, pH, reaction temperature and the like, but is preferably 30 mL / min or less. In order to improve the discharge capacity, the dropping speed is more preferably 10 mL / min or less, most preferably 5 mL / min or less.

また、反応槽内にNH等の錯化剤が存在し、かつ一定の対流条件を適用した場合、前記原料水溶液の滴下終了後、さらに攪拌を続けることにより、粒子の自転及び攪拌槽内における公転が促進され、この過程で、粒子同士が衝突しつつ、粒子が段階的に同心円球状に成長する。即ち、共沈前駆体は、反応槽内に原料水溶液が滴下された際の金属錯体形成反応、及び、前記金属錯体が反応槽内の滞留中に生じる沈殿形成反応という2段階での反応を経て形成される。したがって、前記原料水溶液の滴下終了後、さらに攪拌を続ける時間を適切に選択することにより、目的とする粒子径を備えた共沈前駆体を得ることができる。 Further, when a complexing agent such as NH 3 is present in the reaction tank and a certain convection condition is applied, after the completion of the dropping of the raw material aqueous solution, the stirring is further continued, so that the rotation of the particles and the rotation in the stirring tank are performed. The revolution is promoted, and in this process, the particles gradually grow concentrically spherically while colliding with each other. That is, the coprecipitation precursor undergoes a two-stage reaction of a metal complex formation reaction when the raw material aqueous solution is dropped into the reaction tank, and a precipitation formation reaction in which the metal complex is generated while the metal complex stays in the reaction tank. It is formed. Therefore, a coprecipitation precursor having a target particle diameter can be obtained by appropriately selecting the time during which stirring is continued after the completion of the dropwise addition of the raw material aqueous solution.

原料水溶液滴下終了後の好ましい攪拌継続時間については、反応槽の大きさ、攪拌条件、pH、反応温度等にも影響されるが、粒子を均一な球状粒子として成長させるために0.5時間以上が好ましく、1時間以上がより好ましい。また、粒子径が大きくなりすぎることで電池の低SOC領域における出力性能が充分でないものとなる虞を低減させるため、30時間以下が好ましく、25時間以下がより好ましく、20時間以下が最も好ましい。   The preferable duration of stirring after completion of the dropwise addition of the raw material aqueous solution is affected by the size of the reaction tank, stirring conditions, pH, reaction temperature, and the like, but is preferably 0.5 hour or more in order to grow the particles as uniform spherical particles. Is preferable, and 1 hour or more is more preferable. Further, in order to reduce the possibility that the output performance in the low SOC region of the battery becomes insufficient due to the particle size becoming too large, the time is preferably 30 hours or less, more preferably 25 hours or less, and most preferably 20 hours or less.

<リチウム遷移金属複合酸化物の製造方法>
本実施形態に係る正極活物質の製法方法においては、リチウム遷移金属複合酸化物は、前記共沈前駆体とLi化合物とを混合し、焼成して合成されることが好ましい。
Li化合物として通常使用されている水酸化リチウム、炭酸リチウムと共に、焼結助剤としてLiF、LiSO、又はLiPOを使用してもよい。これらの焼結助剤の添加比率は、Li化合物の総量に対して1〜10mol%とすることが好ましい。なお、Li化合物の総量は、焼成中にLi化合物の一部が消失することを見込んで、1〜5%程度過剰に仕込むことが好ましい。
<Production method of lithium transition metal composite oxide>
In the method for producing a positive electrode active material according to the present embodiment, it is preferable that the lithium transition metal composite oxide is synthesized by mixing the coprecipitated precursor and a Li compound, followed by firing.
LiF, Li 2 SO 4 , or Li 3 PO 4 may be used as a sintering aid together with lithium hydroxide and lithium carbonate, which are commonly used as Li compounds. The addition ratio of these sintering aids is preferably 1 to 10 mol% based on the total amount of the Li compound. Note that the total amount of the Li compound is preferably charged in excess of about 1 to 5% in view of the fact that part of the Li compound disappears during firing.

焼成温度は、活物質の可逆容量に影響を与える。
焼成温度が低すぎると、結晶化が十分に進まず、電極特性が低下する傾向がある。本発明の一態様においては、焼成温度は900℃以上とすることが好ましい。900℃以上とすることにより、焼結度が高い活物質粒子を得ることができ、充放電サイクル性能を向上させることができる。
The firing temperature affects the reversible capacity of the active material.
If the firing temperature is too low, crystallization does not proceed sufficiently and the electrode characteristics tend to deteriorate. In one embodiment of the present invention, the firing temperature is preferably 900 ° C. or higher. By setting the temperature to 900 ° C. or higher, active material particles having a high degree of sintering can be obtained, and charge / discharge cycle performance can be improved.

一方、焼成温度が高すぎると層状α−NaFeO型結晶構造から岩塩型立方晶構造へと構造変化がおこり、充放電反応中における活物質中のリチウムイオン移動に不利な状態となり、放電性能が低下する。本発明において、焼成温度は1000℃以下とすることが好ましい。1000℃以下とすることにより、充放電サイクル性能を向上させることができる。
したがって、本実施形態に係る正極活物質の製造方法においては、充放電サイクル性能を向上させるために、焼成温度を900〜1000℃とすることが好ましい。
On the other hand, when the firing temperature is too high, a structural change occurs from the layered α-NaFeO 2 type crystal structure to the rock salt type cubic structure, which is disadvantageous to the movement of lithium ions in the active material during the charge / discharge reaction, and the discharge performance is reduced. descend. In the present invention, the firing temperature is preferably set to 1000 ° C. or less. By controlling the temperature to 1000 ° C. or lower, the charge / discharge cycle performance can be improved.
Therefore, in the method for manufacturing a positive electrode active material according to the present embodiment, the firing temperature is preferably set to 900 to 1000 ° C. in order to improve the charge / discharge cycle performance.

<正極活物質の酸処理>
本実施形態に係る正極活物質の製造方法において、上記の放電容量比a/bを17≦a/b≦25とする正極活物質は、上記の製造方法によって合成されたリチウム遷移金属複合酸化物を、pKaが3.1以上の酸で処理することにより製造することができる。pKaが3.1以上の酸としては、ホウ酸(pKa=9.14)、クエン酸(pKa=3.1)、酒石酸(pKa=3.2)、リンゴ酸(pKa=3.4)、酢酸(pKa=4.74)等が挙げられる。pKaが3.1以上の酸を適切な濃度で用いてリチウム過剰型活物質を表面処理することにより、過充電化成しない条件下で、未処理の活物質と同等又はより向上した放電容量を有しつつ、初回クーロン効率及び高率放電性能が向上させることができる。
<Acid treatment of positive electrode active material>
In the method for manufacturing a positive electrode active material according to the present embodiment, the positive electrode active material having the discharge capacity ratio a / b of 17 ≦ a / b ≦ 25 is a lithium transition metal composite oxide synthesized by the above method. Can be produced by treating with an acid having a pKa 1 of 3.1 or more. Acids having a pKa 1 of 3.1 or more include boric acid (pKa 1 = 9.14), citric acid (pKa 1 = 3.1), tartaric acid (pKa 1 = 3.2), and malic acid (pKa 1 = 3.4), acetic acid (pKa 1 = 4.74) and the like. By pKa 1 is surface treated with lithium-excess active material used at the right concentrations 3.1 or more acid, under conditions that do not overcharge chemical, the active material and discharge capacity was improved than an equivalent or untreated In addition, the initial coulomb efficiency and the high rate discharge performance can be improved.

本実施形態に係る活物質の製造方法における酸処理の詳細な作用機構は不明であるが、上記の酸は、pKaが3.1以上であるから、活物質中のリチウムイオンが水素イオンと置換する可能性は低く、活物質のリチウムと遷移金属のモル比Li/Meが、大きく変動するとは考えにくい。したがって、pKaが小さい塩酸、リン酸、又は硫酸等の強酸で酸処理し、リチウムイオンが水素イオンに置き換わった(Liが除去された)ことで、処理前後での活物質の上記モル比Li/Meが減少した特許文献2の表1、特許文献3の表1に記載された実施例や、特許文献6の段落[0159]の記載事項とは異なるメカニズムが働いていると推察される。
後述の実験例によると、本実施形態による酸処理を施した活物質は、未処理の活物質と比較して、4.35V(vs.Li/Li)から3.0V(vs.Li/Li)までの放電容量(a)と3.0V(vs.Li/Li)から2.0V(vs.Li/Li)までの放電容量(b)の比a/bが減少しており(放電容量bが相対的に増加)、また、比表面積が適度に増加していた。放電容量bは、スピネル構造に特徴的に現れることが知られているから、この酸処理は、リチウム過剰型活物質表面に適度なスピネルライクの結晶構造をもたらすことにより、初回充放電時の不可逆容量を低減させて初回クーロン効率を向上させると推察される。
また、BET比表面積の増加は、粒子表面に適度な凹凸をもたらし、電解質の浸透とリチウムイオンの拡散を促進し、初回クーロン効率の向上とともに、高率放電性能を向上させたものと推察される。BET比表面積は、6m/g以下であることが好ましい。
Detailed mechanism of action of acid treatment in the manufacturing method of the active material in accordance with this embodiment is unknown, the above-mentioned acids, since pKa 1 is 3.1 or more, the lithium ions in the active material and hydrogen ion The possibility of substitution is low, and it is unlikely that the molar ratio Li / Me of lithium and the transition metal of the active material fluctuates greatly. Therefore, the acid treatment with a strong acid such as hydrochloric acid, phosphoric acid, or sulfuric acid having a small pKa 1 replaces lithium ions with hydrogen ions (Li has been removed), whereby the above molar ratio Li of the active material before and after the treatment is reduced. It is presumed that a mechanism different from the examples described in Table 1 of Patent Document 2 and Table 1 of Patent Document 3 in which / Me is reduced and the description in paragraph [0159] of Patent Document 6 is working.
According to the experimental examples described below, the active material subjected to the acid treatment according to the present embodiment has a voltage of 4.35 V (vs. Li / Li + ) to 3.0 V (vs. Li / li +) ratio a / b of the discharge capacity up to (a) and 3.0 V (discharge capacity from vs.Li/Li +) to 2.0V (vs.Li/Li +) (b) is reduced (The discharge capacity b was relatively increased), and the specific surface area was moderately increased. Since it is known that the discharge capacity b appears characteristically in the spinel structure, this acid treatment brings about an appropriate spinel-like crystal structure on the surface of the lithium-rich type active material, thereby making it irreversible during the first charge / discharge. It is presumed that the capacity is reduced to improve the initial coulomb efficiency.
In addition, it is speculated that the increase in the BET specific surface area resulted in moderate irregularities on the particle surface, promoting electrolyte penetration and lithium ion diffusion, improving initial coulombic efficiency, and improving high-rate discharge performance. . The BET specific surface area is preferably 6 m 2 / g or less.

具体的な酸処理の手順は以下のとおりである。
リチウム遷移金属複合酸化物5.0gを所定の水素イオン濃度である、所定の酸水溶液200mLに加え、水溶液の温度を50℃に保ち、撹拌子を用いて400rpmで2時間撹拌する。撹拌後、吸引装置を用い、リチウム遷移金属複合酸化物を濾過し、さらにイオン交換水で洗浄をおこなった後、80℃で一晩常圧乾燥する。
The specific procedure of the acid treatment is as follows.
5.0 g of the lithium transition metal composite oxide is added to 200 mL of a predetermined acid aqueous solution having a predetermined hydrogen ion concentration, and the temperature of the aqueous solution is maintained at 50 ° C. and stirred at 400 rpm for 2 hours using a stirrer. After stirring, the lithium transition metal composite oxide is filtered using a suction device, washed with ion-exchanged water, and dried at 80 ° C. overnight under normal pressure.

<負極材料>
本実施形態に係る非水電解質二次電池用正極と組み合わせる負極の材料としては、限定されるものではなく、リチウムイオンを放出あるいは吸蔵することのできる形態のものを適宜選択できる。例えば、Li[Li1/3Ti5/3]Oに代表されるスピネル型結晶構造を有するチタン酸リチウム等のチタン系材料、SiやSb,Sn系などの合金系材料、リチウム金属、リチウム合金(リチウム−シリコン,リチウム−アルミニウム,リチウム−鉛,リチウム−スズ,リチウム−アルミニウム−スズ,リチウム−ガリウム,及びウッド合金等のリチウム金属含有合金)、リチウム複合酸化物(リチウム−チタン)、酸化珪素の他、リチウムを吸蔵・放出可能な合金、炭素材料(例えばグラファイト,ハードカーボン,低温焼成炭素,非晶質カーボン等)等が挙げられる。
<Negative electrode material>
The material of the negative electrode to be combined with the positive electrode for a nonaqueous electrolyte secondary battery according to the present embodiment is not limited, and a material that can release or occlude lithium ions can be appropriately selected. For example, a titanium-based material such as lithium titanate having a spinel-type crystal structure represented by Li [Li 1/3 Ti 5/3 ] O 4 , an alloy-based material such as Si, Sb, Sn-based, lithium metal, lithium Alloys (lithium-silicon, lithium-aluminum, lithium-lead, lithium-tin, lithium-aluminum-tin, lithium-gallium, wood alloys and other lithium metal-containing alloys), lithium composite oxides (lithium-titanium), oxidation In addition to silicon, alloys capable of occluding and releasing lithium, carbon materials (for example, graphite, hard carbon, low-temperature fired carbon, amorphous carbon, and the like) are included.

<正極・負極>
正極活物質、及び負極材料は、平均粒子サイズが100μm以下の粉体であることが好ましい。特に、正極活物質の粉体は、非水電解質電池の高出力特性を向上する目的で15μm以下であることが好ましく、充放電サイクル性能を維持するためには10μm以上であることが好ましい。粉体を所定の形状で得るためには粉砕機や分級機が用いられる。例えば乳鉢、ボールミル、サンドミル、振動ボールミル、遊星ボールミル、ジェットミル、カウンタージェトミル、旋回気流型ジェットミルや篩等が用いられる。粉砕時には水、あるいはヘキサン等の有機溶剤を共存させた湿式粉砕を用いることもできる。分級方法としては、特に限定はなく、篩や風力分級機などが、乾式、湿式ともに必要に応じて用いられる。
<Positive electrode / negative electrode>
The positive electrode active material and the negative electrode material are preferably powders having an average particle size of 100 μm or less. In particular, the powder of the positive electrode active material is preferably 15 μm or less for the purpose of improving the high output characteristics of the nonaqueous electrolyte battery, and is preferably 10 μm or more for maintaining the charge / discharge cycle performance. In order to obtain the powder in a predetermined shape, a pulverizer or a classifier is used. For example, mortars, ball mills, sand mills, vibrating ball mills, planetary ball mills, jet mills, counter jet mills, swirling air jet mills, sieves and the like are used. At the time of pulverization, wet pulverization in which an organic solvent such as water or hexane coexists can be used. The classification method is not particularly limited, and a sieve, an air classifier, or the like is used as needed in both dry and wet methods.

前記正極及び負極には、その主要構成成分である正極活物質及び負極材料以外に、前記主要構成成分の他に、導電剤、結着剤、増粘剤、フィラー等が、他の構成成分として含有されてもよい。   The positive electrode and the negative electrode, in addition to the positive electrode active material and the negative electrode material that are the main components, in addition to the main components, a conductive agent, a binder, a thickener, a filler, and the like, as other components It may be contained.

導電剤としては、電池性能に悪影響を及ぼさない電子伝導性材料であれば限定されないが、通常、天然黒鉛(鱗状黒鉛,鱗片状黒鉛,土状黒鉛等)、人造黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、カーボンウイスカー、炭素繊維、金属(銅,ニッケル,アルミニウム,銀,金等)粉、金属繊維、導電性セラミックス材料等の導電性材料を1種又はそれらの混合物として含ませることができる。   The conductive agent is not limited as long as it is an electron conductive material that does not adversely affect battery performance. Usually, natural graphite (scale graphite, flake graphite, earth graphite, etc.), artificial graphite, carbon black, acetylene black, Conductive materials such as Ketjen black, carbon whiskers, carbon fibers, metal (copper, nickel, aluminum, silver, gold, etc.) powders, metal fibers, and conductive ceramic materials can be included as one type or a mixture thereof. .

これらの中で、導電剤としては、電子伝導性及び塗工性の観点からアセチレンブラックが好ましい。導電剤の添加量は、正極又は負極の総重量に対して0.1重量%〜50重量%が好ましく、特に0.5重量%〜30重量%が好ましい。特にアセチレンブラックを0.1〜0.5μmの超微粒子に粉砕して用いると、必要炭素量を削減できるため好ましい。これらの混合方法は、物理的な混合であり、その理想とするところは均一混合である。そのため、V型混合機、S型混合機、擂かい機、ボールミル、遊星ボールミルといったような粉体混合機を乾式、あるいは湿式で混合することが可能である。   Among these, acetylene black is preferred as the conductive agent from the viewpoints of electron conductivity and coatability. The amount of the conductive agent to be added is preferably 0.1% by weight to 50% by weight, particularly preferably 0.5% by weight to 30% by weight based on the total weight of the positive electrode or the negative electrode. In particular, it is preferable to use acetylene black after being pulverized into ultrafine particles of 0.1 to 0.5 μm because the required carbon amount can be reduced. These mixing methods are physical mixing, and ideally, homogeneous mixing. Therefore, a powder mixer such as a V-type mixer, an S-type mixer, a grinder, a ball mill, and a planetary ball mill can be dry- or wet-mixed.

前記結着剤としては、通常、ポリテトラフルオロエチレン(PTFE),ポリフッ化ビニリデン(PVDF),ポリエチレン,ポリプロピレン等の熱可塑性樹脂、エチレン−プロピレン−ジエンターポリマー(EPDM),スルホン化EPDM,スチレンブタジエンゴム(SBR),フッ素ゴム等のゴム弾性を有するポリマーを1種又は2種以上の混合物として用いることができる。結着剤の添加量は、正極又は負極の総重量に対して1〜50重量%が好ましく、特に2〜30重量%が好ましい。   Examples of the binder include thermoplastic resins such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyethylene, and polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, and styrene-butadiene. Polymers having rubber elasticity such as rubber (SBR) and fluorine rubber can be used alone or as a mixture of two or more. The addition amount of the binder is preferably 1 to 50% by weight, and particularly preferably 2 to 30% by weight, based on the total weight of the positive electrode or the negative electrode.

フィラーとしては、電池性能に悪影響を及ぼさない材料であれば限定されない。通常、ポリプロピレン,ポリエチレン等のオレフィン系ポリマー、無定形シリカ、アルミナ、ゼオライト、ガラス、炭素等が用いられる。フィラーの添加量は、正極又は負極の総重量に対して30重量%以下が好ましい。   The filler is not limited as long as it does not adversely affect battery performance. Usually, olefin polymers such as polypropylene and polyethylene, amorphous silica, alumina, zeolite, glass, carbon and the like are used. The amount of the filler is preferably 30% by weight or less based on the total weight of the positive electrode or the negative electrode.

正極及び負極は、前記主要構成成分(正極においては正極活物質、負極においては負極材料)、及びその他の材料を混練し合剤とし、N−メチルピロリドン,トルエン等の有機溶媒又は水に混合させた後、得られた混合液を下記に詳述する集電体の上に塗布し、又は圧着して50℃〜250℃程度の温度で、2時間程度加熱処理することにより好適に作製される。前記塗布方法については、例えば、アプリケーターロールなどのローラーコーティング、スクリーンコーティング、ドクターブレード方式、スピンコーティング、バーコータ等の手段を用いて任意の厚さ及び任意の形状に塗布することが好ましいが、これらに限定されるものではない。   The positive electrode and the negative electrode are prepared by kneading the main constituent components (a positive electrode active material in the positive electrode, a negative electrode material in the negative electrode) and other materials to form a mixture, and mixing the mixture with an organic solvent such as N-methylpyrrolidone and toluene or water. After that, the obtained liquid mixture is applied onto a current collector described in detail below, or is pressed and pressed, and is heated at a temperature of about 50 ° C. to about 250 ° C. for about 2 hours to be suitably prepared. . For the application method, for example, roller coating such as an applicator roll, screen coating, doctor blade system, spin coating, it is preferable to apply to any thickness and any shape using a bar coater or the like, It is not limited.

集電体としては、Al箔、Cu箔等の集電箔を用いることができる。正極の集電箔としてはAl箔が好ましく、負極の集電箔としてはCu箔が好ましい。集電箔の厚みは10〜30μmが好ましい。また、合剤層の厚みはプレス後において、40〜150μm(集電箔厚みを除く)が好ましい。   As the current collector, a current collector foil such as an Al foil or a Cu foil can be used. The current collector foil of the positive electrode is preferably an Al foil, and the current collector foil of the negative electrode is preferably a Cu foil. The thickness of the current collector foil is preferably from 10 to 30 μm. The thickness of the mixture layer after pressing is preferably 40 to 150 μm (excluding the thickness of the current collector foil).

<非水電解質>
本実施形態に係る非水電解質二次電池に用いる非水電解質は、限定されるものではなく、一般にリチウム電池等への使用が提案されているものが使用可能である。非水電解質に用いる非水溶媒としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、クロロエチレンカーボネート、ビニレンカーボネート等の環状炭酸エステル類;γ−ブチロラクトン、γ−バレロラクトン等の環状エステル類;ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の鎖状カーボネート類;ギ酸メチル、酢酸メチル、酪酸メチル等の鎖状エステル類;テトラヒドロフラン又はその誘導体;1,3−ジオキサン、1,4−ジオキサン、1,2−ジメトキシエタン、1,4−ジブトキシエタン、メチルジグライム等のエーテル類;アセトニトリル、ベンゾニトリル等のニトリル類;ジオキソラン又はその誘導体;エチレンスルフィド、スルホラン、スルトン又はその誘導体等の単独又はそれら2種以上の混合物等を挙げることができるが、これらに限定されるものではない。
<Non-aqueous electrolyte>
The non-aqueous electrolyte used for the non-aqueous electrolyte secondary battery according to the present embodiment is not limited, and those generally proposed for use in a lithium battery or the like can be used. As the non-aqueous solvent used for the non-aqueous electrolyte, propylene carbonate, ethylene carbonate, butylene carbonate, chloroethylene carbonate, cyclic carbonates such as vinylene carbonate; γ-butyrolactone, cyclic esters such as γ-valerolactone; dimethyl carbonate; Chain carbonates such as diethyl carbonate and ethyl methyl carbonate; chain esters such as methyl formate, methyl acetate and methyl butyrate; tetrahydrofuran or derivatives thereof; 1,3-dioxane, 1,4-dioxane, 1,2-dimethoxy Ethers such as ethane, 1,4-dibutoxyethane and methyldiglyme; nitriles such as acetonitrile and benzonitrile; dioxolane or its derivatives; ethylene sulfide, sulfolane, sultone or its derivatives and the like Or a mixture of two or more thereof, but is not limited thereto.

非水電解質に用いる電解質塩としては、例えば、LiClO4,LiBF4,LiAsF6,LiPF6,LiSCN,LiBr,LiI,Li2SO4,Li210Cl10,NaClO4,NaI,NaSCN,NaBr,KClO4,KSCN等のリチウム(Li)、ナトリウム(Na)又はカリウム(K)の1種を含む無機イオン塩、LiCF3SO3,LiN(CF3SO22,LiN(C25SO22,LiN(CF3SO2)(C49SO2),LiC(CF3SO23,LiC(C25SO23,(CH34NBF4,(CH34NBr,(C254NClO4,(C254NI,(C374NBr,(n−C494NClO4,(n−C494NI,(C254N−maleate,(C254N−benzoate,(C254N−phthalate、ステアリルスルホン酸リチウム、オクチルスルホン酸リチウム、ドデシルベンゼンスルホン酸リチウム等の有機イオン塩等が挙げられ、これらのイオン性化合物を単独、あるいは2種類以上混合して用いることが可能である。 Examples of the electrolyte salt used for the non-aqueous electrolyte include LiClO 4 , LiBF 4 , LiAsF 6 , LiPF 6 , LiSCN, LiBr, LiI, Li 2 SO 4 , Li 2 B 10 Cl 10 , NaClO 4 , NaI, NaSCN, and NaBr. , KClO 4 , KSCN, etc., an inorganic ion salt containing one kind of lithium (Li), sodium (Na) or potassium (K), LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5) SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 , (CH 3 ) 4 NBF 4 , ( CH 3 ) 4 NBr, (C 2 H 5 ) 4 NClO 4 , (C 2 H 5 ) 4 NI, (C 3 H 7 ) 4 NBr, (n-C 4 H 9 ) 4 NClO 4 , (n-C 4 H 9) 4 NI, ( C 2 H 5) 4 N-male te, (C 2 H 5) 4 N-benzoate, (C 2 H 5) 4 N-phthalate, lithium stearyl sulfonate, lithium octyl sulfonate, organic ion salts of lithium dodecyl benzene sulfonate, and the like. These May be used alone or in combination of two or more.

さらに、LiPF6又はLiBF4と、LiN(C25SO22のようなパーフルオロアルキル基を有するリチウム塩とを混合して用いることにより、さらに電解質の粘度を下げることができるので、低温特性をさらに高めることができ、また、自己放電を抑制することができ、より好ましい。 Further, by using a mixture of LiPF 6 or LiBF 4 and a lithium salt having a perfluoroalkyl group such as LiN (C 2 F 5 SO 2 ) 2 , the viscosity of the electrolyte can be further reduced. It is more preferable that the low-temperature characteristics can be further improved and self-discharge can be suppressed.

また、非水電解質として常温溶融塩やイオン液体を用いてもよい。   Further, a room temperature molten salt or an ionic liquid may be used as the non-aqueous electrolyte.

非水電解質における電解質塩の濃度としては、高い電池特性を有する非水電解質電池を確実に得るために、0.1mol/L〜5mol/Lが好ましく、さらに好ましくは、0.5mol/L〜2.5mol/Lである。   The concentration of the electrolyte salt in the non-aqueous electrolyte is preferably from 0.1 mol / L to 5 mol / L, more preferably from 0.5 mol / L to 2 mol / L in order to reliably obtain a non-aqueous electrolyte battery having high battery characteristics. 0.5 mol / L.

<セパレータ>
本実施形態に係る非水電解質二次電池に用いるセパレータとしては、優れた高率放電性能を示す多孔膜や不織布等を、単独使用あるいは併用することが好ましい。非水電解質電池用セパレータを構成する材料としては、例えばポリエチレン,ポリプロピレン等に代表されるポリオレフィン系樹脂、ポリエチレンテレフタレート,ポリブチレンテレフタレート等に代表されるポリエステル系樹脂、ポリフッ化ビニリデン、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−パーフルオロビニルエーテル共重合体、フッ化ビニリデン−テトラフルオロエチレン共重合体、フッ化ビニリデン−トリフルオロエチレン共重合体、フッ化ビニリデン−フルオロエチレン共重合体、フッ化ビニリデン−ヘキサフルオロアセトン共重合体、フッ化ビニリデン−エチレン共重合体、フッ化ビニリデン−プロピレン共重合体、フッ化ビニリデン−トリフルオロプロピレン共重合体、フッ化ビニリデン−テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−エチレン−テトラフルオロエチレン共重合体等を挙げることができる。
<Separator>
As the separator used in the nonaqueous electrolyte secondary battery according to the present embodiment, it is preferable to use a porous film or a nonwoven fabric exhibiting excellent high-rate discharge performance alone or in combination. Examples of the material constituting the separator for a non-aqueous electrolyte battery include polyolefin resins represented by polyethylene, polypropylene, etc., polyester resins represented by polyethylene terephthalate, polybutylene terephthalate, etc., polyvinylidene fluoride, vinylidene fluoride-hexa. Fluoropropylene copolymer, vinylidene fluoride-perfluorovinyl ether copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-trifluoroethylene copolymer, vinylidene fluoride-fluoroethylene copolymer, fluorine Vinylidene fluoride-hexafluoroacetone copolymer, vinylidene fluoride-ethylene copolymer, vinylidene fluoride-propylene copolymer, vinylidene fluoride-trifluoropropylene copolymer, vinylidene fluoride - tetrafluoroethylene - hexafluoropropylene copolymer, vinylidene fluoride - ethylene - can be mentioned tetrafluoroethylene copolymer.

セパレータの空孔率は強度の観点から98体積%以下が好ましい。また、充放電特性の観点から空孔率は20体積%以上が好ましい。   The porosity of the separator is preferably 98% by volume or less from the viewpoint of strength. The porosity is preferably 20% by volume or more from the viewpoint of charge and discharge characteristics.

また、セパレータは、例えばアクリロニトリル、エチレンオキシド、プロピレンオキシド、メチルメタアクリレート、ビニルアセテート、ビニルピロリドン、ポリフッ化ビニリデン等のポリマーと電解質とで構成されるポリマーゲルを用いてもよい。非水電解質を上記のようにゲル状態で用いると、漏液を防止する効果がある点で好ましい。   The separator may be a polymer gel composed of a polymer such as acrylonitrile, ethylene oxide, propylene oxide, methyl methacrylate, vinyl acetate, vinyl pyrrolidone, polyvinylidene fluoride and the like, and an electrolyte. It is preferable to use the non-aqueous electrolyte in a gel state as described above, since it has an effect of preventing liquid leakage.

さらに、セパレータは、上述したような多孔膜や不織布等とポリマーゲルを併用して用いると、電解質の保液性が向上するため好ましい。即ち、ポリエチレン微孔膜の表面及び微孔壁面に厚さ数μm以下の親溶媒性ポリマーを被覆したフィルムを形成し、前記フィルムの微孔内に電解質を保持させることで、前記親溶媒性ポリマーがゲル化する。   Further, it is preferable to use the separator in combination with the above-described porous membrane, nonwoven fabric, or the like and a polymer gel because the liquid retention of the electrolyte is improved. That is, by forming a film in which the surface and the micropore wall of the polyethylene microporous membrane are coated with a solvophilic polymer having a thickness of several μm or less and holding an electrolyte in the micropores of the film, the lipophilic polymer is formed. Gels.

前記親溶媒性ポリマーとしては、ポリフッ化ビニリデンの他、エチレンオキシド基やエステル基等を有するアクリレートモノマー、エポキシモノマー、イソシアナート基を有するモノマー等が架橋したポリマー等が挙げられる。該モノマーは、ラジカル開始剤を併用して加熱や紫外線(UV)を用いたり、電子線(EB)等の活性光線等を用いて架橋反応を行わせることが可能である。   Examples of the solvent-philic polymer include, in addition to polyvinylidene fluoride, a crosslinked polymer of an acrylate monomer having an ethylene oxide group or an ester group, an epoxy monomer, a monomer having an isocyanate group, or the like. The monomer can be subjected to a crosslinking reaction by using heating or ultraviolet rays (UV) in combination with a radical initiator, or by using an actinic ray such as an electron beam (EB).

その他の電池の構成要素としては、端子、絶縁板、電池ケース等があるが、これらの部品は従来用いられてきたものをそのまま用いて差し支えない。   Other components of the battery include a terminal, an insulating plate, a battery case, and the like. These components may be the same as those conventionally used.

<非水電解質二次電池>
本実施形態に係る非水電解質二次電池の外観の一例を図5に示す。図5は、矩形状の非水電解質二次電池の容器内部を透視した斜視図である。電極群2が収納された電池容器3内に非水電解液を注入することにより非水電解質二次電池1が組み立てられる。電極群2は、正極活物質を備える正極と、負極活物質を備える負極とが、セパレータを介して捲回されることにより形成されている。正極は、正極リード4’を介して正極端子4と電気的に接続され、負極は、負極リード5’を介して負極端子5と電気的に接続されている。
本実施形態に係る非水電解質二次電池の形状については特に限定されるものではなく、円筒型電池、角型電池(矩形状の電池)、扁平型電池等が挙げられる。
<Non-aqueous electrolyte secondary battery>
FIG. 5 shows an example of the appearance of the nonaqueous electrolyte secondary battery according to the present embodiment. FIG. 5 is a perspective view of the inside of the container of the rectangular non-aqueous electrolyte secondary battery as seen through. The non-aqueous electrolyte secondary battery 1 is assembled by injecting the non-aqueous electrolyte into the battery container 3 in which the electrode group 2 is stored. The electrode group 2 is formed by winding a positive electrode including a positive electrode active material and a negative electrode including a negative electrode active material via a separator. The positive electrode is electrically connected to the positive terminal 4 via a positive electrode lead 4 ', and the negative electrode is electrically connected to the negative terminal 5 via a negative electrode lead 5'.
The shape of the nonaqueous electrolyte secondary battery according to this embodiment is not particularly limited, and examples thereof include a cylindrical battery, a square battery (rectangular battery), and a flat battery.

本実施形態に係る非水電解質二次電池は、4.5〜5.0V(vs.Li/Li+)の正極電位範囲内に上記電位変化が比較的平坦な領域が観察される充電過程が終了するまでの充電過程を一度も経ないで製造、及び使用される。
本実施形態に係る非水電解質二次電池が、上記電位変化が比較的平坦な領域が観察される充電過程が終了するまでの充電がされた履歴を有しないことは、当該電池の正極活物質が、上記CuKα線を用いたエックス線回折図において、20〜22°の範囲に回折ピークが観察されること、又は、当該電池の正極が、正極電位が5.0V(vs.Li/Li)に至る充電を行ったとき、4.5〜5.0V(vs.Li/Li)の正極電位範囲内に、充電電気量に対して電位変化が比較的平坦な領域が観察されることにより確認することができる。これらの確認方法の詳細は、上記したとおりである。
In the non-aqueous electrolyte secondary battery according to the present embodiment, the charging process in which the region where the potential change is relatively flat within the positive electrode potential range of 4.5 to 5.0 V (vs. Li / Li + ) is observed. It is manufactured and used without going through the charging process until it is completed.
The non-aqueous electrolyte secondary battery according to the present embodiment does not have a history of charging until the charging process in which the region where the potential change is relatively flat is observed is a positive electrode active material of the battery. However, in the X-ray diffraction diagram using the CuKα ray, a diffraction peak is observed in a range of 20 to 22 °, or the positive electrode of the battery has a positive electrode potential of 5.0 V (vs. Li / Li + ). When charging was performed up to the range of 4.5 to 5.0 V (vs. Li / Li + ), a region where the potential change was relatively flat with respect to the amount of charged electricity was observed in the positive electrode potential range. You can check. The details of these confirmation methods are as described above.

本実施形態の非水電解質二次電池は、電池を複数個集合した蓄電装置としても実現することができる。蓄電装置の一例を図6に示す。図6において、蓄電装置30は、複数の蓄電ユニット20を備えている。それぞれの蓄電ユニット20は、複数の非水電解質二次電池1を備えている。前記蓄電装置30は、電気自動車(EV)、ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHEV)等の自動車用電源として搭載することができる。   The non-aqueous electrolyte secondary battery of the present embodiment can also be realized as a power storage device in which a plurality of batteries are assembled. FIG. 6 illustrates an example of a power storage device. In FIG. 6, power storage device 30 includes a plurality of power storage units 20. Each power storage unit 20 includes a plurality of nonaqueous electrolyte secondary batteries 1. The power storage device 30 can be mounted as a power source for vehicles such as an electric vehicle (EV), a hybrid vehicle (HEV), and a plug-in hybrid vehicle (PHEV).

(実施例1)
<リチウム遷移金属複合酸化物の作製>
硫酸ニッケル6水和物284g、硫酸コバルト7水和物303g、硫酸マンガン5水和物443gを秤量し、これらの全量をイオン交換水4Lに溶解させ、Ni:Co:Mnのモル比が27:27:46となる1.0Mの硫酸塩水溶液を作製した。
次に、5Lの反応槽にイオン交換水2Lを注ぎ、Arガスを30minバブリングさせることにより、イオン交換水中に含まれる酸素を除去した。反応槽の温度は50℃(±2℃)に設定し、攪拌モーターを備えたパドル翼を用いて反応槽内を1500rpmの回転速度で攪拌しながら、反応層内に対流が十分おこるように設定した。前記硫酸塩水溶液を3mL/minの速度で反応槽に滴下した。ここで、滴下の開始から終了までの間、4.0Mの水酸化ナトリウム、0.5Mのアンモニア水、及び0.2Mのヒドラジンからなる混合アルカリ溶液を適宜滴下することにより、反応槽中のpHが常に9.8(±0.1)を保つように制御すると共に、反応液の一部をオーバーフローにより排出することにより、反応液の総量が常に2Lを超えないように制御した。滴下終了後、反応槽内の攪拌をさらに3時間継続した。攪拌の停止後、室温で12時間以上静置した。
次に、吸引ろ過装置を用いて、反応槽内に生成した水酸化物前駆体粒子を分離し、さらにイオン交換水を用いて粒子に付着しているナトリウムイオンを洗浄除去し、電気炉を用いて、空気雰囲気中、常圧下、80℃にて20時間乾燥させた。その後、粒径を揃えるために、瑪瑙製自動乳鉢で数分間粉砕した。このようにして、水酸化物前駆体を作製した。
(Example 1)
<Preparation of lithium transition metal composite oxide>
284 g of nickel sulfate hexahydrate, 303 g of cobalt sulfate heptahydrate, and 443 g of manganese sulfate pentahydrate were weighed and dissolved in 4 L of ion-exchanged water, and the molar ratio of Ni: Co: Mn was 27: A 1.0 M aqueous sulfate solution at 27:46 was prepared.
Next, 2 L of ion-exchanged water was poured into a 5 L reaction tank, and oxygen contained in the ion-exchanged water was removed by bubbling Ar gas for 30 minutes. The temperature of the reaction vessel was set to 50 ° C (± 2 ° C), and the inside of the reaction vessel was stirred at a rotation speed of 1500 rpm using a paddle blade equipped with a stirring motor, so that convection occurred sufficiently in the reaction layer. did. The sulfate aqueous solution was dropped into the reaction tank at a rate of 3 mL / min. Here, during the period from the start to the end of the dropping, a mixed alkali solution consisting of 4.0 M sodium hydroxide, 0.5 M ammonia water, and 0.2 M hydrazine is appropriately added dropwise to adjust the pH in the reaction tank. Was controlled to always maintain 9.8 (± 0.1), and a part of the reaction solution was discharged by overflow so that the total amount of the reaction solution did not always exceed 2 L. After the completion of the dropwise addition, stirring in the reaction tank was continued for another 3 hours. After stopping the stirring, the mixture was allowed to stand at room temperature for 12 hours or more.
Next, using a suction filtration device, the hydroxide precursor particles generated in the reaction tank are separated, and further, sodium ions adhering to the particles are washed and removed using ion-exchanged water, and an electric furnace is used. Then, it was dried at 80 ° C. for 20 hours under normal pressure in an air atmosphere. Then, in order to make the particle size uniform, the mixture was ground for several minutes in an automatic mortar made of agate. Thus, a hydroxide precursor was produced.

前記水酸化物前駆体1.852gに、水酸化リチウム1水和物0.971gを加え、瑪瑙製自動乳鉢を用いてよく混合し、Li:(Ni,Co,Mn)のモル比が130:100となるように混合粉体を調製した。ペレット成型機を用いて、6MPaの圧力で成型し、直径25mmのペレットとした。ペレット成型に供した混合粉体の量は、想定する最終生成物の質量が2gとなるように換算して決定した。前記ペレット1個を全長約100mmのアルミナ製ボートに載置し、箱型電気炉(型番:AMF20)に設置し、空気雰囲気中、常圧下、常温から900℃まで10時間かけて昇温し、900℃で5時間焼成した。前記箱型電気炉の内部寸法は、縦10cm、幅20cm、奥行き30cmであり、幅方向20cm間隔に電熱線が入っている。焼成後、ヒーターのスイッチを切り、アルミナ製ボートを炉内に置いたまま自然放冷した。この結果、炉の温度は5時間後には約200℃程度にまで低下するが、その後の降温速度はやや緩やかである。一昼夜経過後、炉の温度が100℃以下となっていることを確認してから、ペレットを取り出し、粒径を揃えるために、瑪瑙製乳鉢で軽くほぐした。
このようにして、リチウム遷移金属複合酸化物Li1.13Ni0.235Co0.235Mn0.40を作製した。
To 1.852 g of the hydroxide precursor, 0.971 g of lithium hydroxide monohydrate was added and mixed well using an agate automatic mortar, and the molar ratio of Li: (Ni, Co, Mn) was 130: A mixed powder was prepared so as to be 100. Using a pellet molding machine, the mixture was molded at a pressure of 6 MPa to obtain a pellet having a diameter of 25 mm. The amount of the mixed powder used for the pellet molding was determined by converting the mass of the assumed final product to 2 g. One of the pellets was placed on an alumina boat having a total length of about 100 mm, placed in a box-type electric furnace (model number: AMF20), and heated from normal temperature to 900 ° C. in an air atmosphere under normal pressure for 10 hours. It was baked at 900 ° C. for 5 hours. The inner dimensions of the box-type electric furnace are 10 cm in length, 20 cm in width, and 30 cm in depth, and heating wires are inserted at intervals of 20 cm in the width direction. After firing, the heater was turned off and the alumina boat was allowed to cool naturally while being kept in the furnace. As a result, the temperature of the furnace drops to about 200 ° C. after 5 hours, but the rate of cooling thereafter is somewhat slow. After one day and night, it was confirmed that the temperature of the furnace was 100 ° C. or lower, and then the pellets were taken out and lightly loosened with an agate mortar to make the particle diameter uniform.
Thus, a lithium transition metal composite oxide Li 1.13 Ni 0.235 Co 0.235 Mn 0.40 O 2 was produced.

<活物質の酸処理>
上記のリチウム遷移金属複合酸化物5.0gを水素イオン濃度0.05Mのクエン酸水溶液200mLに添加し、水溶液の温度を50℃に保ち、撹拌子を用いて400rpmで2時間撹拌した。撹拌後、吸引装置をもちい、正極活物質を濾過し、さらにイオン交換水で洗浄をおこなった後、80℃で晩常圧乾燥して、酸処理された実施例1に係る活物質を作製した。BET比表面積は5.8m/gであった。
<Acid treatment of active material>
5.0 g of the above-mentioned lithium transition metal composite oxide was added to 200 mL of an aqueous citric acid solution having a hydrogen ion concentration of 0.05 M, and the temperature of the aqueous solution was maintained at 50 ° C., and stirred at 400 rpm for 2 hours using a stirrer. After stirring, the positive electrode active material was filtered using a suction device, washed with ion-exchanged water, and then dried at 80 ° C. overnight under normal pressure to prepare an acid-treated active material according to Example 1. . The BET specific surface area was 5.8 m 2 / g.

(実施例2、3)
活物質の酸処理を、クエン酸に代えて水素イオン濃度0.05Mのホウ酸水溶液、又は0.025Mの酒石酸水溶液を用いて行った以外は実施例1と同様にして実施例2、3とした。BET比表面積はそれぞれ4.6m/g、5.5m/gであった。
(Examples 2 and 3)
Examples 2 and 3 were performed in the same manner as in Example 1 except that the acid treatment of the active material was performed using a boric acid aqueous solution having a hydrogen ion concentration of 0.05 M or a tartaric acid aqueous solution having a hydrogen ion concentration of 0.05 M instead of citric acid. did. BET specific surface area were respectively 4.6m 2 /g,5.5m 2 / g.

(比較例1)
活物質に酸処理を施さない以外は、実施例1と同様にして比較例1に係る活物質を作製した。BET比表面積は2.3m/gであった。
(Comparative Example 1)
An active material according to Comparative Example 1 was produced in the same manner as in Example 1, except that the active material was not subjected to an acid treatment. The BET specific surface area was 2.3 m 2 / g.

(比較例2〜5)
活物質の酸処理を、それぞれ水素イオン濃度0.05M、0.03M、及び0.01Mの硫酸水溶液を用いて行った以外は、実施例1と同様にして比較例2〜4に係る活物質を作製し、酸処理時間を10分とした以外は比較例4と同様にして、比較例5に係る活物質を作製した。比較例2のBET比表面積は7.4m/gであった。
(Comparative Examples 2 to 5)
Active materials according to Comparative Examples 2 to 4 in the same manner as in Example 1 except that the acid treatment of the active material was performed using a sulfuric acid aqueous solution having a hydrogen ion concentration of 0.05 M, 0.03 M, and 0.01 M, respectively. Was prepared, and an active material according to Comparative Example 5 was produced in the same manner as in Comparative Example 4 except that the acid treatment time was changed to 10 minutes. The BET specific surface area of Comparative Example 2 was 7.4 m 2 / g.

(比較例6〜8)
活物質の酸処理を、それぞれ水素イオン濃度0.1M、及び0.01Mのリン酸水溶液を用いて行った以外は、実施例1と同様にして比較例6,7に係る活物質を作製し、酸処理時間を10分とした以外は比較例7と同様にして、比較例8に係る活物質を作製した。比較例6のBET比表面積は5.7m/gであった。
(Comparative Examples 6 to 8)
Active materials according to Comparative Examples 6 and 7 were prepared in the same manner as in Example 1, except that the acid treatment of the active material was performed using a phosphoric acid aqueous solution having a hydrogen ion concentration of 0.1 M and 0.01 M, respectively. An active material according to Comparative Example 8 was produced in the same manner as in Comparative Example 7, except that the acid treatment time was changed to 10 minutes. The BET specific surface area of Comparative Example 6 was 5.7 m 2 / g.

(比較例9、10)
活物質の酸処理を、それぞれ水素イオン濃度0.1M、及び0.05Mの酒石酸水溶液を用いて行った以外は、実施例1と同様にして比較例9、10に係る活物質を作製した。BET比表面積はそれぞれ7.1m/g、6.5m/gであった。
(Comparative Examples 9, 10)
Active materials according to Comparative Examples 9 and 10 were produced in the same manner as in Example 1, except that the acid treatment of the active material was performed using aqueous tartaric acid solutions having hydrogen ion concentrations of 0.1 M and 0.05 M, respectively. BET specific surface area were respectively 7.1m 2 /g,6.5m 2 / g.

(実施例4、5及び比較例11)
Ni:Co:Mnのモル比が40:5:55となる水酸化物前駆体を作製し、Li:(Ni,Co,Mn)のモル比が120:100となるように混合粉体を調製した以外は、それぞれ実施例1、2及び比較例1と同様にして実施例4、5及び比較例11に係る活物質を作製した。
(Examples 4, 5 and Comparative Example 11)
A hydroxide precursor having a molar ratio of Ni: Co: Mn of 40: 5: 55 was prepared, and a mixed powder was prepared such that a molar ratio of Li: (Ni, Co, Mn) was 120: 100. Except that, the active materials according to Examples 4, 5 and Comparative Example 11 were produced in the same manner as Examples 1 and 2 and Comparative Example 1, respectively.

(実施例6及び比較例12)
Li:(Ni,Co,Mn)のモル比が130:100となるように混合粉体を調製した以外は、それぞれ実施例4及び比較例11と同様にして実施例6及び比較例12に係る活物質を作製した。
(Example 6 and Comparative Example 12)
Example 6 and Comparative Example 12 were carried out in the same manner as Example 4 and Comparative Example 11, respectively, except that the mixed powder was prepared such that the molar ratio of Li: (Ni, Co, Mn) was 130: 100. An active material was prepared.

(比較例13〜15)
Ni:Co:Mnのモル比が35:25:40となる水酸化物前駆体を作製し、Li:(Ni,Co,Mn)のモル比が120:100となるように混合粉体を調製した以外は、それぞれ実施例1、2及び比較例1と同様にして比較例13〜15に係る活物質を作製した。
(Comparative Examples 13 to 15)
A hydroxide precursor having a molar ratio of Ni: Co: Mn of 35:25:40 is prepared, and a mixed powder is prepared such that a molar ratio of Li: (Ni, Co, Mn) is 120: 100. Except that, the active materials according to Comparative Examples 13 to 15 were produced in the same manner as in Examples 1 and 2 and Comparative Example 1, respectively.

(比較例16、17)
実施例4に係る水酸化物前駆体と、水酸化リチウム1水和物とを、Li:(Ni,Co,Mn)のモル比が100:100となるように混合粉体を調製した以外は、それぞれ実施例4及び比較例11と同様にして比較例16、17に係る活物質を作製した。
(Comparative Examples 16 and 17)
Except that a mixed powder of the hydroxide precursor according to Example 4 and lithium hydroxide monohydrate was prepared such that the molar ratio of Li: (Ni, Co, Mn) was 100: 100. In the same manner as in Example 4 and Comparative Example 11, active materials according to Comparative Examples 16 and 17 were produced.

(比較例18〜20)
Ni:Co:Mnのモル比が33:33:33となる水酸化物前駆体を作製し、前記水酸化物前駆体と、水酸化リチウム1水和物とを、Li:(Ni,Co,Mn)のモル比が100:100となるように混合粉体を調製した以外は、それぞれ実施例1、2及び比較例1と同様にして比較例18〜20に係る活物質を作製した。
(Comparative Examples 18 to 20)
A hydroxide precursor having a molar ratio of Ni: Co: Mn of 33:33:33 was prepared, and the hydroxide precursor and lithium hydroxide monohydrate were combined with Li: (Ni, Co, Except that the mixed powder was prepared such that the molar ratio of Mn) was 100: 100, active materials according to Comparative Examples 18 to 20 were produced in the same manner as in Examples 1 and 2 and Comparative Example 1, respectively.

<結晶構造の確認>
上記の実施例及び比較例に係る活物質について、エックス線回折装置(Rigaku社製、型名:MiniFlex II)を用いて粉末エックス線回折測定を行った。すべての実施例及び比較例に係る活物質は、α−NaFeO型結晶構造を有していた。また、比較例16〜20を除いたすべての実施例及び比較例に係る活物質(「リチウム過剰型」活物質)は、20〜22°の範囲に回折ピークが観察されることを確認した。
<Confirmation of crystal structure>
The active materials according to the above Examples and Comparative Examples were subjected to powder X-ray diffraction measurement using an X-ray diffractometer (manufactured by Rigaku, model name: MiniFlex II). The active materials according to all Examples and Comparative Examples had an α-NaFeO 2 type crystal structure. In addition, it was confirmed that the diffraction peaks were observed in the range of 20 to 22 ° for the active materials (“lithium-excess type” active materials) according to all Examples and Comparative Examples except Comparative Examples 16 to 20.

<正極の作製>
N−メチルピロリドンを分散媒とし、上記の実施例及び比較例に係る活物質、アセチレンブラック(AB)及びポリフッ化ビニリデン(PVdF)が質量比90:5:5の割合で混練分散されている塗布用ペーストを作製した。該塗布ペーストを厚さ20μmのアルミニウム箔集電体の片方の面に塗布し、各実施例及び比較例に係る正極を作製した。なお、後述する全ての実施例、及び比較例に係る非水電解質二次電池同士で試験条件が同一になるように、一定面積あたりに塗布されている活物質の質量及び塗布厚みを統一した。
<Preparation of positive electrode>
Coating in which N-methylpyrrolidone is used as a dispersion medium and the active materials, acetylene black (AB) and polyvinylidene fluoride (PVdF) according to the above Examples and Comparative Examples are kneaded and dispersed at a mass ratio of 90: 5: 5. Paste was prepared. The coating paste was applied to one surface of a 20-μm-thick aluminum foil current collector to produce positive electrodes according to Examples and Comparative Examples. In addition, the mass and applied thickness of the active material applied per fixed area were unified so that the test conditions were the same for all the non-aqueous electrolyte secondary batteries according to Examples and Comparative Examples described later.

<負極の作製>
金属リチウム箔をニッケル集電体に配置して、負極を作製した。該金属リチウムの量は、上記正極板と組み合わせたときに電池の容量が負極によって制限されないように調整した。
<Preparation of negative electrode>
A negative electrode was prepared by disposing a metallic lithium foil on a nickel current collector. The amount of the metallic lithium was adjusted so that the capacity of the battery was not limited by the negative electrode when combined with the positive electrode plate.

<非水電解質二次電池の組立>
各実施例及び比較例に係る正極を用いて、以下の手順で非水電解質二次電池を組み立てた。
電解液として、エチレンカーボネート(EC)/エチルメチルカーボネート(EMC)/ジメチルカーボネート(DMC)が体積比6:7:7である混合溶媒に濃度が1mol/LとなるようにLiPFを溶解させた溶液を用いた。セパレータとして、ポリアクリレートで表面改質したポリプロピレン製の微孔膜を用いた。外装体には、ポリエチレンテレフタレート(15μm)/アルミニウム箔(50μm)/金属接着性ポリプロピレンフィルム(50μm)からなる金属樹脂複合フィルムを用いた。各実施例及び比較例に係る正極、及び前記負極を、前記セパレータを介して、正極端子及び負極端子の開放端部が外部露出するように前記外装体に収納し、前記金属樹脂複合フィルムの内面同士が向かい合った融着代を注液孔となる部分を除いて気密封止し、前記電解液を注液後、注液孔を封止して、非水電解質二次電池を組み立てた。
<Assembly of non-aqueous electrolyte secondary battery>
Using the positive electrodes according to the respective examples and comparative examples, a non-aqueous electrolyte secondary battery was assembled in the following procedure.
As an electrolytic solution, LiPF 6 was dissolved in a mixed solvent having a volume ratio of ethylene carbonate (EC) / ethyl methyl carbonate (EMC) / dimethyl carbonate (DMC) of 6: 7: 7 so that the concentration became 1 mol / L. The solution was used. A polypropylene microporous membrane surface-modified with polyacrylate was used as a separator. A metal resin composite film composed of polyethylene terephthalate (15 μm) / aluminum foil (50 μm) / metal adhesive polypropylene film (50 μm) was used for the outer package. The positive electrode according to each of the examples and the comparative examples, and the negative electrode are housed in the exterior body through the separator so that the open ends of the positive terminal and the negative terminal are exposed to the outside, and the inner surface of the metal-resin composite film. The non-aqueous electrolyte secondary battery was assembled by sealing hermetically sealed portions except for the portion serving as a liquid injection hole, except for the portion that would be a liquid injection hole, and after injecting the electrolytic solution, sealing the liquid injection hole.

<初回クーロン効率の確認>
組み立てた非水電解質二次電池を、25℃の下、初回充放電工程に供し、初回クーロン効率の確認を行った。充電は、正極合剤1gあたり15mA(0.1Cに相当)の電流値で、上限電位4.35V(vs.Li/Li+)の定電流定電圧充電とし、充電終止条件は電流値が1/5に減衰した時点とした。放電は、同じ電流値で、下限電位2.85V(vs.Li/Li+)の定電流放電とした。ここで、充電後及び放電後にそれぞれ10分の休止過程を設け、充電容量及び放電容量(0.1C放電容量)を確認し、充電容量に対する放電容量の割合を初回クーロン効率とした。
<Confirmation of initial coulomb efficiency>
The assembled non-aqueous electrolyte secondary battery was subjected to an initial charge / discharge step at 25 ° C. to confirm initial coulomb efficiency. Charging was performed at a constant current and constant voltage with a current value of 15 mA (corresponding to 0.1 C) per gram of the positive electrode mixture and an upper limit potential of 4.35 V (vs. Li / Li + ). / 5. The discharge was a constant current discharge at the same current value and a lower limit potential of 2.85 V (vs. Li / Li + ). Here, a pause process of 10 minutes was provided after charging and after discharging, respectively, the charge capacity and the discharge capacity (0.1 C discharge capacity) were confirmed, and the ratio of the discharge capacity to the charge capacity was defined as the initial coulomb efficiency.

<放電容量比a/bの測定>
次に、放電容量比a/bの測定を行った。充電は、正極合剤1gあたり15mA(0.1Cに相当)の電流値で、上限電位4.35V(vs.Li/Li+)の定電流定電圧充電とし、充電終止条件は電流値が1/5に減衰した時点とした。10分間の休止過程を設け、放電は、同じ電流値で2.0V(vs.Li/Li)の定電流放電とした。ここで、4.35V(vs.Li/Li)から3.0V(vs.Li/Li)までの放電容量(a)と3.0V(vs.Li/Li)から2.0V(vs.Li/Li)までの放電容量(b)の比a/bを求めた。
なお、本実施例及び比較例においては、上記の放電容量比a/bを評価するにあたり、充放電を0.1Cで行っても、0.02Cで充放電した場合と同様のa/bが得られることを確認した上で、上記測定条件を設定した。
<Measurement of discharge capacity ratio a / b>
Next, the discharge capacity ratio a / b was measured. Charging was performed at a constant current and constant voltage with a current value of 15 mA (corresponding to 0.1 C) per gram of the positive electrode mixture and an upper limit potential of 4.35 V (vs. Li / Li + ). / 5. A pause process of 10 minutes was provided, and the discharge was a constant current discharge of 2.0 V (vs. Li / Li + ) at the same current value. Here, 4.35V (vs.Li/Li +) from the 3.0V (vs.Li/Li +) to the discharge capacity (a) and 3.0V (vs.Li/Li +) 2.0V ( vs. Li / Li + ) to determine the ratio a / b of the discharge capacity (b).
In this example and the comparative example, when the above-mentioned discharge capacity ratio a / b was evaluated, even if the charge / discharge was performed at 0.1 C, the same a / b as in the case of the charge / discharge at 0.02 C was obtained. After confirming that it was obtained, the above measurement conditions were set.

<高率放電性能の確認>
さらに、高率放電性能の確認を行った。充電は、正極合剤1gあたり15mAの電流値で、上限電位4.35V(vs.Li/Li+)の定電流定電圧充電とし、充電終止条件は電流値が1/5に減衰した時点とした。10分間の休止過程を設け、放電は、正極合剤1gあたり300mA(2Cに相当)の電流にて、終止電圧2.85Vの定電流放電を行った。上記の0.1C放電容量に対するこのときの放電容量(2C放電容量)の割合を高率放電性能(2C/0.1C)とした。
<Confirmation of high rate discharge performance>
Furthermore, high rate discharge performance was confirmed. Charging was performed at a current value of 15 mA per 1 g of the positive electrode mixture and at a constant current and constant voltage with an upper limit potential of 4.35 V (vs. Li / Li + ). did. A pause process for 10 minutes was provided, and the discharge was a constant current discharge at a cutoff voltage of 2.85 V at a current of 300 mA (corresponding to 2 C) per gram of the positive electrode mixture. The ratio of the discharge capacity (2C discharge capacity) at this time to the above 0.1C discharge capacity was defined as high-rate discharge performance (2C / 0.1C).

<正極活物質の回折ピークの確認>
前述の回折ピークの確認方法に基づき、放電末状態の実施例に係る非水電解質二次電池を解体して、正極合剤を取り出し、CuKα線を用いたエックス線回折測定を行った。全ての実施例において、20〜22°の範囲に回折ピークが確認された。
<Confirmation of diffraction peak of positive electrode active material>
Based on the above-described method for confirming the diffraction peak, the nonaqueous electrolyte secondary battery according to the example in the discharge state was disassembled, the positive electrode mixture was taken out, and X-ray diffraction measurement using CuKα radiation was performed. In all the examples, diffraction peaks were observed in the range of 20 to 22 °.

以上の測定結果を表1に示す。   Table 1 shows the above measurement results.

表1からは、実施例1、2と比較例1との対比において、リチウム過剰型活物質をクエン酸(pKa=3.1)、又はホウ酸(pKa=9.14)で酸処理した正極活物質を用い、4.5V(vs.Li/Li)未満の充放電に供した実施例1、2に係る非水電解質二次電池は、酸処理を施さない比較例1に係る電池に比べて、0.1C容量を維持しつつ、初回クーロン効率及び高率放電性能が向上していることがわかる。実施例1、2に係る電池は、4.35V(vs.Li/Li)から3.0V(vs.Li/Li)までの放電容量(a)と3.0V(vs.Li/Li)から2.0V(vs.Li/Li)までの放電容量(b)の比a/bが17以上25以下の範囲内であったのに対し、比較例1に係る電池は、a/bが25より大きかった。なお、実施例1、2の活物質は、比較例1の活物質より、比表面積が大きかった。 From Table 1, it can be seen from the comparison between Examples 1 and 2 and Comparative Example 1 that the lithium-rich active material was acid-treated with citric acid (pKa 1 = 3.1) or boric acid (pKa 1 = 9.14). The non-aqueous electrolyte secondary batteries according to Examples 1 and 2 subjected to charge and discharge of less than 4.5 V (vs. Li / Li + ) using the positive electrode active material according to Comparative Example 1 not subjected to the acid treatment. It can be seen that the initial coulomb efficiency and the high rate discharge performance are improved while maintaining the 0.1 C capacity as compared to the battery. The batteries according to Examples 1 and 2 had a discharge capacity (a) from 4.35 V (vs. Li / Li + ) to 3.0 V (vs. Li / Li + ) and a discharge capacity (a) of 3.0 V (vs. Li / Li + ). + ) To 2.0 V (vs. Li / Li + ), the ratio a / b of the discharge capacity (b) was in the range of 17 to 25, whereas the battery according to Comparative Example 1 had a / B was greater than 25. The active materials of Examples 1 and 2 had a larger specific surface area than the active material of Comparative Example 1.

比較例2〜5では、酸種を硫酸(pKa=−3)に変更し、種々の水素イオン濃度及び/又は処理時間で酸処理した場合の電池の特性を示しており、0.1C容量はいずれも酸処理を施さない比較例1を下回り、初回クーロン効率と高率放電性能の両方が比較例1を上回ることはなかった。放電容量比a/bは17より小さいか、25より大きかった。 Comparative Examples 2 to 5 show the characteristics of the battery when the acid species was changed to sulfuric acid (pKa 1 = −3) and the acid treatment was performed at various hydrogen ion concentrations and / or treatment times, and the 0.1 C capacity was shown. In both cases, the initial coulomb efficiency and the high-rate discharge performance did not exceed Comparative Example 1 in comparison with Comparative Example 1 in which no acid treatment was performed. The discharge capacity ratio a / b was smaller than 17 or larger than 25.

比較例6〜8では、酸種をリン酸(pKa=2.12)に変更し、リチウム過剰型活物質を水素イオン濃度及び/又は処理時間を変えて酸処理した正極活物質を用いた場合の電池の特性を示している。やはり、0.1C容量はいずれも酸処理を施さない比較例1を下回り、初回クーロン効率と高率放電性能の両方が比較例1を上回ることはなかった。放電容量比a/bは17より小さいか、25より大きかった。 In Comparative Examples 6 to 8, the acid species was changed to phosphoric acid (pKa 1 = 2.12), and the lithium-excess type active material was subjected to acid treatment by changing the hydrogen ion concentration and / or the treatment time, and used the positive electrode active material. 4 shows the characteristics of the battery in the case. Again, the 0.1 C capacity was lower than Comparative Example 1 in which none of the acid treatment was performed, and both the initial coulomb efficiency and the high-rate discharge performance did not exceed Comparative Example 1. The discharge capacity ratio a / b was smaller than 17 or larger than 25.

実施例3、及び比較例9、10は、異なる水素イオン濃度の酒石酸(pKa=3.2)で酸処理した正極活物質を有する電池に係る例である。
実施例3では、酸未処理の比較例1とほぼ同等の0.1C容量を示し、初回クーロン効率及び高率放電性能が向上したのに対して、比較例9、10に係る電池は、初回クーロン効率は実施例3より改善されたが、比較例1が示す0.1C容量を維持することができず、高率放電性能も比較例1からの改善が見られなかった。また、放電容量比a/bは、水素イオン濃度の低い酒石酸で酸処理した正極活物質を有する実施例3の電池では17以上25以下の範囲内であったのに対して、水素イオン濃度の高い酒石酸で酸処理した正極を有する比較例9、10の電池では17より小さかった。なお、実施例3の活物質は、比較例9、10の活物質より、比表面積が小さかった。
以上から、pKaが3.1以上の酸処理を行う場合でも、酸溶液の水素イオン濃度を適宜選択し、所定の放電容量比a/bを満たす必要があることがわかる。
Example 3 and Comparative Examples 9 and 10 are examples relating to a battery having a positive electrode active material that was acid-treated with tartaric acid (pKa 1 = 3.2) having a different hydrogen ion concentration.
In Example 3, the capacity of 0.1 C was substantially the same as that of Comparative Example 1 not treated with an acid, and the initial coulomb efficiency and the high-rate discharge performance were improved. Although the Coulomb efficiency was improved as compared with Example 3, the 0.1 C capacity shown in Comparative Example 1 could not be maintained, and the high rate discharge performance was not improved from Comparative Example 1. The discharge capacity ratio a / b was in the range of 17 or more and 25 or less in the battery of Example 3 having the positive electrode active material treated with tartaric acid having a low hydrogen ion concentration. Batteries of Comparative Examples 9 and 10 having positive electrodes treated with high tartaric acid were smaller than 17. The active material of Example 3 had a smaller specific surface area than the active materials of Comparative Examples 9 and 10.
From the above, it can be seen that even when an acid treatment with a pKa 1 of 3.1 or more is performed, it is necessary to appropriately select the hydrogen ion concentration of the acid solution and satisfy a predetermined discharge capacity ratio a / b.

実施例4、5及び比較例11は、実施例1、2及び比較例1に係るリチウム過剰型活物質の組成(Li/Me=1.3、Mn/Me=0.48)を、Mnの組成比がより大きい他の組成(Li/Me=1.2、Mn/Me=0.55)に変更した例に相当し、実施例6、比較例12は、実施例4及び比較例11に係る上記の組成のMn/Meを変更せず、Li比を変更した(Li/Me=1.3、Mn/Me=0.55)例に相当する。
実施例4、5に係る電池の特性は、活物質が同一組成であって、酸処理を施さない比較例11よりも、0.1C放電容量、初回クーロン効率、及び高率放電性能のいずれも上回っており、放電容量比a/bが17以上25以下の範囲内であることがわかる。実施例6に係る電池の特性も、活物質が同一組成であって、酸処理を施さない比較例12よりも、前記の各電池特性が上回っており、放電容量比a/bが17以上25以下の範囲内であることがわかる。したがって、Mn/Meがより大きい組成範囲の活物質においても、a/bの特定が、電池特性の向上に関係していることがわかる。
In Examples 4 and 5 and Comparative Example 11, the composition (Li / Me = 1.3, Mn / Me = 0.48) of the lithium-rich type active material according to Examples 1 and 2 and Comparative Example 1 Example 6 and Comparative Example 12 correspond to Examples 4 and 11 in which the composition ratio was changed to another composition having a larger composition ratio (Li / Me = 1.2, Mn / Me = 0.55). This corresponds to an example in which the Li ratio was changed (Li / Me = 1.3, Mn / Me = 0.55) without changing Mn / Me of the above composition.
The characteristics of the batteries according to Examples 4 and 5 were such that the active material had the same composition and all of the 0.1 C discharge capacity, the initial Coulomb efficiency, and the high-rate discharge performance were higher than those of Comparative Example 11 in which the acid treatment was not performed. This indicates that the discharge capacity ratio a / b is in the range of 17 or more and 25 or less. The characteristics of the battery according to Example 6 also exceeded those of Comparative Example 12 in which the active material had the same composition and was not subjected to the acid treatment, and the discharge capacity ratio a / b was 17 or more and 25 or more. It turns out that it is in the following ranges. Therefore, it can be seen that even in an active material having a composition range where Mn / Me is larger, the specification of a / b is related to an improvement in battery characteristics.

比較例13〜15は、実施例1、2及び比較例1に係るリチウム過剰型活物質の組成(Li/Me=1.3、Mn/Me=0.48)を、Mnの組成比がより小さい他の組成(Li/Me=1.2、Mn/Me=0.40)に変更した例に相当する。
酸処理を施した比較例13、14に係る電池の特性は、酸処理を施さない比較例15と比べて、初回クーロン効率に改善が見られるだけで、高率放電性能は改善されていない。
したがって、比較例13に係る活物質のように、放電容量比a/bが17以上25以下を満たしている場合でも、Mn/Meが小さすぎる場合、本発明の効果は奏されないことがわかる。
In Comparative Examples 13 to 15, the compositions (Li / Me = 1.3, Mn / Me = 0.48) of the lithium-excess type active materials according to Examples 1 and 2 and Comparative Example 1 were more changed. This corresponds to an example in which the composition is changed to another small composition (Li / Me = 1.2, Mn / Me = 0.40).
Regarding the characteristics of the batteries according to Comparative Examples 13 and 14 subjected to the acid treatment, only the initial coulomb efficiency was improved compared to Comparative Example 15 not subjected to the acid treatment, and the high-rate discharge performance was not improved.
Therefore, even when the discharge capacity ratio a / b satisfies 17 or more and 25 or less as in the active material according to Comparative Example 13, the effect of the present invention is not exhibited when Mn / Me is too small.

比較例16、17は、リチウムが遷移金属に対して過剰となるようなリチウム過剰型の組成の活物質ではないが、Mnの組成比を大きくした(Li/Me=1、Mn/Me=0.55)例であり、ともに0.1C容量、高率放電性能が低く、放電容量比a/bも本発明の範囲を外れている。   Comparative Examples 16 and 17 are not active materials having a lithium-rich composition in which lithium is excessive with respect to the transition metal, but the composition ratio of Mn was increased (Li / Me = 1, Mn / Me = 0). .55), both of which have a 0.1 C capacity, a low high rate discharge performance, and a discharge capacity ratio a / b outside the range of the present invention.

比較例18〜20は、既に実用化されているLi/Me=1、Ni:Co:Me=33:33:33のリチウム遷移金属複合酸化物を正極活物質に用いた例である。ホウ酸処理を施した比較例19は、酸未処理の比較例20より各電池特性が向上しているが、クエン酸処理を施した比較例18は、0.1C放電容量及び高率放電性能が低下しており、各電池特性と放電容量比a/bとの相関は見られない。   Comparative Examples 18 to 20 are examples in which a lithium transition metal composite oxide of Li / Me = 1 and Ni: Co: Me = 33: 33: 33, which has already been put to practical use, was used as the positive electrode active material. Comparative Example 19, which was treated with boric acid, had better battery characteristics than Comparative Example 20, which was not treated with acid. Comparative Example 18, which was treated with citric acid, had a discharge capacity of 0.1 C and a high rate discharge performance. And the correlation between each battery characteristic and the discharge capacity ratio a / b is not observed.

本発明に係る非水電解質二次電池用活物質は、4.5V(vs.Li/Li)未満の電位範囲での使用において優れた初回クーロン効率及び高率放電性能を示す。したがって、この非水電解質二次電池は、高い安全性、効率性、及び高出力が要求されるハイブリッド自動車(HEV)用、プラグインハイブリッド自動車(PHEV)用、電気自動車(EV)用の電池として、有用性が高い。 The active material for a non-aqueous electrolyte secondary battery according to the present invention exhibits excellent initial Coulomb efficiency and high-rate discharge performance when used in a potential range of less than 4.5 V (vs. Li / Li + ). Therefore, this non-aqueous electrolyte secondary battery is used as a battery for a hybrid vehicle (HEV), a plug-in hybrid vehicle (PHEV), and an electric vehicle (EV) that require high safety, efficiency, and high output. , High usefulness.

1 非水電解質二次電池
2 電極群
3 電池容器
4 正極端子
4’ 正極リード
5 負極端子
5’ 負極リード
20 蓄電ユニット
30 蓄電装置
DESCRIPTION OF SYMBOLS 1 Non-aqueous electrolyte secondary battery 2 Electrode group 3 Battery container 4 Positive terminal 4 'Positive lead 5 Negative terminal 5' Negative lead 20 Power storage unit 30 Power storage device

Claims (7)

リチウム遷移金属複合酸化物を含有する非水電解質二次電池用正極活物質であって、
前記リチウム遷移金属複合酸化物は、
α−NaFeO型結晶構造を有し、
遷移金属(Me)に対するLiのモル比Li/Meが1<Li/Meであり、
遷移金属(Me)としてNi、Co及びMn、又はNi及びMnを含み、Meに対するMnのモル比Mn/MeがMn/Me≧0.45であり、
前記正極活物質は、4.35V(vs.Li/Li)から3.0V(vs.Li/Li)までの放電容量(a)と3.0V(vs.Li/Li)から2.0V(vs.Li/Li)までの放電容量(b)の比a/bが17≦a/b≦25である、
非水電解質二次電池用正極活物質。
A positive electrode active material for a non-aqueous electrolyte secondary battery containing a lithium transition metal composite oxide,
The lithium transition metal composite oxide,
having an α-NaFeO 2 type crystal structure,
The molar ratio Li / Me of Li to the transition metal (Me) is 1 <Li / Me;
Ni, Co and Mn, or Ni and Mn as transition metals (Me); the molar ratio of Mn to Me Mn / Me is Mn / Me ≧ 0.45;
The positive electrode active material has a discharge capacity (a) of 4.35 V (vs. Li / Li + ) to 3.0 V (vs. Li / Li + ) and a discharge capacity of 3.0 V (vs. Li / Li + ) of 2 V. The ratio a / b of the discharge capacity (b) up to 0.0 V (vs. Li / Li + ) is 17 ≦ a / b ≦ 25;
Cathode active material for non-aqueous electrolyte secondary batteries.
リチウム遷移金属複合酸化物を含有する非水電解質二次電池用正極活物質の製造方法であって、
α−NaFeO型結晶構造を有し、
遷移金属(Me)に対するLiのモル比Li/Meが1<Li/Meであり、
遷移金属(Me)としてNi、Co及びMn、又はNi及びMnを含み、Meに対するMnのモル比Mn/MeがMn/Me≧0.45であるリチウム遷移金属複合酸化物を、pKaが3.1以上の酸で処理して、4.35V(vs.Li/Li)から3.0V(vs.Li/Li)までの放電容量(a)と3.0V(vs.Li/Li)から2.0V(vs.Li/Li)までの放電容量(b)の比a/bが17≦a/b≦25である正極活物質を製造する、非水電解質二次電池用正極活物質の製造方法。
A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery containing a lithium transition metal composite oxide,
having an α-NaFeO 2 type crystal structure,
The molar ratio Li / Me of Li to the transition metal (Me) is 1 <Li / Me;
A lithium transition metal composite oxide containing Ni, Co and Mn, or Ni and Mn as a transition metal (Me) and having a molar ratio Mn to Me of Mn / Me of Mn / Me ≧ 0.45, and pKa 1 of 3 Discharge capacity (a) from 4.35 V (vs. Li / Li + ) to 3.0 V (vs. Li / Li + ) and 3.0 V (vs. Li / Li) + ) For a non-aqueous electrolyte secondary battery for producing a positive electrode active material having a discharge capacity (b) ratio a / b of 17 ≦ a / b ≦ 25 from 2.0 V (vs. Li / Li + ). A method for producing a positive electrode active material.
請求項1に記載の非水電解質二次電池用正極活物質を含有する非水電解質二次電池用正極。   A positive electrode for a non-aqueous electrolyte secondary battery, comprising the positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1. 請求項3に記載の非水電解質二次電池用正極を備え、前記正極が含有する正極活物質は、CuKα線を用いたエックス線回折図において、20〜22°の範囲に回折ピークが観察される、非水電解質二次電池。   The positive electrode for a non-aqueous electrolyte secondary battery according to claim 3, wherein the positive electrode active material contained in the positive electrode has a diffraction peak in a range of 20 to 22 ° in an X-ray diffraction diagram using CuKα radiation. , Non-aqueous electrolyte secondary batteries. 請求項3に記載の非水電解質二次電池用正極を備え、前記正極は正極電位が5.0V(vs.Li/Li)に至る充電を行ったとき、4.5〜5.0V(vs.Li/Li)の正極電位範囲内に、充電電気量に対して電位変化が比較的平坦な領域が観察される、非水電解質二次電池。 The positive electrode for a non-aqueous electrolyte secondary battery according to claim 3, wherein the positive electrode has a positive electrode potential of 5.0 V (vs. Li / Li + ) when charged to 4.5 to 5.0 V ( vs. Li / Li + ), a non-aqueous electrolyte secondary battery in which a region where the change in potential is relatively flat with respect to the amount of charged electricity is observed in the positive electrode potential range of Li / Li + ). 4.5V(vs.Li/Li)未満の電位で使用される、請求項4又は5に記載の非水電解質二次電池。 The nonaqueous electrolyte secondary battery according to claim 4, which is used at a potential of less than 4.5 V (vs. Li / Li + ). 請求項4〜6のいずれかに記載の非水電解質二次電池の製造方法であって、初期充放電工程における正極の最大到達電位を4.5V(vs.Li/Li)未満とする、非水電解質二次電池の製造方法。

The method for producing a nonaqueous electrolyte secondary battery according to any one of claims 4 to 6, wherein a maximum ultimate potential of the positive electrode in the initial charge / discharge step is less than 4.5 V (vs. Li / Li + ). A method for manufacturing a non-aqueous electrolyte secondary battery.

JP2018117726A 2018-06-21 2018-06-21 A positive electrode active material for a non-aqueous electrolyte secondary battery, a method for producing the same, a positive electrode containing the active material, a non-aqueous electrolyte secondary battery provided with the positive electrode, and a method for producing the non-aqueous electrolyte secondary battery. Active JP7043989B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018117726A JP7043989B2 (en) 2018-06-21 2018-06-21 A positive electrode active material for a non-aqueous electrolyte secondary battery, a method for producing the same, a positive electrode containing the active material, a non-aqueous electrolyte secondary battery provided with the positive electrode, and a method for producing the non-aqueous electrolyte secondary battery.
PCT/JP2019/024375 WO2019244955A1 (en) 2018-06-21 2019-06-19 Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, method for producing non-aqueous electrolyte secondary battery, and method for use of non-aqueous electrolyte secondary battery
CN201980041784.3A CN112771695B (en) 2018-06-21 2019-06-19 Positive electrode active material, positive electrode, nonaqueous electrolyte secondary battery, and method for using same
US17/252,765 US20210257665A1 (en) 2018-06-21 2019-06-19 Positive active material for nonaqueous electrolyte secondary battery, method for producing positive active material for nonaqueous electrolyte secondary battery, positive electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, method for manufacturing nonaqueous electrolyte secondary battery, and method of using nonaqueous electrolyte secondary battery
EP19821775.4A EP3813163B1 (en) 2018-06-21 2019-06-19 Positive active material for nonaqueous electrolyte secondary battery, method for producing positive active material for nonaqueous electrolyte secondary battery, positive electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, method for manufacturing nonaqueous electrolyte secondary battery, and method of using nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018117726A JP7043989B2 (en) 2018-06-21 2018-06-21 A positive electrode active material for a non-aqueous electrolyte secondary battery, a method for producing the same, a positive electrode containing the active material, a non-aqueous electrolyte secondary battery provided with the positive electrode, and a method for producing the non-aqueous electrolyte secondary battery.

Publications (2)

Publication Number Publication Date
JP2019220375A true JP2019220375A (en) 2019-12-26
JP7043989B2 JP7043989B2 (en) 2022-03-30

Family

ID=69096913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018117726A Active JP7043989B2 (en) 2018-06-21 2018-06-21 A positive electrode active material for a non-aqueous electrolyte secondary battery, a method for producing the same, a positive electrode containing the active material, a non-aqueous electrolyte secondary battery provided with the positive electrode, and a method for producing the non-aqueous electrolyte secondary battery.

Country Status (1)

Country Link
JP (1) JP7043989B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022209815A1 (en) * 2021-04-01 2022-10-06 株式会社Gsユアサ Positive electrode active material for nonaqueous electrolyte power storage elements, positive electrode for nonaqueous electrolyte power storage elements, nonaqueous electrolyte power storage element, power storage unit, and power storage device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003044881A1 (en) * 2001-11-22 2003-05-30 Yuasa Corporation Positive electrode active material for lithium secondary cell and lithium secondary cell
JP2010050079A (en) * 2008-03-17 2010-03-04 Sanyo Electric Co Ltd Non-aqueous electrolyte secondary battery
JP4877660B2 (en) * 2008-09-30 2012-02-15 株式会社Gsユアサ Active material for lithium secondary battery, method for producing the same, and lithium secondary battery
WO2016190419A1 (en) * 2015-05-28 2016-12-01 株式会社Gsユアサ Positive electrode active material for non-aqueous electrolyte secondary batteries and method for producing same, electrode for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003044881A1 (en) * 2001-11-22 2003-05-30 Yuasa Corporation Positive electrode active material for lithium secondary cell and lithium secondary cell
JP2010050079A (en) * 2008-03-17 2010-03-04 Sanyo Electric Co Ltd Non-aqueous electrolyte secondary battery
JP4877660B2 (en) * 2008-09-30 2012-02-15 株式会社Gsユアサ Active material for lithium secondary battery, method for producing the same, and lithium secondary battery
WO2016190419A1 (en) * 2015-05-28 2016-12-01 株式会社Gsユアサ Positive electrode active material for non-aqueous electrolyte secondary batteries and method for producing same, electrode for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022209815A1 (en) * 2021-04-01 2022-10-06 株式会社Gsユアサ Positive electrode active material for nonaqueous electrolyte power storage elements, positive electrode for nonaqueous electrolyte power storage elements, nonaqueous electrolyte power storage element, power storage unit, and power storage device

Also Published As

Publication number Publication date
JP7043989B2 (en) 2022-03-30

Similar Documents

Publication Publication Date Title
JP6825559B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, its manufacturing method, electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP6197939B2 (en) Non-aqueous electrolyte secondary battery active material, non-aqueous electrolyte secondary battery active material manufacturing method, non-aqueous electrolyte secondary battery electrode, and non-aqueous electrolyte secondary battery
JP6369471B2 (en) Positive electrode active material for lithium secondary battery, electrode for lithium secondary battery, and lithium secondary battery
JP6044809B2 (en) Non-aqueous electrolyte secondary battery active material, non-aqueous electrolyte secondary battery electrode, and non-aqueous electrolyte secondary battery
JP6471693B2 (en) Positive electrode active material for lithium secondary battery, electrode for lithium secondary battery, and lithium secondary battery
CN109565045B (en) Positive electrode active material for lithium secondary battery, method for producing same, and lithium secondary battery
JP7296044B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2018012385A1 (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, transition metal hydroxide precursor, method for producing transition metal hydroxide precursor, method for producing positive electrode active material for nonaqueous electrolyte secondary batteries, electrode for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery and electricity storage device
JP2018073481A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing the same, positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2018129221A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and method for manufacturing the same, positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP6583662B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP7205051B2 (en) Nonaqueous electrolyte secondary battery and method for manufacturing nonaqueous electrolyte secondary battery
WO2021039120A1 (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing positive electrode active material for nonaqueous electrolyte secondary batteries, positive electrode for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery and electricity storage device
WO2018012384A1 (en) Lithium-transition-metal composite oxide, transition metal hydroxide precursor, method for manufacturing transition metal hydroxide precursor, method for manufacturing lithium-transition-metal composite oxide, positive-electrode active material for nonaqueous-electrolyte secondary cell, electrode for nonaqueous-electrolyte secondary cell, nonaqueous-electrolyte secondary cell, and power storage device
JP6460575B2 (en) Positive electrode active material for lithium secondary battery, electrode for lithium secondary battery, and lithium secondary battery
JP6910595B2 (en) Non-aqueous electrolyte secondary battery
JP6834629B2 (en) Method for manufacturing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and positive electrode active material for non-aqueous electrolyte secondary battery
JP6834363B2 (en) Positive electrode active material for non-aqueous electrolyte secondary batteries, electrodes for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary batteries
JP6420299B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
JP7043989B2 (en) A positive electrode active material for a non-aqueous electrolyte secondary battery, a method for producing the same, a positive electrode containing the active material, a non-aqueous electrolyte secondary battery provided with the positive electrode, and a method for producing the non-aqueous electrolyte secondary battery.
JP6746099B2 (en) Non-aqueous electrolyte secondary battery active material, method for producing non-aqueous electrolyte secondary battery active material, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2016143447A (en) Positive electrode active material for lithium secondary battery, electrode for lithium secondary battery and lithium secondary battery
JP2019149371A (en) Positive electrode active material for non-aqueous electrolyte secondary battery, manufacturing method of precursor used for manufacturing of positive electrode active material, manufacturing method of positive electrode active material, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2020188863A1 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2020161488A (en) Positive electrode active material for lithium secondary battery, method for manufacturing the same, electrode for lithium secondary battery, and lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220228

R150 Certificate of patent or registration of utility model

Ref document number: 7043989

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150