[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2019214479A - Substrate with film, and method for manufacturing substrate with film - Google Patents

Substrate with film, and method for manufacturing substrate with film Download PDF

Info

Publication number
JP2019214479A
JP2019214479A JP2016205070A JP2016205070A JP2019214479A JP 2019214479 A JP2019214479 A JP 2019214479A JP 2016205070 A JP2016205070 A JP 2016205070A JP 2016205070 A JP2016205070 A JP 2016205070A JP 2019214479 A JP2019214479 A JP 2019214479A
Authority
JP
Japan
Prior art keywords
film
substrate
concentration
tin
titanium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016205070A
Other languages
Japanese (ja)
Inventor
啓明 岩岡
Keimei Iwaoka
啓明 岩岡
利通 加藤
Toshimichi Kato
利通 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2016205070A priority Critical patent/JP2019214479A/en
Priority to PCT/JP2017/029968 priority patent/WO2018074049A1/en
Publication of JP2019214479A publication Critical patent/JP2019214479A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G19/00Compounds of tin
    • C01G19/02Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/245Oxides by deposition from the vapour phase
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Glass (AREA)
  • Chemical Vapour Deposition (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

To provide a substrate with a film having a titanium oxide-containing film, in which ablation resistance is improved compared to prior art.SOLUTION: There is provided a substrate with a film having a substrate and a film placed on the substrate, in which the film is a titanium oxide-containing film, and further contains tin oxide, the film has a concentration part of the tin oxide on an outermost surface, a ratio P(Sn)/P(Ti) is 0.1 or higher and 2.4 or lower, where tin concentration is P(Sn) and titanium concentration is P(Ti) on the outermost surface, obtained by an X ray photoelectron spectroscopy (XPS), and a haze ratio measured from a film side of the substrate with the film is 0.8% or less.SELECTED DRAWING: Figure 1

Description

本発明は、膜付き基材および膜付き基材を製造する方法に関する。   The present invention relates to a substrate with a film and a method for producing the substrate with a film.

基材の上に酸化チタン(TiO)の薄膜を形成することにより構成される膜付き基材は、TiO薄膜の有意な特性のため、様々な用途への適用が期待されている。例えば、基材がガラス基板の場合、そのような膜付き基材は、熱反射ガラスおよび防汚ガラスなどに適用することが期待される。 A substrate with a film formed by forming a thin film of titanium oxide (TiO 2 ) on a substrate is expected to be applied to various uses because of the significant characteristics of the TiO 2 thin film. For example, when the substrate is a glass substrate, such a substrate with a film is expected to be applied to heat reflection glass, antifouling glass, and the like.

TiO薄膜付き基材は、例えば、CVDプロセスにより、基材上に薄いTiOを成膜することにより製造することができる。なお、特許文献1には、常圧CVDプロセスにおいて、特定の原料ガスを使用することにより、TiO薄膜の成膜速度を高め得ることが提案されている。 The substrate with a TiO 2 thin film can be manufactured by, for example, forming a thin TiO 2 film on the substrate by a CVD process. Patent Document 1 proposes that the deposition rate of a TiO 2 thin film can be increased by using a specific source gas in an atmospheric pressure CVD process.

特開2005−235552号公報JP 2005-235552 A

前述のように、TiO薄膜を有する膜付き基材は、様々な用途への適用が期待されている。 As described above, a substrate with a film having a TiO 2 thin film is expected to be applied to various uses.

しかしながら、特許文献1に記載されているような、従来のTiO薄膜付き基材は、TiO薄膜の厚さが薄いため、耐アブレーション性が比較的劣るという問題がある。ただしその一方で、TiO薄膜の厚さを厚くすると、今度はTiOが薄膜であることの利点が損なわれ、例えば、反射率の上昇および/またはヘイズ率の上昇などの問題が生じ得る。 However, the conventional substrate with a TiO 2 thin film as described in Patent Document 1 has a problem that the ablation resistance is relatively poor because the thickness of the TiO 2 thin film is small. However, on the other hand, if the thickness of the TiO 2 thin film is increased, the advantage that the TiO 2 is a thin film is impaired, and problems such as an increase in reflectance and / or an increase in haze may occur.

このため、TiO薄膜の厚さを過度に厚くすることなく、良好な耐アブレーション性を発揮できる膜付き基材が要望されている。 Therefore, there is a demand for a film-coated base material that can exhibit good ablation resistance without excessively increasing the thickness of the TiO 2 thin film.

本発明は、このような背景に鑑みなされたものであり、本発明では、従来に比べて耐アブレーション性が改善された、チタン酸化物含有膜を有する膜付き基材を提供することを目的とする。また、本発明では、そのような膜付き基材を製造する方法を提供することを目的とする。   The present invention has been made in view of such a background, and an object of the present invention is to provide a film-coated substrate having a titanium oxide-containing film with improved ablation resistance as compared with the related art. I do. Another object of the present invention is to provide a method for producing such a substrate with a film.

本発明では、基材と、該基材の上に配置された膜とを有する膜付き基材であって、
前記膜は、チタン酸化物含有膜であり、さらにスズ酸化物を含み、
前記膜は、最表面にスズ酸化物の濃縮部を有し、
X線光電子分光分析(XPS)法により得られる、前記最表面におけるスズ濃度をP(Sn)とし、チタン濃度をP(Ti)としたとき、比P(Sn)/P(Ti)は、0.1以上、2.4以下であり、
当該膜付き基材の前記膜側から測定されるヘイズ率は、0.8%以下である、膜付き基材が提供される。
In the present invention, a substrate with a film having a substrate and a film disposed on the substrate,
The film is a titanium oxide-containing film, further includes a tin oxide,
The film has a concentrated portion of tin oxide on the outermost surface,
When the tin concentration at the outermost surface obtained by X-ray photoelectron spectroscopy (XPS) is P s (Sn) and the titanium concentration is P s (Ti), the ratio P s (Sn) / P s (Ti ) Is not less than 0.1 and not more than 2.4,
A substrate with a film is provided, wherein the haze ratio measured from the film side of the substrate with a film is 0.8% or less.

また、本発明では、常圧CVDプロセスにより、基材の上にチタン酸化物含有膜を有する膜付き基材を製造する方法であって、
前記CVDプロセスでは、原料ガスとして、チタンテトライソプロピオキシド(TTIP)とスズ塩化物との混合ガスが使用され、
前記TTIPに対する前記スズ塩化物の濃度比は、0.18mol%〜0.5mol%の範囲であり、
製造された前記膜付き基材の前記膜側から測定されるヘイズ率は、0.8%以下である、方法が提供される。
Further, the present invention provides a method for producing a film-coated substrate having a titanium oxide-containing film on a substrate by a normal pressure CVD process,
In the CVD process, a mixed gas of titanium tetraisopropoxide (TTIP) and tin chloride is used as a source gas,
A concentration ratio of the tin chloride to the TTIP is in a range of 0.18 mol% to 0.5 mol%;
A method is provided wherein a haze ratio measured from the film side of the manufactured substrate with a film is 0.8% or less.

本発明では、従来に比べて耐アブレーション性が改善された、チタン酸化物含有膜を有する膜付き基材を提供することができる。また、本発明では、そのような膜付き基材を製造する方法を提供することができる。   According to the present invention, it is possible to provide a film-coated substrate having a titanium oxide-containing film, which has improved ablation resistance as compared with the related art. Further, the present invention can provide a method for producing such a substrate with a film.

本発明の一実施形態による膜付き基材の断面を模式的に示した図である。It is the figure which showed typically the cross section of the base material with a film by one Embodiment of this invention. 基材がガラス基板で構成される場合の膜の深さ方向における元素濃度プロファイルの一例を模式的に示した図である。FIG. 3 is a diagram schematically illustrating an example of an element concentration profile in a depth direction of a film when a base material is formed of a glass substrate. 本発明の一実施形態による膜付き基材の製造方法のフローを模式的に示した図である。It is the figure which showed typically the flow of the manufacturing method of the base material with a film by one Embodiment of this invention. X線光電子分光分析(XPS)法により得られた、サンプル1における膜中の各元素濃度の深さ方向プロファイルである。5 is a depth profile of each element concentration in a film of Sample 1 obtained by X-ray photoelectron spectroscopy (XPS). 各サンプルの膜における比P(Sn)/P(Ti)に対するヘイズ率の関係を示したプロットである。Is a plot showing the relationship between the haze ratio for the ratio P s (Sn) / P s (Ti) in the membrane of each sample. 各サンプルの膜における比P(Sn)/P(Ti)に対する反射率差ΔRの関係を示したプロットである。5 is a plot showing the relationship between the reflectance difference ΔR and the ratio P s (Sn) / P s (Ti) in the film of each sample.

以下、図面を参照して、本発明の一実施形態について説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

(本発明の一実施形態による膜付き基材)
図1には、本発明の一実施形態による膜付き基材(以下、「第1の膜付き基材」と称する)の断面を模式的に示す。
(Substrate with film according to one embodiment of the present invention)
FIG. 1 schematically shows a cross section of a substrate with a film (hereinafter, referred to as “first substrate with a film”) according to an embodiment of the present invention.

図1に示すように、第1の膜付き基材100は、基材110と、膜120とを有する。   As shown in FIG. 1, the first base material with a film 100 includes a base material 110 and a film 120.

基材110は、相互に対向する第1の表面112および第2の表面114を有し、膜120は、基材110の第1の表面112に配置される。   The substrate 110 has a first surface 112 and a second surface 114 facing each other, and the film 120 is disposed on the first surface 112 of the substrate 110.

基材110は、透明なものであれば、特に限られない。基材110は、例えば、ガラス基板であっても良い。膜120の厚さは、例えば、10nm〜100nmの範囲である。   The substrate 110 is not particularly limited as long as it is transparent. The substrate 110 may be, for example, a glass substrate. The thickness of the film 120 is, for example, in a range of 10 nm to 100 nm.

ここで、第1の膜付き基材100は、膜120の側から測定されるヘイズ率が0.8%以下であるという特徴を有する。   Here, the first base material 100 with a film has a feature that the haze ratio measured from the side of the film 120 is 0.8% or less.

また、第1の膜付き基材100において、膜120は、チタン酸化物含有膜であり、さらにスズ酸化物を含む。また、膜120は、最表面122にスズ酸化物の濃縮部を有する。より具体的には、膜120は、単一層で構成され、X線光電子分光分析(XPS)法により得られる、最表面122におけるスズ(Sn)の濃度をP(Sn)とし、チタン(Ti)の濃度をP(Ti)としたとき、比P(Sn)/P(Ti)が0.1以上、2.4以下であるという特徴を有する。 In the first base material 100 with a film, the film 120 is a titanium oxide-containing film and further contains tin oxide. Further, the film 120 has a concentrated portion of tin oxide on the outermost surface 122. More specifically, the film 120 is formed of a single layer, and the tin (Sn) concentration at the outermost surface 122 obtained by X-ray photoelectron spectroscopy (XPS) is P s (Sn), and titanium (Ti) when the concentration of) was P s (Ti), the ratio P s (Sn) / P s (Ti) is 0.1 or more, has a characteristic that is 2.4 or less.

前述のように、従来のTiO薄膜付き基材は、耐アブレーション性の点で問題がある。また、TiO薄膜を厚くした場合、反射率の上昇および/またはヘイズ率の上昇などの問題が生じ得る。 As described above, the conventional substrate with a TiO 2 thin film has a problem in ablation resistance. In addition, when the TiO 2 thin film is made thick, problems such as an increase in reflectance and / or an increase in haze may occur.

これに対して、第1の膜付き基材100では、膜120は、チタン酸化物を主体とするものの、最表面122にスズ酸化物の濃縮部を有し、前述の比P(Sn)/P(Ti)は、0.1以上であるという特徴を有する。 On the other hand, in the first base material with a film 100, the film 120 is mainly composed of titanium oxide, but has a concentrated portion of tin oxide on the outermost surface 122, and the above-mentioned ratio P s (Sn) / P s (Ti) is characterized by being 0.1 or more.

膜120がこのように構成された場合、最表面122におけるスズ酸化物の濃縮部の存在により、膜120の耐アブレーション性を有意に改善することができる。   When the film 120 is configured in this manner, the ablation resistance of the film 120 can be significantly improved due to the presence of the tin oxide concentrated portion on the outermost surface 122.

また、第1の膜付き基材100では、膜120の最表面122における前述の比P(Sn)/P(Ti)は、2.4以下に制御されている。このため、第1の膜付き基材100では、ヘイズ率を0.8%以下とすることができる。 Further, in the first film-substrate 100, the aforementioned ratio P s at the outermost surface 122 of the membrane 120 (Sn) / P s ( Ti) is controlled to 2.4 or less. For this reason, in the first substrate with a film 100, the haze ratio can be 0.8% or less.

以上の効果により、本発明の一実施形態では、チタン酸化物を含む膜120の厚さを過度に厚くすることなく、従来に比べて、耐アブレーション性が改善された膜付き基材を得ることができる。   By the above effects, in one embodiment of the present invention, it is possible to obtain a film-coated base material having improved ablation resistance as compared with the related art without excessively increasing the thickness of the film 120 containing titanium oxide. Can be.

次に、第1の膜付き基材100を構成する各部材について、詳しく説明する。   Next, each member constituting the first base material with a film 100 will be described in detail.

(基材110)
前述のように、基材110は、透明な材質であれば特に限られず、基材110は、例えば、セラミックス基板、プラスチック基板、またはガラス基板であっても良い。ガラス基板としては、例えば、ソーダライムシリケートガラス、アルミノシリケートガラス、ボレートガラス、リチウムアルミノシリケートガラス、石英ガラス、ホウケイ酸ガラス、および無アルカリガラス等が挙げられる。
(Base material 110)
As described above, the substrate 110 is not particularly limited as long as it is a transparent material, and the substrate 110 may be, for example, a ceramic substrate, a plastic substrate, or a glass substrate. Examples of the glass substrate include soda lime silicate glass, aluminosilicate glass, borate glass, lithium aluminosilicate glass, quartz glass, borosilicate glass, and alkali-free glass.

また、基材110がガラス基板の場合、該ガラス基板は、透明であっても、着色されていても良い。そのような第1の膜付き基材100は、例えば、住宅用の窓ガラス等に利用することができる。   When the substrate 110 is a glass substrate, the glass substrate may be transparent or colored. Such a first base material 100 with a film can be used, for example, for a window glass for a house.

また、基材110がガラス基板で構成される場合、基材110の第1の表面112には、例えば、シリカ(SiO)などで構成されたアルカリバリア層が設置されていても良い。これにより、耐久性を高めることができる。アルカリバリア層を設ける場合、アルカリバリア層の厚さは、例えば、10nm〜100nmの範囲である。 When the base 110 is formed of a glass substrate, an alkali barrier layer formed of, for example, silica (SiO 2 ) may be provided on the first surface 112 of the base 110. Thereby, durability can be improved. When providing an alkali barrier layer, the thickness of the alkali barrier layer is, for example, in a range of 10 nm to 100 nm.

ただし、アルカリバリア層は、任意に設置される層であって、省略されても良い。すなわち、基材110の第1の表面112には、アルカリバリア層を介して膜120が設置されても、直接膜120が設置されても良い。   However, the alkali barrier layer is an optional layer and may be omitted. That is, the film 120 may be provided on the first surface 112 of the base 110 via the alkali barrier layer, or the film 120 may be provided directly.

なお、基材110の厚さは、特に限られない。   In addition, the thickness of the base material 110 is not particularly limited.

(膜120)
前述のように、第1の膜付き基材100において、膜120は、主としてチタン酸化物で構成されるが、最表面122には、スズ酸化物の濃縮部を含む。
(Membrane 120)
As described above, in the first substrate with a film 100, the film 120 is mainly composed of titanium oxide, but the outermost surface 122 includes a concentrated portion of tin oxide.

膜120の厚さは、例えば、10nm〜50nmの範囲である。膜120は、30nm未満であることが好ましい。   The thickness of the film 120 is, for example, in a range of 10 nm to 50 nm. Preferably, the thickness of the film 120 is less than 30 nm.

図2には、第1の膜付き基材100において、基材110がガラス基板で構成される場合の膜120の深さ方向における元素濃度プロファイルの一例を模式的に示す。図2には、チタン(Ti)、スズ(Sn)、およびシリコン(Si)の濃度プロファイルが示されている。   FIG. 2 schematically shows an example of an element concentration profile in the depth direction of the film 120 when the substrate 110 is formed of a glass substrate in the first film-coated substrate 100. FIG. 2 shows the concentration profiles of titanium (Ti), tin (Sn), and silicon (Si).

図2において、横軸は、膜120の最表面122からの深さ方向の距離d(nm)であり、d=0は、膜120の最表面122に対応する。なお、横軸の指標は、XPS法によるサンプル表面のスパッタ時間と等価である。   In FIG. 2, the horizontal axis represents a distance d (nm) in the depth direction from the outermost surface 122 of the film 120, and d = 0 corresponds to the outermost surface 122 of the film 120. The index on the horizontal axis is equivalent to the sputtering time of the sample surface by the XPS method.

一方、縦軸は、XPS法により得られるそれぞれの元素の濃度である。なお、図2では、明確化のため、各元素は、それぞれの濃度の最大高さ(最高濃度)が相互に等しくとなるように、模式的に描かれている。しかしながら、実際には、各元素の最高濃度は異なる(例えば、以降の図4参照)。   On the other hand, the vertical axis represents the concentration of each element obtained by the XPS method. In FIG. 2, for clarity, each element is schematically depicted such that the maximum height of each concentration (the highest concentration) is equal to each other. However, actually, the maximum concentration of each element is different (for example, see FIG. 4 below).

図2に示すように、Tiの濃度プロファイルは、最表面122から徐々に増加して、ほぼ一定となり、その後徐々に低下する挙動を示す。また、Snは、最表面122において最大値を示し、その後、徐々に低下する挙動を示す。一方、Siは、ガラス基板に由来する元素であるため、TiおよびSnが存在する最表面122に近い領域では、ほぼゼロであり、Tiの低下が始まる深さ領域から徐々に上昇する挙動を示す。なお、基材110が第1の表面112にアルカリバリア層を有するガラス基板で構成される場合も、Siは、同様の挙動となる。   As shown in FIG. 2, the concentration profile of Ti gradually increases from the outermost surface 122, becomes almost constant, and then gradually decreases. Further, Sn shows a maximum value at the outermost surface 122 and thereafter shows a behavior of gradually decreasing. On the other hand, since Si is an element derived from the glass substrate, it is almost zero in a region near the outermost surface 122 where Ti and Sn are present, and shows a behavior of gradually increasing from a depth region where the decrease of Ti starts. . Note that when the substrate 110 is formed of a glass substrate having an alkali barrier layer on the first surface 112, Si behaves similarly.

ここで、前述の記載に従えば、最表面122におけるスズ(Sn)の濃度は、P(Sn)で表され、チタン(Ti)の濃度は、P(Ti)で表される。従って、理想的には、P(Sn)およびP(Ti)は、距離d=0でのそれぞれの元素濃度に対応する。 Here, according to the above description, the concentration of tin (Sn) on the outermost surface 122 is represented by P s (Sn), and the concentration of titanium (Ti) is represented by P s (Ti). Therefore, ideally, P s (Sn) and P s (Ti) corresponds to a respective element concentration of the distance d = 0.

しかしながら、XPS法による分析の精度上、距離d=0の位置における各元素の濃度は、相応のエラーを含む場合がある。そのため、本願では、「最表面におけるSnの濃度」、すなわちP(Sn)を、距離d=0〜5nmの範囲におけるSn濃度の最大値として規定し、「最表面におけるTiの濃度」、すなわちP(Ti)を、距離d=0〜5nmの範囲におけるTi濃度の最小値として規定することにする。 However, due to the accuracy of the analysis by the XPS method, the concentration of each element at the position of the distance d = 0 may include a corresponding error. Therefore, in the present application, the “Sn concentration at the outermost surface”, that is, P s (Sn), is defined as the maximum value of the Sn concentration in the range of the distance d = 0 to 5 nm, and the “concentration of Ti at the outermost surface”, that is, P s (Ti) is defined as the minimum value of the Ti concentration in the range of the distance d = 0 to 5 nm.

なお、前述のように、比P(Sn)/P(Ti)は、0.1以上、2.4以下である。 As described previously, the ratio P s (Sn) / P s (Ti) is 0.1 or more and 2.4 or less.

再度図2を参照すると、TiのプロファイルとSiのプロファイルは、ある距離dで交差する。本願では、この交差が生じる深さ位置Lを、膜120の膜厚として規定する。   Referring again to FIG. 2, the profile of Ti and the profile of Si intersect at a certain distance d. In the present application, the depth position L at which the intersection occurs is defined as the thickness of the film 120.

また、図2には、2本の水平線FおよびFが描かれている。 Further, in FIG. 2, two horizontal lines F 1 and F 2 is depicted.

このうち、水平線Fは、距離d=0〜Lの範囲(すなわち膜厚内)における、Ti濃度の平均値を表しており、以降これをPave(Ti)と表記する。また、直線Fは、距離d=0〜Lの範囲(すなわち膜厚内)における、Sn濃度の平均値を表しており、以降これをPave(Sn)と表記する。 Of these, the horizontal line F 1 is at a distance d = 0 to L range (i.e. the thickness), represents the average value of Ti concentration, which is expressed as P ave (Ti) or later. A straight line F 2 is at a distance d = 0 to L range (i.e. the thickness), represents the average value of Sn concentration, which is expressed as P ave (Sn) or later.

このように表した場合、膜120は、比{P(Sn)/P(Ti)}/{Pave(Sn)/Pave(Ti)}が4以上であることが好ましい。この場合、膜120の最表面122に、より顕著なスズ酸化物の濃縮部が形成される。 In this case, the film 120 preferably has a ratio {P s (Sn) / P s (Ti)} / {P ave (Sn) / P ave (Ti)} of 4 or more. In this case, a more conspicuous portion of tin oxide is formed on the outermost surface 122 of the film 120.

(第1の膜付き基材100)
前述のように、第1の膜付き基材100は、ヘイズ率が0.8%以下である。
(First substrate 100 with film)
As described above, the first base material with a film 100 has a haze ratio of 0.8% or less.

また、第1の膜付き基材100は、アブレーション試験前の膜120の側から測定される可視光反射率をR(%)とし、アブレーション試験後の膜120の側から測定される可視光反射率をR(%)としたとき、反射率差ΔR=R−Rが3%以下であるという特徴を有する。 The first coated substrate 100 has a visible light reflectance R 1 (%) measured from the film 120 before the ablation test, and a visible light measured from the film 120 after the ablation test. When the reflectance is R 2 (%), the reflectance difference ΔR = R 1 −R 2 is 3% or less.

ここで、アブレーション試験は、以下のように実施される:
まず、寸法100mm×100mmの膜付き基材(「サンプル」とも称する)を、膜が上向きとなるように台上に水平に設置する。
次に、サンプルの膜上に、試験液を1ml滴下する。試験液は、1リットルの水道水に、JIS Z8901で規定される粉体1.0gと、中性洗剤2滴を加えて調製する。
次に、30mm×11mmの接触面を有する研磨布(羊毛バフ)を用いて、サンプルに1100g/cmの荷重を加えた状態で、研磨布を420回直線状に往復させる。
Here, the ablation test is performed as follows:
First, a substrate with a film having a size of 100 mm × 100 mm (also referred to as “sample”) is placed horizontally on a table so that the film faces upward.
Next, 1 ml of the test solution is dropped on the film of the sample. The test liquid is prepared by adding 1.0 g of powder specified in JIS Z8901 and 2 drops of neutral detergent to 1 liter of tap water.
Next, using a polishing cloth (wool buff) having a contact surface of 30 mm × 11 mm, the polishing cloth is linearly reciprocated 420 times while applying a load of 1100 g / cm 2 to the sample.

なお、アブレーション試験後に行われるサンプルの可視光反射率RおよびRの測定は、JIS Z 8722に準拠して実施される。 The measurement of the visible light reflectance R 1 and R 2 of the sample which is performed after the ablation test is performed in conformity with JIS Z 8722.

第1の膜付き基材100は、良好な耐アブレーション性を有するため、反射率差ΔRの低下を有意に抑制することができる。また、第1の膜付き基材100では、膜厚をあまり厚くしなくても、ヘイズ率を有意に抑制することができる。   Since the first substrate with a film 100 has good ablation resistance, it is possible to significantly suppress a decrease in the reflectance difference ΔR. Further, in the first base material 100 with a film, the haze ratio can be significantly suppressed without increasing the film thickness too much.

(本発明の一実施形態による膜付き基材の製造方法)
次に、図3を参照して、本発明の一実施形態による膜付き基材の製造方法の一例について説明する。
(Method of manufacturing a substrate with a film according to one embodiment of the present invention)
Next, an example of a method for manufacturing a base material with a film according to an embodiment of the present invention will be described with reference to FIG.

図3には、本発明の一実施形態による膜付き基材の製造方法(以下、「第1の製造方法」と称する)のフローを模式的に示す。   FIG. 3 schematically shows a flow of a method for manufacturing a substrate with a film according to one embodiment of the present invention (hereinafter, referred to as a “first manufacturing method”).

図3に示すように、第1の製造方法は、
(1)第1の表面を有する基材を準備する工程(工程S110)と、
(2)前記第1の表面に、膜を成膜する工程(工程S120)と、
を有する。
As shown in FIG. 3, the first manufacturing method includes:
(1) a step of preparing a substrate having a first surface (step S110);
(2) a step of forming a film on the first surface (step S120);
Have

以下、各工程について説明する。   Hereinafter, each step will be described.

なお、ここでは明確化のため、図1に示したような第1の膜付き基材100を例に、第1の製造方法について説明する。従って、各部材を表す際には、図1に示した参照符号を使用する。   Here, for the sake of clarity, the first manufacturing method will be described using the first film-coated base material 100 as shown in FIG. 1 as an example. Therefore, the reference numerals shown in FIG. 1 are used to represent each member.

(工程S110)
まず、基材110が準備される。前述のように、基材110は、透明な基板、例えばガラス基板であっても良い。
(Step S110)
First, the base material 110 is prepared. As described above, the substrate 110 may be a transparent substrate, for example, a glass substrate.

基材110は、後の工程で膜120が設置される第1の表面112を有する。   The substrate 110 has a first surface 112 on which the film 120 will be placed in a later step.

また、基材110がガラス基板の場合、基材110の第1の表面112には、アルカリバリア層(SiO層)が設置されても良い。 When the substrate 110 is a glass substrate, an alkali barrier layer (SiO 2 layer) may be provided on the first surface 112 of the substrate 110.

なお、アルカリバリア層の設置方法は、当業者には良く知られている。従って、ここではこれ以上説明しない。   In addition, the method of installing the alkali barrier layer is well known to those skilled in the art. Therefore, it will not be described further here.

(工程S120)
次に、基材110の第1の表面112上に、膜120が成膜される。なお、基材110がガラス基板であって、アルカリバリア層を有する場合、膜120は、アルカリバリア層の直上に設置されても良い。
(Step S120)
Next, a film 120 is formed on the first surface 112 of the substrate 110. When the substrate 110 is a glass substrate and has an alkali barrier layer, the film 120 may be provided directly on the alkali barrier layer.

膜120は、常圧CVDプロセスにより成膜される。より具体的には、以下の処理が実施される。   The film 120 is formed by a normal pressure CVD process. More specifically, the following processing is performed.

まず、基材110が所定の温度に加熱される。   First, the substrate 110 is heated to a predetermined temperature.

次に、基材110の第1の表面112に、反応ガスが供給される。反応ガスは、原料ガスおよび酸素を含む。原料ガスは、チタン原料ガスおよびスズ原料ガスを含む。このうち、チタン原料ガスは、チタンテトライソプロピオキシド(TTIP)を含む。また、スズ原料ガスは、スズ塩化物、例えば四塩化スズおよび/またはモノブチルスズトリクロライド(MBTC)を含む。   Next, a reactive gas is supplied to the first surface 112 of the substrate 110. The reaction gas contains a source gas and oxygen. The source gas includes a titanium source gas and a tin source gas. Among them, the titanium source gas contains titanium tetraisopropoxide (TTIP). In addition, the tin source gas contains tin chloride, for example, tin tetrachloride and / or monobutyltin trichloride (MBTC).

成膜温度は、例えば、500℃〜700℃の範囲であり、550℃〜600℃の範囲であることが好ましい。   The film formation temperature is, for example, in the range of 500 ° C to 700 ° C, and preferably in the range of 550 ° C to 600 ° C.

なお、本工程では、基材110を搬送した状態で、膜120の成膜が行われる。基材110の搬送速度は、例えば、1m/min〜20m/minの範囲である。また、反応ガスの供給速度は、膜120の膜厚が10nm〜50nmの範囲となるように調整される。例えば、TTIPの供給量は、0.05mol%〜1.2mol%の範囲であっても良い。   In this step, the film 120 is formed while the substrate 110 is being transported. The transport speed of the substrate 110 is, for example, in a range of 1 m / min to 20 m / min. The supply rate of the reaction gas is adjusted so that the thickness of the film 120 is in the range of 10 nm to 50 nm. For example, the supply amount of TTIP may be in a range of 0.05 mol% to 1.2 mol%.

ここで、反応ガス中に含まれるTTIPに対するスズ塩化物の濃度比は、0.18mol%〜0.5mol%の範囲に調整される。   Here, the concentration ratio of tin chloride to TTIP contained in the reaction gas is adjusted in the range of 0.18 mol% to 0.5 mol%.

このような条件で成膜を行うことにより、最表面122にスズ酸化物が濃縮されたチタン酸化物の薄膜120を形成することができる。すなわち、このような条件で成膜を行うことにより、前述の比P(Sn)/P(Ti)が0.1以上の膜120を形成することが可能になる。また、ヘイズ率が0.8%以下の膜付き基材を得ることができる。 By forming a film under such conditions, a thin film 120 of titanium oxide in which tin oxide is concentrated can be formed on the outermost surface 122. That is, by forming a film under such conditions, the aforementioned ratio P s (Sn) / P s (Ti) is capable of forming a 0.1 or more films 120. Further, a substrate with a film having a haze ratio of 0.8% or less can be obtained.

このような常圧CVDプロセスを経て、第1の膜付き基材100を製造することができる。   Through such a normal pressure CVD process, the first base material with a film 100 can be manufactured.

なお、前述の記載では、予め準備された基材110を用いて、成膜工程(工程S120)が実施され、これにより膜付き基材100が製造された(いわゆる「バッチ処理」)。   In the above description, the film formation step (step S120) was performed using the base material 110 prepared in advance, and the base material with a film 100 was thus manufactured (so-called “batch processing”).

しかしながら、基材110がガラス基板の場合、ガラス基板の製造過程中に成膜工程(工程S120)を実施して、膜付き基材110を製造しても良い(いわゆる「連続処理」)。   However, when the substrate 110 is a glass substrate, the film-forming step (step S120) may be performed during the manufacturing process of the glass substrate to manufacture the substrate 110 with a film (so-called “continuous processing”).

例えば、ガラス基板を製造する際には、ガラスリボンが溶融スズ浴の上を移動した後、徐冷され、その後所定の寸法に切断される。このガラスリボンの移動中に、ガラスリボンの上面(第1の表面112に相当する)に、常圧のCVDプロセスで膜120を成膜しても良い。また、必要な場合、膜120を成膜する前に、ガラスリボンの上面に、常圧CVDプロセスでアルカリバリア層(SiO)を成膜しても良い。 For example, when manufacturing a glass substrate, a glass ribbon is moved slowly over a molten tin bath, then slowly cooled, and then cut into predetermined dimensions. During the movement of the glass ribbon, the film 120 may be formed on the upper surface (corresponding to the first surface 112) of the glass ribbon by a normal pressure CVD process. If necessary, before forming the film 120, an alkali barrier layer (SiO 2 ) may be formed on the upper surface of the glass ribbon by a normal pressure CVD process.

このような製造方法では、成膜の際に、既に基材110(ガラスリボン)の温度が上昇しているため、基材110の加熱プロセスを省略することができる。また、多数の膜付き基材110を連続的に製造することができる。   In such a manufacturing method, since the temperature of the substrate 110 (glass ribbon) has already been increased at the time of film formation, the heating process of the substrate 110 can be omitted. Further, a large number of base materials with a film 110 can be continuously manufactured.

次に、本発明の実施例について説明する。ただし、本発明は、これらに限定されるものではない。   Next, examples of the present invention will be described. However, the present invention is not limited to these.

以下の説明において、例1〜例3は、実施例であり、例4〜例6は、比較例である。   In the following description, Examples 1 to 3 are Examples, and Examples 4 to 6 are Comparative Examples.

(例1)
以下の方法により、常圧CVD法を用いて基材上にチタン酸化物含有膜を成膜し、膜付き基材を製造した。
(Example 1)
According to the following method, a titanium oxide-containing film was formed on a substrate using a normal pressure CVD method, and a substrate with a film was manufactured.

基材には、ガラス基板(透明なソーダライムガラス)を使用した。   A glass substrate (transparent soda lime glass) was used as a base material.

常圧CVDプロセスは、基材の一方の表面(第1の表面)に、原料ガスおよび酸素を吹き付けることにより実施した。原料ガスは、チタンテトライソプロピオキシド(TTIP)とモノブチルスズトリクロライド(MBTC)の混合ガスとし、TTIPに対するMBTCの濃度比(MBTC/TTIP)は、0.25mol%とした。   The normal pressure CVD process was performed by blowing a source gas and oxygen onto one surface (first surface) of the substrate. The source gas was a mixed gas of titanium tetraisopropoxide (TTIP) and monobutyltin trichloride (MBTC), and the concentration ratio of MBTC to TTIP (MBTC / TTIP) was 0.25 mol%.

基材の温度は560℃とした。目標膜厚は、20nmとした。   The temperature of the substrate was 560 ° C. The target film thickness was 20 nm.

これにより、膜付き基材(以下、「サンプル1」と称する)が製造された。   Thus, a substrate with a film (hereinafter, referred to as “sample 1”) was manufactured.

(例2)
例1と同様の方法により、膜付き基材(以下、「サンプル2」と称する)を製造した。
(Example 2)
In the same manner as in Example 1, a substrate with a film (hereinafter, referred to as “sample 2”) was produced.

ただし、この例2では、常圧CVDプロセスにおいて、TTIPに対するMBTCの濃度比(MBTC/TTIP)を、0.50mol%とした。   However, in Example 2, the concentration ratio of MBTC to TTIP (MBTC / TTIP) was 0.50 mol% in the normal pressure CVD process.

(例3)
例1と同様の方法により、膜付き基材(以下、「サンプル3」と称する)を製造した。
(Example 3)
In the same manner as in Example 1, a substrate with a film (hereinafter, referred to as “sample 3”) was produced.

ただし、この例3では、目標膜厚は30nmとした。   However, in Example 3, the target film thickness was 30 nm.

(例4)
例1と同様の方法により、膜付き基材(以下、「サンプル4」と称する)を製造した。
(Example 4)
In the same manner as in Example 1, a substrate with a film (hereinafter, referred to as “sample 4”) was produced.

ただし、この例4では、常圧CVDプロセスにおいて、TTIPに対するMBTCの濃度比(MBTC/TTIP)を、0.05mol%とした。   However, in Example 4, the concentration ratio of MBTC to TTIP (MBTC / TTIP) was set to 0.05 mol% in the normal pressure CVD process.

(例5)
例1と同様の方法により、膜付き基材(以下、「サンプル5」と称する)を製造した。
(Example 5)
In the same manner as in Example 1, a substrate with a film (hereinafter, referred to as “sample 5”) was produced.

ただし、この例5では、常圧CVDプロセスにおいて、TTIPに対するMBTCの濃度比(MBTC/TTIP)を、0.05mol%とした。また、目標膜厚は30nmとした。   However, in Example 5, the concentration ratio of MBTC to TTIP (MBTC / TTIP) was 0.05 mol% in the normal pressure CVD process. The target film thickness was 30 nm.

(例6)
例1と同様の方法により、膜付き基材(以下、「サンプル6」と称する)を製造した。
(Example 6)
In the same manner as in Example 1, a substrate with a film (hereinafter, referred to as “sample 6”) was produced.

ただし、この例6では、常圧CVDプロセスにおいて、TTIPに対するMBTCの濃度比(MBTC/TTIP)を、0.50mol%とした。また、目標膜厚は35nmとした。   However, in Example 6, the concentration ratio of MBTC to TTIP (MBTC / TTIP) was set to 0.50 mol% in the normal pressure CVD process. The target film thickness was 35 nm.

(評価)
前述のように製造された各サンプルを用いて、以下の評価を行った。
(Evaluation)
The following evaluation was performed using each sample manufactured as described above.

(膜内の元素プロファイルの測定)
XPS法を用いて、各サンプルにおける膜の膜厚方向におけるスズ、チタン、およびシリコンの濃度プロファイルを測定した。測定には、走査型X線光電子分光装置(PHI 5000 VersaProbe・アルバック・ファイ株式会社製)を用い、ビーム径は100μmとした。
(Measurement of element profile in film)
Using the XPS method, the concentration profiles of tin, titanium, and silicon in the film thickness direction of each sample were measured. For the measurement, a scanning X-ray photoelectron spectrometer (PHI 5000 VersaProbe, manufactured by ULVAC-PHI, Inc.) was used, and the beam diameter was 100 μm.

図4には、サンプル1において得られた測定結果の一例を示す。   FIG. 4 shows an example of the measurement results obtained in Sample 1.

図4において、横軸は、スパッタ時間t(分)であり、縦軸は、スズ、チタン、およびシリコンの濃度(原子%)である。なお、ここでは、スズ、チタン、シリコン、カルシウム、ナトリウム、炭素、および酸素の量の総和を100原子%としている。   In FIG. 4, the horizontal axis is the sputtering time t (min), and the vertical axis is the concentration (atomic%) of tin, titanium, and silicon. Here, the total amount of tin, titanium, silicon, calcium, sodium, carbon, and oxygen is set to 100 atomic%.

図4に示すように、サンプル1では、膜中のスズ濃度は、スパッタ時間tが0の位置において最大値を示し、その後徐々に減少するプロファイルを示した。また、チタン濃度は、スパッタ時間tが0〜5分までは徐々に増加し、その後tが5分〜15分の範囲でほぼ一定となり、tが15分以降、徐々に減少するプロファイルを示した。一方、シリコン濃度は、スパッタ時間tが約15分の位置から徐々に増加し、tが約20分の位置で、チタンの濃度と逆転する挙動を示した。   As shown in FIG. 4, in Sample 1, the tin concentration in the film showed a maximum value at a position where the sputtering time t was 0, and then showed a profile that gradually decreased. In addition, the titanium concentration showed a profile in which the sputtering time t gradually increased until the sputtering time t was from 0 to 5 minutes, became substantially constant thereafter in the range of 5 minutes to 15 minutes, and gradually decreased after t was 15 minutes. . On the other hand, the silicon concentration gradually increased from the position where the sputtering time t was about 15 minutes, and at the position where the sputtering time t was about 20 minutes, the silicon concentration showed a behavior reverse to the titanium concentration.

このことから、サンプル1の膜は、チタン(酸化物)を主成分とし、最表面にスズ(酸化物)の濃縮部を有することがわかった。また、前述の定義から、膜の膜厚Lは、約18.3nm(スパッタ時間t=20分に相当する)であることがわかった。   From this, it was found that the film of Sample 1 had titanium (oxide) as a main component and a tin (oxide) enriched portion on the outermost surface. From the above definition, it was found that the film thickness L of the film was about 18.3 nm (corresponding to a sputtering time t = 20 minutes).

サンプル2およびサンプル3においても、ほぼ同様のプロファイルが得られた。これに対して、サンプル4および5では、膜の最表面におけるスズ酸化物の濃縮は、認められなかった。   In samples 2 and 3, almost similar profiles were obtained. On the other hand, in Samples 4 and 5, enrichment of tin oxide on the outermost surface of the film was not recognized.

各サンプルにおいて得られた結果から、膜厚L、比P(Sn)/P(Ti)、および比{P(Sn)/P(Ti)}/{Pave(Sn)/Pave(Sn)}を求めた。 From the results obtained in each sample, the thickness L, the ratio P s (Sn) / P s (Ti), and the ratio {P s (Sn) / P s (Ti)} / {P ave (Sn) / P ave (Sn)} was determined.

各サンプルにおいて得られた結果を、成膜条件とともに以下の表1に示す。   The results obtained for each sample are shown in Table 1 below together with the film forming conditions.

Figure 2019214479
(ヘイズ率の測定)
各サンプルに対して、ヘイズメータを用いてヘイズ率の測定を行った。
Figure 2019214479
(Measurement of haze ratio)
The haze ratio of each sample was measured using a haze meter.

(アブレーション試験)
各サンプルに対して、前述のような方法でアブレーション試験を実施した。また、アブレーション試験前の膜の側から測定される可視光反射率R(%)、およびアブレーション試験後の膜の側から測定される可視光反射率R(%)の測定結果から、反射率差ΔR=R−Rを求めた。
(Ablation test)
An ablation test was performed on each sample in the manner described above. Also, from the measurement results of the visible light reflectance R 1 (%) measured from the film side before the ablation test and the visible light reflectance R 2 (%) measured from the film side after the ablation test, The rate difference ΔR = R 1 −R 2 was determined.

以下の表2には、各サンプルにおいて得られたヘイズ率および反射率差ΔRの値をまとめて示す。   Table 2 below summarizes the values of the haze ratio and the reflectance difference ΔR obtained for each sample.

Figure 2019214479
表2から、サンプル1〜5では、いずれもヘイズ率は、0.4以下となっており、ヘイズ率が低く抑えられていることがわかる。一方、サンプル6では、約1%の高いヘイズ率を示した。
Figure 2019214479
From Table 2, it can be seen that the haze ratios of Samples 1 to 5 are all 0.4 or less, and the haze ratios are kept low. On the other hand, Sample 6 showed a high haze ratio of about 1%.

また、サンプル1〜3では、反射率差ΔRがいずれも3%以下となっているのに対して、サンプル4および5では、反射率差ΔRがいずれも3%を超えていることがわかった。   Samples 1 to 3 all have a reflectance difference ΔR of 3% or less, while samples 4 and 5 have a reflectance difference ΔR of more than 3%. .

図5には、各サンプルにおいて得られたヘイズ率の結果をまとめて示す。図5において、横軸は、各サンプルの膜における比Ps(Sn)/Ps(Ti)であり、縦軸は、ヘイズ率である。なお、図5中の各プロットには、サンプルの番号(1〜6)が示されている。   FIG. 5 shows the results of the haze ratio obtained for each sample. In FIG. 5, the horizontal axis is the ratio Ps (Sn) / Ps (Ti) in the film of each sample, and the vertical axis is the haze ratio. Each plot in FIG. 5 shows the sample number (1 to 6).

さらに、図6には、各サンプルにおいて得られた反射率差ΔRの値をまとめて示す。図6において、横軸は、各サンプルの膜における比Ps(Sn)/Ps(Ti)であり、縦軸は、反射率差ΔRである。なお、図6中の各プロットには、サンプルの番号(1〜6)が示されている。   FIG. 6 collectively shows the values of the reflectance difference ΔR obtained in each sample. In FIG. 6, the horizontal axis is the ratio Ps (Sn) / Ps (Ti) in the film of each sample, and the vertical axis is the reflectance difference ΔR. Each plot in FIG. 6 shows the sample number (1 to 6).

図5から、ヘイズ率は、比Ps(Sn)/Ps(Ti)の上昇とともに増加する傾向を示し、比Ps(Sn)/Ps(Ti)が約2.4を超えると、ヘイズ率が0.8%を超えることがわかる。   FIG. 5 shows that the haze ratio tends to increase as the ratio Ps (Sn) / Ps (Ti) increases. When the ratio Ps (Sn) / Ps (Ti) exceeds about 2.4, the haze ratio becomes zero. It turns out that it exceeds 0.8%.

また、図6から、反射率差ΔRは、比Ps(Sn)/Ps(Ti)の上昇とともに低下する傾向を示し、比Ps(Sn)/Ps(Ti)が約0.1を下回ると、反射率差ΔRが3%を超えることがわかる。   Also, from FIG. 6, the reflectance difference ΔR shows a tendency to decrease as the ratio Ps (Sn) / Ps (Ti) increases, and when the ratio Ps (Sn) / Ps (Ti) falls below about 0.1, It can be seen that the reflectance difference ΔR exceeds 3%.

このように、CVDプロセスにおけるTTIPに対するMBTCの濃度比(MBTC/TTIP)および膜厚Lを適正に調整することにより、膜の最表面にスズ酸化物の濃縮部が得られることが確認された。また、そのようなCVDプロセス条件を採用した場合、ヘイズ率が低く、耐アブレーション性に優れる膜付き基材が得られることが確認された。   As described above, it was confirmed that by appropriately adjusting the concentration ratio of MBTC to TTIP (MBTC / TTIP) and the film thickness L in the CVD process, a concentrated portion of tin oxide can be obtained on the outermost surface of the film. It was also confirmed that when such CVD process conditions were employed, a haze ratio was low, and a substrate with a film having excellent ablation resistance was obtained.

100 本発明の一実施形態による膜付き基材
110 基材
112 第1の表面
114 第2の表面
120 膜
122 最表面
100 Base material with a film 110 Base material 112 First surface 114 Second surface 120 Film 122 Top surface according to one embodiment of the present invention

Claims (13)

基材と、該基材の上に配置された膜とを有する膜付き基材であって、
前記膜は、チタン酸化物含有膜であり、さらにスズ酸化物を含み、
前記膜は、最表面にスズ酸化物の濃縮部を有し、
X線光電子分光分析(XPS)法により得られる、前記最表面におけるスズ濃度をP(Sn)とし、チタン濃度をP(Ti)としたとき、比P(Sn)/P(Ti)は、0.1以上、2.4以下であり、
当該膜付き基材の前記膜側から測定されるヘイズ率は、0.8%以下である、膜付き基材。
A substrate, a substrate with a film having a film disposed on the substrate,
The film is a titanium oxide-containing film, further includes a tin oxide,
The film has a concentrated portion of tin oxide on the outermost surface,
When the tin concentration at the outermost surface obtained by X-ray photoelectron spectroscopy (XPS) is P s (Sn) and the titanium concentration is P s (Ti), the ratio P s (Sn) / P s (Ti ) Is not less than 0.1 and not more than 2.4,
A substrate with a film, wherein a haze ratio measured from the film side of the substrate with a film is 0.8% or less.
前記基材は、ガラス基板である、請求項1に記載の膜付き基材。   The base material with a film according to claim 1, wherein the base material is a glass substrate. 前記ガラス基板は、前記膜の側に、アルカリバリア層を有する、請求項2に記載の膜付き基材。   The base material with a film according to claim 2, wherein the glass substrate has an alkali barrier layer on the side of the film. 前記膜は、10nm〜50nmの範囲の厚さを有する、請求項1乃至3のいずれか一つに記載の膜付き基材。   The film-coated substrate according to any one of claims 1 to 3, wherein the film has a thickness in a range of 10 nm to 50 nm. 前記膜において、前記X線光電子分光分析(XPS)法により得られる、前記膜の厚さLにわたるスズ濃度の平均値をPave(Sn)とし、前記膜の厚さLにわたるチタン濃度の平均値をPave(Ti)としたとき、比{P(Sn)/P(Ti)}/{Pave(Sn)/Pave(Ti)}は、4以上である、請求項1乃至4のいずれか一つに記載の膜付き基材。 In the film, the average value of the tin concentration over the thickness L of the film obtained by the X-ray photoelectron spectroscopy (XPS) method is P ave (Sn), and the average value of the titanium concentration over the thickness L of the film is when was the P ave (Ti), the ratio {P s (Sn) / P s (Ti)} / {P ave (Sn) / P ave (Ti)} is 4 or more, according to claim 1 to 4 The substrate with a film according to any one of the above. 常圧CVDプロセスにより、基材の上にチタン酸化物含有膜を有する膜付き基材を製造する方法であって、
前記CVDプロセスでは、原料ガスとして、チタンテトライソプロピオキシド(TTIP)とスズ塩化物との混合ガスが使用され、
前記TTIPに対する前記スズ塩化物の濃度比は、0.18mol%〜0.5mol%の範囲であり、
製造された前記膜付き基材の前記膜側から測定されるヘイズ率は、0.8%以下である、方法。
A method for producing a substrate with a film having a titanium oxide-containing film on the substrate by a normal pressure CVD process,
In the CVD process, a mixed gas of titanium tetraisopropoxide (TTIP) and tin chloride is used as a source gas,
A concentration ratio of the tin chloride to the TTIP is in a range of 0.18 mol% to 0.5 mol%;
The method, wherein a haze ratio measured from the film side of the manufactured substrate with a film is 0.8% or less.
前記スズ塩化物は、四塩化スズ(SnCl)および/またはモノブチルスズトリクロライド(MBTC)である、請求項6に記載の方法。 The tin chloride, tin tetrachloride (SnCl 4) and / or monobutyltin trichloride (MBTC), The method of claim 6. 前記チタン酸化物含有膜は、10nm〜50nmの範囲の厚さを有する、請求項6または7に記載の方法。   The method according to claim 6, wherein the titanium oxide-containing film has a thickness in a range of 10 nm to 50 nm. 前記基材は、ガラス基板である、請求項6乃至8のいずれか一つに記載の方法。   The method according to any one of claims 6 to 8, wherein the substrate is a glass substrate. 前記チタン酸化物含有膜を成膜する前に、前記基材の上にアルカリバリア層を形成する工程を有する、請求項9に記載の方法。   The method according to claim 9, further comprising forming an alkali barrier layer on the base material before forming the titanium oxide-containing film. 前記常圧CVDプロセスは、前記ガラス基板の製造過程中に実施され、前記チタン酸化物含有膜は、ガラスリボンの上に成膜される、請求項9または10に記載の方法。   The method according to claim 9, wherein the atmospheric pressure CVD process is performed during a manufacturing process of the glass substrate, and the titanium oxide-containing film is formed on a glass ribbon. 前記チタン酸化物含有膜の成膜の際の前記基材の温度は、500℃〜700℃の範囲である、請求項6乃至11のいずれか一つに記載の方法。   The method according to any one of claims 6 to 11, wherein a temperature of the substrate during the formation of the titanium oxide-containing film is in a range of 500C to 700C. 前記チタン酸化物含有膜の成膜の際の前記基材の温度は、550℃〜600℃の範囲である、請求項6乃至11のいずれか一つに記載の方法。   The method according to any one of claims 6 to 11, wherein a temperature of the substrate during the formation of the titanium oxide-containing film is in a range of 550 ° C to 600 ° C.
JP2016205070A 2016-10-19 2016-10-19 Substrate with film, and method for manufacturing substrate with film Pending JP2019214479A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016205070A JP2019214479A (en) 2016-10-19 2016-10-19 Substrate with film, and method for manufacturing substrate with film
PCT/JP2017/029968 WO2018074049A1 (en) 2016-10-19 2017-08-22 Coated substrate and method for manufacturing coated substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016205070A JP2019214479A (en) 2016-10-19 2016-10-19 Substrate with film, and method for manufacturing substrate with film

Publications (1)

Publication Number Publication Date
JP2019214479A true JP2019214479A (en) 2019-12-19

Family

ID=62018318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016205070A Pending JP2019214479A (en) 2016-10-19 2016-10-19 Substrate with film, and method for manufacturing substrate with film

Country Status (2)

Country Link
JP (1) JP2019214479A (en)
WO (1) WO2018074049A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9806027D0 (en) * 1998-03-20 1998-05-20 Glaverbel Coated substrate with high reflectance
GB0021396D0 (en) * 2000-09-01 2000-10-18 Pilkington Plc Process for coating glass
WO2015076210A1 (en) * 2013-11-19 2015-05-28 旭硝子株式会社 Thin film formation method and coated glass

Also Published As

Publication number Publication date
WO2018074049A1 (en) 2018-04-26

Similar Documents

Publication Publication Date Title
US10358383B2 (en) Wear-resistant liquid-based coatings for glass
US8153265B2 (en) Coated substrate and process for the production of a coated substrate
CN106348579A (en) Asymmetrically formed thin glass pane chemically strengthened on both surface sides, method for the production thereof and use thereof
US9023480B2 (en) Glass substrate for chemical strengthening, and method for producing same
TW201331142A (en) Method for reducing warping of glass substrate caused by chemically toughening treatment, and method for producing chemically toughened glass substrate
KR20020055591A (en) Transparent substrate provided with a silicon derivative layer
TW201504165A (en) Method for reducing warpage of glass substrate by chemical strengthening treatment, and chemically strengthened glass and method for producing same
EP0579706B1 (en) Window coating with low haze
EA036427B1 (en) Method for making a chemically strengthened glass substrate with controlled curvature
TWI692458B (en) Glass sheet capable of having controlled warping through chemical strengthening
JP2017122012A (en) Glass member
US10287676B2 (en) Thin film formation method, thin film, and glass plate having thin film attached thereto
JP2019214479A (en) Substrate with film, and method for manufacturing substrate with film
US20230202912A1 (en) Method of making a reflective coated glass article
US20220153635A1 (en) Glass article having an anti-reflective coating
WO2001055043A1 (en) Low emissivity glass