JP2019206986A - Rolling bearing, and manufacturing method of rolling bearing - Google Patents
Rolling bearing, and manufacturing method of rolling bearing Download PDFInfo
- Publication number
- JP2019206986A JP2019206986A JP2018101673A JP2018101673A JP2019206986A JP 2019206986 A JP2019206986 A JP 2019206986A JP 2018101673 A JP2018101673 A JP 2018101673A JP 2018101673 A JP2018101673 A JP 2018101673A JP 2019206986 A JP2019206986 A JP 2019206986A
- Authority
- JP
- Japan
- Prior art keywords
- residual stress
- compressive residual
- rolling bearing
- bearing
- outer ring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Rolling Contact Bearings (AREA)
- Heat Treatment Of Articles (AREA)
Abstract
Description
本発明は、転がり軸受及び転がり軸受の製造方法に関する。 The present invention relates to a rolling bearing and a method for manufacturing a rolling bearing.
転がり軸受の寿命は、ISO等の標準規格で定められており、規定された期間まで寿命を確保することが求められている。軸受の寿命は、はく離に左右されることが多く、例えば使用時に異物等が混入する場合、異物の噛み込みによって生成した圧痕を起点としてはく離が生じる。また、同じメカニズムにより、枯渇潤滑環境下では、ピーリングと呼ばれる微小連続はく離が生じる。このようなはく離は、良好な潤滑環境下で生じるはく離に比べて短寿命である。このため、例えば、浸炭窒化などの熱処理を利用して、表面の残留オーステナイトを増加させることで、寿命延長を図ってきた。また、異物の混入を原因とする場合には、シールの構造を工夫し、そもそも異物が軸受内に侵入しがたい構造にすることが極めて有効である。このため、異物が混入する原因を排除することによっても対策がとられている。このような対策は、特に、自動車トランスミッション用軸受のように、ギアなどの他の部品と潤滑油を共有することで、異物の混入が避けられない場合や、潤滑油が軸受の都合だけで決定できない場合に有効である。 The life of a rolling bearing is determined by a standard such as ISO, and it is required to ensure the life until a specified period. The life of a bearing is often influenced by peeling. For example, when foreign matter or the like is mixed during use, peeling occurs from an indentation generated by the biting of the foreign matter. In addition, by the same mechanism, minute continuous peeling called peeling occurs in a depleted lubrication environment. Such peeling has a shorter life compared to peeling that occurs in a good lubricating environment. For this reason, for example, the lifetime has been extended by increasing the retained austenite on the surface by using a heat treatment such as carbonitriding. In addition, in the case where contamination is caused by foreign matters, it is extremely effective to devise a seal structure so that foreign matters do not easily enter the bearing. For this reason, measures are also taken by eliminating the cause of contamination. Such countermeasures are determined especially when the lubricant is shared with other parts such as gears, such as automobile transmission bearings. It is effective when it is not possible.
一方、軸受は、基本的には軸受に適した良好な潤滑環境下で使用されることが推奨されており、一般的な用途ではこれが通常である。このような用途の軸受としては、例えばHUBや電動機の軸受が挙げられる。良好な潤滑環境下では、寿命は良好となり、これは、製鋼段階で生じる非金属介在物(以下、単に「介在物」とも称する。)を極限まで低減させた結果得られたものである。ただし、このような介在物は完全に除去することは大量生産を行う上ではほぼ不可能であり、上記に示したように外部要因による短寿命の対策がとられてきたことで介在物を起点としたはく離への更なる対策が求められている。 On the other hand, bearings are basically recommended to be used in a good lubrication environment suitable for bearings, and this is normal for general applications. Examples of such bearings include HUB and electric motor bearings. Under a good lubricating environment, the service life is good, which is obtained as a result of reducing the nonmetallic inclusions (hereinafter also simply referred to as “inclusions”) generated in the steelmaking stage to the limit. However, it is almost impossible to completely remove such inclusions in mass production, and as mentioned above, the countermeasures for short life due to external factors have been taken. There is a need for further measures against peeling.
前述のように介在物は、製鋼時に発生する不可避の不純物であり、これを全く無くすることは現状の量産工程ではほぼ不可能である。そこで、材料中の介在物の個数を極力少なくすることで、はく離を抑える技術が提案されている。例えば、特許文献1には、被検面積320mm2に存在する厚さ1μm以上の硫化物系介在物の個数と、酸化物系介在物の最大径を10μm以下に制御することにより、長寿命化した軸受用鋼が開示されている。また、特許文献2には、被検面積320mm2に存在する酸化物系介在物を100個〜200個に規定し、更に不純物元素であるSb量を規定して長寿命化した軸受用鋼が開示されている。
As described above, inclusions are inevitable impurities generated during steelmaking, and it is almost impossible to eliminate them completely in the current mass production process. In view of this, a technique has been proposed in which the number of inclusions in the material is reduced as much as possible to suppress separation. For example, Patent Document 1 discloses that the number of sulfide inclusions having a thickness of 1 μm or more existing in a test area of 320 mm 2 and the maximum diameter of oxide inclusions are controlled to 10 μm or less, thereby extending the life. A bearing steel is disclosed.
しかしながら、特許文献1,2のように、微小な被検面積での介在物の個数や大きさを規定しても、実際の軸受においては、高い応力が加わる部分に存在する最大の介在物を起点として剥離が生じるため、剥離寿命が予想外に早まることがある。特に、軸受の軌道面表層に存在する最大の介在物を起点として、亀裂が発生及び進展して生じるはく離である、表層起点型のはく離に対しては、有効な効果が期待できない。
そこで、本発明は、上記の課題に着目してなされたものであり、例えば、HUBや電動機用軸受などの、他の部品と潤滑油を共有しない軸受において、表層起点型のはく離を抑制することができる、転がり軸受及び転がり軸受の製造方法を提供することを目的としている。なお、ここで述べている表層起点型のはく離とは、表面にその一部が露出している介在物からのはく離はもちろんのこと、これと同等とみなせる、位置に存在する介在物からのはく離を示す。すなわち、表層起点型のはく離とは、最大せん断応力深さよりも浅い位置に存在する介在物を起点としたはく離である。
However, as in
Therefore, the present invention has been made paying attention to the above-mentioned problems, and for example, suppresses surface layer-type separation in bearings that do not share lubricating oil with other components such as HUBs and motor bearings. It is an object of the present invention to provide a rolling bearing and a method for manufacturing the rolling bearing. It should be noted that the surface-origin type peeling described here is not only the peeling from the inclusions partially exposed on the surface, but also the peeling from the inclusions existing at the position that can be regarded as equivalent to this. Indicates. That is, the surface layer origin-type separation is a separation starting from an inclusion existing at a position shallower than the maximum shear stress depth.
本発明の一態様によれば、内輪と外輪との間に転動体を転動自在に保持してなり、他の部品と潤滑油を共有しない転がり軸受であって、上記内輪及び上記外輪の軌道面の表層に、圧縮残留応力が付与されていることを特徴とする転がり軸受が提供される。
本発明の一態様によれば、内輪と外輪との間に転動体を転動自在に保持してなり、他の部品と潤滑油を共有しない転がり軸受の製造方法であって、上記内輪及び上記外輪に焼入れ焼戻し処理を施した後、上記内輪及び上記外輪の軌道面に、圧縮残留応力を付与することを特徴とする転がり軸受の製造方法が提供される。
According to one aspect of the present invention, a rolling bearing is provided that freely rolls between an inner ring and an outer ring and does not share lubricating oil with other parts, and the races of the inner ring and the outer ring. There is provided a rolling bearing characterized in that a compressive residual stress is applied to a surface layer of the surface.
According to one aspect of the present invention, there is provided a method of manufacturing a rolling bearing in which a rolling element is rotatably held between an inner ring and an outer ring and does not share lubricating oil with other components, the inner ring and the A rolling bearing manufacturing method is provided, in which after the outer ring is quenched and tempered, compressive residual stress is applied to the raceways of the inner ring and the outer ring.
本発明の一態様によれば、例えば、HUBや電動機用軸受などの、他の部品と潤滑油を共有しない軸受において、表層起点型のはく離を抑制することができる、転がり軸受及び転がり軸受の製造方法が提供される。 According to one aspect of the present invention, for example, in a bearing that does not share lubricating oil with other components such as a HUB and a motor bearing, the rolling bearing and the rolling bearing can be manufactured that can suppress the separation of the surface-origin type. A method is provided.
以下の詳細な説明では、本発明の完全な理解を提供するように、本発明の実施形態を例示して多くの特定の細部について説明する。しかしながら、かかる特定の細部の説明がなくても1つ以上の実施態様が実施できることは明らかである。また、図面は、簡潔にするために、周知の構造及び装置が略図で示されている。 In the following detailed description, numerous specific details are set forth, illustrating embodiments of the present invention, in order to provide a thorough understanding of the present invention. It will be apparent, however, that one or more embodiments may be practiced without such specific details. In the drawings, for the sake of brevity, well-known structures and devices are schematically shown.
<転がり軸受>
本発明の一実施形態に係る転がり軸受について、図1及び図2を参照して説明する。本実施形態に係る転がり軸受は、内輪と外輪との間に転動体を転動自在に保持してなる転がり軸受であり、種類や構成に制限はない。例えば、転がり軸受としては、ラジアル玉軸受やラジアル円すいころ軸受を対象とすることができる。図1には、転がり軸受の一例として、ラジアル玉軸受1を示す。ラジアル玉軸受1は、内周面に外輪軌道21を有する外輪2と、外周面に内輪軌道31を有する内輪3と、これら外輪軌道21と内輪軌道31との間に、円環状の冠型の保持器4に保持された状態で転動自在に設けられ、それぞれが転動体である複数の玉5とを備える。
<Rolling bearing>
A rolling bearing according to an embodiment of the present invention will be described with reference to FIGS. 1 and 2. The rolling bearing according to the present embodiment is a rolling bearing in which a rolling element is movably held between an inner ring and an outer ring, and there is no limitation on the type or configuration. For example, as a rolling bearing, a radial ball bearing or a radial tapered roller bearing can be targeted. FIG. 1 shows a radial ball bearing 1 as an example of a rolling bearing. The radial ball bearing 1 includes an
また、本実施形態に係る転がり軸受は、軸受以外の他の部品と潤滑油を共有しない軸受である。他の部品と潤滑油を共有しない軸受とは、例えば、HUBや電動機用軸受、シール又はシールド板付きの密封転がり軸受、良好な潤滑環境下に使用される密封装置を備えない転がり軸受が含まれる。このような軸受は、良好な潤滑環境下で用いられ、他の部品と潤滑油を共有していないため、異物の混入がほぼ生じない。 In addition, the rolling bearing according to the present embodiment is a bearing that does not share lubricating oil with other parts other than the bearing. Examples of bearings that do not share lubricating oil with other components include HUB and motor bearings, sealed rolling bearings with seals or shield plates, and rolling bearings that do not have a sealing device used in a good lubricating environment. . Such a bearing is used in a good lubrication environment and does not share lubricating oil with other components, so that almost no foreign matter is mixed therein.
さらに、未使用(新品)の状態において、転がり軸受の軌道面表層には、圧縮残留応力が付与されている。転がり軸受の軌道面から圧縮残留応力が付与されている深さは、表層起点型のはく離抑制のために対象とされる介在物(以下、単に「対象とする介在物」とも称する。)の最大径に応じて設定され、対象とする介在物の最大径の少なくとも50%以上とすることが好ましい。例えば、対象とする介在物の最大径が100μmである場合、軌道面の表面から深さが50μmの領域に圧縮残留応力が付与される。なお、表層起点型のはく離を抑制する観点からは、圧縮残留応力を付与する深さが上記の範囲よりも深くなっても問題はないが、圧縮残留応力を付与するための加工に掛かるコストが増大する。このため、表層起点型のはく離を抑制する効果と、加工に掛かるコストとの両方の観点から、圧縮残留応力が付与される深さが決定されることが好ましい。 Furthermore, in an unused (new) state, compressive residual stress is applied to the raceway surface layer of the rolling bearing. The depth to which the compressive residual stress is applied from the raceway surface of the rolling bearing is the maximum of inclusions targeted for surface layer-type separation control (hereinafter also simply referred to as “target inclusions”). It is set according to the diameter, and is preferably at least 50% or more of the maximum diameter of the target inclusion. For example, when the maximum diameter of the target inclusion is 100 μm, compressive residual stress is applied to a region having a depth of 50 μm from the surface of the raceway surface. In addition, from the viewpoint of suppressing delamination of the surface layer starting type, there is no problem even if the depth for applying compressive residual stress is deeper than the above range, but the cost for processing for applying compressive residual stress is high. Increase. For this reason, it is preferable to determine the depth to which the compressive residual stress is applied, from the viewpoints of both the effect of suppressing surface layer-type separation and the cost of processing.
なお、対象とする介在物の最大径は、100μm以下の範囲の値とすることが好ましい。最大径が100μm以下となる介在物は、一般的な軸受の検査において、ある確率で不可避的に混入する可能性があるものであり、この介在物を軌道面の表層から完全に除いた軸受鋼の製造は、検査の精度やコストの観点から大変難しいものとなる。一方、100μm超の径の介在物は、一般的な軸受の検査において精度よく検出することが可能なものである。 In addition, it is preferable that the maximum diameter of the inclusions to be targeted is a value in the range of 100 μm or less. Inclusions with a maximum diameter of 100 μm or less may be inevitably mixed at a certain probability in general bearing inspections. Bearing steel in which these inclusions are completely removed from the surface layer of the raceway surface. This is very difficult in terms of inspection accuracy and cost. On the other hand, inclusions having a diameter of more than 100 μm can be detected with high accuracy in a general bearing inspection.
さらに、未使用の状態において、転がり軸受の軌道面表層には、対象とする介在物の最大径に応じて、表面からの所定の深さに、圧縮残留応力が最大(絶対値で最大)となるピークを持つ分布で圧縮残留応力が付与されることが好ましい。所定の深さは、介在物の最大径の40%以上60%以下の深さであることが好ましく、50%程度の深さであることがより好ましい。図2には、転がり軸受の軌道面表層の圧縮残留応力の好ましい分布の一例を示す。図2において、横軸は転がり軸受の軌道面表層における軌道面表面からの深さ方向への位置を示し、縦軸は圧縮残留応力を示す。対象とする介在物の最大径の50%となる50μmの深さにおいて、最大となるピークをとるように、圧縮残留応力が付与される。介在物の最大径の50%の深さに圧縮残留応力のピークを持つような圧縮の残留応力分布とすることで、介在物の周りから発生する亀裂の発生および伝播を抑制することが可能となる。このため、表層、すなわち最大せん断応力深さより浅い位置に存在する介在物による、はく離の発生を抑制することが可能となる。すなわち、図2に例示するような、圧縮残留応力のピークとすることが好ましい。 Further, in the unused state, the surface of the raceway surface of the rolling bearing has a maximum compressive residual stress (maximum in absolute value) at a predetermined depth from the surface according to the maximum diameter of the target inclusion. It is preferable that the compressive residual stress is applied in a distribution having a peak. The predetermined depth is preferably 40% or more and 60% or less of the maximum diameter of the inclusion, and more preferably about 50%. FIG. 2 shows an example of a preferable distribution of the compressive residual stress on the raceway surface layer of the rolling bearing. In FIG. 2, the horizontal axis indicates the position in the depth direction from the raceway surface in the raceway surface layer of the rolling bearing, and the vertical axis indicates the compressive residual stress. Compressive residual stress is applied so as to have a maximum peak at a depth of 50 μm, which is 50% of the maximum diameter of the target inclusion. By creating a compressive residual stress distribution that has a compressive residual stress peak at a depth of 50% of the maximum diameter of the inclusions, it is possible to suppress the generation and propagation of cracks from around the inclusions. Become. For this reason, it becomes possible to suppress generation | occurrence | production of peeling by the surface layer, ie, the inclusion which exists in a position shallower than the maximum shear stress depth. That is, it is preferable to have a peak of compressive residual stress as illustrated in FIG.
<転がり軸受の製造方法>
次に、本実施形態に係る転がり軸受の製造方法について説明する。本実施形態では、まず、素材である鋼材を、製品形状に応じた所定の形状に加工し、焼入れ焼戻し処理を施すことで、内輪、外輪及び転動体とする。鋼材としては、例えばSUJ2やSUJ3などの汎用の軸受鋼を用いることができる。なお、後述する本実施形態の処理によって導入される残留応力の大きさは、一般的な熱処理によって導入される値より大きく、浸炭や浸炭窒化などの表面硬化型の熱処理を用いた場合にでも有用であり、一般的に軸受に用いられる鋼材や熱処理であれば適用が可能である。とくに浸炭鋼では母材の炭素量が低いことから、軸受鋼に比べて鋼材の介在物が大きくなる傾向があり、本手法の効果が期待できる。
<Rolling bearing manufacturing method>
Next, the manufacturing method of the rolling bearing which concerns on this embodiment is demonstrated. In the present embodiment, first, a steel material, which is a material, is processed into a predetermined shape according to the product shape, and subjected to quenching and tempering treatment to obtain an inner ring, an outer ring, and a rolling element. As the steel material, for example, general-purpose bearing steel such as SUJ2 or SUJ3 can be used. In addition, the magnitude of the residual stress introduced by the process of the present embodiment described later is larger than the value introduced by a general heat treatment, and is useful even when using a surface hardening type heat treatment such as carburizing or carbonitriding. It can be applied to any steel material or heat treatment generally used for bearings. In particular, carburized steel has a low carbon content of the base material, and therefore there is a tendency for the inclusions in the steel material to be larger than in bearing steel, and the effect of this method can be expected.
次いで、内輪及び外輪(総称して「軌道輪」とも称する。)の軌道面表層に、圧縮残留応力を付与する。圧縮残留応力の付与は、最終的に製造される軌道輪の軌道面表層に、付与する深さや分布などの上述の条件の圧縮残留応力が付与可能であれば、どのような方法が用いられてもよい。圧縮残留応力の付与方法としては、例えば、ショットピーニングやローラバニシングを用いることができる。ショットピーニングを用いる場合、目的とする圧縮残留応力の条件となるように、衝突させる投射材の大きさや材質、速度などの処理条件が適宜設定される。また、ローラバニシングを用いる場合、軌道輪の軌道面の形状に合わせたローラを、軌道輪の軌道面に圧縮回転接触させ、軌道面に微小な塑性変形与える。この場合、目的とする圧縮残留応力の条件となるように、用いるローラの素材や転圧などのローラバニシングの処理条件が適宜設定される。図3には、ローラバニシングの一例として、高硬度の球状のボール61が先端に設けられたローラバニシング装置6を用いて、ラジアル玉軸受1の外輪2の外輪軌道21に残留応力を付与する模式図を示す。図3に示す例では、外輪2を自身の軸心を中心に回転させながら、外輪2の内周面である外輪軌道21にボール61を押し当て、外輪軌道21にボール61を圧縮接触させた状態で、ローラバニシング装置6を外輪2の内周面の形状に応じて、この内周面の母線方向に沿って移動させることで、ローラバニシング装置6による圧縮残留応力の付与が行われる。
Next, compressive residual stress is applied to the raceway surface layer of the inner ring and the outer ring (also collectively referred to as “track ring”). For applying compressive residual stress, any method can be used as long as compressive residual stress of the above conditions such as the depth and distribution to be applied can be applied to the raceway surface layer of the finally produced raceway ring. Also good. As a method for applying the compressive residual stress, for example, shot peening or roller burnishing can be used. When shot peening is used, processing conditions such as the size, material, and speed of the projection material to be collided are appropriately set so as to satisfy the target compressive residual stress condition. Further, when roller burnishing is used, a roller matching the shape of the raceway surface of the raceway is brought into compression-rotation contact with the raceway surface of the raceway ring to give a minute plastic deformation to the raceway surface. In this case, the roller burnishing processing conditions such as the material of the roller to be used and the rolling pressure are appropriately set so as to satisfy the target compressive residual stress condition. In FIG. 3, as an example of roller burnishing, a model for applying residual stress to the
圧縮残留応力の付与が行われた後、必要に応じて軌道輪の仕上げ加工が行われる。仕上げ加工では、圧縮残留応力を付与した軌道面を滑らかにするため、切削加工や研磨加工が行われる。特に、ショットピーニングを用いて圧縮残留応力を付与した場合には、軌道面に凹凸があるため、例えば、軌道面を30μm〜40μm程度切削する仕上げ加工が行われる。また、ローラバニシングを用いて圧縮残留応力を付与して、軌道面が十分に滑らかな場合には、仕上げ加工が行われなくてもよい。さらに、必要に応じて、仕上げ加工の前に、軌道輪に対して焼戻しなどの熱処理が施されてもよい。
そして、上述の方法で製造された軌道輪及び転動体、並びに別に作成された汎用的な保持器を組み合わせることで、製品となる転がり軸受が製造される。
After the application of the compressive residual stress, the finishing of the raceway is performed as necessary. In the finishing process, a cutting process or a polishing process is performed to smooth the raceway surface to which the compressive residual stress is applied. In particular, when compressive residual stress is applied using shot peening, since the raceway surface is uneven, for example, a finishing process of cutting the raceway surface by about 30 μm to 40 μm is performed. Further, when compressive residual stress is applied using roller burnishing and the raceway surface is sufficiently smooth, finishing may not be performed. Further, if necessary, heat treatment such as tempering may be performed on the raceway before finishing.
And the rolling bearing used as a product is manufactured by combining the bearing ring and rolling element manufactured by the above-mentioned method, and the general purpose holder produced separately.
<変形例>
以上で、特定の実施形態を参照して本発明を説明したが、これら説明によって発明を限定することを意図するものではない。本発明の説明を参照することにより、当業者には、開示された実施形態とともに種々の変形例を含む本発明の別の実施形態も明らかである。従って、特許請求の範囲に記載された発明の実施形態には、本明細書に記載したこれらの変形例を単独または組み合わせて含む実施形態も網羅すると解すべきである。
<Modification>
Although the present invention has been described above with reference to specific embodiments, it is not intended that the present invention be limited by these descriptions. By referring to the description of the present invention, other embodiments of the present invention will be apparent to those skilled in the art, including various modifications along with the disclosed embodiments. Therefore, it should be understood that the embodiments of the present invention described in the claims also include embodiments including these modifications described in the present specification alone or in combination.
例えば、上記実施形態では、圧縮残留応力を付与する方法の一例として、ショットピーニングまたはローラバニシングを用いたが、本発明はかかる例に限定されない。目的とする条件の圧縮残留応力を付与可能な方法であれば、他の方法を用いて圧縮残留応力を付与してもよい。なお、圧縮残留応力は、軌道面表層のみに付与することが好ましいため、ショットピーニングやローラバニシングのように、軌道面表層に機械的に圧縮残留応力を付与する方法が好ましい。 For example, in the above embodiment, shot peening or roller burnishing is used as an example of a method for applying compressive residual stress, but the present invention is not limited to such an example. Other methods may be used to apply the compressive residual stress as long as the method can apply the compressive residual stress of the target condition. Since it is preferable to apply the compressive residual stress only to the raceway surface layer, a method of mechanically applying the compressive residual stress to the raceway surface layer, such as shot peening or roller burnishing, is preferable.
<実施形態の効果>
(1)本発明の一態様に係る転がり軸受は、内輪と外輪との間に転動体を転動自在に保持してなり、他の部品と潤滑油を共有しない転がり軸受であって、内輪及び外輪の軌道面の表層に、圧縮残留応力が付与されている。
上記(1)の構成によれば、軌道面表層に圧縮残留応力を付与することにより、軌道面表層の介在物を起点とする亀裂の進展を抑えることができ、表層起点型のはく離の発生を抑制することができる。これにより、転がり軸受の長寿命化を図ることができる。特に、最大径が大きな介在物がある確率で不可避的に含まれる、グレードの低い転がり軸受では、突発的に発生する表層起点型のはく離が問題となる。しかし、軌道面表層に圧縮残留応力を付与することで、このようなグレードの低い転がり軸受を、安定した寿命で使用することができるようになる。
<Effect of embodiment>
(1) A rolling bearing according to an aspect of the present invention is a rolling bearing in which a rolling element is movably held between an inner ring and an outer ring, and does not share lubricating oil with other components. A compressive residual stress is applied to the surface layer of the raceway surface of the outer ring.
According to the configuration of (1) above, by applying compressive residual stress to the raceway surface layer, it is possible to suppress the progress of cracks starting from the inclusions on the raceway surface layer, and to prevent the occurrence of delamination of the surface layer type. Can be suppressed. Thereby, the lifetime of a rolling bearing can be extended. In particular, in a low-grade rolling bearing that is inevitably included with the probability that there is an inclusion having a large maximum diameter, the surface-origin type separation that occurs suddenly becomes a problem. However, by applying compressive residual stress to the surface of the raceway surface, it becomes possible to use such a low-grade rolling bearing with a stable life.
(2)上記(1)の構成において、軌道面の表面からの深さ方向への圧縮残留応力の分布は、軌道面の表面から40μm以上60μm以下の深さに、圧縮残留応力が最大となるピークが位置する。
上記(2)の構成によれば、最大径が100μm程度以下の介在物を起点とした、表層起点型のはく離の発生を抑制することができる。
(2) In the configuration of (1), the distribution of compressive residual stress in the depth direction from the surface of the raceway surface is such that the compressive residual stress is maximum at a depth of 40 μm or more and 60 μm or less from the surface of the raceway surface. The peak is located.
According to the configuration of (2) above, it is possible to suppress the occurrence of delamination of the surface layer starting type starting from inclusions having a maximum diameter of about 100 μm or less.
(3)本発明の一態様に係る転がり軸受の製造方法は、内輪と外輪との間に転動体を転動自在に保持してなり、他の部品と潤滑油を共有しない転がり軸受の製造方法であって、内輪及び外輪に焼入れ焼戻し処理を施した後、内輪及び外輪の軌道面に、圧縮残留応力を付与する。
上記(3)の構成によれば、上記(1)の構成と同様な効果を得ることができる。
(3) A rolling bearing manufacturing method according to an aspect of the present invention is a rolling bearing manufacturing method in which a rolling element is rotatably held between an inner ring and an outer ring, and the lubricating oil is not shared with other components. In this case, after quenching and tempering the inner ring and the outer ring, compressive residual stress is applied to the raceways of the inner ring and the outer ring.
According to the configuration of (3) above, the same effect as the configuration of (1) can be obtained.
(4)上記(3)の構成において、軌道面に圧縮残留応力を付与する際に、軌道面の表面から、介在物の最大径の40%以上60%以下の深さに、圧縮残留応力が最大となるピークが位置するように、圧縮残留応力を付与する
上記(4)の構成によれば、対象とする介在物の最大径に応じて、適切な深さに圧縮残留応力を付与することができる。圧縮残留応力を付与する深さが、深いほどより大きな径の介在物を起点とする表層起点型のはく離の発生を抑制することができる。しかしながら、圧縮残留応力を付与する深さが深くなるほど、加工に掛かる時間やコストが増大する傾向となる。このため、素材の違いや軸受鋼のグレード(品質)の違いに応じて、対象とする介在物の最大径を変え、それに応じて適切な深さに圧縮残留応力を付与することで、表層起点型のはく離の発生を抑制と、転がり軸受の製造に掛かるコストの低減とを両立することができる。
(4) In the configuration of (3) above, when compressive residual stress is applied to the raceway surface, the compressive residual stress is from the surface of the raceway surface to a depth of 40% to 60% of the maximum diameter of inclusions. Applying compressive residual stress so that the maximum peak is located According to the configuration of (4) above, applying compressive residual stress to an appropriate depth according to the maximum diameter of the inclusions of interest Can do. The deeper the depth to which compressive residual stress is applied, the more the occurrence of delamination of the surface layer starting type starting from inclusions having a larger diameter can be suppressed. However, as the depth for applying the compressive residual stress increases, the time and cost for processing tend to increase. For this reason, depending on the difference in materials and the grade (quality) of bearing steel, the maximum diameter of the inclusions targeted is changed, and by applying compressive residual stress to the appropriate depth accordingly, the surface origin It is possible to achieve both suppression of mold peeling and reduction of cost for manufacturing a rolling bearing.
(5)上記(4)の構成において、介在物の最大径を100μm以下の範囲の値とする。
上記(5)の構成によれば、一般的な軸受の検査において、ある確率で不可避的に混入する可能性がある大きさの介在物を起点とする、表層起点型のはく離の発生を抑制することができる。
(5) In the configuration of (4) above, the maximum diameter of inclusions is set to a value in the range of 100 μm or less.
According to the configuration of the above (5), in a general bearing inspection, it is possible to suppress the occurrence of delamination of the surface layer starting type starting from inclusions of a size that may be inevitably mixed with a certain probability. be able to.
次に、本発明者らが行った実施例について説明する。実施例では、圧縮残留応力による、軸受の軌道面表層に存在する介在物を起点とする亀裂の進展を抑制する効果の検証を行った。
実施例では、圧縮残留応力を付与する方法としてショットピーニングを用いて、製造条件の異なる実施例1及び実施例2の2条件で転がり軸受を製造した。
Next, examples performed by the present inventors will be described. In the examples, the effect of suppressing the progress of cracks starting from inclusions present on the bearing surface of the bearing due to compressive residual stress was examined.
In the example, the rolling bearing was manufactured under the two conditions of Example 1 and Example 2 with different manufacturing conditions by using shot peening as a method of applying compressive residual stress.
実施例1では、軸受鋼であるSUJ2を素材として軌道輪及び転動体を作成し、焼入れ焼戻しを行った。その後、軌道輪に対して、ショットピーニングを施し、仕上げ加工することで転がり軸受を製造した。
実施例2では、実施例1と同様に、軸受鋼であるSUJ2を素材として軌道輪及び転動体を作成し、焼入れ焼戻しを行った。その後、軌道輪に対して、ショットピーニングを施し、焼戻し(240℃×2h)を行った後、仕上げ加工することで転がり軸受を製造した。
In Example 1, bearing rings and rolling elements were made from SUJ2 which is a bearing steel, and quenched and tempered. After that, the bearings were shot peened and finished to produce rolling bearings.
In Example 2, similarly to Example 1, bearing rings and rolling elements were made from SUJ2 which is bearing steel, and quenched and tempered. Thereafter, the bearing ring was shot peened, tempered (240 ° C. × 2 h), and then finished to produce a rolling bearing.
また、実施例では比較として、軌道輪に圧縮残留応力を付与しない条件でも転がり軸受を製造した(比較例)。比較例では、実施例1と同様に、軸受鋼であるSUJ2を素材として軌道輪及び転動体を作成し、焼入れ焼戻しを行った。その後、ショットピーニングを施さずに、実施例1と同様に仕上げ加工を行うことで転がり軸受を製造した。
図4及び表1に、実施例1,2及び比較例の転がり軸受の軌道面における、軌道面表面から200μmの深さの位置まで圧縮残留応力の、X線回折による測定結果を示す。図4及び表1に示すように、実施例1,2の条件では、仕上げ加工後においても、100μm以上の深さまで圧縮残留応力が付与されることが確認できた。また、実施例1と実施例2とでは、ショットピーニング後の焼戻しの有無の違いにより、圧縮残留応力の分布が異なることが確認できた。また、表1に示す結果によると、軌道面の表面からの深さ方向への圧縮残留応力の分布に関しては、軌道面の表面から40μm以上60μm以下の深さに、圧縮残留応力が最大となるピークが位置することがわかった。即ち、実施例1,2では、50μmの深さにおいて、圧縮残留応力が最大となっている。
Further, in the examples, as a comparison, a rolling bearing was manufactured even under a condition in which compressive residual stress was not applied to the race (comparative example). In the comparative example, similarly to Example 1, bearing rings and rolling elements were made from SUJ2 which is bearing steel, and quenching and tempering were performed. Then, the rolling bearing was manufactured by performing finish processing similarly to Example 1 without performing shot peening.
FIG. 4 and Table 1 show the measurement results by X-ray diffraction of the compressive residual stress from the raceway surface to a depth of 200 μm in the raceway surfaces of the rolling bearings of Examples 1 and 2 and the comparative example. As shown in FIG. 4 and Table 1, it was confirmed that under the conditions of Examples 1 and 2, compressive residual stress was applied to a depth of 100 μm or more even after finishing. Moreover, it was confirmed that the distribution of compressive residual stress differs between Example 1 and Example 2 depending on the presence or absence of tempering after shot peening. Further, according to the results shown in Table 1, with respect to the distribution of the compressive residual stress in the depth direction from the surface of the raceway surface, the compressive residual stress is maximized at a depth of 40 μm or more and 60 μm or less from the surface of the raceway surface. It was found that the peak was located. That is, in Examples 1 and 2, the compressive residual stress is maximum at a depth of 50 μm.
さらに、実施例では、実施例1,2及び比較例の条件で製造した転がり軸受について、人工欠陥を軌道面表面に付与し、転がり疲れ寿命試験を実施した。寿命試験では、転がり軸受の剥離強度を定量化するため、軸受軌道面に微小ドリル穴を付与し、ドリル穴エッジ部から亀裂を発生進展させ評価した報告(橋本ら,「転がり軸受のはく離強度に及ぼす微小欠陥寸法の影響(第2報:応力拡大係数に基づくドリル穴を有する転がり軸受のはく離強度評価)」,日本機械学会論文集,Vol.83,No.852(2017),P1-P12)と同様な方法を用いて試験を行った。具体的には、人工欠陥として、軸受の軌道面表層の、半球形状の表面介在物(直径Φ100μm,深さ50μm)を模擬するためφ100×50μmのサイズのドリル穴を、軌道面に付与した。つまり、実施例では、介在物の最大径が、穴の直径に相当する。また、寿命試験は下記の条件で実施した。なお、寿命試験においては、異物の混入は極力排除したうえで、はく離が生じた試験片において、圧痕を起点としたはく離が生じた場合、これを結果から排除した。
(転がり疲れ寿命試験条件)
試験荷重:650kgf
回転数:1000min−1
打ち切り:1000h
Furthermore, in the examples, for the rolling bearings manufactured under the conditions of Examples 1 and 2 and the comparative example, artificial defects were imparted to the raceway surface, and a rolling fatigue life test was performed. In the life test, in order to quantify the peel strength of rolling bearings, a report was given in which micro drill holes were provided on the bearing raceway surface and cracks were generated and evaluated from the edge of the drill hole (Hashimoto et al., “ Effect of micro-defect size (2nd report: Evaluation of peel strength of rolling bearings with drill holes based on stress intensity factor) ", Transactions of the Japan Society of Mechanical Engineers, Vol.83, No.852 (2017), P1-P12) The test was conducted using the same method as described above. Specifically, as an artificial defect, a drill hole having a size of φ100 × 50 μm was provided on the raceway surface in order to simulate a hemispherical surface inclusion (diameter Φ100 μm,
(Rolling fatigue life test conditions)
Test load: 650kgf
Rotational speed: 1000min -1
Discontinuation: 1000h
寿命試験の結果を、図5に示す。図5に示すように、比較例1比べて、実施例1及び実施例2が長寿命となることが確認でき、人工欠陥から生じる亀裂の進展抑制に、圧縮残留応力が有効であることが分かる。つまり、転がり軸受の軌道面表層に圧縮残留応力を付与することで、表層に存在する介在物を起点とした亀裂の進展が抑制され、剥離寿命が延長することが確認できた。 The result of the life test is shown in FIG. As shown in FIG. 5, it can be confirmed that Example 1 and Example 2 have a longer lifetime than Comparative Example 1, and it can be seen that compressive residual stress is effective in suppressing the progress of cracks caused by artificial defects. . That is, it was confirmed that by applying compressive residual stress to the raceway surface layer of the rolling bearing, the progress of cracks starting from inclusions existing in the surface layer was suppressed, and the peeling life was extended.
1 ラジアル玉軸受
2 外輪
21 外輪軌道
3 内輪
31 内輪軌道
4 保持器
5 玉
6 ローラバニシング装置
61 ボール
DESCRIPTION OF SYMBOLS 1
Claims (5)
前記内輪及び前記外輪の軌道面の表層に、圧縮残留応力が付与されていることを特徴とする転がり軸受。 A rolling bearing that is configured to hold a rolling element freely between an inner ring and an outer ring, and does not share lubricating oil with other parts,
A rolling bearing, wherein compressive residual stress is applied to the surface layer of the raceway surfaces of the inner ring and the outer ring.
前記内輪及び前記外輪に焼入れ焼戻し処理を施した後、前記内輪及び前記外輪の軌道面に、圧縮残留応力を付与することを特徴とする転がり軸受の製造方法。 A rolling bearing manufacturing method in which a rolling element is rotatably held between an inner ring and an outer ring, and does not share lubricating oil with other parts,
A method of manufacturing a rolling bearing, comprising applying a compressive residual stress to the raceways of the inner ring and the outer ring after the inner ring and the outer ring are quenched and tempered.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018101673A JP2019206986A (en) | 2018-05-28 | 2018-05-28 | Rolling bearing, and manufacturing method of rolling bearing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018101673A JP2019206986A (en) | 2018-05-28 | 2018-05-28 | Rolling bearing, and manufacturing method of rolling bearing |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2019206986A true JP2019206986A (en) | 2019-12-05 |
Family
ID=68767439
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018101673A Pending JP2019206986A (en) | 2018-05-28 | 2018-05-28 | Rolling bearing, and manufacturing method of rolling bearing |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2019206986A (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004116569A (en) * | 2002-09-24 | 2004-04-15 | Koyo Seiko Co Ltd | Rolling bearing |
JP2004263768A (en) * | 2003-02-28 | 2004-09-24 | Koyo Seiko Co Ltd | Rolling bearing member, and method for manufacturing rolling bearing member |
JP2009191280A (en) * | 2008-02-12 | 2009-08-27 | Nsk Ltd | Roller bearing and manufacturing method therefor |
US20130251298A1 (en) * | 2012-03-20 | 2013-09-26 | Aktiebolaget Skf | Rolling Element Bearing and Method of Making the Same |
US20140212082A1 (en) * | 2013-01-28 | 2014-07-31 | Aktiebolaget Skf | Rolling-element bearing and method of manufacturing thereof |
JP2015511692A (en) * | 2012-03-30 | 2015-04-20 | シェフラー テクノロジーズ ゲー・エム・ベー・ハー ウント コー. カー・ゲーSchaeffler Technologies GmbH & Co. KG | Rolling bearing parts |
-
2018
- 2018-05-28 JP JP2018101673A patent/JP2019206986A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004116569A (en) * | 2002-09-24 | 2004-04-15 | Koyo Seiko Co Ltd | Rolling bearing |
JP2004263768A (en) * | 2003-02-28 | 2004-09-24 | Koyo Seiko Co Ltd | Rolling bearing member, and method for manufacturing rolling bearing member |
JP2009191280A (en) * | 2008-02-12 | 2009-08-27 | Nsk Ltd | Roller bearing and manufacturing method therefor |
US20130251298A1 (en) * | 2012-03-20 | 2013-09-26 | Aktiebolaget Skf | Rolling Element Bearing and Method of Making the Same |
JP2015511692A (en) * | 2012-03-30 | 2015-04-20 | シェフラー テクノロジーズ ゲー・エム・ベー・ハー ウント コー. カー・ゲーSchaeffler Technologies GmbH & Co. KG | Rolling bearing parts |
US20140212082A1 (en) * | 2013-01-28 | 2014-07-31 | Aktiebolaget Skf | Rolling-element bearing and method of manufacturing thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2009229288A (en) | Testing method of rolling-contact fatigue life | |
JP2016196958A (en) | Rolling device and rolling bearing | |
JP2013160314A (en) | Rolling bearing | |
US11319994B2 (en) | Thrust roller bearing | |
JP4186568B2 (en) | Rolling bearing and method for manufacturing inner ring of rolling bearing | |
JP2010025311A (en) | Rolling bearing and method of manufacturing the same | |
JP2014122378A (en) | Rolling bearing | |
JP2013249500A (en) | Rolling bearing | |
JP2019206986A (en) | Rolling bearing, and manufacturing method of rolling bearing | |
JP2013241986A (en) | Rolling bearing | |
WO2019103039A1 (en) | Rolling part, bearing, and production method therefor | |
JP7517086B2 (en) | Thrust roller bearing | |
CN111373168B (en) | Rolling member, bearing, and method for manufacturing same | |
US11028880B2 (en) | Rolling bearing, rolling device, and method of manufacturing rolling device | |
JP7176646B2 (en) | Rolling bearing and its manufacturing method | |
JP2009174656A (en) | Rolling bearing | |
JP4333063B2 (en) | Grinding method for bearing parts | |
JP6964400B2 (en) | Manufacturing method of rolling bearings, rolling devices and rolling devices | |
JP7524531B2 (en) | Thrust roller bearing | |
JP2012241862A (en) | Rolling bearing | |
WO2016159137A1 (en) | Rolling device and rolling bearing | |
JP2009041652A (en) | Rolling bearing and its manufacturing method | |
JP2024157461A (en) | Test piece and rolling fatigue test method | |
JP2024018145A (en) | Method of manufacturing rolling sliding member | |
CN112005021A (en) | Rolling member, bearing, and method for manufacturing same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20190401 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210121 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220405 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220602 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220927 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20221109 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20230207 |