[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2019203727A - Weather prediction device, weather prediction method, and wind power generation output estimating device - Google Patents

Weather prediction device, weather prediction method, and wind power generation output estimating device Download PDF

Info

Publication number
JP2019203727A
JP2019203727A JP2018097632A JP2018097632A JP2019203727A JP 2019203727 A JP2019203727 A JP 2019203727A JP 2018097632 A JP2018097632 A JP 2018097632A JP 2018097632 A JP2018097632 A JP 2018097632A JP 2019203727 A JP2019203727 A JP 2019203727A
Authority
JP
Japan
Prior art keywords
wind
wind speed
distribution
representative
evaluation point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018097632A
Other languages
Japanese (ja)
Inventor
征史 深谷
Seiji Fukaya
征史 深谷
昌道 中村
Masamichi Nakamura
昌道 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2018097632A priority Critical patent/JP2019203727A/en
Publication of JP2019203727A publication Critical patent/JP2019203727A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Eletrric Generators (AREA)

Abstract

【課題】詳細地形の影響を考慮しつつ、多様な風況における評価地点の風速状態を高精度に予測する気象予測装置及び風力発電出力推定装置を提供する。【解決手段】大域における風況から評価地点を含む空間内の風速・風向分布を予測する大域風況解析部101と、大域風況解析部101で時刻ごとに得られた多数の風速・風向分布から、評価地点における高さ方向の代表的な風速分布を抽出する局所風況解析用の境界条件抽出部102と、局所風況解析用の境界条件抽出部102で得られた基準風向ごとの代表風速分布を境界条件とし、評価地点を含む空間内の風速・風向分布を予測する局所風況解析部103と、局所風況解析部103で予測した評価地点での風速分布と境界条件抽出部で求めた代表風速分布の比較により基準風向ごとに異なる補正係数を得る補正係数算出部104を備える。【選択図】図1PROBLEM TO BE SOLVED: To provide a meteorological prediction device and a wind power generation output estimation device for highly accurately predicting a wind speed state at an evaluation point in various wind conditions while considering the influence of detailed topography. SOLUTION: A global wind condition analysis unit 101 that predicts a wind speed / wind direction distribution in a space including an evaluation point from a wind condition in the global region, and a large number of wind speed / wind direction distributions obtained at each time by the global wind condition analysis unit 101. From the above, a boundary condition extraction unit 102 for local wind condition analysis that extracts a representative wind velocity distribution in the height direction at the evaluation point, and a representative for each reference wind direction obtained by the boundary condition extraction unit 102 for local wind condition analysis With the wind velocity distribution as the boundary condition, the local wind condition analysis unit 103 that predicts the wind velocity and wind direction distribution in the space including the evaluation point, and the wind velocity distribution at the evaluation point and the boundary condition extraction unit that are predicted by the local wind condition analysis unit 103 A correction coefficient calculation unit 104 that obtains a different correction coefficient for each reference wind direction by comparing the obtained representative wind speed distributions is provided. [Selection diagram] Figure 1

Description

本発明は、風況についての気象予測並びに予測結果を用いて風力発電出力を推定可能とする気象予測装置、気象予測方法、並びに風力発電出力推定装置に関する。   The present invention relates to a weather prediction device, a weather prediction method, and a wind power generation output estimation device capable of estimating wind power generation output using weather prediction and prediction results regarding wind conditions.

現在、風車の年間発電量は、気象予測モデルに基づいた風況解析結果に基づいて予測されている。例えば、気象モデルWRF(Weather research and forecast)、地域気象モデルRAMS(Regional Atmospheric Modeling System)といった数値シミュレータを用いて日本列島の約半分の領域を対象とするような大域の風況解析を行い、風車設置位置における風速変化を予測する。   Currently, the annual power generation of a windmill is predicted based on the results of wind conditions analysis based on a weather prediction model. For example, a wind turbine is analyzed in a large area using a numerical simulator such as a weather model WRF (Weather research and forecast) and a regional weather model RAMS (Regional Atmospheric Modeling System) to cover about half of the Japanese archipelago. Predict changes in wind speed at the installation location.

しかし、この大域風況解析では計算時間等の観点から地形の解像度を高めることに限界があり、また地表面でノンスリップ条件を与えられないため、特に地表から標高1000m程度までの範囲における大気境界層内の風速変化の予測精度は十分ではない。   However, in this global wind analysis, there is a limit to increasing the resolution of topography from the viewpoint of calculation time and the non-slip condition cannot be given on the ground surface, so the atmospheric boundary layer especially in the range from the ground surface to about 1000m above sea level. The prediction accuracy of the wind speed change is not enough.

そこで、高精度化の一手段として、大域風況解析結果を境界条件とし、非線形風況予測モデルMASCOT(Microclimate Analysis System Complex Terrain)やリアムコンパクトRIAM−COMPACT(登録商標。Research Institute for Applied Mechanics、 Kyushu University, COMputational Prediction of Airflow over Complex Terrain)といった別の数値シミュレータを用い、風車周辺数km以内の局所的な風況を予測する方法がある。この局所的な風況解析では、地形の解像度を高めることが可能であり、かつ地表面でノンスリップ条件を与えられるため、風車設置位置における風速変化を高精度に予測できる。   Therefore, as a means of improving accuracy, the global wind condition analysis result is used as a boundary condition, and a non-linear wind condition prediction model MASCOT (Microclimate Analysis System Complex Terrain) or Liam Compact RIAM-COMPACT (registered trademark: Research Institute for Applied Much). There is a method of predicting a local wind condition within a few km around a windmill using another numerical simulator such as University, Computational Prediction of Airflow over Complex Terrain). In this local wind condition analysis, it is possible to increase the resolution of the topography and to provide a non-slip condition on the ground surface, so that it is possible to predict the wind speed change at the wind turbine installation position with high accuracy.

上記した大域風況解析と局所風況解析を組み合わせる手法について、例えば非特許文献1が知られている。非特許文献1の特に第3章、第4章には、大域風況解析の結果を統計処理し、局所風況解析の計算条件とすることが記載されている。   For example, Non-Patent Document 1 is known as a method for combining the above-described global wind condition analysis and local wind condition analysis. In Chapter 3 and Chapter 4 of Non-Patent Document 1, it is described that the result of the global wind analysis is statistically processed and used as a calculation condition for the local wind analysis.

石原孟、非線形風況予測モデルMASCOTの開発とその実用化、ながれ、22、387−396、(2003)Akira Ishihara, Development of Nonlinear Wind Prediction Model MASCOT and Its Practical Use, Nagare, 22, 387-396, (2003)

上記非特許文献1によれば、大域風況解析と局所風況解析を組み合わせることの方向性が明示されているが、これを実現可能とする、具体的な統計処理の方法については記載されていない。   According to the non-patent document 1, the direction of combining the global wind analysis and the local wind analysis is specified, but a specific statistical processing method that can realize this is described. Absent.

上記組合せにより実現可能な高精度の気象予測システムとするためには、例えば計算機の処理能力を考慮する必要がある。   In order to obtain a highly accurate weather prediction system that can be realized by the above combination, it is necessary to consider the processing capacity of a computer, for example.

風車の年間発電量を見積もる際、例えば、WRF、RAMSといった大域風況解析用の数値シミュレータを用いて10分ごとの風速変化を算出し、得られた風速を風車のパワーカーブ(風速と発電量の相関式)を介して発電量に変換する。この発電量を1年間に渡って時間積分することで年間発電量の予測値が得られる。その際、60(分)/10(分)×24(時間)×365(日)=52560ケースの異なる風況が得られるが、これら全てのケースに対して局所風況解析用の境界条件を抽出し、例えばMASCOTやRIAM−COMPACT等を用いて局所風況解析を実施することは計算時間の観点から一般的には現実的でない。   When estimating the annual power generation of a windmill, for example, a wind speed change every 10 minutes is calculated using a numerical simulator for global wind conditions analysis such as WRF and RAMS, and the obtained wind speed is converted into a power curve of the windmill (wind speed and power generation amount). To the amount of power generation via A predicted value of the annual power generation amount can be obtained by time integration of this power generation amount over one year. At that time, 60 (minutes) / 10 (minutes) x 24 (hours) x 365 (days) = 52560 different wind conditions are obtained. For all these cases, boundary conditions for local wind condition analysis are set. It is generally not realistic from the viewpoint of calculation time to extract and perform local wind analysis using, for example, MASCOT or RIAM-COMPACT.

そこで、52560ケースの異なる風況を幾つかの代表的な風況に分類し、それらを境界条件として局所風況解析を行い、代表的な風況と風車設置位置における風速の関係に基づいて52560ケース風況を全て補正することが必要となる。   Therefore, the different wind conditions in 52560 cases are classified into several typical wind conditions, and local wind conditions are analyzed using these as boundary conditions. Based on the relationship between the typical wind conditions and the wind speed at the wind turbine installation position, 52560 It is necessary to correct all the case wind conditions.

以上のことから本発明においては、詳細地形の影響を考慮しつつ、多様な風況における評価地点の風速状態を詳細な地形を反映して予測することができる気象予測装置、気象予測方法、並びに風力発電出力推定装置を提供することを目的とする。   From the above, in the present invention, while considering the influence of detailed terrain, a weather prediction device, a weather prediction method, and the like that can predict the wind speed state of the evaluation point in various wind conditions by reflecting the detailed terrain, An object of the present invention is to provide a wind power generation output estimation device.

以上のことから本発明においては、「大域における風況から評価地点を含む空間内の風速・風向分布を予測する大域風況解析部と、大域風況解析部で時刻ごとに得られた多数の風速・風向分布から、評価地点における高さ方向の代表的な風速分布を抽出する局所風況解析用の境界条件抽出部と、局所風況解析用の境界条件抽出部で得られた基準風向ごとの代表風速分布を境界条件とし、評価地点を含む空間内の風速・風向分布を予測する局所風況解析部と、局所風況解析部で予測した評価地点での風速分布と境界条件抽出部で求めた代表風速分布の比較により基準風向ごとに異なる補正係数を得る補正係数算出部を備えるとともに、局所風況解析用の境界条件抽出部は、複数の高さ方向の風向分布について分布傾向が類似する複数のグループを得、グループ化された高さ方向の風向分布について高さ方向の代表風向分布を基準風向ごとに求め、局所風況解析部は、基準風向ごとの代表風速分布と代表風向分布を境界条件とし、評価地点を含む空間内の風速・風向分布を予測することを特徴とする気象予測装置」としたものである。   In view of the above, in the present invention, “a global wind state analysis unit that predicts the wind speed / wind direction distribution in the space including the evaluation point from the wind state in the global region and a large number of time points obtained by the global wind state analysis unit at each time. For each reference wind direction obtained by the boundary condition extraction unit for local wind analysis that extracts typical wind speed distribution in the height direction at the evaluation point from the wind speed and wind direction distribution, and the boundary condition extraction unit for local wind analysis The local wind condition analysis unit predicts the wind speed and direction distribution in the space including the evaluation point, and the wind speed distribution and boundary condition extraction unit predicted by the local wind condition analysis unit. A correction coefficient calculation unit that obtains different correction coefficients for each reference wind direction by comparing the obtained representative wind speed distributions, and the boundary condition extraction unit for local wind conditions analysis has similar distribution trends for multiple wind direction distributions Multiple groups Obtaining the representative wind direction distribution in the height direction for the grouped height direction wind direction distribution for each reference wind direction, the local wind condition analysis unit uses the representative wind speed distribution for each reference wind direction and the representative wind direction distribution as boundary conditions, The weather forecasting apparatus is characterized by predicting the wind speed and direction distribution in the space including the evaluation point.

また本発明においては、「気象予測装置を用いた風力発電出力推定装置であって、長期の風況の予測値に対して、補正係数を考慮した風況を求めて長期における発電量を求める風力発電出力推定部を追加したことを特徴とする風力発電出力推定装置」としたものである。   Further, in the present invention, “a wind power generation output estimation device using a weather prediction device, which calculates a long-term power generation amount by obtaining a wind condition in consideration of a correction coefficient with respect to a predicted value of a long-term wind condition. It is a wind power generation output estimation device characterized by adding a power generation output estimation unit.

また本発明においては、「大域における風況から評価地点を含む空間内の風速・風向分布を予測し、時刻ごとに得られた多数の風速・風向分布から、評価地点における高さ方向の代表的な風速分布を抽出し、代表的な風速分布を境界条件とし、評価地点を含む空間内の風速・風向分布を予測し、評価地点での風速分布と代表的な風速分布の比較により基準風向ごとに異なる補正係数を得ることを特徴とする気象予測方法」としたものである。   Further, in the present invention, “a wind speed / wind direction distribution in a space including an evaluation point is predicted from a wind condition in a large area, and a number of wind speed / wind direction distributions obtained at each time are used to represent the height direction at the evaluation point. A typical wind speed distribution, using the typical wind speed distribution as a boundary condition, predicting the wind speed and wind direction distribution in the space including the evaluation point, and comparing the wind speed distribution at the evaluation point with the typical wind speed distribution for each reference wind direction The weather forecasting method is characterized by obtaining different correction coefficients.

また本発明においては、「大域風況解析の計算結果を局所風況解析の境界条件とし、その計算結果を用いて大域風況解析の計算結果を補正する気象予測方法であって、大域風況解析の計算結果を評価地点の基準標高における基準風向で分類し、基準風向ごとに、基準標高における平均風速を基準風速として算出し、基準標高の風速と基準標高と異なる標高における点での風速の相関性から、標高ごとに最も相関性の高い比例係数を算出し、比例係数を基準風速に積算することで高さ方向の代表風速分布を求め、この代表風速分布を局所風況解析の境界条件とすることを特徴とする気象予測方法」としたものである。   Further, in the present invention, “a weather prediction method in which a calculation result of global wind analysis is used as a boundary condition for local wind analysis, and the calculation result of global wind analysis is corrected using the calculation result. The calculation results of the analysis are classified according to the reference wind direction at the reference altitude of the evaluation point, and for each reference wind direction, the average wind speed at the reference altitude is calculated as the reference wind speed, and the wind speed at a point at an altitude different from the reference altitude is calculated. From the correlation, calculate the proportional coefficient with the highest correlation for each altitude, add the proportional coefficient to the reference wind speed to obtain the representative wind speed distribution in the height direction, and use this representative wind speed distribution as the boundary condition for local wind analysis "Weather forecasting method characterized by that".

また本発明においては、「大域風況解析の計算結果を局所風況解析の境界条件とし、その計算結果を用いて大域風況解析の計算結果を補正する気象予測方法であって、大域風況解析の計算結果を基準標高における基準風向で分類し、基準風向ごとに、各標高における平均風速を算出することで高さ方向の代表風速分布を求め、この代表風速分布を局所風況解析の境界条件とすることを特徴とする気象予測方法」としたものである。   Further, in the present invention, “a weather prediction method in which a calculation result of global wind analysis is used as a boundary condition for local wind analysis, and the calculation result of global wind analysis is corrected using the calculation result. The calculation results of the analysis are classified according to the reference wind direction at the reference elevation, and the average wind speed at each elevation is calculated for each reference wind direction to obtain the representative wind speed distribution in the height direction. The weather forecasting method is characterized by having a condition.

本発明により、詳細地形の影響を考慮しつつ、多様な風況における評価地点の風速状態を詳細な地形を反映して予測することができる。   According to the present invention, it is possible to predict the wind speed state at an evaluation point in various wind conditions by reflecting the detailed topography while considering the influence of the detailed topography.

実施例1に係る気象予測装置及び風力発電出力推定装置の構成を示すブロック図。The block diagram which shows the structure of the weather prediction apparatus and wind power generation output estimation apparatus which concern on Example 1. FIG. 実施例1に係る評価地点の基準標高における16方位の風向(基準風向)で風速分布を分類した結果の一例を示す図。The figure which shows an example of the result of having classified the wind speed distribution by the wind direction (reference | standard wind direction) of 16 directions in the reference | standard elevation of the evaluation point which concerns on Example 1. FIG. 基準標高hでの風速Vと、標高hにおける風速Vの関係を示す図。Wind speed V 0 which the reference altitude h 0, shows the relationship between the wind speed V 1 in the elevations h 1. 基準標高hでの風速Vと、標高hにおける風速Vの関係を示す図。Wind speed V 0 which the reference altitude h 0, shows the relationship between the wind speed V 2 at altitude h 2. 実施例1に係る高さ方向の代表風速分布501を示す図。The figure which shows the representative wind speed distribution 501 of the height direction which concerns on Example 1. FIG. 高さ方向の代表風速分布501とそれを境界条件として予測した風速分布601を示す図。The figure which shows the representative wind speed distribution 501 of a height direction, and the wind speed distribution 601 estimated using it as a boundary condition. 実施例2に係る評価地点の基準標高における16方位の風向(基準風向)で風速分布を分類した結果の他の一例を示す図。The figure which shows another example of the result of having classified the wind speed distribution by the wind direction of 16 directions (reference | standard wind direction) in the reference | standard altitude of the evaluation point which concerns on Example 2. FIG. 実施例2に係る高さ方向の代表風速分布801を示す図。The figure which shows the representative wind speed distribution 801 of the height direction which concerns on Example 2. FIG. 大域風況解析部101で時刻ごとに得られた評価地点での風向分布の模式図。The schematic diagram of the wind direction distribution in the evaluation point obtained for every time in the global wind condition analysis part 101. FIG. 基準風向を示す図。The figure which shows a reference | standard wind direction. グループ化により求めたグループAの高さ方向の代表風向分布901を示す図。The figure which shows the representative wind direction distribution 901 of the height direction of the group A calculated | required by grouping. グループ化により求めたグループBの高さ方向の代表風向分布701を示す図。The figure which shows the representative wind direction distribution 701 of the height direction of the group B calculated | required by grouping.

以下、図面を参照して本発明の実施例について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

なお以下の説明においては、本発明に係る気象予測装置及び風力発電出力推定装置の標準的な構成と機能についての実施例1と実施例2を、図1から図8を用いて説明し、その後に本発明の主要部である風向の取り扱いについて実施例3として纏めて説明する。なお上記標準的な構成と機能では、風況のうち、主に風速の観点からの取り扱いを述べており、本発明の主要部では、風況のうち、主に風向の取り扱いについて述べている。   In addition, in the following description, Example 1 and Example 2 about the standard structure and function of the weather prediction apparatus and wind power generation output estimation apparatus according to the present invention will be described with reference to FIGS. Next, the handling of the wind direction which is the main part of the present invention will be described as a third embodiment. In the standard configuration and function described above, handling from the viewpoint of wind speed is mainly described in the wind conditions, and in the main part of the present invention, handling of wind direction is mainly described in the wind conditions.

図1は本発明の実施例1に係る気象予測装置及び風力発電出力推定装置の構成例を示す概略ブロック図である。なお図1は気象予測装置としての構成を示したものであるが、気象予測装置に風車の年間発電量推定のための機能を付与したものが風力発電出力推定装置である。   FIG. 1 is a schematic block diagram illustrating a configuration example of a weather prediction apparatus and a wind power generation output estimation apparatus according to Embodiment 1 of the present invention. FIG. 1 shows a configuration as a weather prediction device, but a wind power generation output estimation device is a device in which a function for estimating an annual power generation amount of a windmill is added to the weather prediction device.

気象予測装置は、この機能を大別して示すと大域風況解析部101、局所風況解析用の境界条件抽出部102、局所風況解析部103、局所補正係数算出部104、大域風況解析結果補正部105、出力部106の各機能により構成されている。   The weather forecasting device can be broadly classified into these functions: a global wind condition analysis unit 101, a boundary condition extraction unit 102 for local wind condition analysis, a local wind condition analysis unit 103, a local correction coefficient calculation unit 104, and a global wind condition analysis result. Each function of the correction unit 105 and the output unit 106 is configured.

このうち大域風況解析部101では、WRF、RAMSといったメソ気象モデルの数値シミュレータを用いる。例えば日本列島の約半分の領域を対象として、気象データと地形データを入力として評価地点(風車の設置予定地点)を含む空間内の風速・風向分布を予測する。   Among these, the global wind condition analysis unit 101 uses a numerical simulator of a meso-meteorological model such as WRF or RAMS. For example, about half the area of the Japanese archipelago, the wind speed and wind direction distribution in the space including the evaluation point (scheduled installation point of the windmill) is predicted by using the weather data and the terrain data as input.

なおここで取り扱う気象データとしては、複数時刻の気象予報データであるGPV(Grid Point Value:格子点値)を入力する。GPVの例としては、5km間隔の格子点のそれぞれにおける、3時間ごとの時刻の気象予報データが挙げられる。GPVは、予測部とは別の数値予測装置によって算出された予報データである。GPVは例えば日本国の気象業務支援センターから取得することができる。GPVにはある地点における気象を示す気象情報が含まれる。   As weather data to be handled here, GPV (Grid Point Value) which is weather forecast data at a plurality of times is input. As an example of GPV, weather forecast data at a time of every 3 hours at each grid point at intervals of 5 km can be mentioned. GPV is forecast data calculated by a numerical prediction device different from the prediction unit. The GPV can be obtained from, for example, a weather service support center in Japan. The GPV includes weather information indicating the weather at a certain point.

また、地形データとしては、例えば国土地理院が発行している10m間隔の標高データを入力するが、大域風況解析部101では1km間隔程度の標高データしか計算に用いられない。従って、概略地形データでの計算となる。大域風況解析部101での計算の結果、評価地点を含む空間内の風速・風向分布が時刻ごとに多数得られる。   Further, as topographic data, for example, altitude data of 10 m intervals issued by the Geospatial Information Authority of Japan are input, but the global wind condition analysis unit 101 uses only altitude data of about 1 km intervals for calculation. Therefore, the calculation is based on rough terrain data. As a result of the calculation by the global wind condition analysis unit 101, a large number of wind speed / wind direction distributions in the space including the evaluation point are obtained for each time.

なお本発明に係る風力発電出力推定装置においては、最終的に風車の年間発電量を見積もる処理を行うが、この際、例えば、WRF、RAMSといった大域風況解析用の数値シミュレータを用いて10分ごとの風速変化を算出している。然るに過去における風速などの気象情報は例えば時間単位(例えば3時間)での計測情報であることから、10分ごとの風速を推定する必要がある。このため、大域風況解析部101では、さらに時間補間処理により10分ごとの風速を推定する処理を併せて行っている。   In the wind power generation output estimation apparatus according to the present invention, a process for finally estimating the annual power generation amount of the windmill is performed. At this time, for example, a numerical simulator for global wind condition analysis such as WRF and RAMS is used for 10 minutes. The wind speed change for each is calculated. However, since weather information such as wind speed in the past is measurement information in units of time (for example, 3 hours), it is necessary to estimate the wind speed every 10 minutes. For this reason, in the global wind condition analysis part 101, the process which estimates the wind speed for every 10 minutes is further performed by the time interpolation process.

局所風況解析用の境界条件抽出部102では、大域風況解析部101で時刻ごとに得られた多数の風速・風向分布から、評価地点(風車の設置予定地点)における高さ方向の代表的な風速分布を抽出する。   The boundary condition extraction unit 102 for local wind condition analysis is representative of the height direction at the evaluation point (scheduled installation point of the windmill) from a large number of wind speed / wind direction distributions obtained at each time by the global wind condition analysis unit 101. A simple wind speed distribution.

ここで、大域風況解析部101で時刻ごとに得られた多数の風速・風向分布の例を図2に例示しており、局所風況解析用の境界条件抽出部102で抽出する評価地点(風車の設置予定地点)における高さ方向の代表的な風速分布を図5に501として例示している。以下の説明においては、図2の大域風況解析部101で時刻ごとに得られた多数の風速・風向分布から、図5の風速分布501を求める考え方について図3、図4を補足説明資料として用いて説明する。   Here, an example of a large number of wind speeds and wind direction distributions obtained at each time by the global wind condition analysis unit 101 is illustrated in FIG. 2, and an evaluation point (extracted by the boundary condition extraction unit 102 for local wind condition analysis) ( A typical wind speed distribution in the height direction at a wind turbine installation planned point) is illustrated as 501 in FIG. In the following description, FIGS. 3 and 4 are used as supplemental explanatory materials for the concept of obtaining the wind speed distribution 501 in FIG. 5 from the large number of wind speeds and wind direction distributions obtained at each time by the global wind condition analysis unit 101 in FIG. It explains using.

図2には、評価地点(風車の設置予定地点)の基準標高における16方位の風向(基準風向)で風速分布を分類した結果の一例を示している。図2は、大域風況解析部101で時刻ごとに得られた評価地点での風速分布の模式図であり、基準風向が北北西の場合の例を示している。従って、16方位の風向ごとに図2の風速分布が得られている。なお前述したように本発明は風向の取り扱いを工夫したものであり、その内容については纏めて後述する。   FIG. 2 shows an example of the result of classifying the wind speed distribution by the wind direction (reference wind direction) in 16 directions at the reference altitude of the evaluation point (scheduled installation point of the windmill). FIG. 2 is a schematic diagram of the wind speed distribution at the evaluation point obtained for each time by the global wind condition analysis unit 101, and shows an example in which the reference wind direction is north-northwest. Accordingly, the wind speed distribution of FIG. 2 is obtained for each of the 16 azimuth wind directions. As described above, the present invention is devised for handling the wind direction, and the contents thereof will be described later.

図2は、横軸が標高、縦軸が風速であり、縦軸の標高hは評価地点(風車の設置予定地点)における高さ、基準標高hは評価地点に設置した風車の中心位置における高さ、標高hは例えば評価地点の上空1000mである。 In FIG. 2, the horizontal axis is the altitude and the vertical axis is the wind speed. The altitude h 1 on the vertical axis is the height at the evaluation point (the planned installation point of the windmill), and the reference altitude h 0 is the center position of the windmill installed at the evaluation point. height at altitude h 2 is over 1000m of evaluation points, for example.

ここでは基準風向が北北西の風について、10ケースの風速分布201〜210を示している。風況は時刻によって大きく異なっており、例えば風速分布210は、地表面付近よりも上空の風速の方が小さくなっている。しかし全体的には、標高の増加に伴って概ね風速が増加する傾向がある。図2のようなグラフが、16方位の基準風向ごとに得られている。   Here, the wind speed distribution 201-210 of 10 cases is shown for the wind whose reference wind direction is north-northwest. The wind conditions vary greatly depending on the time. For example, in the wind speed distribution 210, the wind speed in the sky is smaller than the vicinity of the ground surface. However, overall, there is a tendency for wind speed to generally increase with increasing altitude. A graph as shown in FIG. 2 is obtained for each of 16 reference air directions.

局所風況解析用の境界条件抽出部102では、図2において、基準標高hにおける10ケースの平均風速を算出し、これを基準風速V0_aveとする。次に、基準標高hの風速と基準標高と異なる標高h(i=1、2、:)における風速の関係をグラフ化する。 In FIG. 2, the boundary condition extraction unit 102 for local wind condition analysis calculates the average wind speed of 10 cases at the reference altitude h 0 and sets this as the reference wind speed V 0_ave . Next, the relationship between the wind speed at the reference altitude h 0 and the wind speed at an altitude h i (i = 1, 2, :) different from the reference altitude is graphed.

図3は、横軸に基準標高hでの風速Vを、縦軸に標高hにおける風速Vをとり、両者の関係を示した図である。ここで標高hは風車設置点における高さ、基準標高hは評価地点に設置した風車の中心位置における高さであり、標高hが基準標高hに比較的近い状況にあるので、VとVの相関性は高いことを示している。なお、VとVの相関性を示す特性について、原点を通る最小自乗直線301を引くと、比例係数Kを用いて(1)式で表すことができる。
[数1]
=K×V (1)
図4には同様に、基準標高hとの差異が大きい標高hにおける風速Vの場合を示す。VとVの相関性は必ずしも高くないが、VとVの相関性を示す特性について、原点を通る最小自乗直線401を引くと、比例係数Kを用いて(2)式で表すことができる。
[数2]
=K×V (2)
このように、基準標高hと異なる標高h(i=1、2、:)における風速Vは(3)式で表すことができる。
[数3]
=K×V(i=1、2、:) (3)
その結果、比例係数Kを基準風速V0_aveに積算することで代表風速VRiが(4)式のように求められ、図5に示すような高さ方向の代表風速分布501が得られる。
[数4]
Ri=K×V0_ave(i=1、2、:) (4)
この代表風速分布VRiを局所風況解析部103での境界条件とする。なお、実施例1では原点を通る最小自乗直線301、401を用いてVとVを関係づけているが、VとVの相関性を表す式は必ずしも直線の式でなくても良く、また必ずしも原点を通らなくても良い。即ち、VとVの相関性をより適切に表す関数fを用いて(5)式のように表せるならば、代表風速VRiは(6)式のように求められる。
[数5]
=f(V)(i=1、2、:) (5)
[数6]
Ri=f(V0_ave)(i=1、2、:) (6)
以上により、16方位の基準風向ごとに、高さ方向の代表風速分布が得られる。
3, the wind speed V 0 which the reference altitude h 0 on the horizontal axis and the vertical axis represents the wind velocity V 1 in the altitude h 1, is a diagram showing a relationship between them. Here, the altitude h 1 is the height at the windmill installation point, the reference altitude h 0 is the height at the center position of the windmill installed at the evaluation point, and the altitude h 1 is relatively close to the reference altitude h 0 . It shows that the correlation between V 0 and V 1 is high. Incidentally, the characteristics showing the correlation between V 0 and V 1, when pulling the least squares straight line 301 passing through the origin, can be expressed by equation (1) using the proportionality factor K 1.
[Equation 1]
V 1 = K 1 × V 0 (1)
Similarly, FIG. 4 shows the case of the wind speed V 2 at an altitude h 2 having a large difference from the reference altitude h 0 . Although the correlation between V 0 and V 2 is not necessarily high, when the least-squares line 401 passing through the origin is drawn with respect to the characteristic indicating the correlation between V 0 and V 2 , the proportional coefficient K 2 is used to express Can be represented.
[Equation 2]
V 2 = K 2 × V 0 (2)
In this way, the wind speed V i at an altitude h i (i = 1, 2, :) different from the reference altitude h 0 can be expressed by equation (3).
[Equation 3]
V i = K i × V 0 (i = 1, 2, :) (3)
As a result, by adding the proportionality coefficient K i to the reference wind speed V 0_ave , the representative wind speed V Ri is obtained as shown in Equation (4), and a representative wind speed distribution 501 in the height direction as shown in FIG. 5 is obtained.
[Equation 4]
V Ri = K i × V 0 — ave (i = 1, 2, :) (4)
This representative wind speed distribution V Ri is set as a boundary condition in the local wind condition analysis unit 103. In the first embodiment, V 0 and V i are related using the least square lines 301 and 401 passing through the origin. However, the expression representing the correlation between V 0 and V i is not necessarily a linear expression. It does not have to pass through the origin. That is, if the function f i that more appropriately represents the correlation between V 0 and V i can be expressed as shown in equation (5), the representative wind speed V Ri can be obtained as shown in equation (6).
[Equation 5]
V i = f i (V 0 ) (i = 1, 2, :) (5)
[Equation 6]
V Ri = f i (V 0 — ave ) (i = 1, 2, :) (6)
As described above, the representative wind speed distribution in the height direction is obtained for each of the 16 reference air directions.

局所風況解析部103では、ナビエ・ストークス方程式に基づくRiam−Compact、STAR−CCM+等の数値シミュレータを用いる。例えば評価地点周辺数km以内の領域を対象とし、局所風況解析用の境界条件抽出部102で得られた16方位の基準風向ごとの代表風速分布を境界条件とし、評価地点を含む空間内の風速・風向分布を予測する。なお、地形データとしては、例えば国土地理院が発行している10m間隔の標高データを入力する。局所風況解析部103では必要に応じて格子解像度を数m程度まで上げられるため、大域風況解析部101に比べてより詳細な地形を反映した計算が可能である。   The local wind condition analysis unit 103 uses a numerical simulator such as Riam-Compact, STAR-CCM + based on the Navier-Stokes equation. For example, for a region within a few km around the evaluation point, the representative wind speed distribution for each of the 16 directional reference wind directions obtained by the boundary condition extraction unit 102 for local wind condition analysis is used as the boundary condition. Predict wind speed and wind direction distribution. As the topographic data, for example, altitude data at intervals of 10 m issued by the Geospatial Information Authority of Japan are input. The local wind condition analysis unit 103 can increase the lattice resolution to about several meters as necessary, so that the calculation reflecting the more detailed terrain than the global wind condition analysis unit 101 is possible.

局所風況解析部103の処理によれば、詳細な地形を反映した計算が可能である。このため、局所風況解析部103で用いる数値シミュレータでは、地表面でノンスリップ条件を与えられ、地表面での風速は0となっている。一方、大域風況解析部101で用いる数値シミュレータでは地表面でノンスリップ条件を与えられないため、地表面における代表風速分布501の風速は0ではない。   According to the processing of the local wind condition analysis unit 103, a calculation reflecting a detailed topography is possible. For this reason, in the numerical simulator used in the local wind condition analysis unit 103, a non-slip condition is given on the ground surface, and the wind speed on the ground surface is zero. On the other hand, in the numerical simulator used in the global wind condition analysis unit 101, since the non-slip condition cannot be given on the ground surface, the wind speed of the representative wind speed distribution 501 on the ground surface is not zero.

図6には、基準風向が北北西の場合における、高さ方向の代表風速分布501とそれを境界条件として予測した風速分布601を示している。高さ方向の代表風速分布501は、局所風況解析用の境界条件抽出部102で求められたものであり、図5に示したものである。これに対し境界条件を用いて予測した風速分布601は、地表面での風速0から風速が増加して、高さ方向の代表風速分布501に漸近していく特性として示されている。このため、予測風速分布601と代表風速分布501の差異は地表面付近で大きく、上空では小さくなる傾向を示す。   FIG. 6 shows a representative wind speed distribution 501 in the height direction when the reference wind direction is north-northwest, and a wind speed distribution 601 predicted using this as a boundary condition. The representative wind speed distribution 501 in the height direction is obtained by the boundary condition extraction unit 102 for local wind condition analysis, and is shown in FIG. On the other hand, the wind speed distribution 601 predicted using the boundary condition is shown as a characteristic in which the wind speed increases from the wind speed 0 on the ground surface and gradually approaches the representative wind speed distribution 501 in the height direction. For this reason, the difference between the predicted wind speed distribution 601 and the representative wind speed distribution 501 tends to be large near the ground surface and small in the sky.

補正係数算出部104では、局所風況解析部103で予測した評価地点での風速分布601と代表風速分布501の比較を行う。補正係数算出部104におけるこれらの比較結果により、代表風速分布V(h)と予測風速分布V(h)の関係は、(7)式で表すことができる。(7)のg(h)が補正係数であり、16方位の基準風向ごとに異なる補正係数g(h)が得られる。
[数7]
(h)=g(h)×V(h) (7)
大域風況解析結果補正部105では、上記の補正係数g(h)を用い、大域風況解析部101で得られた高さ方向の風速分布V(h)を、16方位の基準風向ごとに(8)式のように補正する。
[数8]
mod(h)=g(h)×V(h) (8)
出力部106は、大域風況解析結果補正部105で補正された風速分布Vmod(h)を出力する。データ出力の例としては、記録媒体への記録、ディスプレイへの表示、外部装置への送信等が挙げられる。
The correction coefficient calculation unit 104 compares the wind speed distribution 601 at the evaluation point predicted by the local wind condition analysis unit 103 with the representative wind speed distribution 501. Based on these comparison results in the correction coefficient calculation unit 104, the relationship between the representative wind speed distribution V R (h) and the predicted wind speed distribution V P (h) can be expressed by Expression (7). G (h) in (7) is a correction coefficient, and a different correction coefficient g (h) is obtained for each of the 16 reference wind directions.
[Equation 7]
V P (h) = g (h) × V R (h) (7)
The global wind condition analysis result correction unit 105 uses the correction coefficient g (h) described above to calculate the wind speed distribution V (h) in the height direction obtained by the global wind condition analysis unit 101 for each of 16 reference wind directions. Correction is performed as shown in equation (8).
[Equation 8]
V mod (h) = g (h) × V (h) (8)
The output unit 106 outputs the wind speed distribution V mod (h) corrected by the global wind condition analysis result correction unit 105. Examples of data output include recording on a recording medium, display on a display, transmission to an external device, and the like.

図1に示した気象予測装置としての構成は、概略上記のようであるが、さらに風力発電出力推定装置を実現するためには、例えば大域風況解析結果補正部105においてさらに以下の処理を行う事になる。この処理は大域風況解析結果補正部105に追加された、風力発電出力推定部(図示せず)において実施される。   The configuration as the weather prediction apparatus shown in FIG. 1 is generally as described above. However, in order to realize a wind power generation output estimation apparatus, the global wind condition analysis result correction unit 105 further performs the following processing, for example. It will be a thing. This process is performed in a wind power generation output estimation unit (not shown) added to the global wind condition analysis result correction unit 105.

風力発電出力推定部での処理は、WRF、RAMSといった大域風況解析用の数値シミュレータを用いて実施した10分ごと、かつ1年分の風況(風速、風向)の予測値に対して、風向ごとに補正された風速分布Vmod(h)に基づいた10分ごとの発電量を1年分にわたり積算していくことである。 The processing in the wind power generation output estimation unit is performed every 10 minutes using a numerical simulator for global wind conditions analysis such as WRF and RAMS, and for the predicted value of wind conditions (wind speed, wind direction) for one year, The amount of power generation every 10 minutes based on the wind speed distribution V mod (h) corrected for each wind direction is accumulated over the course of one year.

以上説明した実施例1によれば、実際の風速が図2の201から210のように種々に変化した場合であっても、基準標高hにおける風車中心部の風速を、ノンスリップ条件を考慮した補正により求めることで、簡便に対応が可能である。これにより、年間発電量を推定、予測する中でどのような風況が生じたとしても、基準標高hにおける風車中心部の風速については、この高さ位置における補正係数g(h)を乗じた値を新たな風速として発電量を求めることで簡便に計算することが可能になる。 According to the first embodiment described above, the wind speed at the center of the wind turbine at the reference altitude h 0 is considered in consideration of the non-slip condition even when the actual wind speed changes variously as indicated by 201 to 210 in FIG. By obtaining by correction, it is possible to cope with it easily. As a result, no matter what wind conditions occur in estimating and predicting the annual power generation, the wind speed at the center of the wind turbine at the reference altitude h 0 is multiplied by the correction coefficient g (h) at this height position. It becomes possible to calculate simply by obtaining the power generation amount with the new value as the new wind speed.

本発明の実施例2に係る気象予測装置は、局所風況解析用の境界条件抽出部102で得られる代表風速分布の算出方法が、実施例1に係る気象予測装置とは相違する。   The weather prediction apparatus according to the second embodiment of the present invention is different from the weather prediction apparatus according to the first embodiment in the calculation method of the representative wind speed distribution obtained by the boundary condition extraction unit 102 for local wind condition analysis.

この相違点を、図7を用いて説明する。図7は図2と同じ縦横軸のグラフであるが、本実施例では基準標高hだけでなく、基準標高と異なる標高h(i=1、2、:)においても10ケースの平均風速Vi_aveを算出し、(9)式に示すようにこれらを高さ方向の代表風速VRiとする。
[数9]
Ri=Vi_ave(i=1、2、:) (9)
図8には、このようにして得られた高さ方向の代表風速分布801を示す。代表風速分布801は、実施例1における代表風速分布501とは異なり、特に両者の差異は上空で大きくなる。
This difference will be described with reference to FIG. FIG. 7 is a graph with the same vertical and horizontal axes as FIG. 2, but in this embodiment, not only the reference altitude h 0 but also the average wind speed of 10 cases at an altitude h i (i = 1, 2, :) different from the reference altitude. V i_ave is calculated, and these are set as the representative wind speed V Ri in the height direction as shown in equation (9).
[Equation 9]
V Ri = V i — ave (i = 1, 2, :) (9)
FIG. 8 shows a representative wind speed distribution 801 in the height direction thus obtained. The representative wind speed distribution 801 is different from the representative wind speed distribution 501 in the first embodiment, and the difference between the two is particularly large in the sky.

実施例3として、上記実施例1、実施例2の構成における風向の取り扱いについて説明する。   As Example 3, the handling of the wind direction in the configurations of Example 1 and Example 2 will be described.

図9aは、大域風況解析部101で時刻ごとに得られた評価地点での風向分布の模式図である。図9bは基準風向を示しており、この例では基準風向が北北西の場合の例を示している。   FIG. 9 a is a schematic diagram of the wind direction distribution at the evaluation points obtained for each time by the global wind condition analysis unit 101. FIG. 9b shows the reference wind direction. In this example, the reference wind direction is north-northwest.

図9aは横軸が標高、縦軸が風向αであり、ここでは10ケースの風向分布301〜310を示している。また図9bによれば、16方位に対して、北から時計周りに比例的に増加する数値α=1+16j(j=…、−1、0、1、…)が割り当てられており、基準風向である北北西の値はα=2(j=0)である。   In FIG. 9a, the horizontal axis indicates the altitude and the vertical axis indicates the wind direction α. Here, the wind direction distributions 301 to 310 of 10 cases are shown. Further, according to FIG. 9b, a numerical value α = 1 + 16j (j =..., -1, 0, 1,...) That is proportionally increased from north to clockwise is assigned to 16 directions, A north-northwest value is α = 2 (j = 0).

これにより、高さ方向の風向分布301〜310が曲線で表される。図9aによれば、風車の中心部における高さ位置である基準標高hでは、基準風向が北北西になっているが上空では異なる風向になっている、つまり風が巻いている状態であることを表している。 Thereby, the wind direction distribution 301-310 of a height direction is represented with a curve. According to FIG. 9a, the reference altitude h 0 is the height position at the center of the wind turbine, the reference wind direction is in the north-northwest has a different wind direction is over, that is in a state where the wind is wound Represents that.

例えば風向分布310は、地表付近から上空に向かって時計周りに360゜以上風向が変化しており、上空で再び北北西になった際の風向の値はα=18(j=1)が与えられている。このように、グラフ中の風向分布が滑らかな曲線となるように、jの値を調整する。なお、風向値αは北から時計周りに比例的に減少する数値α=1−16j(j=…、−1、0、1、…)でもよく、初めに北以外の方位に1の値を割り当ててもよい。   For example, in the wind direction distribution 310, the wind direction changes by more than 360 ° clockwise from near the surface to the sky, and α = 18 (j = 1) is given as the value of the wind direction when it is north-northwest again in the sky. It has been. Thus, the value of j is adjusted so that the wind direction distribution in the graph becomes a smooth curve. The wind direction value α may be a numerical value α = 1-16j (j =..., -1, 0, 1,...) That decreases proportionally from north to clockwise. It may be assigned.

図9aの風向分布の解析例では、風向分布301〜305と風向分布306〜310は各々比較的に分布が類似しており、2つのグループA、Bに分類することができる。   In the analysis example of the wind direction distribution in FIG. 9A, the wind direction distributions 301 to 305 and the wind direction distributions 306 to 310 are relatively similar in distribution, and can be classified into two groups A and B.

図10には、グループA(風向分布301〜305の5ケース)の風向分布を示す。標高h(i=1、2、…)においてグループAに含まれる5ケースの平均風向αi_aveを(10)式を用いて算出し、これを高さ方向の代表風向αARiとする。図10中には、グループ化により求めた高さ方向の代表風向分布901を示している。
[数10]
αARi= αi_ave (i=1、2、…) (10)
図11には同様に、グループB(風向分布306〜310の5ケース)の風向分布を示す。高さ方向の代表風向αBRiは(11)式で求められる。図11中には、得られた高さ方向の代表風向分布701を示す。
[数11]
αBRi= αi_ave (i=1、2、…) (11)
局所風況解析用の境界条件抽出部102では、このようにして、基準風向ごとに、複数の代表風向分布(αAR、αBR、αCR、…)を抽出する。
In FIG. 10, the wind direction distribution of group A (5 cases of wind direction distribution 301-305) is shown. The average wind direction α i_ave of the five cases included in the group A at the altitude h i (i = 1, 2,...) Is calculated using the formula (10), and this is set as the representative wind direction α ARi in the height direction. FIG. 10 shows a representative wind direction distribution 901 in the height direction obtained by grouping.
[Equation 10]
α ARi = α i_ave (i = 1, 2,...) (10)
Similarly, FIG. 11 shows the wind direction distribution of group B (5 cases of wind direction distributions 306 to 310). The representative wind direction α BRi in the height direction can be obtained by equation (11). FIG. 11 shows the obtained representative wind direction distribution 701 in the height direction.
[Equation 11]
α BRi = α i_ave (i = 1, 2,...) (11)
In this way, the boundary condition extraction unit 102 for local wind condition analysis extracts a plurality of representative wind direction distributions (α AR, α BR, α CR, ...) For each reference wind direction.

実施例3の局所風況解析部103では、ナビエ・ストークス方程式に基づくRiam−Compact、STAR −CCM+等の数値シミュレータを用いる。例えば評価地点周辺数km以内の領域を対象とし、局所風況解析用の境界条件抽出部102で得られた16方位の基準風向ごとの代表風速分布と代表風向分布を境界条件とし、評価地点を含む空間内の風速・風向分布を予測する。なお、地形データとしては、例えば国土地理院が発行している10m間隔の標高データを入力する。局所風況解析部103では必要に応じて格子解像度を数m程度まで上げられるため、大域風況解析部101に比べてより詳細な地形を反映した計算が可能である。   The local wind condition analysis unit 103 according to the third embodiment uses a numerical simulator such as Riam-Compact, STAR-CCM + based on the Navier-Stokes equation. For example, for an area within several kilometers around the evaluation point, the representative wind speed distribution and the representative wind direction distribution for each of 16 reference wind directions obtained by the boundary condition extraction unit 102 for local wind condition analysis are set as boundary conditions. Predict the wind speed and wind direction distribution within the space. As the topographic data, for example, altitude data at intervals of 10 m issued by the Geospatial Information Authority of Japan are input. The local wind condition analysis unit 103 can increase the lattice resolution to about several meters as necessary, so that the calculation reflecting the more detailed terrain than the global wind condition analysis unit 101 is possible.

補正係数算出部104では、局所風況解析部103で予測した評価地点での風速分布と代表風速分布の比較を行う。この処理は実施例1で述べたものと基本的に同じものである。図6には、基準風向が北北西の場合における、高さ方向の代表風速分布501とそれを境界条件として予測した風速分布601を示す。局所風況解析部103で用いる数値シミュレータでは地表面でノンスリップ条件を与えられるため、地表面での風速は0となっている。一方、大域風況解析部101で用いる数値シミュレータでは地表面でノンスリップ条件を与えられないため、地表面における代表風速分布501の風速は0ではない。このため、予測風速分布601と代表風速分布501の差異は地表面付近で大きく、上空では小さくなる。   The correction coefficient calculation unit 104 compares the wind speed distribution at the evaluation point predicted by the local wind condition analysis unit 103 with the representative wind speed distribution. This process is basically the same as that described in the first embodiment. FIG. 6 shows a representative wind speed distribution 501 in the height direction when the reference wind direction is north-northwest, and a wind speed distribution 601 predicted using this as a boundary condition. In the numerical simulator used in the local wind condition analysis unit 103, since the non-slip condition is given on the ground surface, the wind speed on the ground surface is zero. On the other hand, in the numerical simulator used in the global wind condition analysis unit 101, since the non-slip condition cannot be given on the ground surface, the wind speed of the representative wind speed distribution 501 on the ground surface is not zero. For this reason, the difference between the predicted wind speed distribution 601 and the representative wind speed distribution 501 is large near the ground surface and small in the sky.

これら結果より、代表風速分布V(h)と予測風速分布V(h)の関係は、(7)式で表わされる。(7)式のg(h)が補正係数であり、16方位の基準風向ごとに異なる補正係数が得られる。 From these results, the relationship between the representative wind speed distribution V R (h) and the predicted wind speed distribution V P (h) is expressed by Equation (7). In the equation (7), g (h) is a correction coefficient, and a different correction coefficient is obtained for each of 16 reference wind directions.

大域風況解析結果補正部105では、上記の補正係数g(h)を用い、大域風況解析部101で得られた高さ方向の風速分布V(h)を、16方位の基準風向と風向のグループ(A、B、C、…)ごとに(8)式に従い補正する。   The global wind condition analysis result correction unit 105 uses the correction coefficient g (h) described above to calculate the wind speed distribution V (h) in the height direction obtained by the global wind condition analysis unit 101 from the 16-direction reference wind direction and wind direction. Each group (A, B, C,...) Is corrected according to the equation (8).

実施例3によれば、風向についてのグルーピングにより処理量を削減することができる。   According to the third embodiment, the processing amount can be reduced by grouping the wind direction.

なお出力部106は、大域風況解析結果補正部105で補正された風速分布Vmod(h)を出力する。データ出力の例としては、記録媒体への記録、ディスプレイへの表示、外部装置への送信等が挙げられる。 The output unit 106 outputs the wind speed distribution V mod (h) corrected by the global wind condition analysis result correcting unit 105. Examples of data output include recording on a recording medium, display on a display, transmission to an external device, and the like.

101:大域風況解析部
102:局所風況解析用の境界条件抽出部
103:局所風況解析部
104:補正係数算出部
105:大域風況解析結果補正部
106:出力部
201〜210:高さ方向の風速分布の例
301、401:基準標高の風速と基準標高と異なる標高における風速の相関線
501:高さ方向の代表風速分布の例
601:局所風況解析で予測した高さ方向の風速分布
701:グループBの高さ方向の代表風向分布
801:高さ方向の代表風速の例
901:グループAの高さ方向の代表風向分布
101: Global wind condition analysis unit 102: Boundary condition extraction unit for local wind condition analysis 103: Local wind condition analysis unit 104: Correction coefficient calculation unit 105: Global wind condition analysis result correction unit 106: Output units 201 to 210: High Examples of wind speed distribution in the vertical direction 301, 401: Correlation line 501 of the wind speed at the reference altitude and an altitude different from the reference altitude 501: Example of the representative wind speed distribution in the height direction 601: In the height direction predicted by the local wind condition analysis Wind velocity distribution 701: Group B height direction representative wind direction distribution 801: Height direction representative wind direction example 901: Group A height direction representative wind direction distribution

Claims (8)

大域における風況から評価地点を含む空間内の風速・風向分布を予測する大域風況解析部と、前記大域風況解析部で時刻ごとに得られた多数の風速・風向分布から、前記評価地点における高さ方向の代表的な風速分布を抽出する局所風況解析用の境界条件抽出部と、前記局所風況解析用の境界条件抽出部で得られた基準風向ごとの代表風速分布を境界条件とし、前記評価地点を含む空間内の風速・風向分布を予測する局所風況解析部と、前記局所風況解析部で予測した評価地点での風速分布と前記境界条件抽出部で求めた代表風速分布の比較により基準風向ごとに異なる補正係数を得る補正係数算出部を備えるとともに、
前記局所風況解析用の境界条件抽出部は、複数の高さ方向の風向分布について分布傾向が類似する複数のグループを得、グループ化された高さ方向の風向分布について高さ方向の代表風向分布を基準風向ごとに求め、前記局所風況解析部は、基準風向ごとの代表風速分布と代表風向分布を境界条件とし、評価地点を含む空間内の風速・風向分布を予測することを特徴とする気象予測装置。
The global wind condition analysis unit predicts the wind speed and wind direction distribution in the space including the evaluation point from the wind conditions in the global region, and the evaluation point from the numerous wind speed and wind direction distributions obtained at each time by the global wind condition analysis unit. The boundary condition extraction unit for local wind condition analysis that extracts the representative wind speed distribution in the height direction at the boundary, and the representative wind speed distribution for each reference wind direction obtained by the boundary condition extraction unit for local wind condition analysis And local wind condition analysis unit for predicting wind speed and direction distribution in the space including the evaluation point, wind speed distribution at the evaluation point predicted by the local wind condition analysis unit and representative wind speed obtained by the boundary condition extraction unit With a correction coefficient calculation unit that obtains a different correction coefficient for each reference wind direction by comparing the distribution,
The boundary condition extraction unit for local wind condition analysis obtains a plurality of groups having similar distribution tendencies for a plurality of height direction wind direction distributions, and represents a representative wind direction in the height direction for the grouped height direction wind direction distributions. A distribution is obtained for each reference wind direction, and the local wind condition analysis unit predicts the wind speed / wind direction distribution in the space including the evaluation point using the representative wind speed distribution for each reference wind direction and the representative wind direction distribution as boundary conditions. Weather forecasting device.
請求項1に記載の気象予測装置であって、
前記評価地点における高さ方向の代表的な風速分布は、前記評価地点に設置する予定の風車の中心位置に置ける高さである基準標高における平均風速を基準風速とし、基準標高と異なる標高における風速と前記基準風速の関係から、高さ方向の代表風速分布を得ることを特徴とする気象予測装置。
The weather prediction device according to claim 1,
The typical wind speed distribution in the height direction at the evaluation point is the wind speed at an altitude different from the reference altitude, with the average wind speed at the reference altitude being the height that can be placed at the center position of the wind turbine planned to be installed at the evaluation point as the reference wind speed. And a reference wind speed distribution to obtain a representative wind speed distribution in the height direction.
請求項1に記載の気象予測装置であって、
前記評価地点における高さ方向の代表的な風速分布は、前記評価地点に設置する予定の風車の中心位置に置ける高さである基準標高における平均風速を基準風速とし、基準標高と異なる標高における平均風速と前記基準風速から、高さ方向の代表風速分布を得ることを特徴とする気象予測装置。
The weather prediction device according to claim 1,
The typical wind speed distribution in the height direction at the evaluation point is the average wind speed at the reference altitude, which is the height that can be placed at the center position of the windmill scheduled to be installed at the evaluation point, and the average at an altitude different from the reference altitude. A weather prediction apparatus characterized by obtaining a representative wind speed distribution in a height direction from a wind speed and the reference wind speed.
請求項1から請求項3のいずれか1項に記載の気象予測装置であって、
前記大域風況解析部で得られた高さ方向の風速分布を、基準風向ごとに補正する大域風況解析結果補正部を備えることを特徴とする気象予測装置。
The weather prediction device according to any one of claims 1 to 3,
A weather prediction apparatus comprising a global wind condition analysis result correction unit that corrects the wind speed distribution in the height direction obtained by the global wind condition analysis unit for each reference wind direction.
請求項1から請求項4のいずれか1項に記載の気象予測装置を用いた風力発電出力推定装置であって、
長期の風況の予測値に対して、前記補正係数を考慮した風況を求めて前記長期における発電量を求める風力発電出力推定部を追加したことを特徴とする風力発電出力推定装置。
A wind power generation output estimation device using the weather prediction device according to any one of claims 1 to 4,
A wind power generation output estimation device that adds a wind power generation output estimation unit that calculates a wind generation amount in the long term by obtaining a wind condition in consideration of the correction coefficient with respect to a predicted value of a long-term wind condition.
大域における風況から評価地点を含む空間内の風速・風向分布を予測し、時刻ごとに得られた多数の風速・風向分布から、前記評価地点における高さ方向の代表的な風速分布を抽出し、前記代表的な風速分布を境界条件とし、前記評価地点を含む空間内の風速・風向分布を予測し、前記評価地点での風速分布と前記代表的な風速分布の比較により基準風向ごとに異なる補正係数を得ることを特徴とする気象予測方法。   Predict the wind speed and wind direction distribution in the space including the evaluation point from the wind conditions in the global area, and extract the representative wind speed distribution in the height direction at the evaluation point from the numerous wind speed and wind direction distributions obtained at each time. , Using the representative wind speed distribution as a boundary condition, predicting the wind speed / wind direction distribution in the space including the evaluation point, and differing for each reference wind direction by comparing the wind speed distribution at the evaluation point and the representative wind speed distribution A weather prediction method characterized by obtaining a correction coefficient. 大域風況解析の計算結果を局所風況解析の境界条件とし、その計算結果を用いて大域風況解析の計算結果を補正する気象予測方法であって、
大域風況解析の計算結果を評価地点の基準標高における基準風向で分類し、基準風向ごとに、基準標高における平均風速を基準風速として算出し、基準標高の風速と基準標高と異なる標高における点での風速の相関性から、標高ごとに最も相関性の高い比例係数を算出し、比例係数を基準風速に積算することで高さ方向の代表風速分布を求め、この代表風速分布を局所風況解析の境界条件とすることを特徴とする気象予測方法。
A weather prediction method that uses the calculation result of the global wind analysis as the boundary condition of the local wind analysis and corrects the calculation result of the global wind analysis using the calculation result,
The calculation results of the global wind condition analysis are classified according to the reference wind direction at the reference elevation at the evaluation point, and for each reference wind direction, the average wind speed at the reference elevation is calculated as the reference wind speed. From the correlation of wind speeds, calculate the proportional coefficient with the highest correlation for each altitude, and add the proportional coefficient to the reference wind speed to obtain the representative wind speed distribution in the height direction. A weather forecasting method characterized in that the boundary condition is
大域風況解析の計算結果を局所風況解析の境界条件とし、その計算結果を用いて大域風況解析の計算結果を補正する気象予測方法であって、
大域風況解析の計算結果を基準標高における基準風向で分類し、基準風向ごとに、各標高における平均風速を算出することで高さ方向の代表風速分布を求め、この代表風速分布を局所風況解析の境界条件とすることを特徴とする気象予測方法。
A weather prediction method that uses the calculation result of the global wind analysis as the boundary condition of the local wind analysis and corrects the calculation result of the global wind analysis using the calculation result,
The calculation results of the global wind condition analysis are classified according to the reference wind direction at the reference altitude, and for each reference wind direction, the average wind speed at each elevation is calculated to obtain the representative wind speed distribution in the height direction. A weather prediction method characterized by using boundary conditions for analysis.
JP2018097632A 2018-05-22 2018-05-22 Weather prediction device, weather prediction method, and wind power generation output estimating device Pending JP2019203727A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018097632A JP2019203727A (en) 2018-05-22 2018-05-22 Weather prediction device, weather prediction method, and wind power generation output estimating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018097632A JP2019203727A (en) 2018-05-22 2018-05-22 Weather prediction device, weather prediction method, and wind power generation output estimating device

Publications (1)

Publication Number Publication Date
JP2019203727A true JP2019203727A (en) 2019-11-28

Family

ID=68726660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018097632A Pending JP2019203727A (en) 2018-05-22 2018-05-22 Weather prediction device, weather prediction method, and wind power generation output estimating device

Country Status (1)

Country Link
JP (1) JP2019203727A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111311011A (en) * 2020-02-26 2020-06-19 华润电力技术研究院有限公司 Wind speed prediction method and related equipment
CN112926212A (en) * 2021-03-10 2021-06-08 航天科工智慧产业发展有限公司 Inland plain wind energy resource assessment method and system and fan site selection method
CN114137636A (en) * 2021-11-11 2022-03-04 四川九通智路科技有限公司 Regional meteorological monitoring management method and system for annular pressure sensor
CN115577986A (en) * 2022-12-07 2023-01-06 深圳市城市公共安全技术研究院有限公司 Wind field correction method, device, equipment and computer readable storage medium
JP7240767B1 (en) 2021-12-22 2023-03-16 国立研究開発法人国立環境研究所 Wind condition prediction system and wind condition prediction method
JP7376746B1 (en) * 2023-08-29 2023-11-08 株式会社日立パワーソリューションズ Wind condition observation equipment placement support device and wind condition observation equipment placement support method
CN117314175A (en) * 2023-11-28 2023-12-29 合肥优尔电子科技有限公司 Power grid system geological risk monitoring and evaluating method based on severe weather
JP7619894B2 (en) 2021-06-09 2025-01-22 株式会社日立パワーソリューションズ Wind condition prediction device and wind condition prediction method
CN119935101A (en) * 2025-04-07 2025-05-06 浙江省水利河口研究院(浙江省海洋规划设计研究院) GNSS and anemometer-based storm and surge extraction method and system

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111311011B (en) * 2020-02-26 2023-07-25 华润电力技术研究院有限公司 Wind speed prediction method and related equipment
CN111311011A (en) * 2020-02-26 2020-06-19 华润电力技术研究院有限公司 Wind speed prediction method and related equipment
CN112926212A (en) * 2021-03-10 2021-06-08 航天科工智慧产业发展有限公司 Inland plain wind energy resource assessment method and system and fan site selection method
CN112926212B (en) * 2021-03-10 2023-10-13 航天科工智慧产业发展有限公司 Inland plain wind energy resource assessment method, system and fan site selection method
JP7619894B2 (en) 2021-06-09 2025-01-22 株式会社日立パワーソリューションズ Wind condition prediction device and wind condition prediction method
CN114137636A (en) * 2021-11-11 2022-03-04 四川九通智路科技有限公司 Regional meteorological monitoring management method and system for annular pressure sensor
CN114137636B (en) * 2021-11-11 2022-08-12 四川九通智路科技有限公司 Regional meteorological monitoring management method and system for annular pressure sensor
JP2023092724A (en) * 2021-12-22 2023-07-04 国立研究開発法人国立環境研究所 Wind condition prediction system and wind condition prediction method
JP7240767B1 (en) 2021-12-22 2023-03-16 国立研究開発法人国立環境研究所 Wind condition prediction system and wind condition prediction method
CN115577986A (en) * 2022-12-07 2023-01-06 深圳市城市公共安全技术研究院有限公司 Wind field correction method, device, equipment and computer readable storage medium
JP7376746B1 (en) * 2023-08-29 2023-11-08 株式会社日立パワーソリューションズ Wind condition observation equipment placement support device and wind condition observation equipment placement support method
CN117314175A (en) * 2023-11-28 2023-12-29 合肥优尔电子科技有限公司 Power grid system geological risk monitoring and evaluating method based on severe weather
CN117314175B (en) * 2023-11-28 2024-02-23 合肥优尔电子科技有限公司 A method for monitoring and assessing geological risks of power grid systems under severe weather conditions
CN119935101A (en) * 2025-04-07 2025-05-06 浙江省水利河口研究院(浙江省海洋规划设计研究院) GNSS and anemometer-based storm and surge extraction method and system

Similar Documents

Publication Publication Date Title
JP2019203727A (en) Weather prediction device, weather prediction method, and wind power generation output estimating device
WO2019225064A1 (en) Weather prediction device, weather prediction method, and wind-power-generation output estimation device
CN104021424B (en) Method and apparatus for predicting the output power of the blower in wind field
US9568519B2 (en) Building energy consumption forecasting procedure using ambient temperature, enthalpy, bias corrected weather forecast and outlier corrected sensor data
Wang et al. Trends and variability of storminess in the Northeast Atlantic region, 1874–2007
Tramblay et al. Extreme value modelling of daily areal rainfall over Mediterranean catchments in a changing climate
Mohapatra et al. Characteristics of surface wind structure of tropical cyclones over the north Indian Ocean
Prasad et al. Improvements in medium range weather forecasting system of India
JP4880440B2 (en) Snow accretion prediction method and snow accretion prediction program
US20210026039A1 (en) System and method for forecasting snowfall probability distributions
Migliorini et al. A moisture‐incrementing operator for the assimilation of humidity‐and cloud‐sensitive observations: formulation and preliminary results
Małecki Snow accumulation on a small high‐arctic glacier svenbreen: variability and topographic controls
Moorhead et al. Accuracy assessment of NOAA gridded daily reference evapotranspiration for the Texas High Plains
Rhee et al. Estimating drought conditions for regions with limited precipitation data
Minářová et al. Comparison of extreme precipitation characteristics between the Ore Mountains and the Vosges Mountains (Europe)
Miller et al. A 42 year inference of cloud base height trends in the Luquillo Mountains of northeastern Puerto Rico
Ahasan et al. Simulation of high impact rainfall events over southeastern hilly region of Bangladesh using MM5 model
Yamazaki et al. Estimation of AMSU-A radiance observation impacts in an LETKF-based atmospheric global data assimilation system: Comparison with EFSO and observing system experiments
Islam et al. On the importance of typhoon size in storm surge forecasting
Croley et al. Near real-time forecasting of large lake supplies
Dementyeva et al. Forecast of convective events and its verification against atmospheric electricity observations
Allen et al. Utility of radiosonde wind data in representing climatological variations of tropospheric temperature and baroclinicity in the western tropical Pacific
Yokoi et al. Mechanisms of the northward movement of submonthly scale vortices over the Bay of Bengal during the boreal summer
Ueyama Radiative cooling scale method for correcting hourly surface air temperature error in numerical weather prediction models
JP2006242747A (en) Air temperature prediction correction device