[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2019200760A - Automatic drawing method from point group, and point group processing program - Google Patents

Automatic drawing method from point group, and point group processing program Download PDF

Info

Publication number
JP2019200760A
JP2019200760A JP2018106489A JP2018106489A JP2019200760A JP 2019200760 A JP2019200760 A JP 2019200760A JP 2018106489 A JP2018106489 A JP 2018106489A JP 2018106489 A JP2018106489 A JP 2018106489A JP 2019200760 A JP2019200760 A JP 2019200760A
Authority
JP
Japan
Prior art keywords
point group
plane
feature amount
edge
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018106489A
Other languages
Japanese (ja)
Inventor
植田 拓也
Takuya Ueda
拓也 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Icon Yamato Co Ltd
Original Assignee
Icon Yamato Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Icon Yamato Co Ltd filed Critical Icon Yamato Co Ltd
Priority to JP2018106489A priority Critical patent/JP2019200760A/en
Publication of JP2019200760A publication Critical patent/JP2019200760A/en
Pending legal-status Critical Current

Links

Landscapes

  • Image Generation (AREA)
  • Image Analysis (AREA)

Abstract

To provide a method for automatically acquiring or automatically recognizing information provided for drawing creation from a point group of a three-dimensional coordinates.SOLUTION: A method automatically extracts a point group showing three-dimensional coordinates of a solid structure surface of a builing or the like acquired by a three-dimensional measurement device, and a plane, an inclined plane, or an edge from a point group showing three-dimensional coordinates of a natural object surface. An area determination method extracts the plane, the inclined plane, or an edge region. The method includes: each point feature amount determination step for making a feature amount acquired by applying a three-dimensional spatial filter to height information on each of all points in the point group into a feature amount at each point; a step for determining a plane, inclined plane, or edge feature amount acquired by normalizing the feature amount; and a section extraction step for executing area division and labeling processing on the feature amount by threshold processing.SELECTED DRAWING: Figure 4

Description

本発明は、点群取得手段により得られた3次元座標の点群から図面作成に供する情報を自動取得または自動認識に関するものである。  The present invention relates to automatic acquisition or automatic recognition of information used for drawing creation from a point group of three-dimensional coordinates obtained by a point group acquisition unit.

従来、建物などの立体構造物ならびに自然物を3次元計測装置により測定する場合、たとえば、ドローン、レーザースキャナが用いられており、3次元計測データを取得することができる。3次元計測データより特徴抽出する技術が開示されている(特許文献1、2参照)。  Conventionally, when measuring a three-dimensional structure such as a building and a natural object with a three-dimensional measurement device, for example, a drone or a laser scanner is used, and three-dimensional measurement data can be acquired. A technique for extracting features from three-dimensional measurement data is disclosed (see Patent Documents 1 and 2).

特許第5480914号公報Japanese Patent No. 5480914 特開2017−49737号公報JP 2017-49737 A

特許文献1の構成によると、3次元点群より2次元画像としてエッジ等を抽出し、オクルージョン(手前の物体に遮られて奥の物体が見えなくなっている状態)を非面領域として抽出対象外としている。また、中間処理として2次元画像として扱う段階があるため、3次元空間を多面的な視点でみることが困難であると考える。  According to the configuration of Patent Document 1, an edge or the like is extracted as a two-dimensional image from a three-dimensional point group, and occlusion (a state in which the object behind is obstructed by an object in front) is excluded as a non-surface area. It is said. Further, since there is a stage of handling as a two-dimensional image as intermediate processing, it is difficult to view the three-dimensional space from a multifaceted viewpoint.

特許文献2の構成によると、3次元点群に対して法線ベクトルを求めた結果に基づき2つの平面を記述する連立方程式を生成し、その連立方程式の解を求めることでエッジを抽出している。しかし、本発明で対象にしている自然物は、必ずしも平面で近似できるとは限らず適用は困難である。  According to the configuration of Patent Document 2, a simultaneous equation that describes two planes is generated based on the result of obtaining a normal vector for a three-dimensional point group, and an edge is extracted by obtaining a solution of the simultaneous equations. Yes. However, the natural object which is the subject of the present invention is not always approximated by a plane and is difficult to apply.

本発明は、3次元座標の点群から平面、または、斜面、または、エッジの自動抽出方法およびこの自動抽出方法により平面、または、斜面、または、エッジの領域決定方法を提供することを目的とする。  An object of the present invention is to provide a method for automatically extracting a plane, a slope, or an edge from a point group of three-dimensional coordinates, and a method for determining a plane, a slope, or an edge region by this automatic extraction method. To do.

上記課題を解決するため、本発明の点群からの自動作図方法は、3次元計測装置にて取得された建物等の立体構造物表面の3次元座標を示す点群、ならびに自然物表面の3次元座標を示す点群から平面、または、斜面、または、エッジを自動抽出する方法、ならびに、平面、または、斜面、または、エッジ領域を抽出する領域決定方法であって、
点群内のすべての各点の高さ情報へ3次元空間フィルタを適用し求めた特徴量を各点における特徴量とする各点特徴量決定工程と、
上記特徴量に対して正規化することで得られる平面、または、斜面、または、エッジ特徴量決定工程と、
上記特徴量を閾値処理にて領域分割とラベリング処理を実施する区画抽出工程である。
In order to solve the above-described problem, the method of automatically drawing from a point cloud according to the present invention is a point cloud indicating a three-dimensional coordinate of a surface of a three-dimensional structure such as a building acquired by a three-dimensional measuring device, and a three-dimensional surface of a natural object. A method for automatically extracting a plane, a slope, or an edge from a point group indicating coordinates, and a region determination method for extracting a plane, a slope, or an edge region,
Each point feature amount determination step in which the feature amount obtained by applying a three-dimensional spatial filter to the height information of all the points in the point group is the feature amount at each point;
A plane, slope, or edge feature value determination step obtained by normalizing the feature value; and
This is a section extraction step for performing region division and labeling processing on the feature amount by threshold processing.

本発明によれば、請求項ごとに以下のような効果を奏する。According to the present invention, the following effects can be obtained for each claim.

請求項1記載の本発明によれば、3次元計測装置によって取得された建物等の立体構造物の3次元座標を示す点群、ならびに自然物表面の3次元座標を示す点群から、平面、または、斜面、または、エッジを自動抽出することで点群を基にした作図作業を容易にすることができる。従来、作図作業においては、人手により点群を平面ディスプレイ上にて目視により、物体の種類、エッジを探し出し作図を行っているが、3次元点群を平面ディスプレイに写像するため、奥行きを認識することが物理的に困難になりがちであり、作図に対する労力・時間を増加させる一因となっている。本発明により、平面、または、斜面、または、エッジを自動抽出することにより、上記課題を解決することができる。  According to the first aspect of the present invention, from a point group indicating a three-dimensional coordinate of a three-dimensional structure such as a building acquired by a three-dimensional measuring device and a point group indicating a three-dimensional coordinate of a natural object surface, By automatically extracting the slope or the edge, the drawing work based on the point cloud can be facilitated. Conventionally, in drawing work, the point cloud is manually sighted on the flat display to find the type and edge of the object, and the drawing is performed. However, since the 3D point cloud is mapped to the flat display, the depth is recognized. This tends to be physically difficult and contributes to an increase in labor and time for drawing. According to the present invention, the above-described problem can be solved by automatically extracting a plane, a slope, or an edge.

請求項2記載の本発明によれば、3次元点群より、平面、または、斜面、または、エッジを示す特徴量を得ることができる。  According to the second aspect of the present invention, a feature amount indicating a plane, a slope, or an edge can be obtained from a three-dimensional point group.

請求項3記載の本発明によれば、前記特徴量に基づき平面、または、斜面、または、エッジを区別することができる。  According to this invention of Claim 3, a plane, a slope, or an edge can be distinguished based on the said feature-value.

請求項4記載の本発明によれば、請求項2の発明で得られた特徴量を表示することができる。  According to the fourth aspect of the present invention, the feature amount obtained by the second aspect of the invention can be displayed.

請求項5記載の本発明によれば、請求項3の発明で得られた領域決定結果を表示することができる。  According to the present invention described in claim 5, the region determination result obtained in the invention of claim 3 can be displayed.

請求項6記載の本発明によれば、請求項1、または、請求項2、または、請求項3、または、請求項4、または、請求項5を備えた点群処理プログラムである。  According to the sixth aspect of the present invention, there is provided a point cloud processing program comprising the first aspect, the second aspect, the third aspect, the fourth aspect, or the fifth aspect.

点群処理プログラムのフローチャートである。It is a flowchart of a point cloud processing program. 3次元空間フィルタのイメージ図である。It is an image figure of a three-dimensional spatial filter. 3次元空間フィルタの重みを示す説明図である。It is explanatory drawing which shows the weight of a three-dimensional spatial filter. 点群データの色分け結果を示す図面代用写真である。It is a drawing substitute photograph which shows the color classification result of point cloud data.

以下、添付した図面を参照して、本発明の一実施の形態を説明する。  Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings.

実施形態に係る点群処理プログラムは、例えば、CPU(Central Processing Unit)などの演算処理手段、および、ROM(Read Only Memory)および、RAM(Random Access Memory)などの記憶手段を備えるハードウェアである計算手段と、計算手段上に実現するソフトウェアである点群処理プログラムとが協働する具体的手段を具備して構成される。  The point cloud processing program according to the embodiment is hardware including arithmetic processing means such as a CPU (Central Processing Unit), and storage means such as a ROM (Read Only Memory) and a RAM (Random Access Memory), for example. The calculation means and specific means for cooperating with the point group processing program which is software realized on the calculation means are provided.

プロセッサとは、専用または汎用のCPU、GPU(Graphics Processing Unit)、特定用途向け集積回路(ASIC(Application Specific Integrated Circuit))、プログラマブル論理デバイス(SPLD(Simple Programmable Logic Device))、複合プログラマブル論理デバイス(CPLD(Complex Programmable Logic Device))、および、フィールドプログラマブルゲートアレイ(FPGA(Field Programmable Gate Array))等のプログラムを実行可能な演算処理手段である。プロセッサは、記憶手段に保存されるプログラムを読み出して実行することにより、各種機能を実現する。  A processor is a dedicated or general-purpose CPU, a GPU (Graphics Processing Unit), an application specific integrated circuit (ASIC (Application Specific Integrated Circuit)), a programmable logic device (SPLD (Simple Programmable Logic Device)). It is an arithmetic processing means capable of executing programs such as CPLD (Complex Programmable Logic Device) and field programmable gate array (FPGA (Field Programmable Gate Array)). The processor implements various functions by reading and executing a program stored in the storage means.

記憶回路にプログラムを保存して実行するかわりに、プロセッサを構成する回路としてプログラムを直接組み込むように構成してもよい。  Instead of storing and executing the program in the storage circuit, the program may be directly incorporated as a circuit constituting the processor.

あるいは、複数の独立したプロセッサを組み合わせてプログラムを実行可能な演算処理回路を構成してもよい。プログラムを記憶する記憶回路はプロセッサごとに個別に設けてもよいし、複数のプロセッサの機能に対応するプログラムを集約して設けてもよい。  Alternatively, an arithmetic processing circuit capable of executing a program may be configured by combining a plurality of independent processors. A storage circuit for storing a program may be provided for each processor individually, or programs corresponding to functions of a plurality of processors may be provided in an aggregated manner.

点群処理プログラムを点群情報取得手段によって得られる点群情報処理に組み込んでもよい。たとえば、ドローン測量、または、地上レーザースキャナ、または、ハンドスキャナー等の点群情報取得手段にて点群情報を取得し、その分析に用いてもよい。  The point cloud processing program may be incorporated into the point cloud information processing obtained by the point cloud information acquisition means. For example, the point cloud information may be acquired by a point survey information acquisition means such as a drone surveying, a ground laser scanner, or a hand scanner and used for the analysis.

図1は、点群処理プログラムのフローチャートである。S101は、点群を入力する工程であり、フラッシュメモリなど外部記憶手段、または、ハードディスクなどの磁気記憶手段、または、LAN(Local Area Network)または、WAN(Wide Area Network)などに接続する接続手段である。  FIG. 1 is a flowchart of the point cloud processing program. S101 is a step of inputting a point cloud, and connecting means for connecting to an external storage means such as a flash memory, a magnetic storage means such as a hard disk, a LAN (Local Area Network), or a WAN (Wide Area Network). It is.

S102は、S101で入力された点群にもとづいて特徴量を抽出し、平面、または、斜面、または、エッジを示す点群の特徴を取得する工程である。  S102 is a step of extracting feature amounts based on the point group input in S101 and acquiring features of the point group indicating a plane, a slope, or an edge.

S103は、S102で得た点群特徴量に対して正規化(−1〜1)を施す工程である。正規化を施すことで平面、または、斜面、または、エッジを選択的に取り扱えるようにできる。  S103 is a step of normalizing (−1 to 1) the point cloud feature values obtained in S102. By applying normalization, a plane, a slope, or an edge can be selectively handled.

S104は、S103で得られた特徴量に基づき、あらかじめ定義したデータ区間で切り分け点群を分類し、ラベリングを行う工程である。  S104 is a step of performing labeling by classifying the cut point group in the data section defined in advance based on the feature amount obtained in S103.

S105はS104で得られた分類結果を外部記憶手段、磁気記憶手段、LANなどの接続手段に出力する工程、または、S103で得られた特徴量正規化結果に基づき、液晶ディスプレイなどの表示手段でデータ表示する工程である。たとえば、平面に近い点群分布(評価値が−1に近いほど)であれば寒色系の青色等で表示、斜面が急なほど(評価値が1に近いほど)暖色系の赤色で表現し、液晶ディスプレイなどの表示手段で表示することで、平面、または、斜面、または、エッジを視覚的に分かりやすくできる。  S105 is a step of outputting the classification result obtained in S104 to an external storage means, a magnetic storage means, a connection means such as a LAN, or a display means such as a liquid crystal display based on the feature amount normalization result obtained in S103. It is a process of displaying data. For example, if the point cloud distribution is closer to a flat surface (as the evaluation value is closer to −1), it is displayed in cold blue, etc., and as the slope is steep (as the evaluation value is closer to 1), it is expressed in warm red. By displaying on a display means such as a liquid crystal display, a flat surface, a slope, or an edge can be visually understood.

以下、図1のS102の構成について詳細に説明する。S102は、点群各点において3次元空間フィルタを適用し、特徴量を算出する。数1は、3次元空間フィルタの重み関数である。図2に3次元空間フィルタのイメージ図を示す。図3に適用した重みを示す。ここで重み関数は、x軸、y軸、z軸それぞれ定義しており、入力パラメータのx、y、zは点群各点の座標を示している。  Hereinafter, the configuration of S102 in FIG. 1 will be described in detail. In step S102, a feature amount is calculated by applying a three-dimensional spatial filter to each point of the point group. Equation 1 is a weight function of the three-dimensional spatial filter. FIG. 2 shows an image diagram of the three-dimensional spatial filter. FIG. 3 shows the applied weights. Here, the weight function is defined for each of the x-axis, y-axis, and z-axis, and the input parameters x, y, and z indicate the coordinates of each point in the point group.

数2は、点群の高さを示す関数である。高さとは、たとえば、標高値など高さ値であり、種類は問わない。数3は、各軸(x軸、y軸、z軸)においてそれぞれの注目点とその近傍点群の高さ分布を評価値として算出する。数4は、各軸の高さ変化の評価値(3次元ベクトル)を評価値(スカラー)へ変換する。  Equation 2 is a function indicating the height of the point group. The height is, for example, a height value such as an altitude value, and the type is not limited. Equation 3 calculates the height distribution of each target point and its neighboring points on each axis (x axis, y axis, z axis) as an evaluation value. Equation 4 converts the evaluation value (three-dimensional vector) of the height change of each axis into an evaluation value (scalar).

ここまでの処理を点群各点に対して実施し、各点における評価値を求める。すなわち、高さ変化が相対的に少ない(斜面と比較した場合の平面等)点群は評価値が相対的に低くなり、高さ変化が相対的に大きい(平面と比較した場合の斜面等)点群は評価値が相対的に高くなる。
The processing so far is performed for each point in the point group, and an evaluation value at each point is obtained. That is, a point group having a relatively small change in height (such as a plane when compared with a slope) has a relatively low evaluation value and a relatively large height change (such as a slope when compared with a plane). The point cloud has a relatively high evaluation value.

以下、図1のS103の構成について詳細に説明する。前段のS102で算出した評価値は、外れ値(点群のノイズ等で生じる)に対して相対的に高い評価値を算出する。また、最大値はS101で入力された点群の分布状況に依存するため、評価値全体の分布が正規分布であると仮定し、数5に基づく正規化を適用することで評価値を−1〜1の間に写像して平面、または、斜面、または、エッジ部分をそれぞれ抽出可能にする。
Hereinafter, the configuration of S103 in FIG. 1 will be described in detail. The evaluation value calculated in S102 in the preceding stage is a relatively high evaluation value with respect to an outlier (generated due to point cloud noise or the like). Further, since the maximum value depends on the distribution status of the point cloud input in S101, it is assumed that the distribution of the entire evaluation value is a normal distribution, and the evaluation value is set to −1 by applying the normalization based on Equation 5. The plane, the slope, or the edge portion can be extracted by mapping between ˜1.

以下、図1のS104の構成について詳細に説明する。前段処理S103により算出した正規化済み評価値において、数6に示すように全点の評価値の集合より特定の範囲内の評価値となる点のみを抽出することで、平面、または、斜面、または、エッジそれぞれを抽出することができる。
Hereinafter, the configuration of S104 in FIG. 1 will be described in detail. In the normalized evaluation values calculated by the pre-processing S103, by extracting only points that become evaluation values within a specific range from the set of evaluation values of all points as shown in Equation 6, a plane or a slope, Alternatively, each edge can be extracted.

以下、図1のS105の構成について詳細に説明する。前段のS104での抽出結果を外部記憶手段、磁気記憶手段、LANなどの接続手段に出力、または、液晶ディスプレイ等の表示手段に出力することができる。データ出力、または、データ表示を同時に実施してもよいし、または、ユーザーの選択を受け付けて選択的に実行するのもよいし、または、何らかのトリガー手段によって選択するのもよい。S101で入力される点群はx座標、y座標、z座標の3次元座標であり、色情報(RGB)、輝度情報を持たない場合もある。入力した点群に対して、S103で算出した正規化済み特徴量に基づき、色情報を付加することができる。たとえば、平面に近い点群分布(評価値が−1に近いほど)であれば寒色系の青色等で表示、斜面が急なほど(評価値が1に近いほど)暖色系の赤色で表示することで視覚的に点群の分布状況を分かりやすく表現できる。表示は液晶ディスプレイ等の表示手段で実施できる。実施例を図4に示す。  Hereinafter, the configuration of S105 in FIG. 1 will be described in detail. The extraction result in the previous step S104 can be output to an external storage means, a magnetic storage means, a connection means such as a LAN, or output to a display means such as a liquid crystal display. Data output or data display may be performed simultaneously, or may be selectively performed upon receipt of a user selection, or may be selected by some trigger means. The point group input in S101 is a three-dimensional coordinate of x coordinate, y coordinate, and z coordinate, and may not have color information (RGB) and luminance information. Color information can be added to the input point group based on the normalized feature amount calculated in S103. For example, if the point cloud distribution is closer to the plane (as the evaluation value is closer to −1), it is displayed in cold blue or the like, and as the slope is steep (as the evaluation value is closer to 1), it is displayed in warm red. This makes it possible to visually express the point cloud distribution. The display can be performed by a display means such as a liquid crystal display. An embodiment is shown in FIG.

S101 点群入力
S102 平面・斜面・エッジ特徴量算出
S103 特徴量正規化
S104 分類・グルーピング
S105 データ出力
S101 Point group input S102 Plane / slope / edge feature quantity calculation S103 Feature quantity normalization S104 Classification / grouping S105 Data output

Claims (6)

点群からの自動作図方法であって、3次元計測装置にて取得された建物等の立体構造物表面または自然物表面の3次元座標を示す点群から平面、または、斜面、または、エッジを自動抽出することを特徴とする点群からの自動作図方法。  This is an automatic drawing method from a point cloud, and automatically detects a plane, a slope, or an edge from a point cloud that indicates the three-dimensional coordinates of the surface of a three-dimensional structure such as a building or a natural object acquired by a three-dimensional measuring device. A method of automatic operation drawing from a point cloud characterized by extracting. 前記点群より、平面、または、斜面、または、エッジ特徴量を求める特徴量抽出工程を含むことを特徴とする請求項1に記載の自動作図方法。  2. The automatic operation drawing method according to claim 1, further comprising a feature quantity extraction step of obtaining a plane, slope, or edge feature quantity from the point group. 前記特徴量にもとづき、平面、または、斜面、または、エッジ領域を抽出する領域決定工程を含むことを特徴とする請求項2に記載の自動作図方法。  3. The automatic operation drawing method according to claim 2, further comprising a region determining step of extracting a plane, a slope, or an edge region based on the feature amount. 請求項2の特徴量を表示する平面、または、斜面、または、エッジ特徴量表示方法。  A plane, slope, or edge feature quantity display method for displaying the feature quantity according to claim 2. 請求項3の領域決定結果を表示する領域決定表示方法。  A region determination display method for displaying the region determination result of claim 3. 請求項1、または、請求項2、または、請求項3、または、請求項4、または、請求項5を備えた点群処理プログラム。  A point cloud processing program comprising claim 1, claim 2, claim 3, claim 4, or claim 5.
JP2018106489A 2018-05-16 2018-05-16 Automatic drawing method from point group, and point group processing program Pending JP2019200760A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018106489A JP2019200760A (en) 2018-05-16 2018-05-16 Automatic drawing method from point group, and point group processing program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018106489A JP2019200760A (en) 2018-05-16 2018-05-16 Automatic drawing method from point group, and point group processing program

Publications (1)

Publication Number Publication Date
JP2019200760A true JP2019200760A (en) 2019-11-21

Family

ID=68613225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018106489A Pending JP2019200760A (en) 2018-05-16 2018-05-16 Automatic drawing method from point group, and point group processing program

Country Status (1)

Country Link
JP (1) JP2019200760A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116188803A (en) * 2023-04-23 2023-05-30 武汉工程大学 Polar coordinate-based boundary point cloud extraction method, system, equipment and medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116188803A (en) * 2023-04-23 2023-05-30 武汉工程大学 Polar coordinate-based boundary point cloud extraction method, system, equipment and medium
CN116188803B (en) * 2023-04-23 2023-09-15 武汉工程大学 Polar coordinate-based boundary point cloud extraction method, system, equipment and medium

Similar Documents

Publication Publication Date Title
US11798239B2 (en) Method and device for a placement of a virtual object of an augmented or mixed reality application in a real-world 3D environment
US10701332B2 (en) Image processing apparatus, image processing method, image processing system, and storage medium
US8988317B1 (en) Depth determination for light field images
KR101671185B1 (en) Apparatus and method for extracting light and texture, and rendering apparatus using light and texture
US9129435B2 (en) Method for creating 3-D models by stitching multiple partial 3-D models
US11490062B2 (en) Information processing apparatus, information processing method, and storage medium
KR102073468B1 (en) System and method for scoring color candidate poses against a color image in a vision system
US11113875B1 (en) Visualization tools for point clouds and 3D imagery
US12106438B2 (en) Point cloud annotation device, method, and program
WO2019167453A1 (en) Image processing device, image processing method, and program
JP2016179534A (en) Information processor, information processing method, program
US10304202B2 (en) Evaluation device for skin texture based on skin blob and method thereof
JP6185385B2 (en) Spatial structure estimation apparatus, spatial structure estimation method, and spatial structure estimation program
CN110832542A (en) Recognition processing device, recognition processing method, and program
JP6723798B2 (en) Information processing device, method, and program
JP2015184061A (en) Extracting device, method, and program
US11816854B2 (en) Image processing apparatus and image processing method
Sert A new modified neutrosophic set segmentation approach
KR102551077B1 (en) 3d model construction from 2d assets
JP2015148895A (en) object number distribution estimation method
JP2019200760A (en) Automatic drawing method from point group, and point group processing program
CN112883920A (en) Point cloud deep learning-based three-dimensional face scanning feature point detection method and device
JP7298687B2 (en) Object recognition device and object recognition method
JP2017004065A (en) Thumbnail image creation device and three-dimensional molding system
KR100991570B1 (en) A remote sensing method of diverse signboards' Size and Apparatus using thereof