以下、本発明の実施形態である。
Hereinafter, embodiments of the present invention will be described.
<実施例1>
本発明に関する冷蔵庫の実施例1について説明する。図1は実施例1に係わる冷蔵庫の正面図、図2は図1のA−A断面図、図3は図2のB−B断面図である。冷蔵庫1の箱体10は、上方から冷蔵室2、左右に併設された製氷室3と上段冷凍室4、下段冷凍室5、野菜室6の順番で貯蔵室を有している。冷蔵庫1はそれぞれの貯蔵室の開口を開閉するドアを備えている。これらのドアは、冷蔵室2の開口を開閉する、左右に分割された回転式の冷蔵室ドア2a、2bと、製氷室3、上段冷凍室4、下段冷凍室5、野菜室6の開口をそれぞれ開閉する引き出し式の製氷室ドア3a、上段冷凍室ドア4a、下段冷凍室ドア5a、野菜室ドア6aである。以下では、製氷室3、上段冷凍室4、下段冷凍室5は、まとめて冷凍室7と呼ぶ。
<Example 1>
Example 1 of the refrigerator according to the present invention will be described. 1 is a front view of the refrigerator according to the first embodiment, FIG. 2 is a cross-sectional view taken along the line AA in FIG. 1, and FIG. 3 is a cross-sectional view taken along the line BB in FIG. The box 10 of the refrigerator 1 has a storage room in the order of a refrigerator compartment 2 from above, an ice making room 3 provided on the left and right, an upper freezer room 4, a lower freezer room 5, and a vegetable room 6. The refrigerator 1 includes a door that opens and closes the opening of each storage chamber. These doors open and close the opening of the refrigerating room 2, and are divided into left and right rotating refrigerating room doors 2 a and 2 b, and the ice making room 3, the upper freezing room 4, the lower freezing room 5, and the vegetable room 6. A drawer-type ice making door 3a, an upper freezer compartment door 4a, a lower freezer compartment door 5a, and a vegetable compartment door 6a that open and close, respectively. Hereinafter, the ice making chamber 3, the upper freezing chamber 4, and the lower freezing chamber 5 are collectively referred to as a freezing chamber 7.
冷凍室7は、基本的に庫内を冷凍温度帯(0℃未満)の例えば平均的に−18℃程度にした貯蔵室であり、冷蔵室2及び野菜室は庫内を冷蔵温度帯(0℃以上)とし、例えば冷蔵室2は平均的に4℃程度、野菜室は平均的に7℃程度にした貯蔵室である。
The freezer room 7 is basically a storage room in which the inside of the refrigerator is in the freezing temperature zone (less than 0 ° C.), for example, about −18 ° C., and the refrigerator compartment 2 and the vegetable compartment have a refrigerator temperature zone (0 For example, the refrigerator compartment 2 is a storage room having an average of about 4 ° C., and the vegetable room is an average of about 7 ° C.
ドア2aには庫内の温度設定の操作を行う操作部26を設けている。冷蔵庫1とドア2a、2bを固定するためにドアヒンジ(図示せず)が冷蔵室2上部及び下部に設けてあり、上部のドアヒンジはドアヒンジカバー16で覆われている。
The door 2a is provided with an operation unit 26 for performing an operation for setting the temperature in the cabinet. In order to fix the refrigerator 1 and the doors 2 a and 2 b, door hinges (not shown) are provided at the upper and lower parts of the refrigerator compartment 2, and the upper door hinges are covered with a door hinge cover 16.
図2に示すように、外箱10aと内箱10bとの間に発泡断熱材(例えば発泡ウレタン)を充填して形成される箱体10により、冷蔵庫1の庫外と庫内は隔てられている。箱体10には発泡断熱材に加えて複数の真空断熱材25を、鋼板製の外箱10aと合成樹脂製の内箱10bとの間に実装している。冷蔵室2と、上段冷凍室4及び製氷室3は断熱仕切り壁28によって隔てられ、同様に下段冷凍室5と野菜室6は断熱仕切り壁29によって隔てられている。また、製氷室3、上段冷凍室4、及び下段冷凍室5の各貯蔵室の前面側には、ドア3a、4a、5aの隙間から冷凍室7内の空気が庫外へ漏れ、庫外の空気が各貯蔵室に侵入しないよう、断熱仕切り壁30を設けている。
As shown in FIG. 2, the outside of the refrigerator 1 and the inside of the refrigerator are separated by a box 10 formed by filling a foam heat insulating material (for example, urethane foam) between the outer box 10a and the inner box 10b. Yes. In addition to the foam heat insulating material, a plurality of vacuum heat insulating materials 25 are mounted on the box 10 between a steel plate outer box 10a and a synthetic resin inner box 10b. The refrigerator compartment 2, the upper freezer compartment 4 and the ice making compartment 3 are separated by a heat insulating partition wall 28. Similarly, the lower freezer compartment 5 and the vegetable compartment 6 are separated by a heat insulating partition wall 29. In addition, on the front side of each storage room of the ice making room 3, the upper freezing room 4, and the lower freezing room 5, the air in the freezing room 7 leaks out of the warehouse through the gap between the doors 3a, 4a, 5a, A heat insulating partition wall 30 is provided so that air does not enter each storage chamber.
冷蔵室2のドア2a、2bの庫内側に複数のドアポケット33a、33b、33cを設け、また複数の棚34a、34b、34c、34dを設けることで、冷蔵室2内は複数の貯蔵スペースに区画されている。冷凍室7及び野菜室6には、それぞれドア3a、4a、5a、6aと一体に引き出される製氷室容器(図示せず)、上段冷凍室容器4b、下段冷凍室容器5b、野菜室容器6bを備えている
断熱仕切り壁28の上方には、冷蔵室2の内部に設けられた庫内貯蔵空間である庫内貯蔵室35を設けている。庫内貯蔵室35は、庫内貯蔵室35内に設けた食品の乾燥を抑制し、また庫内貯蔵室35内に設けた食品の酸化防止を目的に内部を減圧するために密閉されており、庫内貯蔵室35内部は直接冷気が送風されない構造となっている。庫内貯蔵室35は、操作部26により、内部においた食品を冷蔵室2の温度に近い冷蔵温度帯(例えば約0〜3℃)にするチルドモードと、冷蔵室2よりも低温な冷凍温度帯(例えば約−3〜0℃)にする氷温モードに切換えることができる。庫内貯蔵室35は断熱仕切り壁28を介して冷凍室7と隣接させているため、後述する制御と合わせることで、冷凍温度帯の氷温モードにできるようにしている。なお、断熱仕切り壁28内にはヒータ(図示せず)を設けており、詳細は後述するが、圧縮機24とRファン9aの制御と、本ヒータの制御により2つのモードを切換える。
A plurality of door pockets 33a, 33b, 33c are provided inside the doors 2a, 2b of the refrigerator compartment 2 and a plurality of shelves 34a, 34b, 34c, 34d are provided, so that the inside of the refrigerator compartment 2 is provided with a plurality of storage spaces. It is partitioned. In the freezer compartment 7 and the vegetable compartment 6, an ice making container (not shown), an upper freezer container 4b, a lower freezer container 5b, and a vegetable compartment container 6b that are pulled out integrally with the doors 3a, 4a, 5a, 6a, respectively. Above the heat insulating partition wall 28 provided, an internal storage chamber 35 which is an internal storage space provided in the refrigerator compartment 2 is provided. The internal storage room 35 is sealed to suppress drying of the food provided in the internal storage room 35 and to reduce the inside for the purpose of preventing oxidation of the food provided in the internal storage room 35. The interior storage chamber 35 has a structure in which cold air is not directly blown. The internal storage room 35 has a chilled mode in which the food stored therein is brought into a refrigeration temperature range (for example, about 0 to 3 ° C.) close to the temperature of the refrigeration room 2 and a freezing temperature lower than that of the refrigeration room 2. The ice temperature mode can be switched to a belt (eg, about −3 to 0 ° C.). Since the internal storage chamber 35 is adjacent to the freezer compartment 7 through the heat insulating partition wall 28, the ice storage mode in the freezing temperature zone can be made by combining with the control described later. Note that a heater (not shown) is provided in the heat insulating partition wall 28, and the two modes are switched by the control of the compressor 24 and the R fan 9a and the control of this heater, as will be described in detail later.
冷蔵用蒸発器であるR蒸発器14aは冷蔵室2の略背部に備えた冷蔵用蒸発器室であるR蒸発器室8a内に設けてある。R蒸発器14aと熱交換して低温になった空気は、R蒸発器14aの上方に設けた冷蔵用ファンであるRファン9aにより、冷蔵室風路11、冷蔵室吐出口11aを介して冷蔵室2に送風され、冷蔵室2内を冷却する。冷蔵室2に送風された空気は冷蔵室戻り口15a及び15b(図3参照)からR蒸発器室8aに戻り、再びR蒸発器14aにより冷却される。冷蔵室戻り口15a及び15bには後述する排水口22a及びR配水管27aの最小径よりも小さいスリットを設け、排水口22a及びR配水管27aでの食品のつまりを防止している。
The R evaporator 14a which is a refrigeration evaporator is provided in an R evaporator chamber 8a which is a refrigeration evaporator chamber provided substantially at the back of the refrigeration chamber 2. The air cooled to the low temperature by exchanging heat with the R evaporator 14a is refrigerated via the refrigerating chamber air passage 11 and the refrigerating chamber discharge port 11a by the R fan 9a which is a refrigeration fan provided above the R evaporator 14a. The air is blown into the chamber 2 to cool the inside of the refrigerator compartment 2. The air blown into the refrigerator compartment 2 returns to the R evaporator chamber 8a from the refrigerator outlets 15a and 15b (see FIG. 3), and is cooled again by the R evaporator 14a. The refrigerator return ports 15a and 15b are provided with slits smaller than the minimum diameters of the drain port 22a and the R water pipe 27a, which will be described later, to prevent clogging of food at the drain port 22a and the R water pipe 27a.
冷蔵室2の冷蔵室吐出口11aは冷蔵室2の上部に設けており、本実施例では最上段の棚34aにのみ空気が吐出するように設けている。また冷蔵室戻り口15a、15bは冷蔵室2の下部に設けており、本実施例では冷蔵室戻り口15bは冷蔵室2の下から2番目の段(棚34cと棚34dの間)に設け、冷蔵室戻り口15aは冷蔵室2の最下段(棚34dと断熱仕切り壁28の間)で庫内貯蔵室35の略背面に設けている。これによりRファン9aの運転率を高くする(送風する時間割合を多くする)と、冷蔵室吐出口11aのある冷蔵室2の上方を比較的低温にすることができ、運転率を低くすると自然対流と断熱仕切り壁28を介した冷凍室7の伝熱により冷蔵室2の下方を比較的低温にできる。よって、冷蔵室2の下部で庫内貯蔵室35を備えた最下段は冷蔵室吐出口11aがなく、冷蔵室戻り口15a、15bを備えている構成となっており、Rファン9aの運転率を高くすると庫内貯蔵室35を相対的に高い温度(冷蔵室2の平均温度に近い温度)にすることができ、運転率を低くすると庫内貯蔵室35を相対的に低い温度(冷蔵室2の平均温度よりも低温)にできる。
The refrigerator compartment discharge port 11a of the refrigerator compartment 2 is provided in the upper part of the refrigerator compartment 2, and is provided so that air may be discharged only to the uppermost shelf 34a in this embodiment. The refrigerator compartment return ports 15a and 15b are provided in the lower part of the refrigerator compartment 2. In this embodiment, the refrigerator compartment return port 15b is provided in the second stage (between the shelf 34c and the shelf 34d) from the bottom of the refrigerator compartment 2. The refrigerating room return port 15a is provided at the lowermost stage of the refrigerating room 2 (between the shelf 34d and the heat insulating partition wall 28) on the substantially rear surface of the internal storage room 35. As a result, when the operation rate of the R fan 9a is increased (the proportion of time during which air is blown is increased), the upper portion of the refrigerator compartment 2 having the refrigerator outlet 11a can be made relatively low in temperature. Due to the convection and heat transfer in the freezer compartment 7 through the heat insulating partition wall 28, the lower part of the refrigerator compartment 2 can be made relatively cold. Therefore, the lowermost stage provided with the storage room 35 in the lower part of the refrigerating room 2 has a structure in which the refrigerating room outlets 11a are not provided and the refrigerating room return ports 15a and 15b are provided. If the value is increased, the internal storage room 35 can be set to a relatively high temperature (temperature close to the average temperature of the refrigerator compartment 2), and if the operating rate is reduced, the internal storage room 35 is set to a relatively low temperature (refrigerator room). 2).
冷凍用蒸発器であるF蒸発器14bは冷凍室7の略背部に備えた冷凍用蒸発器室であるF蒸発器室8b内に設けてある。F蒸発器14bと熱交換して低温になった空気は、F蒸発器14bの上方に設けた冷凍用ファンであるFファン9bにより、冷凍室風路12、冷凍室吐出口12aを介して冷凍室7に送風し、冷凍室7内を冷却する。冷凍室7に送風された空気は冷凍室戻り口17からF蒸発器室8bに戻り、再びF蒸発器14bにより冷却される。
The F evaporator 14b, which is a freezing evaporator, is provided in an F evaporator room 8b, which is a freezing evaporator room provided substantially at the back of the freezing room 7. The air cooled to the low temperature by exchanging heat with the F evaporator 14b is frozen by the F fan 9b, which is a refrigeration fan provided above the F evaporator 14b, via the freezer air path 12 and the freezer outlet 12a. The chamber 7 is blown to cool the inside of the freezer compartment 7. The air blown into the freezer compartment 7 returns from the freezer return port 17 to the F evaporator chamber 8b and is cooled again by the F evaporator 14b.
本実施例の冷蔵庫1では、野菜室6もF蒸発器14bで低温にした空気で冷却する。F蒸発器14bで低温になったF蒸発器室8bの空気は、Fファン9bにより野菜室風路(図示せず)、野菜室ダンパ(図示せず)を介して野菜室6に送風し、野菜室6内を冷却する。野菜室6が低温の場合は、野菜室ダンパを閉じることで野菜室6の冷却を抑える。なお、野菜室6に送風された空気は断熱仕切り壁29の下部前方に設けた野菜室側の冷気戻り部18aから野菜室冷気戻りダクト18を介してF蒸発器室8bの下部に戻る。
In the refrigerator 1 of a present Example, the vegetable compartment 6 is also cooled with the air made into low temperature by F evaporator 14b. The air in the F evaporator chamber 8b, which has become low temperature in the F evaporator 14b, is blown to the vegetable chamber 6 by the F fan 9b via the vegetable chamber air passage (not shown) and the vegetable chamber damper (not shown). Cool the vegetable compartment 6. When the vegetable compartment 6 is cold, cooling of the vegetable compartment 6 is suppressed by closing the vegetable compartment damper. The air blown into the vegetable compartment 6 returns to the lower portion of the F evaporator chamber 8b through the vegetable compartment cold air return duct 18 from the cold air return portion 18a on the vegetable compartment side provided in front of the lower portion of the heat insulating partition wall 29.
冷蔵室2、冷凍室7、野菜室6の庫内背面側には、それぞれ冷蔵室温度センサ41、冷凍室温度センサ42、野菜室温度センサ43を設け、R蒸発器14aの上部にはR蒸発器温度センサ40a、F蒸発器14bの上部にはF蒸発器温度センサ40bを設け、これらのセンサにより、冷蔵室2、冷凍室7、野菜室6、R蒸発器14a、及びF蒸発器14bの温度を検知している。また、冷蔵庫1の天井部のドアヒンジカバー16の内部には、外気(庫外空気)の温度を検知する外気温度センサ37と湿度を検知する外気湿度センサ38を設けている。その他のセンサとして、ドア2a、2b、3a、4a、5a、6aの開閉状態をそれぞれ検知するドアセンサ(図示せず)等も設けている。
The refrigerator compartment temperature sensor 41, the freezer compartment temperature sensor 42, and the vegetable compartment temperature sensor 43 are provided on the rear side of the refrigerator compartment 2, the freezer compartment 7, and the vegetable compartment 6, respectively. An F evaporator temperature sensor 40b is provided on the upper part of the oven temperature sensor 40a and the F evaporator 14b. By these sensors, the refrigerator compartment 2, the freezer compartment 7, the vegetable compartment 6, the R evaporator 14a, and the F evaporator 14b are provided. The temperature is detected. In addition, inside the door hinge cover 16 on the ceiling portion of the refrigerator 1, an outside air temperature sensor 37 that detects the temperature of outside air (outside air) and an outside air humidity sensor 38 that detects humidity are provided. As other sensors, door sensors (not shown) for detecting the open / closed states of the doors 2a, 2b, 3a, 4a, 5a, 6a, respectively, are also provided.
図2及び図3に示すように、F蒸発器室8bの下部には、F蒸発器14bを加熱する除霜ヒータ21を設けている。除霜ヒータ21は、例えば50W〜200Wの電気ヒータで、本実施例では150Wのラジアントヒータとしている。F蒸発器14bの除霜時に発生した除霜水(融解水)はF蒸発器室8bの下部に設けたFトイ23bに落下し、F排水口22b、F排水管27bを介して圧縮機24の上部に設けたF蒸発皿32bに排出される。
As shown in FIG.2 and FIG.3, the defrost heater 21 which heats the F evaporator 14b is provided in the lower part of the F evaporator chamber 8b. The defrost heater 21 is, for example, an electric heater of 50 W to 200 W, and is a 150 W radiant heater in this embodiment. The defrost water (melted water) generated at the time of defrosting of the F evaporator 14b falls to the F toy 23b provided at the lower part of the F evaporator chamber 8b, and the compressor 24 via the F drain port 22b and the F drain pipe 27b. It is discharged to the F evaporating dish 32b provided on the upper part.
また、R蒸発器14aの除霜方法については図8から図11を用いて後述するが、R蒸発器14aの除霜時に発生した除霜水は、R蒸発器室8aの下部に設けたRトイ23aに落下し、排水口22a、R排水管27aを介して機械室39に設けたR蒸発皿32aに排出される。
Moreover, although the defrosting method of R evaporator 14a is later mentioned using FIGS. 8-11, the defrost water generated at the time of defrosting of R evaporator 14a is R provided in the lower part of R evaporator chamber 8a. It falls on the toy 23a and is discharged to the R evaporating dish 32a provided in the machine room 39 via the drain port 22a and the R drain pipe 27a.
図3に示すように、Rトイ23aにはRトイ23aでの除霜水が凍結した際に除霜水を融解させるトイヒータ101を設けている。また、R排水管27aには排水管上部ヒータ102及び排水管下部ヒータ103を設けている。また、トイヒータ101、配水管上部ヒータ102、及び配水管下部ヒータ103の通電を制御するため、トイ温度を検知するトイ温度センサ45を、Rトイ23aの最終集水部である排水口22a近傍の発砲断熱材内部に埋設している。トイ温度センサ45をRトイ23aの内面に露出させずに、トイ形成部材の内側にトイ温度センサ45を設置することにより、水がトイ温度センサ45に直接接触しないので、腐食によるトイ温度センサ45の断線が防止でき、トイ温度センサ45の耐久性が向上する。本実施例の冷蔵庫1では後述する制御により、Rトイ23aの残水をトイ温度センサ45により検知し、最大水量以上となってRトイ23aから水が溢れて冷蔵室2に水が侵入することがないようにしている。また、トイ温度センサ45を発泡断熱材内部に埋設することで、Rトイ23aの内面の凹凸を少なくでき、凹凸箇所への残水を防ぐことが可能となる。残水を防止した結果、残水の凍結防止のためにトイヒータ101の出力を上げなくても、残水の凍結によってRトイ23a内を堰き止め水が溢れるのを防止できる。また、トイ温度センサ45の埋設位置は、Rトイ23aが受けられる最大貯水量の半分以下の水量で、Rトイ23aを介して水と面する箇所としている。これにより、Rトイ23aに残水していた場合に、最大水量以上となってRトイ23aから溢れる前にRトイ23aの残水を検知することができ、より確実に冷蔵室2への水の侵入を抑制できる。さらに本実施例では、トイ温度センサ45をRトイ23aの排水口22a近傍(熱的な影響を受ける10cm以内)に配置しており、排水口22aで氷結が生じ、排水できなくなった場合に、早期に検知できる構成としている。なお各ヒータ101、102,103は、例えば消費電力20W以下と、除霜ヒータ21よりも消費電力が低い電気ヒータであり、本実施例ではトイヒータ101が10W,排水管上部ヒータ102が5W、排水管下部ヒータ103が3Wのヒータとしている。
As shown in FIG. 3, the R toy 23a is provided with a toy heater 101 that melts the defrosted water when the defrosted water in the R toy 23a is frozen. The R drain pipe 27a is provided with a drain pipe upper heater 102 and a drain pipe lower heater 103. Further, in order to control the energization of the toy heater 101, the water distribution pipe upper heater 102, and the water distribution pipe lower heater 103, a toy temperature sensor 45 for detecting the toy temperature is provided in the vicinity of the drain outlet 22a, which is the final water collecting part of the R toy 23a. It is buried inside the foam insulation. By installing the toy temperature sensor 45 inside the toy forming member without exposing the toy temperature sensor 45 to the inner surface of the R toy 23a, water does not directly contact the toy temperature sensor 45. Can be prevented, and the durability of the toy temperature sensor 45 is improved. In the refrigerator 1 of the present embodiment, the remaining water of the R toy 23a is detected by the toy temperature sensor 45 by the control described later, and the water overflows from the R toy 23a when the maximum water amount is exceeded and water enters the refrigerator compartment 2. There is no such thing. Further, by embedding the toy temperature sensor 45 in the foam heat insulating material, the unevenness of the inner surface of the R toy 23a can be reduced, and residual water in the uneven portion can be prevented. As a result of preventing the remaining water, the inside of the R toy 23a can be prevented from overflowing due to freezing of the remaining water without increasing the output of the toy heater 101 to prevent freezing of the remaining water. In addition, the toy temperature sensor 45 is embedded at a location facing the water via the R toy 23a with an amount of water that is less than half of the maximum amount of water that can be received by the R toy 23a. As a result, when water remains in the R toy 23a, the remaining water in the R toy 23a can be detected before the amount of water exceeds the maximum water amount and overflows from the R toy 23a. Can be prevented. Furthermore, in this embodiment, the toy temperature sensor 45 is disposed in the vicinity of the drain port 22a of the R toy 23a (within 10 cm affected by heat), and when the drain port 22a is frozen and cannot drain, The configuration allows early detection. Each of the heaters 101, 102, 103 is, for example, an electric heater that consumes less than 20W and consumes less power than the defrost heater 21, and in this embodiment, the toy heater 101 is 10W, the drain pipe upper heater 102 is 5W, The lower pipe heater 103 is a 3 W heater.
図4はR排水管27aの構成を示す図である。図中の201、202は、図3に示す201、202と同じ高さ位置を示し、範囲201は冷凍室7及びF蒸発器室8bの高さ範囲を表し、範囲202は断熱仕切り壁28から断熱仕切り壁29の下端までの高さ範囲を表す。
FIG. 4 is a diagram showing the configuration of the R drain pipe 27a. 201 and 202 in the figure indicate the same height positions as 201 and 202 shown in FIG. 3, the range 201 represents the height range of the freezer compartment 7 and the F evaporator chamber 8 b, and the range 202 is from the heat insulating partition wall 28. The height range to the lower end of the heat insulation partition wall 29 is represented.
R排水管27aは、上部は冷凍室7及びF蒸発器室8bから離れるよう排水口22aから外箱10a側に向かうよう外向きに傾斜しながら下方に向けて設けられており、この区間に排水管上部ヒータ102を設けている。その下部のR排水管27aは外箱10aの略近傍に設けられており、断熱仕切り壁29の下端まで排水管下部ヒータ103を設けている。その下部(断熱仕切り壁29よりも下部)のR排水管27aはR蒸発皿32aに除霜水が排出されるよう内向きに傾斜している。なお、本実施例では、排水管上部ヒータ102と排水管下部ヒータ103は何れも熱伝導率の高い伝熱部材であるアルミシールによりR排水管27aに固定しており、これにより、ヒータ線が直接触れていない箇所もアルミシールによる熱伝導で加熱できる構成にしている。
The upper part of the R drain pipe 27a is provided facing downward while being inclined outwardly from the drain port 22a toward the outer box 10a so as to be separated from the freezer compartment 7 and the F evaporator compartment 8b. An upper tube heater 102 is provided. The lower R drain pipe 27 a is provided in the vicinity of the outer box 10 a, and the drain pipe lower heater 103 is provided up to the lower end of the heat insulating partition wall 29. The lower portion (lower than the heat insulating partition wall 29) of the R drain pipe 27a is inclined inward so that the defrost water is discharged to the R evaporating dish 32a. In this embodiment, the drain pipe upper heater 102 and the drain pipe lower heater 103 are both fixed to the R drain pipe 27a by an aluminum seal which is a heat transfer member having a high thermal conductivity. The parts that are not touched directly can be heated by heat conduction with an aluminum seal.
上記のように排水管上部ヒータ102と排水管下部ヒータ103を配設したことで、排水管上部ヒータ102と排水管下部ヒータ103の上端は、範囲201の上端よりも高い位置まで設けられ、また下端は範囲201の下端よりも低い位置まで設けられている。範囲201内のR排水管27aは、冷凍温度帯の冷凍室7及びF蒸発器室8bにより冷却されるため、R排水管27a内がマイナス温度となり、R排水管27a内で除霜水が凍結する可能性がある。一方、範囲201に排水管上部ヒータ102と排水管下部ヒータ103を設けることで、排水管内で水が凍結した場合も融解させることができ、すなわちR排水管27aからR蒸発皿32a(図3参照)に排水できる。
By disposing the drain pipe upper heater 102 and the drain pipe lower heater 103 as described above, the upper ends of the drain pipe upper heater 102 and the drain pipe lower heater 103 are provided to a position higher than the upper end of the range 201. The lower end is provided to a position lower than the lower end of the range 201. Since the R drain pipe 27a in the range 201 is cooled by the freezing chamber 7 and the F evaporator chamber 8b in the freezing temperature zone, the inside of the R drain pipe 27a has a negative temperature, and the defrost water is frozen in the R drain pipe 27a. there's a possibility that. On the other hand, by providing the drain pipe upper heater 102 and the drain pipe lower heater 103 in the range 201, it is possible to melt even when water is frozen in the drain pipe, that is, from the R drain pipe 27a to the R evaporating dish 32a (see FIG. 3). ) Can be drained.
さらに、排水管上部ヒータ102の上端は、範囲202の上端と同等または又はそれよりも高い位置となるよう設けられ、排水管下部ヒータ103の下端は範囲202の下端と同等またはそれよりも低い位置となるよう設けられている。断熱仕切り壁28及び断熱仕切り壁29は、冷凍温度帯の冷凍室7及びF蒸発器室8bと接しており、少なくとも一部はマイナス温度になる。従って、断熱仕切り壁28及び断熱仕切り壁29の高さ範囲のR排水管27a内もマイナス温度となる可能性があるが、範囲202と同等以上の範囲まで排水管上部ヒータ102と排水管下部ヒータ103を設けることで、より確実にR排水管27aからR蒸発皿32a(図3参照)に排水できる。なお、R排水管27aのうち断熱仕切り壁28内部の箇所は、直接断熱仕切り壁28により冷却されて低温になり易いため、特にこの箇所に排水管上部ヒータ102を設けることが有効である。
Furthermore, the upper end of the drain pipe upper heater 102 is provided to be at a position equal to or higher than the upper end of the range 202, and the lower end of the drain pipe lower heater 103 is equal to or lower than the lower end of the range 202. It is provided to become. The heat insulating partition wall 28 and the heat insulating partition wall 29 are in contact with the freezer compartment 7 and the F evaporator chamber 8b in the freezing temperature zone, and at least a part of the heat insulating partition wall 28 and the heat insulating partition wall 29 has a negative temperature. Accordingly, there is a possibility that the inside of the R drain pipe 27a in the height range of the heat insulating partition wall 28 and the heat insulating partition wall 29 may also have a negative temperature, but the drain pipe upper heater 102 and the drain pipe lower heater to a range equal to or higher than the range 202. By providing 103, the water can be discharged from the R drain pipe 27a to the R evaporating dish 32a (see FIG. 3) more reliably. In addition, since the location inside the heat insulation partition wall 28 of the R drain pipe 27a is easily cooled by the heat insulation partition wall 28, it is particularly effective to provide the drain pipe upper heater 102 at this location.
ここで、図2、図3に示すように、Rトイ23aにはRファン9aを駆動させると冷蔵室2から冷蔵室蒸発器14aへの戻り空気が流れる構成にしている。後述するR蒸発器14aの除霜運転時はRファン9aを駆動させるため、この冷蔵室2の戻り空気でRトイ23aを加熱できる。これにより、Rトイ23aでの除霜水の凍結を抑制し、また凍結した場合も融解に必要なトイヒータ101の加熱量を抑制することができ省エネルギー性能を高めることができる。
Here, as shown in FIGS. 2 and 3, the R toy 23a is configured such that when the R fan 9a is driven, return air flows from the refrigerating chamber 2 to the refrigerating chamber evaporator 14a. Since the R fan 9a is driven during the defrosting operation of the R evaporator 14a described later, the R toy 23a can be heated by the return air of the refrigerator compartment 2. Thereby, freezing of the defrost water in R toy 23a is suppressed, and also when it freezes, the heating amount of toy heater 101 required for melting | dissolving can be suppressed, and energy saving performance can be improved.
また、排水管27a下部(排水管下部ヒータ103を設けた箇所)は、冷凍室7及びF蒸発器室8bよりも外箱10aに近接させている。これにより、特に外気高温時、外箱10aを介して外気により加熱できるため、排水管27a下部での凍結を抑制し、また凍結した場合も排水管下部ヒータ103の加熱量を抑制することができ省エネルギー性能を高めることができる。一方、外気が低温の場合は排水管下部ヒータ103を加熱して除霜水が確実に排出できるようにしている。また、図14を用いて後述するが、R排水管27aは約0℃の除霜水が流れるため、R排水管27aに近接した外箱10aが除霜水により冷却され、露点温度よりも低温になる可能性があるが、排水管下部ヒータ103に通電して外箱10aへの結露を抑制できる。
Further, the lower part of the drain pipe 27a (where the drain pipe lower heater 103 is provided) is closer to the outer box 10a than the freezer compartment 7 and the F evaporator room 8b. Thereby, especially when the outside air is hot, it can be heated by the outside air through the outer box 10a. Therefore, freezing at the lower part of the drain pipe 27a can be suppressed, and even when frozen, the heating amount of the drain pipe lower heater 103 can be suppressed. Energy saving performance can be improved. On the other hand, when the outside air is at a low temperature, the drain pipe lower heater 103 is heated so that the defrost water can be surely discharged. Further, as will be described later with reference to FIG. 14, since the defrosted water at about 0 ° C. flows through the R drain pipe 27a, the outer box 10a adjacent to the R drain pipe 27a is cooled by the defrost water and is lower than the dew point temperature. However, dew condensation on the outer box 10a can be suppressed by energizing the drain pipe lower heater 103.
冷蔵庫1の上部(図2参照)には、制御装置の一部であるCPU、ROMやRAM等のメモリ、インターフェース回路等を搭載した制御基板31を配置している。制御基板31は、外気温度センサ37、外気湿度センサ38、冷蔵室温度センサ41、冷凍室温度センサ42、野菜室温度センサ43、蒸発器温度センサ40a、40b、トイ温度センサ45等と接続され、前述のCPUは、これらの出力値や操作部26の設定、前述のROMに予め記録されたプログラム等を基に、圧縮機24やRファン9a、冷蔵用ファン9b、前述の各ヒータ21、101、102、103、及び後述する冷媒制御弁52の制御等を行っている。
On the upper part of the refrigerator 1 (see FIG. 2), a control board 31 on which a CPU, a memory such as a ROM and a RAM, an interface circuit, etc., which are a part of the control device are mounted. The control board 31 is connected to the outside air temperature sensor 37, the outside air humidity sensor 38, the refrigerator compartment temperature sensor 41, the freezer compartment temperature sensor 42, the vegetable compartment temperature sensor 43, the evaporator temperature sensors 40a and 40b, the toy temperature sensor 45, and the like. The CPU described above is based on these output values, the setting of the operation unit 26, a program recorded in the ROM in advance, and the like, the compressor 24, the R fan 9a, the refrigeration fan 9b, and the heaters 21 and 101 described above. , 102, 103, and control of the refrigerant control valve 52 described later.
図5は断熱仕切り壁28内部を下側から見た図で、トイヒータ101とトイ温度センサ45の配設箇所を示している。トイヒータ101は、伝熱部材であるアルミシート104によりトイ背面の発泡断熱材側に貼り付けてある。熱伝導率の高いアルミを用いることで、ヒータ線が直接触れていない箇所もアルミシールによる熱伝導で加熱できる。なお、アルミシート104は、トイ温度センサ45には接触しないように離している。これは、トイヒータ101の温度上昇によりトイ温度センサ45が直接加熱され、Rトイ23aの温度検知が不正確になるのを防ぐためである。
FIG. 5 is a view of the inside of the heat insulating partition wall 28 as viewed from below, and shows the locations where the toy heater 101 and the toy temperature sensor 45 are disposed. The toy heater 101 is attached to the foam heat insulating material side on the back of the toy by an aluminum sheet 104 as a heat transfer member. By using aluminum with high thermal conductivity, the portion where the heater wire is not in direct contact can be heated by heat conduction by the aluminum seal. The aluminum sheet 104 is separated so as not to contact the toy temperature sensor 45. This is to prevent the toy temperature sensor 45 from being directly heated by the temperature rise of the toy heater 101 and inaccurate temperature detection of the R toy 23a.
図6は、実施例1の冷蔵庫における電気ヒータ配線を示す回路図である。除霜ヒータ21、トイヒータ101、排水管上部ヒータ102、排水管下部ヒータ103は制御基板31に接続されており、制御基板31により加熱の制御がなされる。ここで、除霜ヒータ21は制御基板31のピンP1とP4に接続され、トイヒータ101はピンP2とP4、排水管下部ヒータ103はピンP3とP4に接続されており、これらは独立して制御できる。一方、排水管上部ヒータ102はトイヒータ101と同様に制御基板31のピンP2とP4に接続しており、トイヒータ21と同期して駆動する構成にしている。
FIG. 6 is a circuit diagram illustrating electric heater wiring in the refrigerator according to the first embodiment. The defrost heater 21, the toy heater 101, the drain pipe upper heater 102, and the drain pipe lower heater 103 are connected to the control board 31, and heating is controlled by the control board 31. Here, the defrost heater 21 is connected to pins P1 and P4 of the control board 31, the toy heater 101 is connected to pins P2 and P4, and the drain pipe lower heater 103 is connected to pins P3 and P4, which are controlled independently. it can. On the other hand, the drain pipe upper heater 102 is connected to the pins P 2 and P 4 of the control board 31 similarly to the toy heater 101, and is configured to be driven in synchronization with the toy heater 21.
図7は、実施例1に関わる冷蔵庫の冷凍サイクル(冷媒流路)である。本実施例の冷蔵庫1では、圧縮機24、冷媒の放熱を行う放熱手段である庫外放熱器50aと壁面放熱配管50b、仕切り壁28、29、30の前面部への結露を抑制する結露防止配管50c、冷媒を減圧させる減圧手段である冷蔵用キャピラリチューブ53aと冷凍用キャピラリチューブ53b、冷媒と庫内の空気を熱交換させて、庫内の熱を吸熱するR蒸発器14aとF蒸発器14bを備え、これらにより庫内を冷却している。また、冷凍サイクル中の水分を除去するドライヤ51と、液冷媒が圧縮機24に流入するのを防止する気液分離器54a、54bを備え、さらに冷媒流路を制御する三方弁52、逆止弁56、冷媒流を接続する冷媒合流部55も備えており、これらを冷媒配管により接続することで冷凍サイクルを構成している。
FIG. 7 is a refrigeration cycle (refrigerant flow path) of the refrigerator according to the first embodiment. In the refrigerator 1 of the present embodiment, the compressor 24, the dew condensation prevention that suppresses the dew condensation on the front portions of the external heat sink 50a and the wall surface heat radiation pipe 50b, and the partition walls 28, 29, and 30 that are heat radiation means for radiating the refrigerant. The piping 50c, the refrigeration capillary tube 53a and the freezing capillary tube 53b, which are decompression means for decompressing the refrigerant, the R evaporator 14a and the F evaporator that absorb heat from the refrigerant by exchanging heat between the refrigerant and the air in the warehouse. 14b is provided and the inside is cooled by these. In addition, a dryer 51 for removing moisture in the refrigeration cycle, gas-liquid separators 54a and 54b for preventing liquid refrigerant from flowing into the compressor 24, a three-way valve 52 for controlling the refrigerant flow path, and a check The refrigerant | coolant merge part 55 which connects the valve 56 and a refrigerant | coolant flow is also provided, and the refrigerating cycle is comprised by connecting these by refrigerant | coolant piping.
なお本実施例の冷蔵庫1は、冷媒に可燃性冷媒のイソブタンを用いている。また、本実施例の圧縮機24はインバータを備えて回転速度を変えることができる。
In addition, the refrigerator 1 of a present Example uses the isobutane of a combustible refrigerant | coolant as a refrigerant | coolant. Further, the compressor 24 of this embodiment includes an inverter and can change the rotation speed.
三方弁52は、52a、52bで示す2つの流出口を備え、流出口52a側に冷媒を流す冷蔵モードと、流出口52b側に冷媒を流す冷凍モードを備え、これらを切換えることができる部材である。また、本実施例の三方弁52は、流出口52aと流出口52bの何れも冷媒が流れないようにする全閉、また何れも冷媒が流れるようにする全開のモードも備え、これらにも切換え可能である。
The three-way valve 52 includes two outflow ports indicated by 52a and 52b, and includes a refrigeration mode in which the refrigerant flows in the outflow port 52a and a refrigeration mode in which the refrigerant flows in the outflow port 52b. is there. In addition, the three-way valve 52 of this embodiment also has a fully closed mode in which the refrigerant does not flow in both the outlet 52a and the outlet 52b, and a fully opened mode in which both the refrigerant flows. Is possible.
本実施例の冷蔵庫1では、冷媒は以下のように流れる。圧縮機24から吐出した冷媒は、庫外放熱器50a、庫外放熱器50b、結露防止配管50c、ドライヤ51の順に流れ、三方弁52に至る。三方弁52の流出口52aは冷媒配管を介して冷蔵用キャピラリチューブ53aと接続され、流出口52bは冷媒配管を介して冷凍用キャピラリチューブ53bと接続されている。
In the refrigerator 1 of the present embodiment, the refrigerant flows as follows. The refrigerant discharged from the compressor 24 flows in the order of the external heat radiator 50a, the external heat radiator 50b, the dew condensation prevention pipe 50c, and the dryer 51, and reaches the three-way valve 52. The outlet 52a of the three-way valve 52 is connected to the refrigeration capillary tube 53a via a refrigerant pipe, and the outlet 52b is connected to the refrigeration capillary tube 53b via a refrigerant pipe.
流出口52a側に冷媒が流れるようにすると、流出口52aから流出した冷媒は、冷蔵用キャピラリチューブ53a、R蒸発器14a、気液分離機54a、冷媒合流部55の順に流れた後、圧縮機24に戻る。冷蔵用キャピラリチューブ53aで低圧低温になった冷媒がR蒸発器14aを流れることでR蒸発器14aが低温となり、R蒸発器室8aの空気を冷却することができ、すなわち冷蔵室2を冷却できる。
When the refrigerant flows to the outflow port 52a side, the refrigerant flowing out from the outflow port 52a flows in the order of the refrigeration capillary tube 53a, the R evaporator 14a, the gas-liquid separator 54a, and the refrigerant confluence 55, and then the compressor. Return to 24. When the refrigerant having a low pressure and low temperature in the refrigeration capillary tube 53a flows through the R evaporator 14a, the R evaporator 14a becomes low temperature, and the air in the R evaporator chamber 8a can be cooled, that is, the refrigerator compartment 2 can be cooled. .
また三方弁52を流出口52b側に冷媒が流れるようにした場合は、流出口52bから流出した冷媒は、冷凍用キャピラリチューブ53b、F蒸発器14b、気液分離機54b、逆止弁56、冷媒合流部55の順に流れた後、圧縮機24に戻る。逆止弁56は気液分離機54bから冷媒合流部55側には冷媒が流れ、冷媒合流部55から気液分離機54b側へは流れないように配設している。冷凍用キャピラリチューブ53bで低圧低温になった冷媒がF蒸発器14bを流れることでF蒸発器14bが低温となり、R蒸発器室8aの空気を冷却することができ、すなわち冷凍室7を冷却できる。
When the refrigerant flows through the three-way valve 52 toward the outlet 52b, the refrigerant flowing out of the outlet 52b is refrigerated capillary tube 53b, F evaporator 14b, gas-liquid separator 54b, check valve 56, After flowing in the order of the refrigerant merging portion 55, the flow returns to the compressor 24. The check valve 56 is arranged so that the refrigerant flows from the gas-liquid separator 54b to the refrigerant merging portion 55 side and does not flow from the refrigerant merging portion 55 to the gas-liquid separator 54b side. When the refrigerant having a low pressure and low temperature in the freezing capillary tube 53b flows through the F evaporator 14b, the F evaporator 14b becomes low temperature, and the air in the R evaporator chamber 8a can be cooled, that is, the freezer chamber 7 can be cooled. .
図8は、実施例1の冷蔵庫における冷却運転制御を示すタイムチャートの一例である。ここでは庫内貯蔵室35はチルドモードとし、外気が比較的高温(例えば32℃)で、低湿でない(例えば60%RH)場合を表している。図9は実施例1の冷蔵庫における冷蔵運転に関する制御フローチャートである。
FIG. 8 is an example of a time chart showing cooling operation control in the refrigerator of the first embodiment. Here, the storage room 35 is in a chilled mode, and the outside air is relatively high temperature (for example, 32 ° C.) and is not low humidity (for example, 60% RH). FIG. 9 is a control flowchart regarding refrigeration operation in the refrigerator of the first embodiment.
時刻t0は冷蔵室2を冷却する冷蔵運転を開始した時刻である。本実施例では冷凍運転が終了(制御S−1)し、後述する冷蔵運転実施判定(制御S−3〜S−5)、冷媒回収運転(制御S−6)を行った後、制御S−7に示す冷蔵運転を開始する。冷蔵運転では、三方弁52を流出口52a側にし、圧縮機24を駆動させてR蒸発器14aに冷媒を流して、R蒸発器14aを低温にする。この状態でRファン9aを運転することで、R蒸発器14aを通過して低温になった空気により冷蔵室2を冷却する。ここで、冷蔵運転中のR蒸発器14aの温度は、後述する冷凍運転中のF蒸発器14bよりも高くしている。一般的に蒸発器の温度が高い方が、COP(圧縮機24の入力に対する冷却する熱量の割合)が高く、省エネルギー性能が高い。従って、蒸発器の温度を低温にする必要がある冷凍室7に比べ、高い蒸発器の温度でも冷却できる冷蔵室2を冷却する際は、蒸発器の温度を高めて省エネルギー性能を高めている。なお、本実施例の冷蔵庫1では、冷蔵運転中のR蒸発器14a温度が高くなるよう、冷蔵運転中の圧縮機24の回転速度を冷凍運転中よりも低速(L)にしている。
Time t 0 is the time when the refrigerating operation for cooling the refrigerating chamber 2 is started. In this embodiment, after the refrigeration operation is completed (control S-1), a refrigeration operation execution determination (control S-3 to S-5) and a refrigerant recovery operation (control S-6) described later are performed, and then the control S- The refrigeration operation shown in FIG. In the refrigeration operation, the three-way valve 52 is set to the outlet 52a side, the compressor 24 is driven, the refrigerant is caused to flow through the R evaporator 14a, and the R evaporator 14a is cooled. By operating the R fan 9a in this state, the refrigerator compartment 2 is cooled by air that has passed through the R evaporator 14a and has become low temperature. Here, the temperature of the R evaporator 14a during the refrigeration operation is higher than that of the F evaporator 14b during the freezing operation described later. In general, the higher the temperature of the evaporator, the higher the COP (ratio of the amount of heat to be cooled with respect to the input of the compressor 24), and the higher the energy saving performance. Therefore, when cooling the refrigerator compartment 2 that can be cooled even at a high evaporator temperature, the temperature of the evaporator is increased to improve the energy saving performance as compared with the freezer compartment 7 where the evaporator temperature needs to be lowered. In the refrigerator 1 of the present embodiment, the rotational speed of the compressor 24 during the refrigeration operation is set to a lower speed (L) than during the refrigeration operation so that the temperature of the R evaporator 14a during the refrigeration operation becomes higher.
冷蔵運転により冷蔵室2が冷却され、冷蔵室温度センサ42により検知する冷蔵室温度がTRoffまで低下し(制御S−8;時刻t1)、冷凍運転実施条件(制御S−9)を満足すると、冷蔵運転から冷媒回収運転(制御S−10)に切換える。冷媒回収運転では三方弁52を全閉状態で圧縮機24を駆動させ、R蒸発器14a内の冷媒を回収する。これにより、次の冷凍運転での冷媒不足を抑制する。また、この冷凍運転前の冷媒回収中は、基本的に後述するR第一除霜運転(制御S−18)を行っており、すなわちRファン9aを駆動させている。これによりR蒸発器14a内の残留冷媒を冷蔵室2の冷却に活用できるとともに、R蒸発器14a内の冷媒が蒸発して圧縮機24へ到達しやすくなり、比較的短い時間で多くの冷媒を回収できるため、冷却効率を高めることができる。
The refrigerating room 2 is cooled by the refrigerating operation, and the refrigerating room temperature detected by the refrigerating room temperature sensor 42 is lowered to T Roff (control S-8; time t 1 ), which satisfies the freezing operation execution condition (control S-9). Then, the refrigerant operation is switched to the refrigerant recovery operation (control S-10). In the refrigerant recovery operation, the compressor 24 is driven with the three-way valve 52 fully closed, and the refrigerant in the R evaporator 14a is recovered. Thereby, the refrigerant shortage in the next freezing operation is suppressed. Further, during the recovery of the refrigerant before the freezing operation, an R first defrosting operation (control S-18) described later is basically performed, that is, the R fan 9a is driven. As a result, the residual refrigerant in the R evaporator 14a can be used for cooling the refrigerator compartment 2, and the refrigerant in the R evaporator 14a evaporates and easily reaches the compressor 24, so that a large amount of refrigerant can be obtained in a relatively short time. Since it can collect | recover, cooling efficiency can be improved.
冷媒回収運転が終わると(時刻t2)、冷凍室7を冷却する冷凍運転に切換える。冷凍運転では、三方弁52を流出口52b側にし、F蒸発器14bに冷媒を流して、F蒸発器14bを低温にする。また、圧縮機24の回転速度を冷蔵運転時よりも高速(H)にする。この状態でFファン9bを運転することで、F蒸発器14bを通過して低温になった空気により冷凍室7を冷却する。この冷凍運転を冷凍室温度センサ41により検出する冷凍室温度がTFoffになる(時刻t5)まで行う。また、冷凍運転中に野菜室ダンパ(図示せず)も開け、野菜室温度センサ43により検出する野菜室温度がTRoffになる(時刻t3)まで野菜室6を冷却する。
When the refrigerant recovery operation ends (time t 2 ), the operation is switched to the freezing operation for cooling the freezer compartment 7. In the freezing operation, the three-way valve 52 is set to the outlet 52b side, the refrigerant is flowed to the F evaporator 14b, and the F evaporator 14b is cooled. Further, the rotational speed of the compressor 24 is set to a higher speed (H) than during the refrigeration operation. By operating the F fan 9b in this state, the freezer compartment 7 is cooled by the air passing through the F evaporator 14b and having a low temperature. This freezing operation is performed until the freezer temperature detected by the freezer temperature sensor 41 reaches T Foff (time t 5 ). During the freezing operation, the vegetable compartment damper (not shown) is also opened, and the vegetable compartment 6 is cooled until the vegetable compartment temperature detected by the vegetable compartment temperature sensor 43 becomes T Roff (time t 3 ).
さらに、本実施例の冷蔵庫1では、冷蔵運転終了後、R第一除霜運転実施判定(制御S−14、S−16)を満たすと、この冷媒回収及び冷凍運転中にR蒸発器14aの第一除霜運転(以下、R第一除霜運転、制御S−18〜S−20)を行う。R第一除霜運転は、Rファン9aを駆動させ、冷蔵室2の空気とR蒸発器14a間で空気を循環させることで行う。このR第一除霜運転は主に2つの目的で実施している。
Furthermore, in the refrigerator 1 of the present embodiment, after completion of the refrigeration operation, if the R first defrosting operation execution determination (controls S-14 and S-16) is satisfied, the refrigerant of the R evaporator 14a is recovered during the refrigerant recovery and freezing operation. A first defrosting operation (hereinafter, R first defrosting operation, controls S-18 to S-20) is performed. The R first defrosting operation is performed by driving the R fan 9a and circulating air between the air in the refrigerator compartment 2 and the R evaporator 14a. This R first defrosting operation is performed mainly for two purposes.
1つ目の目的は、冷蔵運転中に低温になったR蒸発器14a及びR蒸発器14aに付着した霜による冷蔵室2の冷却、及びそれによる省エネルギー性能の向上である。冷媒回収運転及び冷凍運転中は、R蒸発器14aに冷媒が流せないが、R蒸発器14a及びR蒸発器14aに付着した霜により冷却することで、冷蔵室2を冷却できる。特にR蒸発器14aに付着した霜が0℃以下の場合、霜の融解熱を利用して冷蔵室2を冷却することができ、冷蔵室2を低温に維持する(温度上昇を抑制する)ことができる。冷蔵室2の温度上昇が抑制されることで冷凍運転を比較的長時間かけて実施できるので、冷凍運転中の圧縮機24の回転速度を比較的低速にでき、省エネルギー性能を向上させることができる。
The first purpose is to cool the refrigerating chamber 2 by frost adhering to the R evaporator 14a and the R evaporator 14a that have become low temperature during the refrigeration operation, and thereby improve energy saving performance. During the refrigerant recovery operation and the refrigeration operation, the refrigerant cannot flow through the R evaporator 14a, but the refrigerator compartment 2 can be cooled by cooling with frost attached to the R evaporator 14a and the R evaporator 14a. In particular, when the frost adhering to the R evaporator 14a is 0 ° C. or less, the refrigerator compartment 2 can be cooled using the melting heat of the frost, and the refrigerator compartment 2 is maintained at a low temperature (suppressing the temperature rise). Can do. Since the refrigeration operation can be carried out over a relatively long time by suppressing the temperature rise in the refrigerator compartment 2, the rotational speed of the compressor 24 during the refrigeration operation can be made relatively low, and the energy saving performance can be improved. .
2つ目の目的は、冷蔵室2内の温度分布の制御であり、特に庫内貯蔵室35の温度制御である。Rファン9aを運転させていないと、自然対流により冷蔵室2の上部が相対的に高温になり、下部が相対的に低温になる。加えて、特に庫内貯蔵室35は断熱仕切り壁28を介して冷凍室7に冷却されるため、冷蔵室2の下部に設けた庫内貯蔵室35は、Rファン9aを運転させていないと相対的に低温になる。よって、庫内貯蔵室35を低温にする氷温モードでは、R第一除霜運転を例えば3回に1回のみ実施するようにする(制御S−14〜S−16)。Rファン9aが停止し、自然対流が生じる時間が長くなるため、冷蔵室2内の平均温度よりも、冷蔵室2の下部に設けた庫内貯蔵室35を低温にすることができ、すなわち氷温モードの温度条件を満足できる。一方、庫内貯蔵室35を比較的高めのチルドモードにする場合は、冷蔵室2内の平均温度と近い温度にするため、冷蔵運転後、毎回R第一除霜を行い、すなわちRファン9aを運転させて、冷蔵室2の空気により庫内貯蔵室35を加熱する。これにより、断熱仕切り壁28内のヒータ(図示せず)による加熱を抑制しつつ、比較的高い温度に制御することができ省エネルギー性能を高めることができる。すなわち、専用のダンパを設けることなく、冷蔵室2の内部に設けた庫内貯蔵室35の温度切り替えが可能で、かつヒータによる加熱を抑え、省エネルギー性能の高い冷蔵庫となる。なお、チルドモードと氷温モードでR第一除霜運転を実施する頻度は上記(チルド時毎回、氷温時3回に1回)の限りではなく、氷温モードに比べチルドモードの方が高い頻度で実施することで上記の効果が得られる。また、本効果(冷蔵室2内の温度分布制御)はR蒸発器14aを備えた冷蔵庫に限定されるものではなく、例えばRファン9aの代わりに冷蔵室2内の空気を循環させる循環ファンを備え、この循環ファンを駆動させることでも同様の効果は得られる。一方、本実施例のようにR蒸発器14aを備え、R蒸発器14aと冷蔵室2間の送風を行うRファン9aで行うことで、R蒸発器14aおよびRファン9aを備えたことによる前述および後述の効果も得られる。
The second purpose is to control the temperature distribution in the refrigerator compartment 2, and in particular to control the temperature of the internal storage compartment 35. If the R fan 9a is not operated, the upper part of the refrigerator compartment 2 becomes relatively high and the lower part becomes relatively low due to natural convection. In addition, in particular, since the internal storage chamber 35 is cooled to the freezer compartment 7 through the heat insulating partition wall 28, the internal storage chamber 35 provided in the lower part of the refrigerator compartment 2 does not operate the R fan 9a. Relatively low temperature. Therefore, in the ice temperature mode in which the internal storage chamber 35 is cooled, the R first defrosting operation is performed only once every three times (controls S-14 to S-16). Since the R fan 9a is stopped and the time during which natural convection is generated becomes longer, the internal storage room 35 provided in the lower part of the refrigerating room 2 can be made cooler than the average temperature in the refrigerating room 2, that is, ice. The temperature condition of the temperature mode can be satisfied. On the other hand, when the internal storage chamber 35 is set to a relatively high chilled mode, the R first defrosting is performed every time after the refrigeration operation in order to make the temperature close to the average temperature in the refrigerator compartment 2, that is, the R fan 9a. Is operated, and the internal storage chamber 35 is heated by the air in the refrigerator compartment 2. Thereby, it can control to comparatively high temperature, suppressing the heating by the heater (not shown) in the heat insulation partition wall 28, and can improve energy saving performance. That is, without providing a dedicated damper, it is possible to switch the temperature of the internal storage chamber 35 provided inside the refrigerator compartment 2, and to suppress the heating by the heater, resulting in a refrigerator with high energy saving performance. The frequency of performing the first R defrosting operation in the chilled mode and the ice temperature mode is not limited to the above (every chilled time and once every three times of the ice temperature), and the chilled mode is more in comparison with the ice temperature mode. The above-mentioned effect can be obtained by carrying out with high frequency. Moreover, this effect (temperature distribution control in the refrigerator compartment 2) is not limited to the refrigerator provided with the R evaporator 14a. For example, instead of the R fan 9a, a circulation fan that circulates the air in the refrigerator compartment 2 is used. It is possible to obtain the same effect by driving the circulation fan. On the other hand, as described in the present embodiment, the R evaporator 14a is provided, and the R fan 9a that blows air between the R evaporator 14a and the refrigerator compartment 2 is used, so that the R evaporator 14a and the R fan 9a are provided. Also, the effects described below can be obtained.
以上がR第一除霜運転の主な目的であるが、加えてこの運転によりR蒸発器14a及びその周辺の加熱を行うことができ、以下の効果も得られる。制御S−10、S−11で示す冷媒回収運転及び冷凍運転中は、R蒸発器14aに冷媒が流れないようにしているため、冷蔵室2の空気がR蒸発器14aを通過すると、R蒸発器14aよりも温度の高い冷蔵室2との熱交換によりR蒸発器14a及びR蒸発器14aに付着した霜は加熱される。これにより、ヒータを用いることなくR蒸発器14aに付着した霜を融解することができ、霜を排出し、または霜を一度融解し氷にして密度と熱伝導率を上げ、霜によるR蒸発器14aの通風抵抗増加及び伝熱効率低下を抑制できる。すなわち、冷却効率を上げ、省エネルギー性能を高めることができる。また、冷却運転中に霜の一部又は全部を排出しておくことで、後述するR第二除霜の時間を短縮する効果も得られる。
The above is the main purpose of the R first defrosting operation. In addition, the R evaporator 14a and its surroundings can be heated by this operation, and the following effects are also obtained. During the refrigerant recovery operation and the refrigeration operation indicated by the controls S-10 and S-11, the refrigerant is prevented from flowing into the R evaporator 14a. Therefore, when the air in the refrigerator compartment 2 passes through the R evaporator 14a, the R evaporation is performed. The frost attached to the R evaporator 14a and the R evaporator 14a is heated by heat exchange with the refrigerator compartment 2 having a temperature higher than that of the container 14a. As a result, the frost attached to the R evaporator 14a can be melted without using a heater, the frost is discharged, or the frost is once melted to become ice to increase the density and the thermal conductivity. The increase in ventilation resistance and the decrease in heat transfer efficiency of 14a can be suppressed. That is, the cooling efficiency can be increased and the energy saving performance can be improved. Moreover, the effect of shortening the time of R 2nd defrost mentioned later is also acquired by discharging | emitting a part or all of frost during cooling operation.
このR第一除霜運転は、冷蔵用蒸発器温度センサ40aにより検出する冷蔵用蒸発器温度が0℃以上のTDRoffになる(制御S−19;時刻t4)と終了(制御S−20)する。これは、R蒸発器14aの霜が解け、霜の融解熱を用いた冷蔵室2の冷却ができなくなり、Rファン9aを運転するための消費電力を抑える方が省エネルギー性能に有効であると判断したためである。なお、R第一除霜運転終了後も、冷蔵室2内の温度分布制御(2つ目の目的)のために、さらに延長してRファン9aを運転してもよい。特に庫内貯蔵室35専用の温度センサを備え、庫内貯蔵室35が目的の温度よりも低温になっていると判断した場合は、Rファン9aの運転を延長し、或いは再度駆動させ、冷蔵室2の戻り空気で加熱することで、断熱仕切り壁28内のヒータによる加熱を抑えながら庫内貯蔵室35を適正な温度に制御できる。
This R first defrosting operation ends when the refrigeration evaporator temperature detected by the refrigeration evaporator temperature sensor 40a reaches T DRoff of 0 ° C. or higher (control S-19; time t 4 ) (control S-20). ) This is because the frost of the R evaporator 14a is thawed and the refrigerator compartment 2 cannot be cooled using the heat of melting of the frost, and it is judged that it is more effective for energy saving performance to suppress the power consumption for operating the R fan 9a. This is because. In addition, after the R first defrosting operation is completed, the R fan 9a may be further extended to operate the temperature distribution in the refrigerator compartment 2 (second purpose). In particular, when a temperature sensor dedicated to the internal storage room 35 is provided and it is determined that the internal storage room 35 is cooler than the target temperature, the operation of the R fan 9a is extended or re-driven to perform refrigeration. By heating with the return air of the chamber 2, the internal storage chamber 35 can be controlled to an appropriate temperature while suppressing the heating by the heater in the heat insulating partition wall 28.
R第一除霜運転及び冷凍運転の何れも終了条件が満足すると(時刻t5)、再び三方弁52を全閉状態で圧縮機24を駆動させる冷媒回収運転(制御S―6)を行い、F蒸発器14b内の冷媒を回収し、次の冷蔵運転での冷媒不足を抑制する。なお、この際Fファン9bを駆動させており、これによりF蒸発器14b内の残留冷媒を冷凍室7の冷却に活用できるとともに、F蒸発器14b内の冷媒が蒸発して圧縮機24へ到達しやすくなり、比較的短い時間で多くの冷媒を回収できるため、冷却効率を高めることができる。
When the end conditions of both the R first defrosting operation and the refrigeration operation are satisfied (time t 5 ), the refrigerant recovery operation (control S-6) is performed in which the compressor 24 is driven again with the three-way valve 52 fully closed, The refrigerant in the F evaporator 14b is recovered, and the shortage of refrigerant in the next refrigeration operation is suppressed. At this time, the F fan 9b is driven so that the residual refrigerant in the F evaporator 14b can be used for cooling the freezer compartment 7, and the refrigerant in the F evaporator 14b evaporates to reach the compressor 24. Since a large amount of refrigerant can be recovered in a relatively short time, the cooling efficiency can be increased.
時刻t6になると再び冷蔵運転に戻り、前述した運転を繰り返す。以上が本実施例の冷蔵庫の基本的な冷却運転及びR蒸発器14aの第一除霜制御である。これらの運転により、冷蔵室2、冷凍室7及び野菜室6を冷却して所定の温度に維持しつつ、R蒸発器14aの霜成長を抑えている。
At time t 6 when the return to the refrigerating operation to repeat the operation described above. The above is the basic cooling operation of the refrigerator of the present embodiment and the first defrosting control of the R evaporator 14a. By these operations, the refrigerator compartment 2, the freezer compartment 7, and the vegetable compartment 6 are cooled and maintained at a predetermined temperature, and the frost growth of the R evaporator 14a is suppressed.
ここで、冷凍運転から冷蔵運転(正確には冷蔵運転前の冷媒回収)への切換え(時刻t5)には、条件を設けている。前述したように、本実施例では冷蔵運転に移行するが、冷蔵蔵運転開始前に制御S−3〜S−5の判定を行う。まずR第一除霜運転、及び図10以降で後述するR第二除霜運転の終了条件が満たされているかを判断する。R第一除霜運転、及びR第二除霜運転が終了する前に冷凍運転が終了した場合はR第一除霜運転及びR第二除霜運転を継続したまま圧縮機24をOFFにする(制御S−3又はS−4 → 制御S−9{冷凍運転終了時のためNO} → 制御S−13)。R第一除霜運転中はR蒸発器14aの温度が比較的低温(TDR<TDRoff)で冷蔵室2を冷却可能なため、圧縮機24を停止して省エネルギー性能を高めている。また後述するR第二除霜運転は、R蒸発器14aに付着した霜を庫外に排出することが目的のため、融解途中の除霜水が再び冷却されて再凍結することを抑えるため、R第二除霜運転中も、R蒸発器14aに冷媒を流す冷蔵運転は禁止している。これにより、R蒸発器14aの除霜をより確実に行うことができる。
Here, conditions are provided for switching (time t 5 ) from the refrigeration operation to the refrigeration operation (more precisely, refrigerant recovery before the refrigeration operation). As described above, the present embodiment shifts to the refrigeration operation, but the determination of the controls S-3 to S-5 is performed before the start of the refrigeration operation. First, it is determined whether the R first defrosting operation and the end condition of the R second defrosting operation described later in FIG. When the refrigeration operation is finished before the R first defrosting operation and the R second defrosting operation are finished, the compressor 24 is turned off while continuing the R first defrosting operation and the R second defrosting operation. (Control S-3 or S-4 → Control S-9 {NO at the end of the freezing operation} → Control S-13). During the R first defrosting operation, the temperature of the R evaporator 14a is relatively low (T DR <T DRoff ) so that the refrigerator compartment 2 can be cooled. Therefore , the compressor 24 is stopped to improve the energy saving performance. In addition, the R second defrosting operation to be described later is for the purpose of discharging the frost attached to the R evaporator 14a to the outside of the warehouse, in order to prevent the defrosted water being melted from being cooled again and refreezing, Even during the R second defrosting operation, the refrigeration operation in which the refrigerant flows through the R evaporator 14a is prohibited. Thereby, defrosting of R evaporator 14a can be performed more reliably.
また制御S−5に示すように、冷凍運転終了時(図8の時刻t5)に冷蔵室温度TRが所定値TR_start2(例えばTR_start2=TROFF+1℃)よりも低い場合も冷蔵運転を実施せず、圧縮機24をOFFにする。なお、同様に冷蔵運転終了時(図8の時刻t1)において冷凍室温度が所定値(例えばTFOFF+1℃)よりも低い場合も低い場合は圧縮機24をOFFにする。これにより、庫内の過度な冷却を抑えることができる。
In addition, as shown in control S-5, refrigerating operation also during the freezing operation ends refrigerating compartment temperature T R (time t 5 in FIG. 8) is lower than a predetermined value T R_start2 (e.g. T R_start2 = T ROFF + 1 ℃ ) And the compressor 24 is turned off. Similarly, at the end of the refrigeration operation (time t 1 in FIG. 8), the compressor 24 is turned off when the freezer temperature is lower or lower than a predetermined value (for example, T FOFF + 1 ° C.). Thereby, the excessive cooling in a store | warehouse | chamber can be suppressed.
なお、冷蔵運転の開始は、冷凍運転終了(制御S−1)のみでなく、圧縮機24停止中に冷蔵室温度TRがTR_start(≧TR_start2)に到達した場合(制御S−2)も実施する。これにより、冷凍室7が十分に冷えている場合に冷蔵室2が高温になることを抑制している。なお、図示はしていないが、同様に冷凍運転の開始も冷蔵運転終了時のみでなく、冷凍室7の温度が所定値以上になった場合にも冷凍運転を開始する。
Incidentally, the start of the refrigerating operation, the freezing operation ends (control S-1) not only, if the refrigerating compartment temperature T R in the compressor 24 is stopped reaches the T R_start (≧ T R_start2) (control S-2) Also implement. Thereby, when the freezer compartment 7 is fully cooled, it is suppressing that the refrigerator compartment 2 becomes high temperature. Although not shown, similarly, the freezing operation is started not only at the end of the refrigerating operation, but also when the temperature of the freezer compartment 7 exceeds a predetermined value.
次に本冷蔵庫の除霜制御について説明する。図10は、実施例1の冷蔵庫におけるRF除霜運転制御を示すタイムチャートの一例である。ここでは外気が比較的高温(例えば32℃)で、高湿でない(例えば60%RH)場合を表している。図11は実施例1の冷蔵庫におけるRF除霜運転に関する制御フローチャートである。このRF除霜運転とは、R蒸発器14aとF蒸発器14bの両方の除霜を行う運転である。
Next, defrosting control of the refrigerator will be described. FIG. 10 is an example of a time chart showing the RF defrosting operation control in the refrigerator of the first embodiment. Here, the case where the outside air is relatively high temperature (for example, 32 ° C.) and not high humidity (for example, 60% RH) is shown. FIG. 11 is a control flowchart regarding the RF defrosting operation in the refrigerator of the first embodiment. The RF defrosting operation is an operation for performing defrosting of both the R evaporator 14a and the F evaporator 14b.
本実施例の冷蔵庫1では、図8、9で説明した冷却運転(制御S2−1)中に、例えばドア2a、2b、3a、4a、5a、6aの開閉回数、及び圧縮機24の合計駆動時間等から除霜運転の開始を判断する(制御S2−2)。開始条件を満足する(時刻td0)と、本実施例の冷蔵庫1では冷凍運転及びR第一除霜運転を行う(制御S2−3)。冷凍運転を行うことで、RF除霜運転中の冷凍室7の温度上昇による冷凍食品や氷等の融解を抑制する。また、この間にR第一除霜運転(Rファン9aをON)を行い、R蒸発器14a及びR蒸発器14aに付着した霜を加熱し、後述するR第二除霜運転が短時間で終わるようにしている。
In the refrigerator 1 of this embodiment, during the cooling operation (control S2-1) described with reference to FIGS. 8 and 9, for example, the number of times the doors 2a, 2b, 3a, 4a, 5a, and 6a are opened and closed, and the total drive of the compressor 24 The start of the defrosting operation is determined from the time or the like (control S2-2). When the start condition is satisfied (time td0 ), the refrigerator 1 of the present embodiment performs the refrigeration operation and the R first defrosting operation (control S2-3). By performing the freezing operation, melting of frozen food, ice, and the like due to a temperature increase in the freezer compartment 7 during the RF defrosting operation is suppressed. Further, during this time, the R first defrosting operation (R fan 9a is turned on) is performed to heat the frost adhering to the R evaporator 14a and the R evaporator 14a, and the R second defrosting operation described later is completed in a short time. I am doing so.
この冷凍運転を所定の時間、例えば30分間行った後(時刻td1)、本実施例の冷蔵庫1は三方弁52を全閉、圧縮機24をOFF、冷蔵用ファン9aをON、冷凍用ファン9bをOFFとし、各ヒータ21,101,102,103をONとするRF除霜運転(制御S2−4)に移行する。RF除霜運転では制御S2−5からS2−8に示すF蒸発器14bの除霜運転(以下、F除霜運転)と制御S2−11からS2−20に示すR蒸発器14aの第二除霜運転(以下、R第二除霜運転)を行う。
After this refrigeration operation is performed for a predetermined time, for example, 30 minutes (time t d1 ), the refrigerator 1 of this embodiment fully closes the three-way valve 52, the compressor 24 is turned off, the refrigeration fan 9a is turned on, and the refrigeration fan It shifts to RF defrosting operation (control S2-4) in which 9b is turned off and each heater 21, 101, 102, 103 is turned on. In the RF defrosting operation, the defrosting operation (hereinafter referred to as F defrosting operation) of the F evaporator 14b shown in the control S2-5 to S2-8 and the second removal of the R evaporator 14a shown in the control S2-11 to S2-20. A frost operation (hereinafter, R second defrost operation) is performed.
まずF除霜運転に関する制御について説明する。圧縮機24とFファン9bをOFFとし、除霜ヒータ21をONにすることで、F蒸発器14b及びF蒸発器14bに付着した霜は除霜ヒータ21により加熱され、徐々に温度が上昇し、融解温度(0℃)以上になると、F蒸発器14bに付着した霜が融解する。冷凍用蒸発器温度センサ40bにより検出する冷凍用蒸発器温度が霜の融解温度よりも十分に高いTDF(例えば10℃)になる(制御S2−5;時刻td4)と、F除霜運転を終了し、除霜ヒータ21をOFF(制御S2−6)にする。これにより、F蒸発器14bの除霜を行う。F除霜運転終了後は、排水時間として例えば3分停止(制御S2−7)した後、冷凍運転(制御S2−8)を開始する。
First, control related to the F defrosting operation will be described. By turning off the compressor 24 and the F fan 9b and turning on the defrost heater 21, the frost attached to the F evaporator 14b and the F evaporator 14b is heated by the defrost heater 21, and the temperature gradually rises. When the melting temperature (0 ° C.) or higher is reached, the frost attached to the F evaporator 14b is melted. When the refrigeration evaporator temperature detected by the refrigeration evaporator temperature sensor 40b becomes T DF (eg, 10 ° C.) sufficiently higher than the frost melting temperature (control S2-5; time t d4 ), the F defrosting operation is performed. And defrost heater 21 is turned off (control S2-6). Thereby, the F evaporator 14b is defrosted. After completion of the F defrosting operation, for example, the drainage time is stopped for 3 minutes (control S2-7), and then the refrigeration operation (control S2-8) is started.
次にR第二除霜運転に関する制御について説明する。この間のヒータの通電量は図14の表に示す。表中、OFFはヒータの通電無し、L,M,Hは通電ありで、通電量はL<M<Hである。ヒータの通電量は、例えば印加する電圧や、単位時間当たりの通電時間(デューティー比)を変えることで制御する。
Next, control related to the R second defrosting operation will be described. The energization amount of the heater during this period is shown in the table of FIG. In the table, OFF indicates that the heater is not energized, L, M, and H indicate energization, and the energization amount is L <M <H. The energization amount of the heater is controlled, for example, by changing the voltage to be applied and the energization time (duty ratio) per unit time.
図14の表に示すように、外気温度とF除霜の状態により変化させる。トイヒータ101、排水管上部ヒータ102、排水管下部ヒータ103とRファン9aと低い消費電力(例えば合計20W程度)でR蒸発器14aの除霜を行うR第二除霜運転は、除霜ヒータ21(例えば150W)で除霜を行うF除霜に比べ、省エネルギー性能に優れた除霜である。R第二除霜運転は、R第一除霜運転と同じく、Rファン9aを駆動させ、R蒸発器14aよりも温度の高い冷蔵室2との熱交換により、冷蔵室2を冷却しつつR蒸発器14a及びR蒸発器14aに付着した霜を加熱して除霜する。加えて、RF除霜運転中に行うR第二除霜運転では、トイヒータ101、排水管上部ヒータ102、排水管下部ヒータ103をONにする(時刻td1)。なお、図14の表に示したようにF除霜中のトイヒータ101、排水管上部ヒータ102の通電量は外気温度によって変えている。これは、外気が低温(例えば5℃)の場合、冷蔵室2の温度が上がり難く、冷蔵室2の空気によるR蒸発器14aの加熱量が小さくなり易いため、トイヒータ101の通電量を外気高温時(例えば30℃)よりも増加させ、このトイヒータ101の発熱をRトイ23a、空気を介してR蒸発器14aの加熱に用いるためである。すなわちトイヒータ101をR蒸発器14aの加熱に利用する。また、排水管下部ヒータ103は外気の温度と湿度によって通電量を変える。排水管下部ヒータ103を設けた箇所は、図3を用いて示したように、外箱10aを介して外気により加熱でき凍結の可能性が低いため、ヒータの加熱を抑制して省エネルギー性能を高めている。一方、温度が比較的低い場合は外気による加熱が少ないため、排水管下部ヒータ103の加熱量を高め、確実に除霜水を排出できるようにしている。また、外気が高湿の場合も通電量を上げ、加熱量を高めている。図3を用いて前述したように、除霜時にはR排水管27aは約0℃の除霜水が流れることから、R排水管27aに近接した外箱10aは除霜水により冷却され、高湿時には露点温度よりも外箱10aの表面が低温になることが考えられる。従って、高湿時には排水管下部ヒータ103の通電量を高めて外箱10aの結露を抑制している。
As shown in the table of FIG. 14, it is changed according to the outside air temperature and the state of F defrosting. The R second defrosting operation for defrosting the R evaporator 14a with low power consumption (for example, about 20 W in total) with the toy heater 101, the drain pipe upper heater 102, the drain pipe lower heater 103, and the R fan 9a is performed by the defrost heater 21. Compared with F defrost which performs defrosting (for example, 150 W), it is a defrost excellent in energy saving performance. The R second defrosting operation is similar to the R first defrosting operation, by driving the R fan 9a and performing heat exchange with the refrigerating chamber 2 having a temperature higher than that of the R evaporator 14a while cooling the refrigerating chamber 2 R The frost adhering to the evaporator 14a and the R evaporator 14a is heated and defrosted. In addition, the R second defrosting operation performed in RF defrosting operation, Toihita 101, drain pipe upper heater 102, turns ON the discharge pipe lower heater 103 (time t d1). As shown in the table of FIG. 14, the energization amounts of the toy heater 101 and the drain pipe upper heater 102 during the F defrosting are changed according to the outside air temperature. This is because when the outside air is at a low temperature (for example, 5 ° C.), it is difficult for the temperature of the refrigerator compartment 2 to rise, and the amount of heating of the R evaporator 14a by the air in the refrigerator compartment 2 tends to be small. This is because the heat generated by the toy heater 101 is used for heating the R evaporator 14a via the R toy 23a and air. That is, the toy heater 101 is used for heating the R evaporator 14a. Further, the drain pipe lower heater 103 changes the energization amount according to the temperature and humidity of the outside air. As shown in FIG. 3, the portion where the drain pipe lower heater 103 is provided can be heated by outside air through the outer box 10a and has a low possibility of freezing. Therefore, heating of the heater is suppressed and energy saving performance is improved. ing. On the other hand, when the temperature is relatively low, since there is little heating by the outside air, the heating amount of the drain pipe lower heater 103 is increased so that the defrost water can be discharged reliably. In addition, when the outside air is highly humid, the energization amount is increased to increase the heating amount. As described above with reference to FIG. 3, the defrosting water at about 0 ° C. flows through the R drain pipe 27a at the time of defrosting, so the outer box 10a adjacent to the R drain pipe 27a is cooled by the defrost water, and has a high humidity. In some cases, the surface of the outer box 10a may be cooler than the dew point temperature. Therefore, when the humidity is high, the energization amount of the drain pipe lower heater 103 is increased to suppress dew condensation in the outer box 10a.
R第二除霜を開始すると、まず冷蔵用蒸発器温度がTDR以上か否かを判断(制御S2−12)する。冷蔵用蒸発器温度TDRが0℃以上(例えば3℃)のTDRoff以上になる(時刻td7)と、タイマAにより所定時間Δtd1(例えば20分)を計測する(制御S2−13,14)。R第二除霜運転では、R蒸発器14aが0℃以上の状態で、さらにΔtd1動かすことで、確実にR蒸発器14aの霜の融解・排出が行えるようにしている。もし、着霜部をバイパスした空気により、まだ霜が残っている状況で冷蔵用蒸発器温度センサが温度上昇してしまっても、0℃以上の空気が、少なくともΔtd1以上、R蒸発器14a及びその周囲を流れるため、残霜が抑えられ、確実にR蒸発器14aの除霜を行うことができる。加えて、R蒸発器14aよりも下流側にあるRファン9aや冷蔵室ダクト11等にも0℃以上の空気を少なくともΔtd1以上送風できるため、これらの箇所に着霜が生じていた場合にもその霜を融解できる。特にRファン9aに霜成長が生じるとRファン9aが運転できず冷却制御に大きな影響を及ぼすため、R蒸発器14aよりも下流側にRファン9aを設けている本構成では、冷蔵用蒸発器温度が0℃以上のTDRoff以上になった後も所定時間駆動させ、Rファン9aの霜成長を抑制することが有効である。
When starting the R second defrosting, first refrigerating evaporator temperature is determined whether or T DR to (control S2-12). When the refrigeration evaporator temperature T DR becomes equal to or higher than T DRoff of 0 ° C. or higher (for example, 3 ° C.) (time t d7 ), the timer A measures a predetermined time Δt d1 (for example, 20 minutes) (control S2-13, 14). In the R second defrosting operation, the frost of the R evaporator 14a can be reliably melted and discharged by further moving Δt d1 while the R evaporator 14a is at 0 ° C. or higher. Even if the temperature of the refrigeration evaporator temperature sensor rises due to the air that bypasses the frosting part and the frost still remains, the air of 0 ° C. or higher is at least Δt d1 or more and the R evaporator 14a. And since it flows through the circumference | surroundings, a residual frost is suppressed and it can defrost the R evaporator 14a reliably. In addition, since air of 0 ° C. or higher can be blown to at least Δt d1 or more to the R fan 9a or the refrigerator compartment duct 11 etc. on the downstream side of the R evaporator 14a, frost is formed at these locations. Can also thaw the frost. In particular, when frost growth occurs in the R fan 9a, the R fan 9a cannot be operated and greatly affects the cooling control. Therefore, in this configuration in which the R fan 9a is provided on the downstream side of the R evaporator 14a, the refrigeration evaporator It is effective to drive for a predetermined time even after the temperature becomes equal to or higher than T DRoff of 0 ° C. or higher to suppress the frost growth of the R fan 9a.
冷蔵用蒸発器温度TDRがTDRoff以上となり、タイマAが所定時間Δtd1経過する(時刻td2)と、ヒータの停止制御へと移る。なお、本実施例では消費電力を抑えるため時刻td2でRファン9aをOFFにする。
Refrigerating evaporator temperature T DR becomes more T DRoff, moves the timer A is a predetermined time Delta] t d1 has elapsed (time t d2), and to the heater of the stop control. In this embodiment, the R fan 9a is turned off at time td2 in order to reduce power consumption.
まず、トイ温度センサ45により検出するトイ温度TGが0℃以上のTGoff(例えば2℃)以上であることを確認する(制御S2−15)。トイ温度TGがTGoff以上である、またはTGoff以上になると、次にタイマBにより所定時間Δtd2(例えば5分)を計測し(制御S2−16,17)、その後にトイヒータ101及び排水管上部ヒータ102をOFFにする(制御S2−16,17,18;時刻td8)。その後、タイマBがΔtd2よりも長い所定時間Δtd3(例えば10分)経過すると、排水管上部ヒータ103もOFFにする(制御S2−19,20)。少なくともトイ温度TGが0℃以上のTGoffになるまで加熱することで、R蒸発器14aからRトイ23aに滴下した除霜水の凍結を抑制し、また凍結した場合も融解させて排出できる。さらに、TGoff以上になった後もΔtd2継続するまでトイヒータ101及び排水管上部ヒータ102に通電し、加えてΔtd3経過するまで排水管下部ヒータ103に通電することで、除霜水がR排水管27aからR蒸発皿32aに排出、滴下するまでに時間遅れが生じても確実に排水できる。
First, it is confirmed that the toy temperature TG detected by the toy temperature sensor 45 is equal to or higher than T Goff (for example, 2 ° C.) equal to or higher than 0 ° C. (control S2-15). When the toy temperature TG is equal to or higher than T Goff or equal to or higher than T Goff , the timer B then measures a predetermined time Δt d2 (for example, 5 minutes) (control S2-16, 17), and then the toy heater 101 and the drainage the tube upper heater 102 to OFF (control S2-16,17,18; time t d8). Thereafter, when a predetermined time Δt d3 (for example, 10 minutes) longer than Δt d2 has elapsed, the drain pipe upper heater 103 is also turned off (controls S2-19, 20). By heating at least until the toy temperature TG becomes T Goff of 0 ° C. or higher, freezing of the defrost water dripped from the R evaporator 14a to the R toy 23a can be suppressed, and when it is frozen, it can be melted and discharged. . Furthermore, the defrost water is supplied by energizing the toy heater 101 and the drain pipe upper heater 102 until Δt d2 continues even after T Goff or more, and by energizing the drain pipe lower heater 103 until Δt d3 elapses. Even if there is a time delay before the water is discharged and dropped from the drain pipe 27a to the R evaporating dish 32a, the water can be reliably drained.
以上の処理が終わるとR第二除霜運転が終了する(制御S2−20)。なお、F除霜運転中に説明したように冷却運転(冷凍運転;圧縮機24 ON)の再開は、F除霜のみによって判断する。R第二除霜運転中に冷却運転が再開した後も、R第二除霜運転が続いており、トイヒータ101、排水管上部ヒータ102がまだ通電中の場合はこれらのヒータの通電量を高める(制御S2−9、10及び図14)。これにより、冷却運転が再開し、冷凍室7及びF蒸発器室8bが低温になり、Rトイ23a及びR排水管27aが冷却されるが、加熱量を増やすことで、Rトイ23a及びR排水管27aでの除霜水の凍結を抑制する。
When the above process ends, the R second defrosting operation ends (control S2-20). Note that as described during the F defrosting operation, the restart of the cooling operation (refrigeration operation; compressor 24 ON) is determined only by the F defrosting operation. Even after the cooling operation is resumed during the R second defrosting operation, when the R second defrosting operation continues and the toy heater 101 and the drain pipe upper heater 102 are still energized, the energization amount of these heaters is increased. (Control S2-9, 10 and FIG. 14). As a result, the cooling operation is restarted, the freezing chamber 7 and the F evaporator chamber 8b are cooled, and the R toy 23a and the R drain pipe 27a are cooled. By increasing the heating amount, the R toy 23a and the R drainage are increased. Freezing of defrost water in the pipe 27a is suppressed.
以上が本実施例の冷蔵庫1の除霜制御である。
The above is defrost control of the refrigerator 1 of a present Example.
ここで、本実施例の冷蔵庫1では、R蒸発器14aの除霜運転を2種類設けている。すなわち、図8、図9で示した冷却運転制御中に実施するR第一除霜運転と、図10、図11で示したRF除霜運転中に実施するR第二除霜運転を設けている。
Here, in the refrigerator 1 of the present embodiment, two types of defrosting operations of the R evaporator 14a are provided. That is, the R first defrosting operation performed during the cooling operation control shown in FIGS. 8 and 9 and the R second defrosting operation performed during the RF defrosting operation shown in FIGS. 10 and 11 are provided. Yes.
冷却運転中に行うR第一除霜運転は、図8、図9を用いて説明したように、冷蔵室2の温度制御と、省エネルギー性能向上を主な目的としており、必ずしも全ての霜を融解する必要はないため、冷蔵用蒸発器温度TDRが0℃以上(例えば3℃)のTDRoff以上になればR第一除霜運転を終了させている。
As described with reference to FIGS. 8 and 9, the R first defrosting operation performed during the cooling operation is mainly intended to control the temperature of the refrigerator compartment 2 and improve the energy saving performance, and does not necessarily melt all frost. since it is not necessary to have to terminate the R first defrosting operation if more than T DRoff the refrigerating evaporator temperature T DR is 0 ℃ or more (e.g. 3 ° C.).
一方、R第二除霜運転はR蒸発器14a及びその周囲の霜の融解・排出を目的しているため、冷蔵用蒸発器温度TDRが0℃以上(例えば3℃)のTDRoff以上となった後も、さらにRファン9aをΔtd1駆動させることで、R蒸発器14aの霜を確実に融解することができ、R蒸発器14aの霜成長による冷却性能の低下を抑制できる。
On the other hand, R second defrosting operation because it aims melting and discharge of R evaporator 14a and the surrounding frost that, refrigerating evaporator temperature T DR is 0 ℃ or more (e.g. 3 ° C.) of T DRoff above and After that, by further driving the R fan 9a by Δt d1 , the frost of the R evaporator 14a can be surely melted, and the deterioration of the cooling performance due to the frost growth of the R evaporator 14a can be suppressed.
以上のように、本実施例の冷蔵庫1では、R第一除霜運転とR第二除霜運転を備え、R第二除霜運転ではR第一除霜運転よりも長時間除霜運転を実施している。R第一除霜運転により冷却運転の効率を上げつつ、R第二除霜運転では冷蔵用蒸発器温度TDRが0℃以上になった後、さらに所定時間Rファン9aを駆動させることで、R蒸発器14a及びその周囲の霜を確実に除霜できるようにしている。
As described above, the refrigerator 1 of the present embodiment includes the R first defrosting operation and the R second defrosting operation, and the R second defrosting operation performs the defrosting operation for a longer time than the R first defrosting operation. We are carrying out. While increasing the efficiency of the cooling operation by the R first defrosting operation, by driving the R fan 9a for a predetermined time after the refrigeration evaporator temperature TDR becomes 0 ° C. or more in the R second defrosting operation, The R evaporator 14a and the surrounding frost can be reliably defrosted.
また、R第二除霜運転はF除霜とあわせて実施している。図9で説明したように、R第二除霜運転中は冷蔵運転を行わないようにしているが、RF除霜運転中及びその前後の時間(図10、図11に示したtd0〜td4)は、冷凍室7の温度制御を優先するため、R第二除霜運転の実施有無によらず冷蔵運転が行えない。F除霜運転中に冷蔵運転を実施することも考えられるが、除霜ヒータ21に高い消費電力を要すため、本実施例では圧縮機24と除霜ヒータ21を同時に通電しないようにしている。従って、この冷蔵運転が行えない区間を利用してR第一除霜よりも長時間冷蔵運転を禁止するR第二除霜運転を行うことで、霜を確実に排出しつつ、冷蔵室2の温度制御への影響を最小限に抑えることができる。
The R second defrosting operation is performed together with the F defrosting. As described in FIG. 9, the refrigeration operation is not performed during the R second defrosting operation, but the time before and after the RF defrosting operation (t d0 to t shown in FIGS. 10 and 11). Since d4 ) gives priority to the temperature control of the freezer compartment 7, the refrigeration operation cannot be performed regardless of whether or not the R second defrosting operation is performed. Although it is conceivable to perform the refrigeration operation during the F defrosting operation, since high power consumption is required for the defrosting heater 21, in this embodiment, the compressor 24 and the defrosting heater 21 are not energized at the same time. . Therefore, by performing the R second defrosting operation that prohibits the refrigeration operation for a longer time than the R first defrost using the section where the refrigeration operation cannot be performed, The influence on temperature control can be minimized.
またヒータ制御も、主にR第二除霜運転で行うことで省エネルギー効果を高めている。冷却運転中に行うR第一除霜運転は、図8で示したように冷凍室7及びF蒸発器室8bが低温の状態で行う。図3に示すR排水管27aの上部及びRトイ23aは、近接している冷凍室7及びF蒸発器室8bと熱交換が生じる。従って、R第一除霜運転中にトイヒータ101、排水管上部ヒータ102を加熱しても、冷凍室7及びF蒸発器室8bを加熱することになる。また、冷凍室7及びF蒸発器室8bにより冷却されるためにRトイ23a及びR排水管27aの温度も上昇し難くなるため、加熱量をR第二除霜運転よりも多くする必要がある。従って、R第一除霜運転中にトイヒータ101、排水管上部ヒータ102に通電すると、Rトイ23a及びR排水管27aを0℃以上まで加熱するために必要なヒータの消費電力が多く、加えて冷凍室7及びF蒸発器室8bを加熱することになるため、冷凍運転で冷却する熱量も増加するため、省エネルギー性能が低下する。
The heater control is also performed mainly by the R second defrosting operation, thereby enhancing the energy saving effect. The R first defrosting operation performed during the cooling operation is performed in a state where the freezer compartment 7 and the F evaporator chamber 8b are at a low temperature as shown in FIG. The upper part of the R drain pipe 27a and the R toy 23a shown in FIG. 3 exchange heat with the adjacent freezer compartment 7 and F evaporator compartment 8b. Therefore, even if the toy heater 101 and the drain pipe upper heater 102 are heated during the R first defrosting operation, the freezer compartment 7 and the F evaporator compartment 8b are heated. Moreover, since it becomes difficult to raise the temperature of R toy 23a and R drain pipe 27a because it is cooled by freezer compartment 7 and F evaporator compartment 8b, it is necessary to increase the amount of heating more than R second defrosting operation. . Therefore, if the toy heater 101 and the drain pipe upper heater 102 are energized during the R first defrosting operation, the heater consumes a lot of power to heat the R toy 23a and the R drain pipe 27a to 0 ° C. or higher. Since the freezing chamber 7 and the F evaporator chamber 8b are heated, the amount of heat to be cooled in the freezing operation is increased, so that the energy saving performance is lowered.
一方、R第二除霜運転は、RF除霜運転中に行うため、図10に示すように冷凍室7及びF蒸発器室8bの冷却が抑えられており、加えてF蒸発器14bを0℃以上まで加熱するため、特にF蒸発器室8bは高温となっている。Rトイ23a及びR排水管27aに対する冷凍室7及びF蒸発器室8bによる冷却が抑えられるため、少ない加熱量でRトイ23a及びR排水管27aの温度を0℃以上とし、すなわちRトイ23a及びR排水管27aの温度にて凍結した除霜水を融解させ、排出できる。従って、R第二除霜運転中にトイヒータ101、排水管上部ヒータ102に加熱することで、消費電力量を抑えながら、確実に除霜水の排出を行うことができる。
On the other hand, since the R second defrosting operation is performed during the RF defrosting operation, the cooling of the freezer compartment 7 and the F evaporator chamber 8b is suppressed as shown in FIG. In particular, the F evaporator chamber 8b is at a high temperature because it is heated to a temperature equal to or higher than ° C. Since cooling by the freezer compartment 7 and the F evaporator chamber 8b with respect to the R toy 23a and the R drain pipe 27a is suppressed, the temperature of the R toy 23a and the R drain pipe 27a is set to 0 ° C. or more with a small amount of heating, that is, the R toy 23a and The defrost water frozen at the temperature of the R drain pipe 27a can be thawed and discharged. Therefore, by heating the toy heater 101 and the drain pipe upper heater 102 during the R second defrosting operation, the defrosted water can be reliably discharged while suppressing power consumption.
また、R第一除霜運転は冷却運転中に行い、例えば本実施例では約80分毎に1回と高頻度で行うのに対し、R第二除霜運転はRF除霜運転中に行うため、12時間〜数日に1回と頻度は少ない。トイヒータ101、排水管上部ヒータ102を加熱してRトイ23a及びR排水管27aにて凍結した除霜水を融解させる場合、この除霜水の融解に用いる熱量に加え、冷凍室7及びF蒸発器室8bにより低温になったRトイ23a、R排水管27aを0℃以上まで加熱するための熱量が必要になる。従って、融解させる頻度が多くなればRトイ23a、R排水管27aを0℃以上まで加熱する頻度も増え、加熱に用いる熱量も増加する。従って、除霜水を融解させる頻度を少なくし、R第二除霜運転でトイヒータ101、排水管上部ヒータ102に集中して加熱して除霜水を排出することで、トイヒータ101、排水管上部ヒータ102の加熱時間を抑え、消費電力量を低減できる。
In addition, the R first defrosting operation is performed during the cooling operation. For example, in this embodiment, the R second defrosting operation is performed once every about 80 minutes, and the R second defrosting operation is performed during the RF defrosting operation. Therefore, the frequency is as low as once every 12 hours to several days. When the defrost water frozen by the R toy 23a and the R drain pipe 27a is melted by heating the toy heater 101 and the drain pipe upper heater 102, in addition to the amount of heat used for melting the defrost water, the freezing chamber 7 and the F evaporation The amount of heat required to heat the R toy 23a and the R drain pipe 27a, which have become low in temperature by the chamber 8b, to 0 ° C. or higher is required. Therefore, if the frequency of melting increases, the frequency of heating the R toy 23a and the R drain pipe 27a to 0 ° C. or more increases, and the amount of heat used for heating also increases. Accordingly, the frequency of melting the defrost water is reduced, and the R defrost operation is performed by concentrating on the toy heater 101 and the drain pipe upper heater 102 and discharging the defrost water to discharge the defrost water to the upper part of the toy heater 101 and the drain pipe. The heating time of the heater 102 can be suppressed and the power consumption can be reduced.
以上のように、冷却運転制御中に実施するR第一除霜運転とRF除霜運転中に実施するR第二除霜運転とでヒータの通電制御を変え、主にR第二除霜運転中にトイヒータ101、排水管上部ヒータ102に通電することで、確実に除霜水の排出を行いながら、省エネルギー性能の高い冷蔵庫を得られる。
As described above, the heater energization control is changed between the R first defrosting operation performed during the cooling operation control and the R second defrosting operation performed during the RF defrosting operation, and the R second defrosting operation is mainly performed. By energizing the toy heater 101 and the drain pipe upper heater 102 inside, it is possible to obtain a refrigerator with high energy saving performance while reliably discharging defrost water.
また本実施例では、Rトイ23a、及びR排水管27aの上部(排水管上部ヒータ102配設部)は、共に冷凍室7、F蒸発器室8b等の冷蔵庫1庫内により冷却されるため、加熱が必要な条件は同等であり、同時(共にR第二除霜運転時)に加熱するようにしている。このため本実施例では、図5に示したように、トイヒータ101と排水管上部ヒータ102を制御するピンを何れもP2,P4とし、共通化させている。これにより、ピン数を抑制して制御基板31のコストを低減しつつ、上述した効果を得ることができる。なお、R第二除霜時に実施することから、除霜ヒータ21と共通の制御ピンを用いることでさらにピン数を低減できる。但し、本実施例のように別の制御ピンを用い、図11に示したようにR蒸発器温度センサ40a、トイ温度センサ45等と連動させて終了させる制御にすることで、確実に除霜・排水を行いつつ、F除霜とR第二除霜の夫々の終了タイミングを自由に制御できるため不要な加熱が抑えられる。すなわち本実施例の方が、より省エネルギー性能を高めることができる。
In the present embodiment, the R toy 23a and the upper part of the R drain pipe 27a (the drain pipe upper heater 102 portion) are both cooled in the refrigerator 1 such as the freezer compartment 7 and the F evaporator compartment 8b. The conditions that require heating are the same, and heating is performed simultaneously (both during the R second defrosting operation). Therefore, in this embodiment, as shown in FIG. 5, the pins for controlling the toy heater 101 and the drain pipe upper heater 102 are both P2 and P4, and are shared. Thereby, the above-described effects can be obtained while suppressing the number of pins and reducing the cost of the control board 31. In addition, since it implements at the time of R 2nd defrost, the number of pins can further be reduced by using a control pin common to the defrost heater 21. However, by using another control pin as in the present embodiment and controlling it to terminate in conjunction with the R evaporator temperature sensor 40a, the toy temperature sensor 45, etc. as shown in FIG. -Unnecessary heating is suppressed because the end timing of each of the F defrosting and the R second defrosting can be freely controlled while draining. That is, the present embodiment can further improve the energy saving performance.
一方、R排水管27aの下部(排水管下部ヒータ103を設けた箇所)は、外気により加熱されるため、排水管下部ヒータ103は、トイヒータ101、排水管上部ヒータ102と異なる条件で通電することがあるため、排水管下部ヒータ103は独立して制御することが効果的である。
On the other hand, since the lower part of the R drain pipe 27a (where the drain pipe lower heater 103 is provided) is heated by the outside air, the drain pipe lower heater 103 is energized under different conditions from the toy heater 101 and the drain pipe upper heater 102. Therefore, it is effective to control the drain pipe lower heater 103 independently.
図14の表には、本実施例の冷却運転中の排水管下部ヒータ103の通電制御もまとめているが、本実施例の排水管下部ヒータ103は、湿度が比較的低い場合はOFFとするが、排水管下部ヒータ103は、外気が高湿の場合(例えば相対湿度80%)も通電する、或いは通電量を上げる。前述したように、除霜時にはR排水管27aは約0℃の除霜水が流れることから、R排水管27aに近接した外箱10aは除霜水により冷却され、高湿時には露点温度よりも外箱10aの表面が低温になる可能性があるため、排水管下部ヒータ103に通電して外箱10aの結露を抑制する。この現象はR第一除霜時とR第二除霜時のいずれの場合も生じる可能性があることから、湿度が高い場合はR第二除霜運転中と冷却運転中(R第一除霜含む)のいずれの場合も排水管下部ヒータ103に通電することで、より確実に外箱10aの結露を抑制している。
The table in FIG. 14 also summarizes the energization control of the drain pipe lower heater 103 during the cooling operation of this embodiment, but the drain pipe lower heater 103 of this embodiment is turned off when the humidity is relatively low. However, the drain pipe lower heater 103 is energized or increases the energization amount even when the outside air is highly humid (for example, relative humidity 80%). As described above, since the defrosted water of about 0 ° C. flows through the R drain pipe 27a during defrosting, the outer box 10a adjacent to the R drain pipe 27a is cooled by the defrost water, and is higher than the dew point temperature at high humidity. Since the surface of the outer box 10a may become low temperature, the drain pipe lower heater 103 is energized to suppress dew condensation on the outer box 10a. Since this phenomenon may occur in both the first R defrost and the second R defrost, when the humidity is high, the second R defrost operation and the cooling operation (R first defrost) In any case (including frost), the dew condensation in the outer box 10a is more reliably suppressed by energizing the drain pipe lower heater 103.
このように、主に冷蔵庫1庫内により冷却されるRトイ23a、R排水管27a上部に設けたトイヒータ101、排水管上部ヒータ102と、主に外気により加熱されるR排水管27aの下部に設けた排水管下部ヒータ103は加熱を行う条件、及び加熱量を変化させる条件がそれぞれ異なることから、異なる制御ピンを用いてそれぞれ独立して制御できるようにしている。これにより、それぞれに応じた条件でヒータの通電を制御することができ、確実に除霜水の排出を行いつつ、不要なヒータの加熱を抑制し、省エネルギー性能を向上させることができる。特にトイヒータ101は、ヒータ101〜103の中で最も消費電力が高いことから、排水管下部ヒータ103と独立して制御することが省エネルギー性能向上に有効である。
As described above, the R toy 23a that is mainly cooled in the refrigerator 1 and the toy heater 101 provided on the upper part of the R drain pipe 27a, the drain pipe upper heater 102, and the lower part of the R drain pipe 27a that is mainly heated by outside air. Since the drainage pipe lower heater 103 provided has different conditions for heating and conditions for changing the heating amount, it can be controlled independently using different control pins. Thereby, electricity supply of a heater can be controlled on the conditions according to each, The heating of an unnecessary heater can be suppressed and the energy saving performance can be improved, discharging | emitting defrost water reliably. In particular, the toy heater 101 has the highest power consumption among the heaters 101 to 103. Therefore, controlling the toy heater 101 independently of the drain pipe lower heater 103 is effective in improving the energy saving performance.
加えて、本実施例の冷蔵庫1では、R蒸発器14aの排水をより確実に行いながら、過度にR第二除霜運転が長くなることを抑制するために、以下で示す制御も備えている。
In addition, in the refrigerator 1 of the present embodiment, the following control is also provided in order to prevent the R second defrosting operation from becoming excessively long while draining the R evaporator 14a more reliably. .
1つ目として、R第二除霜中はその時間を計測し、この時間が異常に長い場合はトイヒータ101、配水管上部ヒータ102、及び配水管下部ヒータ103の通電量を増加させる制御を備えている。R第二除霜開始時にタイマC(制御S2−11)をスタートさせ、このタイマCが所定の時間(例えば2時間)継続した場合は、R蒸発器温度センサ40aにより検知するR蒸発器14aの温度が低温(制御S2−12;TDR<TDRoff)、またはトイ温度センサ45により検知するRトイ23aが低温(制御S2−15;TG<TGoff)の状態が長時間続いている条件のため、R蒸発器14aの加熱量が不足している、またはRトイ23aに残水又は残氷していると推定できる。これに対し、トイヒータ101の通電量を増加させることで、Rトイ23a、空気を介してR蒸発器14aの加熱を補助し、確実に除霜できるようにしている。また、Rトイ23aに残水又は残氷が生じる要因は、Rトイ23a、R排水管27aの何れかで氷結が生じ、排水できなくなったためと考え、トイヒータ101、配水管上部ヒータ102、及び配水管下部ヒータ103の通電量を増加させ、Rトイ23a、R排水管27aの氷を融解させることで確実に排水できるようにしている。すなわち、R蒸発器温度センサ40a、トイ温度センサ45を用いて、トイヒータ101、配水管上部ヒータ102、及び配水管下部ヒータ103の通電量を制御することで、R第二除霜運転終了までに要する時間を短縮(図11の制御S2−12及びS2−15を満足するまでの時間を短縮)しつつ、より確実に除霜及び排水ができるようにしている。
First, during the R second defrosting, the time is measured, and when this time is abnormally long, the energization amount of the toy heater 101, the water distribution pipe upper heater 102, and the water distribution pipe lower heater 103 is increased. ing. The timer C (control S2-11) is started at the start of the R second defrosting, and when the timer C continues for a predetermined time (for example, 2 hours), the R evaporator 14a detected by the R evaporator temperature sensor 40a conditions the state of; (T G <T Goff control S2-15) is followed by a long period of time; temperature low R Toys 23a for detecting the (control S2-12 T DR <T DRoff) or Toys temperature sensor 45, the low temperature Therefore, it can be estimated that the heating amount of the R evaporator 14a is insufficient, or the R toy 23a has residual water or ice. On the other hand, by increasing the energization amount of the toy heater 101, the heating of the R evaporator 14a is assisted through the R toy 23a and air so that defrosting can be surely performed. The cause of the residual water or residual ice in the R toy 23a is considered to be that freezing cannot be performed due to icing in either the R toy 23a or the R drain pipe 27a, and the toy heater 101, the water pipe upper heater 102, and the distribution The energization amount of the water pipe lower heater 103 is increased, and the ice of the R toy 23a and the R drain pipe 27a is melted so that the water can be drained reliably. That is, by using the R evaporator temperature sensor 40a and the toy temperature sensor 45 to control the energization amount of the toy heater 101, the water distribution pipe upper heater 102, and the water distribution pipe lower heater 103, the R second defrosting operation is completed. While reducing the time required (reducing the time required to satisfy the controls S2-12 and S2-15 in FIG. 11), defrosting and drainage can be performed more reliably.
2つ目として、冷却運転中にトイ温度センサ45を用い、Rトイ23aに多量の水が溜まっていると予測される際にトイヒータ101、配水管上部ヒータ102、及び配水管下部ヒータ103の通電を行う制御を備えている。図12は冷却運転中に行うヒータ制御フローチャートである。なお、この時の庫内貯蔵室35の設定はチルドモードとしている。除霜運転から冷却運転に切換え、冷却運転を開始する(制御S3−1)と、まずタイマDをスタートさせ(制御S3−2)、トイ温度センサ45により検知するRトイ23aの温度TGが0℃以上(例えば1℃)のTG_CR以上になる(制御S3−4)までの時間を計測する。冷却運転中も、R第一除霜運転を行っているため、冷蔵室2の0℃以上の戻り空気がRトイ23aの付近を流れてRトイ23aが加熱され、トイ温度センサ45により検知するRトイ23aの温度TGは0℃以上のTG_CRまで到達する。一方、Rトイ23aに多量の水が残り、その水が凍結していると、融解に時間を要すためR第一除霜運転中にトイ温度センサ45の温度が上がり難くなる。すなわちRトイ23aの温度が融解温度(0℃)以上のTG_CRに到達するのに長時間を要す場合は、Rトイ23aに多量の水(氷)が残っていると考えられる。従って、TGがTG_CR以上になると、Rトイ23aに多量の水が溜まっていないと判断し、タイマDをリセットし、ヒータ101,102,103をOFFとする(制御S3−5)が、Rトイ23aの温度がTG_CR未満でタイマDがΔt4(例えば12時間)以上になる(制御S3−6がYES)と、Rトイ23aにて多量の水が氷結している恐れがあるため、トイヒータ101、配水管上部ヒータ102、及び配水管下部ヒータ103に通電し(制御S3−7)、Rトイ23aの水の融解及び排水を行う。予めRトイ23aの水の融解及び排水を行っておくことで、過度にR第二除霜運転が長くなる(図11の制御S2−15を満足するまでの時間が長くなる)ことを抑制しつつ、確実に排水できるようにしている。なお、このタイマDがΔt4になった際に、上記したヒータの通電のほかに、例えば操作部26に残水検知を表示してもよい。本実施例の冷蔵庫1では、冷蔵室戻り口15a及び15bにスリットを設け、排水口22a及びR配水管27aでの食品のつまりを防止しているが、例えばスリットを設けていない冷蔵庫で、排水口22aにものが詰まりRトイ23aに残水が生じる可能性がある場合は、ユーザ又はサポートに残水検知を表示することで、早期に排水口22aを確認し、大きな不具合が生じる前に対応できる。
Second, the toy temperature sensor 45 is used during the cooling operation, and energization of the toy heater 101, the distribution pipe upper heater 102, and the distribution pipe lower heater 103 is performed when it is predicted that a large amount of water is accumulated in the R toy 23a. It has a control to do. FIG. 12 is a flowchart of heater control performed during the cooling operation. In addition, the setting of the storage room 35 in this case is a chilled mode. When switching from the defrosting operation to the cooling operation and starting the cooling operation (control S3-1), the timer D is first started (control S3-2), and the temperature TG of the R toy 23a detected by the toy temperature sensor 45 is determined. Time until it becomes more than TG_CR of 0 degreeC or more (for example, 1 degreeC ) (control S3-4) is measured. Even during the cooling operation, the R first defrosting operation is performed, so that the return air of 0 ° C. or more in the refrigerator compartment 2 flows in the vicinity of the R toy 23a, and the R toy 23a is heated and detected by the toy temperature sensor 45. The temperature TG of the R toy 23a reaches TG_CR of 0 ° C. or higher. On the other hand, if a large amount of water remains in the R toy 23a and the water is frozen, it takes time for melting, so that the temperature of the toy temperature sensor 45 is difficult to rise during the R first defrosting operation. That is, when it takes a long time for the temperature of the R toy 23a to reach TG_CR that is equal to or higher than the melting temperature (0 ° C.), it is considered that a large amount of water (ice) remains in the R toy 23a. Therefore, the T G is equal to or greater than T G_CR, determines that it has not accumulated a large amount of water R Toy 23a, resets the timer D, and the heater 101, 102 and 103 and OFF (control S3-5) is, If the temperature of the R toy 23a is less than TG_CR and the timer D is equal to or greater than Δt 4 (for example, 12 hours) (YES in the control S3-6), a large amount of water may be frozen in the R toy 23a. The toy heater 101, the water distribution pipe upper heater 102, and the water distribution pipe lower heater 103 are energized (control S3-7) to melt and drain the water of the R toy 23a. By preliminarily melting and draining the water of the R toy 23a, it is possible to prevent the R second defrosting operation from becoming excessively long (the time until the control S2-15 in FIG. 11 is satisfied). While ensuring that the water can be drained. When the timer D reaches Δt 4 , in addition to the energization of the heater described above, for example, residual water detection may be displayed on the operation unit 26. In the refrigerator 1 of the present embodiment, slits are provided in the refrigerator compartment return ports 15a and 15b to prevent clogging of food in the drain port 22a and the R water pipe 27a. If there is a possibility that the mouth 22a is clogged and there is residual water in the R toy 23a, display the residual water detection to the user or support to check the drain 22a at an early stage and take action before a major malfunction occurs. it can.
なお、上記は庫内貯蔵室35の設定がチルドモード時の制御で、本実施例の冷蔵庫1では庫内貯蔵室35の設定を氷温モードにした際は、トイヒータ101を用いた制御を行う。
Note that the above is control when the storage room 35 is set in the chilled mode, and in the refrigerator 1 of this embodiment, when the storage room 35 is set in the ice temperature mode, control using the toy heater 101 is performed. .
図13a,図13bは実施例1の冷蔵庫における氷温設定時の冷却運転中のヒータ制御を示すタイムチャートの一例であり、図13aはRトイ23a内の水量が少ない場合、図13bはRトイ23a内に水量が多くある場合である。
13a and 13b are examples of a time chart showing heater control during the cooling operation when the ice temperature is set in the refrigerator of the first embodiment. FIG. 13a shows a case where the amount of water in the R toy 23a is small, and FIG. This is a case where the amount of water is large in 23a.
図9を用いて前述したように、庫内貯蔵室35の設定が氷温モード時はチルドモード時に比べてR第一除霜の頻度を減らしており、冷却運転中のR第一除霜運転を用いたRトイ23aによる水量検知を行う頻度も少なくなるため、トイヒータ101に通電することで水量検知を行う。
As described above with reference to FIG. 9, the frequency of the R first defrosting is reduced when the setting of the storage chamber 35 in the ice temperature mode is lower than that in the chilled mode, and the R first defrosting operation during the cooling operation is performed. Since the frequency of detecting the amount of water by the R toy 23a using the “toy” is reduced, the amount of water is detected by energizing the toy heater 101.
まず図13aの水量が少ない場合について説明する。図12で示した場合と同様に、トイ温度センサ45により検知するRトイ23aの温度TGがTG_CRを下回る(時刻t11)とタイマDがリセットされずにカウントを行う。次にRトイ23aの温度TGが0℃以下のTG_L(例えば−2℃)になる(時刻t12)と、トイヒータ101に通電し、Rトイ23aを加熱し、Rトイ23aの温度上昇を確認する。なお、この通電は温度上昇を確認するもののため、通電量は低く抑えている。水量が少ない図13aでは、加熱対象の熱容量が少ないため、比較的短い時間でRトイ23aの温度TGがTG_CRになり(時刻t13)、タイマDをリセットする。その後、TG_CRよりも高温のTG_Hになる(時刻t14)と、過度な加熱を抑えるためトイヒータ101をOFFにする。なお、タイマDがリセットされる前にトイヒータ101をOFFにしないようTG_HはTG_CR以上にしている。
First, the case where the amount of water in FIG. 13a is small will be described. Similarly to the case shown in FIG. 12, when the temperature TG of the R toy 23a detected by the toy temperature sensor 45 falls below TG_CR (time t 11 ), the timer D is counted without being reset. Next, when the temperature TG of the R toy 23a reaches TG_L (eg, −2 ° C.) of 0 ° C. or less (time t 12 ), the toy heater 101 is energized to heat the R toy 23a and the temperature of the R toy 23a increases. Confirm. Since this energization confirms the temperature rise, the energization amount is kept low. In water less Figure 13a, heat capacity of the heating target is small, a relatively short time at a temperature T G of R Toys 23a becomes T G_CR (time t 13), resets the timer D. Thereafter, a high temperature of T G_H than T G_CR (time t 14), to OFF Toihita 101 to suppress excessive heating. Note that TG_H is set to TG_CR or more so that the toy heater 101 is not turned off before the timer D is reset.
次に図13bの水量が多い場合について説明する。図13aと同様にトイ温度センサ45により検知するRトイ23aの温度TGがTG_CRを下回る(時刻t21)とタイマDのカウントを開始し、Rトイ23aの温度TGが低温のTG_Lになる(時刻t22)と、トイヒータ101に通電する。ここで、Rトイ23aの水量が多く、かつ0℃以下のTG_L以下になっていることから、その多量の水の一部又は全部が凍結しており、融解に時間を要す。従って、図12と同様、Rトイ23aの温度がTG_CR未満の時間(タイマD)がΔt4以上になる(時刻t23)と、Rトイ23aにて多量の水が氷結している恐れがあるため、トイヒータ101、配水管上部ヒータ102、及び配水管下部ヒータ103に通電する、または通電量を増加させ、Rトイ23aの水の融解及び排水を行う。すなわち、図12で示した効果が得られる。
Next, the case where there is much water quantity of FIG. 13b is demonstrated. Similar to Figure 13a the temperature T G of R Toys 23a for detecting the Toys temperature sensor 45 is below T G_CR (time t 21) and starts counting the timer D, the temperature T G of R Toys 23a is cold T G_L (Time t 22 ), the toy heater 101 is energized. Here, since the amount of water of the R toy 23a is large and is equal to or less than TG_L of 0 ° C. or less, a part or all of the large amount of water is frozen and it takes time to melt. Therefore, similar to FIG. 12, R Toys 23a temperatures below T G_CR time with (timer D) is Delta] t 4 or more (time t 23), is a possibility that a large amount of water in R Toys 23a are frozen Therefore, the toy heater 101, the water distribution pipe upper heater 102, and the water distribution pipe lower heater 103 are energized or the energization amount is increased to melt and drain the water of the R toy 23a. That is, the effect shown in FIG. 12 is obtained.
なお、本実施例では、タイマDのカウント、リセットをTG_CRのみで行っているが、例えばトイヒータ101に通電するTG_L以下になるタイミング(時刻t12、t22)からカウントを開始し、TG_CRに到達するとカウントをリセットし、再びTG_Lに到達するまでタイマDを停止するようにしてもよい。この場合、トイヒータ101に通電しない状態で推移しながら、タイマDがΔt4以上になることを抑制できる。一方、本実施例のようにすることで比較的制御プログラムを簡潔にできる。
In this embodiment, the count of the timer D, is performed a reset T G_CR only starts counting from example Toihita 101 timing falls below T G_L energizing (time t 12, t 22), T The count may be reset when G_CR is reached, and the timer D may be stopped until TG_L is reached again. In this case, while the toy heater 101 is not energized, the timer D can be suppressed from exceeding Δt 4 . On the other hand, the control program can be made relatively simple by using the present embodiment.
また、本実施例では庫内貯蔵室35の設定により、冷却運転中のトイヒータ101の通電制御を行うようにしているが、例えばチルドモードでもR第一除霜が長時間行われない場合(外気が低温で冷蔵運転が行われない場合等)はこのトイヒータ101の通電制御を行ってもよい。一方、本実施例のように、極力R第一除霜により水量検知を行うようにすることで、ヒータに要する消費電力量を抑え、省エネルギー性能を向上させることができる。
In the present embodiment, the energization control of the toy heater 101 during the cooling operation is performed by setting the internal storage chamber 35. For example, when the R first defrosting is not performed for a long time even in the chilled mode (outside air If the refrigeration operation is not performed at a low temperature), the toy heater 101 may be energized. On the other hand, as in this embodiment, by detecting the amount of water by R first defrost as much as possible, the power consumption required for the heater can be suppressed and the energy saving performance can be improved.
ここで、庫内貯蔵室35の夫々のモードにおける制御と、夫々の効果を示す。図15は実施例1における庫内貯蔵室35の夫々のモードにおける制御をまとめたものである。
Here, the control in each mode of the storage room 35 in a store | warehouse | chamber and each effect are shown. FIG. 15 summarizes the control in each mode of the storage room 35 in the first embodiment.
図9を用いて説明したように、チルドモードに比べ、氷温モードの方がR第一除霜の頻度を減らすことで、自然対流により冷蔵室2内下部が低温になるようにして、冷蔵室2下部に設けた庫内貯蔵室35の温度を冷蔵室2よりも低温にしている。一方、チルドモード時は、R第一除霜の頻度を高め、Rファン9aの運転率を高めて、冷蔵室2内の空気により加熱する(冷蔵室2との温度差を減らす)ことで、庫内貯蔵室35が過度に低温になることを防止している。
As described with reference to FIG. 9, the ice temperature mode reduces the frequency of the R first defrosting compared to the chilled mode so that the lower part of the refrigerator compartment 2 is cooled by natural convection so that it is refrigerated. The temperature of the storage room 35 provided in the lower part of the chamber 2 is set lower than that of the refrigerator compartment 2. On the other hand, at the time of the chilled mode, by increasing the frequency of the R first defrost, increasing the operation rate of the R fan 9a, and heating with the air in the refrigerator compartment 2 (reducing the temperature difference from the refrigerator compartment 2), The internal storage chamber 35 is prevented from becoming excessively cold.
さらに、本実施例の冷蔵庫1では、チルドモードに比べ、氷温モードの方が冷蔵運転中の圧縮機24を高速(H)で駆動させている。冷蔵運転中に圧縮機24を高速、Rファン9aを低速で駆動させると、R蒸発器14aの温度が低下する。庫内貯蔵室35はR蒸発器14aの近傍で略前方にあり(図2参照)、Rファン9aを介すことなくR蒸発器14aに冷却されるため、R蒸発器14aを低温にすることで、冷蔵室2全体の冷却を抑えながら、庫内貯蔵室35を低温にできる。さらに圧縮機24を高速にし、時間当たりの冷却量を高めることで、冷蔵運転時間を短時間にできる。冷蔵運転の時間を短くすることで、Rファン9aが駆動する時間割合を少なくできるため、前述したR第一除霜の頻度を減らす効果と同様、自然対流により冷蔵室2内下部を低温にすることができ、すなわち庫内貯蔵室35の温度を冷蔵室2よりも低温にできる。一方、チルドモード時は圧縮機24を低速(L)、Rファン9aを高速(H)にすることでR蒸発器14aの温度を高くしてCOPを高め、またRファン9aが駆動する時間割合(運転率)を多くすることで庫内貯蔵室35の温度を高められ、すなわちヒータ加熱を抑えられ、省エネルギー性能を高めることができる。
Furthermore, in the refrigerator 1 of the present embodiment, the compressor 24 during the refrigeration operation is driven at a higher speed (H) in the ice temperature mode than in the chilled mode. If the compressor 24 is driven at a high speed and the R fan 9a is driven at a low speed during the refrigeration operation, the temperature of the R evaporator 14a decreases. The internal storage chamber 35 is substantially in front of the R evaporator 14a (see FIG. 2) and is cooled by the R evaporator 14a without passing through the R fan 9a. Thus, the internal storage chamber 35 can be cooled to a low temperature while suppressing the cooling of the entire refrigerator compartment 2. Furthermore, the compressor operation time is increased and the amount of cooling per hour is increased, so that the refrigeration operation time can be shortened. By shortening the time of the refrigeration operation, the time ratio during which the R fan 9a is driven can be reduced, so that the lower part in the refrigerator compartment 2 is cooled by natural convection as well as the effect of reducing the frequency of the R first defrosting described above. That is, the temperature of the internal storage chamber 35 can be made lower than that of the refrigerator compartment 2. On the other hand, in the chilled mode, by setting the compressor 24 at a low speed (L) and the R fan 9a at a high speed (H), the temperature of the R evaporator 14a is raised to increase the COP, and the R fan 9a is driven. By increasing the (operation rate), the temperature of the internal storage chamber 35 can be increased, that is, the heater heating can be suppressed, and the energy saving performance can be improved.
以上のように、本実施例の冷蔵庫1では、専用のダンパを設けることなく、冷蔵室2の内部に設けた庫内貯蔵室35の温度切り替えが可能で、かつヒータによる加熱を抑え、省エネルギー性能の高い冷蔵庫となっている。
As described above, in the refrigerator 1 according to the present embodiment, the temperature of the internal storage room 35 provided in the refrigerator compartment 2 can be switched without providing a dedicated damper, and heating by the heater is suppressed, thereby saving energy. It is a high refrigerator.
また、図13a、図13bを用いて説明したように、R第一除霜の頻度が少ない氷温モードでは、冷却運転中のトイヒータ101の通電制御を行う。すなわち、R蒸発器14aを備え、Rトイ23aを備える冷蔵庫において、チルド設定時及び氷温設定時のいずれの場合もRトイ23aの水量検知ができるようにしている。
Further, as described with reference to FIGS. 13a and 13b, in the ice temperature mode in which the frequency of the R first defrosting is low, the energization control of the toy heater 101 during the cooling operation is performed. That is, in the refrigerator including the R evaporator 14a and the R toy 23a, the water amount of the R toy 23a can be detected at both the chilled setting and the ice temperature setting.
以上が、本実施の形態例を示す実施例である。なお、本発明は前述した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、前述した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
The above is an example showing this embodiment. In addition, this invention is not limited to the Example mentioned above, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. In addition, it is possible to add, delete, and replace other configurations for a part of the configuration of the embodiment.