[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2019138160A - Control device for engine - Google Patents

Control device for engine Download PDF

Info

Publication number
JP2019138160A
JP2019138160A JP2018019453A JP2018019453A JP2019138160A JP 2019138160 A JP2019138160 A JP 2019138160A JP 2018019453 A JP2018019453 A JP 2018019453A JP 2018019453 A JP2018019453 A JP 2018019453A JP 2019138160 A JP2019138160 A JP 2019138160A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
nox
rich
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018019453A
Other languages
Japanese (ja)
Inventor
西村 博幸
Hiroyuki Nishimura
博幸 西村
林原 寛
Hiroshi Hayashibara
寛 林原
吾朗 坪井
Goro TSUBOI
吾朗 坪井
山田 啓司
Keiji Yamada
啓司 山田
義志 佐藤
Yoshiyuki Sato
義志 佐藤
佳男 水田
Yoshio Mizuta
佳男 水田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2018019453A priority Critical patent/JP2019138160A/en
Publication of JP2019138160A publication Critical patent/JP2019138160A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

To more efficiently eliminate S-poisoning of a NOx catalyst.SOLUTION: A control device 200 for an engine which includes an oxidation catalyst 42 provided in an exhaust passage 40, a NOx catalyst 41 provided integrally therewith or on the downstream side thereof, and a DPF 44 provided on the downstream side of the oxidation catalyst 42, includes a NOx catalyst regeneration control part 202 for repeating more than once a rich-lean cycle including a rich step of actualizing a rich state meaning a theoretical air-fuel ratio or a richer air-fuel ratio and a lean step of actualizing a lean state meaning a leaner air-fuel ratio where unburnt fuel is introduced into the oxidation catalyst 42, to remove SOx occluded in the NOx catalyst 41, and a PM filter regeneration control part 203 for removing PMs from the DPF 44. The NOx catalyst regeneration control part 202 sets the air-fuel ratio in the rich step to be richer in the cycle to be executed earlier than in the cycle to be executed later.SELECTED DRAWING: Figure 8

Description

本発明は、エンジンの制御装置に関する。   The present invention relates to an engine control device.

特許文献1には、排気通路に、NOxを吸蔵して還元浄化するNOx触媒と、微粒子状物質を捕集するPMフィルタとを備えたエンジンが開示されている。   Patent Document 1 discloses an engine including an NOx catalyst that stores and reduces NOx in an exhaust passage, and a PM filter that collects particulate matter.

NOx触媒には、NOxに加えて排気中の硫黄成分も吸蔵されるため、硫黄成分を吸蔵した分NOxの吸蔵可能量が減少してしまう、いわゆるS被毒が生じる。NOx触媒によるNOxの吸蔵及び還元機能を高く維持するためには、NOx触媒から硫黄成分を脱離させてS被毒を解消する必要がある。NOx触媒から硫黄成分を脱離するNOx触媒再生制御では、排気の空燃比を理論空燃比よりリッチに設定し、還元剤として供給された未燃燃料等によってNOx触媒から硫黄成分を放出させて還元させる。   Since the NOx catalyst stores the sulfur component in the exhaust gas in addition to NOx, so-called S poisoning occurs in which the storable amount of NOx is reduced by storing the sulfur component. In order to maintain the NOx occlusion and reduction function of the NOx catalyst at a high level, it is necessary to desorb the sulfur component from the NOx catalyst to eliminate S poisoning. In NOx catalyst regeneration control that desorbs sulfur components from the NOx catalyst, the exhaust air-fuel ratio is set to be richer than the stoichiometric air-fuel ratio, and the sulfur component is released from the NOx catalyst by the unburned fuel supplied as a reducing agent and reduced. Let

一方、PMフィルタの性能を維持するには、微粒子状物質の過度な堆積を防止する必要がある。PMフィルタから微粒子状物質を除去するPMフィルタ再生制御では、排気の空燃比を理論空燃比よりリーンとしてポスト噴射を実行することにより、PMフィルタに酸素と未燃燃料を供給し、これにより、微粒子状物質が燃焼されてPMフィルタから除去される。   On the other hand, in order to maintain the performance of the PM filter, it is necessary to prevent excessive accumulation of particulate matter. In PM filter regeneration control that removes particulate matter from the PM filter, oxygen and unburned fuel are supplied to the PM filter by performing post-injection with the air-fuel ratio of the exhaust gas being leaner than the stoichiometric air-fuel ratio. The particulate matter is burned and removed from the PM filter.

特許4241032号Japanese Patent No. 4241032

特許文献1のエンジンでは、NOx触媒再生制御の実施中に、PMフィルタの微粒子状物質の堆積量が過大になると、PMフィルタ再生制御に切り替えられ、PMフィルタ再生制御は微粒子状物質の堆積量が所定量以下になるまで実施される。この場合、NOx触媒は、PMフィルタ再生制御が終了するまで高温である条件下に晒されることになる。   In the engine of Patent Document 1, when the accumulation amount of particulate matter on the PM filter becomes excessive during the NOx catalyst regeneration control, the PM filter regeneration control is switched to the particulate matter accumulation amount. It is carried out until it becomes a predetermined amount or less. In this case, the NOx catalyst is exposed to a high temperature condition until the PM filter regeneration control is completed.

ここで、本願の発明者は、NOx触媒は、高温である条件下に晒されると、NOx触媒に担持された吸蔵剤が凝集してしまい、硫黄成分が還元剤と反応し難くなってしまう場合があり、この場合、NOx触媒再生制御によっても硫黄成分をNOx触媒から脱離させ難くなることを突き止めた。さらに、本願の発明者は、PMフィルタ再生制御の時間が長くなるほど及び/又は温度が高くなるほど、NOx触媒における吸蔵剤の凝集がさらに促進され、硫黄成分がより還元剤と反応し難くなってしまうことを確認した。   Here, when the NOx catalyst is exposed to a high temperature condition, the inventor of the present application agglomerates the occlusion agent supported on the NOx catalyst and makes it difficult for the sulfur component to react with the reducing agent. In this case, it has been found that it is difficult to desorb the sulfur component from the NOx catalyst even by the NOx catalyst regeneration control. Furthermore, the inventor of the present application further promotes the aggregation of the storage agent in the NOx catalyst as the PM filter regeneration control time becomes longer and / or the temperature becomes higher, and the sulfur component becomes more difficult to react with the reducing agent. It was confirmed.

本発明は、上記知見に基づいてなされたものであり、NOx触媒のS被毒をより効率的に解消可能なエンジンの制御装置及び制御方法を提供することを課題とする。   The present invention has been made based on the above knowledge, and an object of the present invention is to provide an engine control device and a control method capable of more efficiently eliminating S poisoning of a NOx catalyst.

前記課題を解決するため、本願発明は次のように構成したことを特徴とする。   In order to solve the above problems, the present invention is configured as follows.

本願の請求項1に記載の、本発明の一態様は、
排気中の未燃燃料を酸化可能な酸化触媒と、前記酸化触媒と一体若しくはこの下流側に設けられて排気の空燃比が理論空燃比よりリーンであるリーン状態で排気中のNOxを吸蔵し且つ前記空燃比が理論空燃比又は理論空燃比よりリッチであるリッチ状態になると吸蔵したNOxを還元するNOx触媒と、前記酸化触媒の下流側に設けられ排気中の微粒子状物質を捕集可能なPMフィルタとを排気通路に備えたエンジンの制御装置であって、
前記NOx触媒に導入される排気ガスの空燃比が理論空燃比又は理論空燃比よりリッチ空燃比であるリッチ状態に設定するリッチステップと、理論空燃比よりリーン空燃比かつ未燃燃料が前記酸化触媒に導入されるリーン状態に設定するリーンステップとを含むリッチリーンサイクルを複数サイクル繰り返すことにより、前記NOx触媒に吸蔵された硫黄成分を除去するNOx触媒再生制御を実施するNOx触媒再生制御部と、
前記PMフィルタに導入される排気ガスの空燃比を理論空燃比よりもリーン空燃比かつ未燃燃料が前記酸化触媒に導入されるようにして、捕集された前記微粒子状物質を前記PMフィルタから除去するPMフィルタ再生制御を実施するPMフィルタ再生制御部と、
を備え、
前記NOx触媒再生制御部は、前記複数サイクルのうち、実施時期が早いサイクルの方が実施時期が遅いサイクルよりも、前記リッチリーンサイクルにおける前記リッチステップの空燃比がリッチになるよう設定する、ことを特徴としている。
One aspect of the present invention described in claim 1 of the present application is
An oxidation catalyst capable of oxidizing unburned fuel in the exhaust, and the NOx in the exhaust is occluded in a lean state provided integrally with or downstream of the oxidation catalyst and in which the exhaust air-fuel ratio is leaner than the stoichiometric air-fuel ratio; A NOx catalyst that reduces the stored NOx when the air-fuel ratio is richer than the stoichiometric air-fuel ratio or the stoichiometric air-fuel ratio, and a PM that is provided downstream of the oxidation catalyst and that can collect particulate matter in the exhaust gas An engine control device having a filter and an exhaust passage,
A rich step in which the air-fuel ratio of the exhaust gas introduced into the NOx catalyst is set to a rich state in which the air-fuel ratio is richer than the stoichiometric air-fuel ratio or the stoichiometric air-fuel ratio; A NOx catalyst regeneration control unit that performs NOx catalyst regeneration control to remove sulfur components stored in the NOx catalyst by repeating a plurality of rich lean cycles including a lean step that is set to a lean state that is introduced into
The air-fuel ratio of the exhaust gas introduced into the PM filter is leaner than the stoichiometric air-fuel ratio, and unburned fuel is introduced into the oxidation catalyst so that the collected particulate matter is removed from the PM filter. A PM filter regeneration control unit for performing PM filter regeneration control to be removed;
With
The NOx catalyst regeneration control unit sets the air-fuel ratio of the rich step in the rich lean cycle to be richer in the cycle with the earlier execution time than the cycle with the later execution time among the plurality of cycles. It is characterized by.

また、請求項2に記載の発明は、前記請求項1に記載のエンジンの制御装置であって、
前記NOx触媒再生制御部は、前記複数サイクルのうち、実施時期が早いサイクルの方が実施時期が遅いサイクルよりも、前記リッチリーンサイクルにおける前記リッチステップの空燃比が段階的にリッチになるよう空燃比を設定する、ことを特徴としている。
The invention according to claim 2 is the engine control device according to claim 1,
The NOx catalyst regeneration control unit is configured so that the air-fuel ratio of the rich step in the rich lean cycle becomes richer in stages in the rich lean cycle than in the cycle with the earlier implementation time among the plurality of cycles. It is characterized by setting the fuel ratio.

また、請求項3に記載の発明は、前記請求項1又は2に記載のエンジンの制御装置であって、
前記NOx触媒再生制御部は、前記リッチリーンサイクルを所定サイクル数繰り返した後、前記リッチステップにおける前記空燃比を一定に設定する、ことを特徴としている。
The invention according to claim 3 is the engine control apparatus according to claim 1 or 2, wherein
The NOx catalyst regeneration control unit is characterized in that the air-fuel ratio in the rich step is set constant after repeating the rich lean cycle a predetermined number of cycles.

また、請求項4に記載の発明は、前記請求項1〜3のいずれか1つに記載のエンジンの制御装置であって、
前記エンジンは前記排気通路に、前記NOx触媒の下流側に設けられたSCR触媒と、前記NOx触媒と前記SCR触媒との間に、NHの原料あるいはNHからなるSCR用還元剤を供給するSCR用還元剤供給手段とを更に備え、
前記制御装置は、前記NOx触媒再生制御において、前記リッチステップにおける前記空燃比が小さいほど、前記SCR用還元剤供給手段を、前記SCR用還元剤の供給量が少なくなるように制御する、ことを特徴としている。
Moreover, invention of Claim 4 is a control apparatus of the engine as described in any one of the said Claims 1-3,
Supplying the engine to the exhaust passage, and the SCR catalyst provided downstream of the NOx catalyst, between the NOx catalyst and the SCR catalyst, the SCR reducing agent for consisting raw material or NH 3 in NH 3 Further comprising a reducing agent supply means for SCR,
In the NOx catalyst regeneration control, the control device controls the SCR reducing agent supply means so that the supply amount of the SCR reducing agent decreases as the air-fuel ratio in the rich step decreases. It is a feature.

また、請求項5に記載の発明は、前記請求項4に記載のエンジンの制御装置であって、
前記エンジンは前記排気通路に、前記SCR触媒の上流側及び下流側に設けられNOxの濃度を計測する一対のNOxセンサを、更に備え、
前記NOx触媒再生制御部は、
前記一対のNOxセンサにより検出された前記SCR触媒の上流側及び下流側におけるNOxの濃度差に基づいて、前記SCR触媒におけるNHの消費量を算出し、
前記NHの消費量と、前記SCR用還元剤の供給量とに基づいて、前記SCR触媒におけるNHの吸着量を算出し、
前記リッチステップにおける空燃比を、前記SCR触媒における前記NHの前記吸着量が多いほど小さくする度合いを抑制する、ことを特徴としている。
The invention according to claim 5 is the engine control device according to claim 4,
The engine further includes a pair of NOx sensors provided in the exhaust passage on the upstream side and the downstream side of the SCR catalyst for measuring the concentration of NOx,
The NOx catalyst regeneration control unit
Based on the NOx concentration difference between the upstream side and the downstream side of the SCR catalyst detected by the pair of NOx sensors, the consumption amount of NH 3 in the SCR catalyst is calculated,
Based on the consumption amount of NH 3 and the supply amount of the reducing agent for SCR, the adsorption amount of NH 3 in the SCR catalyst is calculated,
It is characterized in that the degree to which the air-fuel ratio in the rich step is decreased as the adsorption amount of the NH 3 in the SCR catalyst is increased is suppressed.

また、請求項6に記載の発明は、前記請求項1〜5のいずれか1つに記載のエンジンの制御装置であって、
前記空燃比を前記リッチ状態にすることにより、前記NOx触媒から吸蔵されたNOxを還元する、NOx触媒リッチパージ制御を実施するNOx触媒リッチパージ制御部を更に備え、
前記PMフィルタ再生制御部は、前記PMフィルタ再生制御を、前記NOx触媒リッチパージ制御の終了後に続いて開始する、ことを特徴としている。
An invention according to claim 6 is the engine control device according to any one of claims 1 to 5, wherein:
A NOx catalyst rich purge control unit that performs NOx catalyst rich purge control to reduce the NOx stored from the NOx catalyst by bringing the air-fuel ratio into the rich state;
The PM filter regeneration control unit starts the PM filter regeneration control subsequent to the end of the NOx catalyst rich purge control.

また、請求項7に記載の、本発明の更なる他の態様は、
排気中の未燃燃料を酸化可能な酸化触媒と、前記酸化触媒と一体若しくはこの下流側に設けられて排気の空燃比が理論空燃比よりリーンであるリーン状態で排気中のNOxを吸蔵し且つ前記空燃比が理論空燃比又は理論空燃比よりリッチであるリッチ状態になると吸蔵したNOxを還元するNOx触媒と、前記酸化触媒の下流側に設けられ排気中の微粒子状物質を捕集可能なPMフィルタとを排気通路に備えたエンジンの制御方法であって、
前記NOx触媒に導入される排気ガスの空燃比が理論空燃比又は理論空燃比よりリッチ空燃比であるリッチ状態に設定するリッチステップと、理論空燃比よりリーン空燃比かつ未燃燃料が前記酸化触媒に導入されるリーン状態に設定するリーンステップとを含むリッチリーンサイクルを複数サイクル繰り返すことにより、前記NOx触媒に吸蔵された硫黄成分を除去するNOx触媒再生ステップと、
前記PMフィルタに導入される排気ガスの空燃比を理論空燃比よりもリーン空燃比かつ未燃燃料が前記酸化触媒に導入されるようにして、捕集された前記微粒子状物質を前記PMフィルタから除去するPMフィルタ再生ステップと、
を有し、
前記NOx触媒再生ステップは、前記複数サイクルのうち、実施時期が早いサイクルの方が実施時期が遅いサイクルよりも、前記リッチリーンサイクルにおける前記リッチステップの空燃比がリッチになるよう設定されている、ことを特徴としている。
In addition, yet another aspect of the present invention as set forth in claim 7 is:
An oxidation catalyst capable of oxidizing unburned fuel in the exhaust, and the NOx in the exhaust is occluded in a lean state provided integrally with or downstream of the oxidation catalyst and in which the exhaust air-fuel ratio is leaner than the stoichiometric air-fuel ratio; A NOx catalyst that reduces the stored NOx when the air-fuel ratio is richer than the stoichiometric air-fuel ratio or the stoichiometric air-fuel ratio, and a PM that is provided downstream of the oxidation catalyst and that can collect particulate matter in the exhaust gas An engine control method including a filter in an exhaust passage,
A rich step in which the air-fuel ratio of the exhaust gas introduced into the NOx catalyst is set to a rich state in which the air-fuel ratio is richer than the stoichiometric air-fuel ratio or the stoichiometric air-fuel ratio; NOx catalyst regeneration step for removing sulfur components stored in the NOx catalyst by repeating a plurality of rich lean cycles including a lean step for setting a lean state introduced into
The air-fuel ratio of the exhaust gas introduced into the PM filter is leaner than the stoichiometric air-fuel ratio, and unburned fuel is introduced into the oxidation catalyst so that the collected particulate matter is removed from the PM filter. A PM filter regeneration step to be removed;
Have
The NOx catalyst regeneration step is set such that the air-fuel ratio of the rich step in the rich lean cycle becomes richer in the cycle with the earlier execution time than the cycle with the later execution time among the plurality of cycles. It is characterized by that.

前記の構成により、本願各請求項の発明によれば、次の効果が得られる。   According to the invention of each claim of the present application, the following effects can be obtained by the above configuration.

まず、請求項1に記載の発明によれば、NOx触媒再生制御の複数サイクルのうち、実施時期が早いサイクルの方が実施時期が遅いサイクルよりも、リッチリーンサイクルにおけるリッチステップの空燃比がよりリッチ側になるよう空燃比が設定されている。ここで、NOx触媒再生制御によるNOx触媒からの硫黄成分の脱離量は、NOx触媒に吸着されている硫黄成分が多いほど多く望める。また、NOx触媒再生制御において、空燃比をよりリッチ側に設定することによってNOx触媒に供給される未燃燃料及び一酸化炭素等の還元剤が増大するので、これによってもNOx触媒からの硫黄成分の脱離量が多く望める。   First, according to the first aspect of the present invention, the air-fuel ratio of the rich step in the rich lean cycle is higher in the cycle in which the implementation timing is earlier than in the cycle in which the implementation timing is late among the plurality of cycles of the NOx catalyst regeneration control. The air-fuel ratio is set so as to be on the rich side. Here, the amount of sulfur component desorbed from the NOx catalyst by the NOx catalyst regeneration control can be increased as the amount of sulfur component adsorbed on the NOx catalyst increases. In addition, in the NOx catalyst regeneration control, by setting the air-fuel ratio to a richer side, the unburned fuel supplied to the NOx catalyst and the reducing agent such as carbon monoxide increase, so that also the sulfur component from the NOx catalyst A large amount of desorption can be expected.

すなわち、NOx触媒再生制御の複数サイクルのうち、NOx触媒に吸蔵された硫黄成分が最も多くこのため硫黄成分の脱離量が多く望める実施時期が早いサイクルにおいて、空燃比をよりリッチ側に設定することによって硫黄成分のNOx触媒からの脱離量を効率的に増大させることができる。   That is, among the multiple cycles of NOx catalyst regeneration control, the air-fuel ratio is set to a richer side in a cycle where the sulfur component occluded in the NOx catalyst is the largest and therefore the amount of sulfur component desorbed can be expected to be increased. As a result, the desorption amount of the sulfur component from the NOx catalyst can be increased efficiently.

さらに、NOx触媒再生制御におけるリーン状態で、PMフィルタの再生を行えるため、PMフィルタの再生とNOx触媒の再生とを同時に行える。これによって、燃費に対して有利になる。   Furthermore, since the PM filter can be regenerated in the lean state in the NOx catalyst regeneration control, regeneration of the PM filter and regeneration of the NOx catalyst can be performed simultaneously. This is advantageous for fuel consumption.

また、請求項2に記載の発明によれば、NOx触媒再生制御における空燃比が長期にわたってよりリッチ側に設定されることがないので、空燃比をよりリッチ側に設定したことによるスモークの増大が抑制される。   According to the second aspect of the present invention, since the air-fuel ratio in the NOx catalyst regeneration control is not set to the rich side over a long period of time, smoke increases due to the air-fuel ratio being set to the rich side. It is suppressed.

また、請求項3に記載の発明によれば、NOx触媒における硫黄成分の堆積量が相対的に大きい、NOx触媒再生制御の初期段階において、空燃比をより小さく設定することにより、NOx触媒からの硫黄成分の脱離が促進される。一方、NOx触媒再生制御の初期段階以降は、硫黄成分の堆積量が相対的に減少するので、空燃比を初期段階よりリーン側である一定値に設定することにより、スモークの増大が抑制される。すなわち、NOx触媒から硫黄成分を効率的に脱離させつつ、スモークの増大が抑制される。   According to the third aspect of the present invention, in the initial stage of the NOx catalyst regeneration control in which the amount of sulfur component accumulated in the NOx catalyst is relatively large, the air-fuel ratio is set to be smaller so that The elimination of the sulfur component is promoted. On the other hand, after the initial stage of the NOx catalyst regeneration control, the amount of sulfur component deposited is relatively reduced. Therefore, the increase in smoke is suppressed by setting the air-fuel ratio to a constant value that is leaner than the initial stage. . That is, an increase in smoke is suppressed while the sulfur component is efficiently desorbed from the NOx catalyst.

また、請求項4に記載の発明によれば、NOx触媒再生制御において、リッチステップにおける空燃比が小さいほどSCR用還元剤の供給量が少なくなるように制御されている。ここで、NOx触媒再生制御のリッチステップでは、NOx触媒から硫黄成分に加えて窒素成分の脱離も促進され、脱離した窒素成分からNHが生じ得る。このとき、リッチステップにおける空燃比がより小さく設定されていると、窒素成分の脱離量も増大し、NHの発生量も増大する。 According to the fourth aspect of the present invention, in the NOx catalyst regeneration control, the supply amount of the SCR reducing agent is decreased as the air-fuel ratio in the rich step is smaller. Here, in the rich step of the NOx catalyst regeneration control, desorption of the nitrogen component in addition to the sulfur component from the NOx catalyst is promoted, and NH 3 can be generated from the desorbed nitrogen component. At this time, if the air-fuel ratio in the rich step is set smaller, the desorption amount of the nitrogen component increases and the generation amount of NH 3 also increases.

この場合、SCR用還元剤供給手段からNHを通常の供給量でSCR触媒に供給すると、NOx触媒から生じたNHが追加的に供給されることになるので、SCR触媒にNHが過剰に供給されることになる。しかしながら本構成によれば、NOx触媒再生制御において、リッチステップにおける空燃比が小さいほど、すなわちNOx触媒からのNHの生成量が多いほど、SCR用還元剤の供給量が少なくなるように制御されるので、SCR触媒にNHが過剰に供給されることが抑制される。 In this case, when supplied to the SCR catalyst in the usual feeding amount NH 3 from SCR for reducing agent supply means, it means that the NH 3 generated from the NOx catalyst is additionally supplied, NH 3 is excessive SCR catalyst Will be supplied. However, according to this configuration, in the NOx catalyst regeneration control, the supply amount of the SCR reducing agent is decreased as the air-fuel ratio in the rich step is smaller, that is, as the amount of NH 3 produced from the NOx catalyst is larger. Therefore, excessive supply of NH 3 to the SCR catalyst is suppressed.

また、請求項5に記載の発明によれば、SCR触媒におけるNHの吸着量が多いほど、NOx触媒再生制御のリッチステップにおける空燃比をより小さくする度合いが抑制される。これにより、NOx触媒から放出されるNHの量が少なくなるので、SCR触媒にNHが過剰に供給されることが抑制される。 According to the fifth aspect of the present invention, the greater the amount of NH 3 adsorbed on the SCR catalyst, the lower the air-fuel ratio in the rich step of NOx catalyst regeneration control. Thereby, since the amount of NH 3 released from the NOx catalyst is reduced, excessive supply of NH 3 to the SCR catalyst is suppressed.

また、請求項6に記載の発明によれば、NOx触媒リッチパージ制御において、酸化触媒における未燃燃料の酸化により生じる熱により、この下流側に配設されたPMフィルタの温度が高温に維持される。このため、NOx触媒リッチパージ制御の終了後に続いてPMフィルタ再生制御を実施すると、PMフィルタを、微粒子状物質を除去可能な温度に早期に昇温させやすく、PMフィルタを昇温させるのに要する未燃燃料の供給量を低減できる。   According to the sixth aspect of the present invention, in the NOx catalyst rich purge control, the temperature of the PM filter disposed on the downstream side is maintained at a high temperature by the heat generated by the oxidation of the unburned fuel in the oxidation catalyst. The For this reason, if the PM filter regeneration control is performed subsequent to the end of the NOx catalyst rich purge control, it is easy to quickly raise the PM filter to a temperature at which particulate matter can be removed, and it is necessary to raise the temperature of the PM filter. The amount of unburned fuel supplied can be reduced.

また、請求項7に記載の発明によれば、請求項1に記載の効果が、エンジンの制御方法において実現される。   According to the invention described in claim 7, the effect described in claim 1 is realized in the engine control method.

すなわち、本発明に係るエンジンの制御装置及び制御方法によれば、NOx触媒のS被毒をより効率的に解消できる。   That is, according to the control device and control method for an engine according to the present invention, S poisoning of the NOx catalyst can be more efficiently eliminated.

本発明の実施形態に係るエンジンの制御装置が適用されたエンジンシステムの概略構成図である。1 is a schematic configuration diagram of an engine system to which an engine control device according to an embodiment of the present invention is applied. DPFを概略的に示す図である。It is a figure which shows DPF schematically. NOx触媒におけるNOx及びSOxの吸着を概念的に示す図である。It is a figure which shows notionally NOx and SOx adsorption | suction in a NOx catalyst. エンジンシステムの制御系を示すブロック図である。It is a block diagram which shows the control system of an engine system. パッシブDeNOx制御及びアクティブDeNOx制御の制御マップを示した図である。It is the figure which showed the control map of passive DeNOx control and active DeNOx control. DeNOx制御、DPF制御、DeSOx制御の流れを示したフローチャートである。It is the flowchart which showed the flow of DeNOx control, DPF control, and DeSOx control. DeSOx制御の流れを示したフローチャートである。It is the flowchart which showed the flow of DeSOx control. NOx触媒における硫黄成分の凝集を模式的に示す説明図である。It is explanatory drawing which shows typically aggregation of the sulfur component in a NOx catalyst. DeSOx制御等を実施したときの各パラメータの時間変化を模式的に示したタイムチャートである。It is the time chart which showed typically the time change of each parameter when DeSOx control etc. were implemented. SCR触媒におけるNHの吸着量とDeSOx制御のリッチステップにおけるポスト噴射量との関係を示すグラフである。Is a graph showing the relationship between the post-injection amount in the rich step of adsorption and DeSOx control of NH 3 in the SCR catalyst.

以下、図面を参照して、本発明の実施形態に係るエンジンの制御装置について説明する。   Hereinafter, an engine control apparatus according to an embodiment of the present invention will be described with reference to the drawings.

(1)全体構成
図1は、本実施形態のエンジンの制御装置が適用されたエンジンシステム100の概略構成図である。
(1) Overall Configuration FIG. 1 is a schematic configuration diagram of an engine system 100 to which an engine control device of this embodiment is applied.

エンジンシステム100は、4ストロークのエンジン本体1と、エンジン本体1に空気(吸気)を導入するための吸気通路20と、エンジン本体1から外部に排気を排出するための排気通路40と、第1ターボ過給機51と、第2ターボ過給機52とを備えている。このエンジンシステム100は車両に設けられ、エンジン本体1は車両の駆動源として用いられる。エンジン本体1は、例えば、ディーゼルエンジンであり、図1の紙面に直交する方向に並ぶ4つの気筒2を有する。   The engine system 100 includes a four-stroke engine main body 1, an intake passage 20 for introducing air (intake air) into the engine main body 1, an exhaust passage 40 for discharging exhaust from the engine main body 1 to the outside, a first A turbocharger 51 and a second turbocharger 52 are provided. The engine system 100 is provided in a vehicle, and the engine body 1 is used as a drive source for the vehicle. The engine body 1 is a diesel engine, for example, and has four cylinders 2 arranged in a direction orthogonal to the paper surface of FIG.

エンジン本体1は、気筒2が内部に形成されたシリンダブロック3と、シリンダブロック3の上面に設けられたシリンダヘッド4と、気筒2に往復摺動可能に挿入されたピストン5とを有している。ピストン5の上方には燃焼室6が形成されている。   The engine body 1 includes a cylinder block 3 in which a cylinder 2 is formed, a cylinder head 4 provided on the upper surface of the cylinder block 3, and a piston 5 that is slidably inserted into the cylinder 2. Yes. A combustion chamber 6 is formed above the piston 5.

ピストン5はクランク軸7と連結されており、ピストン5の往復運動に応じてクランク軸7はその中心軸回りに回転する。   The piston 5 is connected to the crankshaft 7, and the crankshaft 7 rotates about its central axis in accordance with the reciprocating motion of the piston 5.

シリンダヘッド4には、燃焼室6内(気筒2内)に燃料を噴射するインジェクタ10と、燃焼室6内の燃料と空気の混合気を昇温するためのグロープラグ11とが、各気筒2につきそれぞれ1組ずつ設けられている。   The cylinder head 4 is provided with an injector 10 for injecting fuel into the combustion chamber 6 (inside the cylinder 2) and a glow plug 11 for raising the temperature of the fuel / air mixture in the combustion chamber 6. One set is provided for each.

図1に示した例では、インジェクタ10は、燃焼室6の天井面の中央に、燃焼室6を上方から臨むように設けられている。また、グロープラグ11は、通電されることで発熱する発熱部を先端に有しており、この発熱部が、インジェクタ10の先端部分の近傍に位置するように燃焼室6の天井面に取り付けられている。例えば、インジェクタ10は、その先端に複数の噴口を備え、グロープラグ11は、その発熱部がインジェクタ10の複数の噴口からの複数の噴霧の間に位置して燃料の噴霧と直接接触しないように、配置されている。   In the example shown in FIG. 1, the injector 10 is provided at the center of the ceiling surface of the combustion chamber 6 so as to face the combustion chamber 6 from above. The glow plug 11 has a heat generating portion that generates heat when energized, and is attached to the ceiling surface of the combustion chamber 6 so that the heat generating portion is located in the vicinity of the front end portion of the injector 10. ing. For example, the injector 10 is provided with a plurality of nozzle holes at its tip, and the glow plug 11 is located between the plurality of sprays from the plurality of nozzles of the injector 10 so that the heat generating portion is not in direct contact with the fuel spray. Have been placed.

インジェクタ10は、主としてエンジントルクを得るために実施される噴射であって圧縮上死点付近で燃焼する燃料を燃焼室6内に噴射するメイン噴射と、メイン噴射よりも遅角側であって燃焼してもその燃焼エネルギーがエンジントルクにほとんど寄与しない時期に燃焼室6内に燃料を噴射するポスト噴射とを実施できるようになっている。   The injector 10 is an injection that is mainly performed to obtain engine torque, and injects fuel that burns in the vicinity of compression top dead center into the combustion chamber 6. Even so, post-injection in which fuel is injected into the combustion chamber 6 at a time when the combustion energy hardly contributes to the engine torque can be performed.

シリンダヘッド4には、吸気通路20から供給される空気を各気筒2の燃焼室6に導入するための吸気ポートと、吸気ポートを開閉する吸気弁12と、各気筒2の燃焼室6で生成された排気を排気通路40に導出するための排気ポートと、排気ポートを開閉する排気弁13とが設けられている。   The cylinder head 4 is generated in the intake port for introducing the air supplied from the intake passage 20 into the combustion chamber 6 of each cylinder 2, the intake valve 12 for opening and closing the intake port, and the combustion chamber 6 of each cylinder 2. An exhaust port for leading the exhausted gas to the exhaust passage 40 and an exhaust valve 13 for opening and closing the exhaust port are provided.

吸気通路20には、上流側から順に、エアクリーナ21、第1ターボ過給機51のコンプレッサ51a(以下、適宜、第1コンプレッサ51aという)、第2ターボ過給機52のコンプレッサ52a(以下、適宜、第2コンプレッサ52aという)、インタークーラ22、スロットルバルブ23、サージタンク24が設けられている。また、吸気通路20には、第2コンプレッサ52aをバイパスする吸気側バイパス通路25と、これを開閉する吸気側バイパスバルブ26とが設けられている。吸気側バイパスバルブ26は、駆動装置(不図示)によって全閉の状態と全開の状態とに切り替えられる。   In the intake passage 20, the air cleaner 21, the compressor 51 a of the first turbocharger 51 (hereinafter, appropriately referred to as the first compressor 51 a), and the compressor 52 a of the second turbocharger 52 (hereinafter, appropriately) from the upstream side. , A second compressor 52a), an intercooler 22, a throttle valve 23, and a surge tank 24. The intake passage 20 is provided with an intake side bypass passage 25 that bypasses the second compressor 52a and an intake side bypass valve 26 that opens and closes the intake side bypass passage 25. The intake-side bypass valve 26 is switched between a fully closed state and a fully open state by a driving device (not shown).

排気通路40には、上流側から順に、第2ターボ過給機52のタービン52b、第1ターボ過給機51のタービン51b、第1触媒43、排気ガス中の粒子状物質(PM:Particulate Matter)を捕集するDPF(Diesel Particulate Filter)44、尿素インジェクタ(SCR用還元剤供給手段)45、SCR(Selective Catalytic Reduction)触媒46、スリップ触媒47、が設けられている。   In the exhaust passage 40, in order from the upstream side, the turbine 52b of the second turbocharger 52, the turbine 51b of the first turbocharger 51, the first catalyst 43, particulate matter (PM) in the exhaust gas (PM). DPF (Diesel Particulate Filter) 44, urea injector (SCR reducing agent supply means) 45, SCR (Selective Catalytic Reduction) catalyst 46, and slip catalyst 47 are provided.

SCR触媒46は、尿素インジェクタ45から噴射された尿素を加水分解してアンモニアを生成し、このアンモニアを排気中のNOxと反応(還元)させて浄化する。   The SCR catalyst 46 hydrolyzes the urea injected from the urea injector 45 to generate ammonia, and purifies the ammonia by reacting (reducing) with NOx in the exhaust gas.

DPF44は、排気中の微粒子状物質(PM:Particulate Matter)を捕集する。図2は、DPF44を概略的に示す排気流路に沿った断面図である。DPF44は、多孔質のセラミックス等で格子状に多数の通路が形成されており、複数の通路は、排気上流側が開口しており排気下流側が閉塞した通路44aと、排気上流側が閉塞しており排気下流側が開口した通路44bとが交互に千鳥状に配設されている。通路44aに入った排気ガスは、通路同士を隔てる隔壁44cを通過して通路44bへ抜ける。このとき、隔壁44cが、通路44bへの微粒子状物質の抜けを防止するフィルタとして機能して、微粒子状物質が隔壁44cに捕集される。   The DPF 44 collects particulate matter (PM) in the exhaust gas. FIG. 2 is a cross-sectional view along the exhaust flow path schematically showing the DPF 44. The DPF 44 has a plurality of passages formed in a lattice shape with porous ceramics or the like. The plurality of passages are a passage 44a that is open on the exhaust upstream side and closed on the exhaust downstream side, and an exhaust upstream side is closed on the exhaust. The passages 44b opened on the downstream side are alternately arranged in a staggered pattern. The exhaust gas that has entered the passage 44a passes through the partition wall 44c that separates the passages and exits to the passage 44b. At this time, the partition 44c functions as a filter that prevents the particulate matter from escaping into the passage 44b, and the particulate matter is collected in the partition 44c.

また、DPF44の隔壁44cには、酸化触媒層44dがコーティングされている。酸化触媒層44dには、炭化水素(HC)すなわち未燃燃料や一酸化炭素(CO)等が吸着されるようになっており、これらが排気中の酸素により水と二酸化炭素に酸化される。酸化触媒層44dで生じるこの酸化反応は発熱反応であり、酸化触媒層44dで酸化反応が生じると排気の温度は高められる。   The partition 44c of the DPF 44 is coated with an oxidation catalyst layer 44d. Hydrocarbon (HC), that is, unburned fuel, carbon monoxide (CO), and the like are adsorbed on the oxidation catalyst layer 44d, and these are oxidized into water and carbon dioxide by oxygen in the exhaust gas. This oxidation reaction occurring in the oxidation catalyst layer 44d is an exothermic reaction, and when an oxidation reaction occurs in the oxidation catalyst layer 44d, the temperature of the exhaust is raised.

DPF44に捕集されたPMは、高温に晒され且つ酸素の供給を受けることで燃焼し、DPF44から除去される。PMが効率的に燃焼してDPF44から除去される温度は600℃程度と比較的高温である。従って、PMを燃焼させてDPF44から除去するためには、DPF44の温度を比較的高温にする必要がある。   The PM collected in the DPF 44 is exposed to a high temperature and burned by receiving supply of oxygen, and is removed from the DPF 44. The temperature at which PM efficiently burns and is removed from the DPF 44 is a relatively high temperature of about 600 ° C. Therefore, in order to burn PM and remove it from the DPF 44, the temperature of the DPF 44 needs to be relatively high.

第1触媒43は、NOxを浄化するNOx触媒41と、酸化触媒(DOC: Diesel Oxidation Catalyst)42とを含む。   The first catalyst 43 includes a NOx catalyst 41 for purifying NOx and an oxidation catalyst (DOC: Diesel Oxidation Catalyst) 42.

酸化触媒42は、排気中の酸素を用いて炭化水素(HC)すなわち未燃燃料や一酸化炭素(CO)などを酸化して水と二酸化炭素に変化させる。ここで、酸化触媒42で生じるこの酸化反応は発熱反応であり、酸化触媒42で酸化反応が生じると排気の温度は高められる。   The oxidation catalyst 42 uses oxygen in the exhaust gas to oxidize hydrocarbons (HC), that is, unburned fuel, carbon monoxide (CO), and the like to change them into water and carbon dioxide. Here, this oxidation reaction generated in the oxidation catalyst 42 is an exothermic reaction, and when the oxidation reaction occurs in the oxidation catalyst 42, the temperature of the exhaust is raised.

図3(a)に概念的に示すように、NOx触媒41には、触媒金属41aが担持されており、触媒金属41aとしては、例えば、プラチナ(Pt)、ロジウム(Rh)等の貴金属が採用される。また、NOx触媒41には、吸蔵剤41bが担持されており、吸蔵剤41bとしては、例えば、アルカリ土類金属あるいはアルカリ金属、希土類が採用される。より具体的には、吸蔵剤41bとしては、例えば、バリウム(Ba)、ストロンチウム(Sr)、マグネシウム(Mg)等が採用され、排気の空燃比が理論空燃比よりもリーンであるリーン状態(空気過剰率λ>1)において排気中のNOxが触媒金属41aにより酸化されて、吸蔵剤41bに吸蔵される。また、図3(b)に示すように、NOx触媒41においては、排気の空燃比がリーン状態であるときに、排気中のSOxも触媒金属41aにより酸化されて吸蔵剤41bに吸蔵される。   As conceptually shown in FIG. 3A, the NOx catalyst 41 carries a catalyst metal 41a. As the catalyst metal 41a, for example, a noble metal such as platinum (Pt) or rhodium (Rh) is employed. Is done. Further, the NOx catalyst 41 carries a storage agent 41b. As the storage agent 41b, for example, an alkaline earth metal, an alkali metal, or a rare earth is employed. More specifically, as the storage agent 41b, for example, barium (Ba), strontium (Sr), magnesium (Mg) or the like is adopted, and the lean state (air) in which the air-fuel ratio of the exhaust gas is leaner than the stoichiometric air-fuel ratio. At an excess ratio λ> 1), NOx in the exhaust is oxidized by the catalyst metal 41a and stored in the storage agent 41b. Further, as shown in FIG. 3B, in the NOx catalyst 41, when the air-fuel ratio of the exhaust is in a lean state, SOx in the exhaust is also oxidized by the catalyst metal 41a and stored in the storage agent 41b.

NOx触媒に吸蔵されたNOx及びSOxは、排気の空燃比が理論空燃比近傍である状態(λ≒1)あるいは理論空燃比よりも小さいリッチな状態(λ<1)、つまり、NOx触媒41を通過する排気が未燃のHCを多量に含む還元雰囲気下において放出されて還元される。したがって、NOx触媒41は、NOx吸蔵還元型触媒(NSC:NOx Storage Catalyst)である。   The NOx and SOx stored in the NOx catalyst are in a state where the air-fuel ratio of the exhaust is in the vicinity of the stoichiometric air-fuel ratio (λ≈1) or in a rich state where the stoichiometric air-fuel ratio is smaller (λ <1). Exhaust gas passing through is released and reduced in a reducing atmosphere containing a large amount of unburned HC. Therefore, the NOx catalyst 41 is a NOx storage reduction catalyst (NSC: NOx Storage Catalyst).

詳細には、NOx触媒41は、排気ガスの空気過剰率λが1よりも大きいリーンな状態で、排気ガスに含まれる酸素を吸蔵できるように構成されている。例えば、NOx触媒41は、酸素吸蔵能を有するセリア等を含む。そして、NOx触媒41は、排気ガス中のNOを、排気ガスに含まれる酸素および吸蔵している酸素を用いて酸化し(NOとし)、これを吸蔵する。 Specifically, the NOx catalyst 41 is configured to store oxygen contained in the exhaust gas in a lean state where the excess air ratio λ of the exhaust gas is greater than 1. For example, the NOx catalyst 41 includes ceria having oxygen storage capacity. Then, the NOx catalyst 41 oxidizes NO in the exhaust gas using oxygen contained in the exhaust gas and stored oxygen (to be NO 2 ), and stores this.

また、NOx触媒41は、吸蔵していたNOxを還元する際に、NH3(アンモニア)を発生して放出するようになっている。具体的には、NOx還元時に、NOx触媒41が吸蔵していたNOx中の「N」およびNOx触媒41を通過するNOxと、NOx触媒41に導入された還元剤であるH等が結合することで、NH3が生成される。   Further, the NOx catalyst 41 generates and releases NH3 (ammonia) when reducing the stored NOx. Specifically, during NOx reduction, “N” in NOx stored by the NOx catalyst 41 and NOx passing through the NOx catalyst 41 are combined with H, which is a reducing agent introduced into the NOx catalyst 41. Thus, NH3 is generated.

第1触媒43は、例えば、DOCの触媒材層の表面に、NSCの触媒材がコーティングされることで形成されている。   The first catalyst 43 is formed, for example, by coating the surface of a DOC catalyst material layer with an NSC catalyst material.

なお、本実施形態では、排気通路に別途空気や燃料を供給する装置が設けられておらず、排気の空燃比と燃焼室6内の混合気の空燃比とは対応する。つまり、燃焼室6内の混合気の空燃比が理論空燃比よりもリーンのときに排気の空燃比もリーンとなり、燃焼室6内の混合気の空燃比が理論空燃比近傍である状態(λ≒1)あるいは理論空燃比よりも小さいリッチな状態(λ<1)のときに排気の空燃比も理論空燃比近傍である状態(λ≒1)あるいは理論空燃比よりも小さいリッチな状態(λ<1)になる。   In the present embodiment, there is no separate device for supplying air or fuel to the exhaust passage, and the air-fuel ratio of the exhaust and the air-fuel ratio of the air-fuel mixture in the combustion chamber 6 correspond. That is, when the air-fuel ratio of the air-fuel mixture in the combustion chamber 6 is leaner than the stoichiometric air-fuel ratio, the air-fuel ratio of the exhaust gas becomes lean, and the air-fuel ratio of the air-fuel mixture in the combustion chamber 6 is in the vicinity of the stoichiometric air-fuel ratio (λ ≈1) or rich state smaller than the stoichiometric air-fuel ratio (λ <1), the exhaust air-fuel ratio is also in the vicinity of the stoichiometric air-fuel ratio (λ≈1), or the rich state smaller than the stoichiometric air-fuel ratio (λ <1).

図1に示すように、尿素インジェクタ45は、DPF44の下流側の排気通路40中に尿素を噴射する。尿素インジェクタ45は、尿素供給経路45aおよび尿素送出ポンプ45bを介して尿素タンク45cに接続されており、尿素送出ポンプ45bにより尿素タンク45cから圧送された尿素を排気通路40内に噴射する。本実施形態では、尿素の凍結を防止するためのヒーター45dが設けられている。尿素インジェクタ45から噴射された尿素はSCR触媒46に導入される。   As shown in FIG. 1, the urea injector 45 injects urea into the exhaust passage 40 on the downstream side of the DPF 44. The urea injector 45 is connected to the urea tank 45c via the urea supply path 45a and the urea delivery pump 45b, and injects the urea pressure-fed from the urea tank 45c by the urea delivery pump 45b into the exhaust passage 40. In the present embodiment, a heater 45d is provided for preventing freezing of urea. Urea injected from the urea injector 45 is introduced into the SCR catalyst 46.

SCR触媒46は、NH3(アンモニア)を排気ガス中のNOxと反応(還元)させて浄化する。SCR触媒46は、尿素インジェクタ45から噴射された尿素を加水分解してNH3を生成し(CO(NH2)2+H2O→CO2+2NH3)、生成されたNH3を排気ガス中のNOxと反応(還元)させてNOxを浄化する。   The SCR catalyst 46 purifies by reacting (reducing) NH3 (ammonia) with NOx in the exhaust gas. The SCR catalyst 46 hydrolyzes the urea injected from the urea injector 45 to generate NH3 (CO (NH2) 2 + H2O → CO2 + 2NH3), and reacts (reduces) the generated NH3 with NOx in the exhaust gas to reduce NOx. To purify.

このように、本実施形態では、尿素インジェクタ45により排気通路40に噴射(供給)される尿素が、請求項におけるNH3原料およびSCR用還元剤として機能する。   Thus, in the present embodiment, urea that is injected (supplied) into the exhaust passage 40 by the urea injector 45 functions as the NH3 raw material and the SCR reducing agent in the claims.

詳細には、SCR触媒46では、導入されたNH3が吸着され、この吸着されたNH3とNOxとが反応することでNOxが還元される。また、前記のように、NOx触媒41におけるNOxの還元時には、このNOx触媒41からもNH3が放出されるようになっており、SCR触媒46は、NOx触媒41から放出されたNH3を排気中のNOxと反応(還元)させることによってもNOxを浄化する。   Specifically, in the SCR catalyst 46, the introduced NH3 is adsorbed, and the adsorbed NH3 and NOx react to reduce NOx. As described above, when NOx is reduced in the NOx catalyst 41, NH3 is also released from the NOx catalyst 41. The SCR catalyst 46 removes NH3 released from the NOx catalyst 41 in the exhaust gas. NOx is also purified by reacting (reducing) with NOx.

例えば、SCR触媒46は、NH3によってNOxを還元する機能を有する触媒金属(Fe、Ti、Ce、W等)を、NH3をトラップする機能を有するゼオライトに担持させて触媒成分とし、この触媒成分をハニカム担体のセル壁に担持させることで作られる。   For example, the SCR catalyst 46 uses a catalyst metal (Fe, Ti, Ce, W, etc.) having a function of reducing NOx by NH3 on a zeolite having a function of trapping NH3 as a catalyst component. It is made by supporting it on the cell wall of the honeycomb carrier.

SCR触媒46とNOx触媒41とは、いずれもNOxを浄化可能であるが、これらは浄化率(NOx吸蔵率)が高くなる温度が互いに異なっており、SCR触媒46のNOx浄化率(NOx吸蔵率)は排気の温度が比較的高温のときに高くなり、NOx触媒41のNOx浄化率は排気の温度が比較的低温のときに高くなる。   Both the SCR catalyst 46 and the NOx catalyst 41 can purify NOx, but they have different temperatures at which the purification rate (NOx storage rate) increases, and the SCR catalyst 46 and the NOx storage rate (NOx storage rate). ) Increases when the temperature of the exhaust gas is relatively high, and the NOx purification rate of the NOx catalyst 41 increases when the temperature of the exhaust gas is relatively low.

つまり、本実施形態では、NOx触媒41とSCR触媒46との両方を用いてNOxの
浄化を行う。具体的には、SCR触媒46の温度が第1温度未満であり、SCR触媒46
によるNOx浄化率が低いときには、NOx触媒41のみによってNOx浄化が行われ、
SCR触媒46の温度が第2温度以上(第2温度は第1温度よりも高い)であってSCR
触媒46によるNOx浄化率が高いときにはSCR触媒46のみによってNOx浄化を行
う。そして、SCR触媒46の温度が第1温度と第2温度との間であるときには、NOx
触媒41とSCR触媒46との両方によってNOx浄化を行う。また、排気ガス流量が大
きく、SCR触媒46によるNOx浄化率が低くなるときにも、NOx触媒41とSCR
触媒46との両方によってNOx浄化を行う。
That is, in this embodiment, NOx purification is performed using both the NOx catalyst 41 and the SCR catalyst 46. Specifically, the temperature of the SCR catalyst 46 is lower than the first temperature, and the SCR catalyst 46
When the NOx purification rate is low, NOx purification is performed only by the NOx catalyst 41,
The temperature of the SCR catalyst 46 is equal to or higher than the second temperature (the second temperature is higher than the first temperature), and the SCR
When the NOx purification rate by the catalyst 46 is high, NOx purification is performed only by the SCR catalyst 46. When the temperature of the SCR catalyst 46 is between the first temperature and the second temperature, NOx
NOx purification is performed by both the catalyst 41 and the SCR catalyst 46. Further, when the exhaust gas flow rate is large and the NOx purification rate by the SCR catalyst 46 becomes low, the NOx catalyst 41 and the SCR
NOx purification is performed by both the catalyst 46 and the catalyst 46.

スリップ触媒47は、SCR触媒46から排出された未反応のNH3を酸化させて浄化
する。
The slip catalyst 47 oxidizes and purifies unreacted NH 3 discharged from the SCR catalyst 46.

排気通路40には、第2タービン52bをバイパスする排気側バイパス通路48と、これを開閉する排気側バイパスバルブ49と、第1タービン51bをバイパスするウエストゲート通路53と、これを開閉するウエストゲートバルブ54とが設けられている。これら排気側バイパスバルブ49とウエストゲートバルブ54とは、それぞれ、駆動装置(不図示)によって全閉と全開の状態に切り替えられるとともに、これらの間の任意の開度に変更される。   The exhaust passage 40 includes an exhaust-side bypass passage 48 that bypasses the second turbine 52b, an exhaust-side bypass valve 49 that opens and closes the exhaust passage, a waste gate passage 53 that bypasses the first turbine 51b, and a waste gate that opens and closes the exhaust passage. A valve 54 is provided. The exhaust side bypass valve 49 and the waste gate valve 54 are switched between a fully closed state and a fully opened state by a driving device (not shown), respectively, and are changed to an arbitrary opening degree therebetween.

本実施形態によるエンジンシステム100は、排気の一部を吸気に還流させるEGR装置55を有する。EGR装置55は、排気通路40のうち排気側バイパス通路48の上流端よりも上流側の部分と、吸気通路20のうちスロットルバルブ23とサージタンク24との間の部分とを接続するEGR通路56と、これを開閉する第1EGRバルブ57と、EGR通路56を通過する排気を冷却するEGRクーラー58とを有する。また、EGR装置55は、EGRクーラー58をバイパスするEGRクーラバイパス通路59と、これを開閉する第2EGRバルブ60とを有する。   The engine system 100 according to the present embodiment includes an EGR device 55 that recirculates a part of exhaust gas to intake air. The EGR device 55 connects the portion of the exhaust passage 40 upstream of the upstream end of the exhaust-side bypass passage 48 and the portion of the intake passage 20 between the throttle valve 23 and the surge tank 24. A first EGR valve 57 that opens and closes it, and an EGR cooler 58 that cools the exhaust gas that passes through the EGR passage 56. Further, the EGR device 55 includes an EGR cooler bypass passage 59 that bypasses the EGR cooler 58 and a second EGR valve 60 that opens and closes the EGR cooler bypass passage 59.

(2)制御系
図4を用いて、エンジンシステムの制御系について説明する。車両には、主として尿素インジェクタ45を制御するためのDCU(Dosing Control Unit)300と、その他の各部を制御するためのPCM(Power-train Control Module)200と、が設けられている。PCM200およびDCU300は、それぞれ、CPU、ROM、RAM、I/F等から構成されるマイクロプロセッサである。本実施形態では、これらPCM200とDCU300とが、請求項における制御装置を構成する。また、PCM200は、後述する、DeNOx制御(NOx触媒リッチパージ制御)、DeSOx制御(NOx触媒再生制御)、及びDPF再生制御(PMフィルタ再生制御)をそれぞれ実施する、NOx触媒リッチパージ制御部201と、NOx触媒再生制御部202と、PMフィルタ再生制御部203とを備えている。
(2) Control system The control system of an engine system is demonstrated using FIG. The vehicle is provided with a DCU (Dosing Control Unit) 300 mainly for controlling the urea injector 45 and a PCM (Power-train Control Module) 200 for controlling other parts. The PCM 200 and the DCU 300 are microprocessors each composed of a CPU, ROM, RAM, I / F, and the like. In the present embodiment, the PCM 200 and the DCU 300 constitute a control device in the claims. Further, the PCM 200 includes a NOx catalyst rich purge control unit 201 that performs DeNOx control (NOx catalyst rich purge control), DeSOx control (NOx catalyst regeneration control), and DPF regeneration control (PM filter regeneration control), which will be described later. The NOx catalyst regeneration control unit 202 and the PM filter regeneration control unit 203 are provided.

PCM200には、各種センサからの情報が入力される。例えば、PCM200は、クランク軸7の回転数つまりエンジン回転数を検出する回転数センサSN1、エアクリーナ21付近に設けられて吸気通路20を流通する新気(空気)の量である吸入空気量を検出するエアフローセンサSN2、サージタンク24に設けられてターボ過給機51、52によって過給された後のサージタンク24内の吸気の圧力つまり過給圧を検出する吸気圧センサSN3、排気通路40のうち第1ターボ過給機51と第1触媒43との間の部分の酸素濃度を検出する排気O2センサSN4等と電気的に接続されており、これらのセンサSN1〜SN4からの入力信号を受け付ける。また、車両には、運転者により操作されるアクセルペダル(不図示)の開度であるアクセル開度を検出するアクセル開度センサSN5や、車速を検出する車速センサSN6等が設けられており、これらのセンサSN5、SN6による検出信号もPCM200に入力される。PCM200は、各センサ(SN1〜SN6等)からの入力信号に基づいて種々の演算等を実行して、インジェクタ10等を制御する。   Information from various sensors is input to the PCM 200. For example, the PCM 200 detects a rotation speed sensor SN1 that detects the rotation speed of the crankshaft 7, that is, the engine rotation speed, and an intake air amount that is provided near the air cleaner 21 and that is the amount of fresh air (air) that flows through the intake passage 20. An air flow sensor SN3, an intake pressure sensor SN3 for detecting the pressure of the intake air in the surge tank 24 after being supercharged by the turbochargers 51, 52, that is, the supercharging pressure, provided in the surge tank 24, and the exhaust passage 40 Of these, it is electrically connected to an exhaust O2 sensor SN4 or the like that detects the oxygen concentration in the portion between the first turbocharger 51 and the first catalyst 43, and receives input signals from these sensors SN1 to SN4. . Further, the vehicle is provided with an accelerator opening sensor SN5 that detects an accelerator opening that is an opening of an accelerator pedal (not shown) operated by a driver, a vehicle speed sensor SN6 that detects a vehicle speed, and the like. Detection signals from these sensors SN5 and SN6 are also input to the PCM 200. The PCM 200 controls the injector 10 and the like by executing various calculations and the like based on input signals from the sensors (SN1 to SN6 and the like).

DCU300とPCM200とは双方向に通信可能に接続されている。DCU300は、PCM200での演算結果等を用いて尿素インジェクタ45によって排気通路40に噴射させる尿素の量を算出し、尿素インジェクタ45を制御する。また、DCU300は、尿素送出ポンプ45bやヒーター45dの制御も行う。   The DCU 300 and the PCM 200 are connected so as to be capable of bidirectional communication. The DCU 300 controls the urea injector 45 by calculating the amount of urea injected into the exhaust passage 40 by the urea injector 45 using the calculation result in the PCM 200 and the like. The DCU 300 also controls the urea delivery pump 45b and the heater 45d.

(2−1)通常制御
DeNOx制御、DeSOx制御およびDPF再生制御を実施しない通常運転時に実施する通常制御では、燃費性能を高めるべく、燃焼室6内の混合気の空燃比(以下、単に、混合気の空燃比という場合がある)が理論空燃比よりもリーン(λ>1)にされる。例えば、通常制御では、混合気の空気過剰率λはλ=1.7程度とされる。また、通常制御では、ポスト噴射は停止されてメイン噴射のみが実施される。また、通常制御では、グロープラグ11の作動は停止される。また、通常制御では、第1EGRバルブ57、第2EGRバルブ60、吸気側バイパスバルブ26、排気側バイパスバルブ49、ウエストゲートバルブ54は、それぞれ、エンジン本体1の運転状態、例えば、エンジン回転数とエンジン負荷等に応じて、EGR率および過給圧がそれぞれ適切な値になるように制御される。
(2-1) Normal Control In normal control performed during normal operation without performing DeNOx control, DeSOx control, and DPF regeneration control, the air-fuel ratio of the air-fuel mixture in the combustion chamber 6 (hereinafter simply referred to as mixing) Is sometimes made leaner (λ> 1) than the stoichiometric air-fuel ratio. For example, in the normal control, the excess air ratio λ of the air-fuel mixture is about λ = 1.7. In normal control, post injection is stopped and only main injection is performed. In normal control, the operation of the glow plug 11 is stopped. In the normal control, the first EGR valve 57, the second EGR valve 60, the intake side bypass valve 26, the exhaust side bypass valve 49, and the waste gate valve 54 are respectively in an operating state of the engine body 1, for example, the engine speed and the engine. Depending on the load and the like, the EGR rate and the supercharging pressure are controlled to be appropriate values.

(2−2)DeNOx制御
NOx触媒リッチパージ制御部201により実施される、NOx触媒41に吸蔵されたNOx(以下、適宜、吸蔵NOxという)をNOx触媒41から放出(脱離)させるための制御であるDeNOx制御(NOx触媒リッチパージ制御)について説明する。
(2-2) DeNOx Control Control for releasing (desorbing) NOx occluded in the NOx catalyst 41 (hereinafter referred to as occluded NOx as appropriate), which is performed by the NOx catalyst rich purge control unit 201. DeNOx control (NOx catalyst rich purge control) will be described.

前記のように、NOx触媒41では、排気の空燃比ひいては混合気の空燃比が理論空燃比近傍である状態(λ≒1)あるいは理論空燃比よりも小さいリッチな状態(λ<1)において、吸蔵NOxが還元される。従って、吸蔵NOxを還元するためには、排気の空燃比および混合気の空燃比を通常運転時(通常制御の実施時)よりも低減させる必要がある。   As described above, in the NOx catalyst 41, in a state where the air-fuel ratio of the exhaust gas and thus the air-fuel ratio of the air-fuel mixture is close to the stoichiometric air-fuel ratio (λ≈1) or in a rich state where the stoichiometric air-fuel ratio is smaller (λ <1), The stored NOx is reduced. Therefore, in order to reduce the stored NOx, it is necessary to reduce the air-fuel ratio of the exhaust gas and the air-fuel ratio of the air-fuel mixture as compared with those during normal operation (when normal control is performed).

混合気の空気過剰率λ(排気ガスの空気過剰率λ)を低減する一つの方法として、燃焼室6に導入される新気(空気)の量を少なくすることが考えられる。しかし、新気の量を単純に少なくするとエンジントルクを適切に得ることができないおそれがある。特に、加速時に新気の量が低減されると加速性が悪化するおそれがある。また、新気の量を調整する場合では、混合気の空気過剰率λを精度よく制御することが比較的困難である。   As one method for reducing the excess air ratio λ of the air-fuel mixture (the excess air ratio λ of the exhaust gas), it is conceivable to reduce the amount of fresh air (air) introduced into the combustion chamber 6. However, if the amount of fresh air is simply reduced, the engine torque may not be obtained properly. In particular, if the amount of fresh air is reduced during acceleration, the acceleration performance may deteriorate. When adjusting the amount of fresh air, it is relatively difficult to accurately control the excess air ratio λ of the air-fuel mixture.

そこで、本実施形態では、新気の量を低減させることなく、あるいは、新気の量の低減量を少なく抑えつつ、混合気の空燃比を低減させるべく、ポスト噴射を実施する。つまり、PCM200(NOx触媒リッチパージ制御部201)は、インジェクタ10にメイン噴射に加えてポスト噴射を実施させることで排気の空燃比を低減する。例えば、DeNOx制御では、混合気および排気の空気過剰率λをλ=0.94〜1.06程度にする。   Therefore, in the present embodiment, post injection is performed without reducing the amount of fresh air or while reducing the amount of fresh air while reducing the air-fuel ratio of the air-fuel mixture. That is, the PCM 200 (NOx catalyst rich purge control unit 201) reduces the air-fuel ratio of the exhaust by causing the injector 10 to perform post injection in addition to main injection. For example, in DeNOx control, the excess air ratio λ of the air-fuel mixture and exhaust is set to about λ = 0.94 to 1.06.

本実施形態では、このように吸蔵NOxを還元するためにポスト噴射を実施するDeNOx制御を、図5に示す第1領域R1と第2領域R2とでのみ実施する。第1領域R1は、エンジン回転数が予め設定された第1基準回転数N1以上且つ予め設定された第2基準回転数N2以下で、エンジン負荷が予め設定された第1基準負荷Tq1以上且つ予め設定された第2基準負荷Tq2以下の領域である。第2領域R2は、第1領域R1よりもエンジン負荷が高い領域であって、エンジン負荷が予め設定された第3基準負荷Tq3以上となる領域である。   In the present embodiment, DeNOx control for performing post injection to reduce the stored NOx in this way is performed only in the first region R1 and the second region R2 shown in FIG. In the first region R1, the engine speed is equal to or higher than a first reference speed N1 set in advance and equal to or lower than a second reference speed N2 set in advance. The engine load is equal to or higher than a first reference load Tq1 set in advance. This is an area below the set second reference load Tq2. The second region R2 is a region where the engine load is higher than that of the first region R1, and the engine load is equal to or higher than a preset third reference load Tq3.

また、PCM200(NOx触媒リッチパージ制御部201)は、第1領域R1では、ポスト噴射された燃料が燃焼室6内で燃焼するタイミングでポスト噴射を実施するアクティブDeNOx制御を実施する。ポスト噴射の噴射タイミングは予め設定されており、例えば、膨張行程の前半であって、圧縮上死点後30〜70°CAの間の時期に設定されている。本実施形態では、アクティブDeNOx制御では、ポスト噴射された燃料の燃焼を促進するためにグロープラグ11を通電して混合気を加熱する。   Further, the PCM 200 (NOx catalyst rich purge control unit 201) performs active DeNOx control in which the post-injection is performed at the timing when the post-injected fuel burns in the combustion chamber 6 in the first region R1. The injection timing of the post injection is set in advance, for example, in the first half of the expansion stroke, and is set to a time between 30 to 70 ° CA after the compression top dead center. In the present embodiment, in the active DeNOx control, the air-fuel mixture is heated by energizing the glow plug 11 in order to promote the combustion of the post-injected fuel.

また、アクティブDeNOx制御では、EGRガスを燃焼室6に導入しつつ第1EGRバルブ57および第2EGRバルブ60の開度を通常運転時よりも小さく(閉じ側に)、つまり、仮にアクティブDeNOx制御を実施しなかったとしたときの開度よりも小さくする。本実施形態では、アクティブDeNOx制御において、第1EGRバルブ57は全閉とされ、第2EGRバルブ60は開弁されるもののその開度が通常運転時よりも小さくされる。   In the active DeNOx control, the opening degree of the first EGR valve 57 and the second EGR valve 60 is made smaller (closed side) than that in the normal operation while introducing EGR gas into the combustion chamber 6, that is, the active DeNOx control is temporarily performed. Make it smaller than the opening when you did not. In the present embodiment, in the active DeNOx control, the first EGR valve 57 is fully closed and the second EGR valve 60 is opened, but the opening is made smaller than that during normal operation.

これは、ポスト噴射された燃料の燃焼を促進しつつこの燃焼によって生成される煤の量を少なく抑えるためである。具体的には、ポスト噴射された燃料の燃焼時、燃焼室6内にはEGRガスに加えてメイン噴射によって生成された燃焼後のガスが存在することになる。そのため、多量のEGRガスが導入されているとポスト噴射された燃料と空気との混合が不十分となり煤が多量に生成されるおそれがある。一方、ポスト噴射は燃焼室6内の温度圧力が比較的低いタイミングで実施されるため、燃焼安定性が悪化しやすい。そこで、前記のように、アクティブDeNOx制御において、第1EGRバルブ57を閉弁してEGRクーラー58を通過した低温のEGRガスの導入は停止し、第2EGRバルブ60を開弁して高温のEGRガスを導入して、ポスト噴射された燃料の燃焼を促進して燃焼安定性を高めつつ、この第2EGRバルブ60の開度を通常運転時よりも小さい開度にして煤の生成量を少なく抑える。   This is to reduce the amount of soot generated by the combustion while promoting the combustion of the post-injected fuel. Specifically, when the post-injected fuel is combusted, the combustion chamber 6 contains the burned gas generated by the main injection in addition to the EGR gas. For this reason, if a large amount of EGR gas is introduced, the post-injected fuel and air are not sufficiently mixed, and soot may be generated in a large amount. On the other hand, since the post injection is performed at a timing when the temperature and pressure in the combustion chamber 6 are relatively low, the combustion stability tends to deteriorate. Therefore, as described above, in the active DeNOx control, the introduction of the low-temperature EGR gas that has passed through the EGR cooler 58 is stopped while the first EGR valve 57 is closed, and the second EGR valve 60 is opened to open the high-temperature EGR gas. Is introduced to promote the combustion of the post-injected fuel to improve combustion stability, and the opening of the second EGR valve 60 is made smaller than that during normal operation to reduce the amount of soot generated.

詳細には、PCM200には、アクティブDeNOx制御時の第1EGRバルブ57の開度および第2EGRバルブ60の開度と、通常運転時の第1EGRバルブ57の開度および第2EGRバルブ60の開度とが、エンジン回転数とエンジン負荷等とについてのマップで記憶されており、PCM200(NOx触媒リッチパージ制御部201)は、実行している制御に対応するマップから値を抽出して第1EGRバルブ57および第2EGRバルブ60の開度を設定する。そして、同じエンジン回転数とエンジン負荷等において、アクティブDeNOx制御用のマップの値の方が通常制御用のマップの値よりも小さく設定されている。   Specifically, the PCM 200 includes an opening degree of the first EGR valve 57 and an opening degree of the second EGR valve 60 during active DeNOx control, an opening degree of the first EGR valve 57 and an opening degree of the second EGR valve 60 during normal operation. Is stored in a map for the engine speed, engine load, etc., and the PCM 200 (NOx catalyst rich purge control unit 201) extracts a value from the map corresponding to the control being executed, and the first EGR valve 57 And the opening degree of the second EGR valve 60 is set. Then, at the same engine speed and engine load, the map value for active DeNOx control is set smaller than the map value for normal control.

一方、PCM200(NOx触媒リッチパージ制御部201)は、第2領域R2では、ポスト噴射された燃料が燃焼室6内で燃焼しないタイミング(膨張行程の後半、例えば、圧縮上死点後100°CA〜120°CA)でポスト噴射を実施するパッシブDeNOx制御を実施する。また、パッシブDeNOx制御では、ポスト噴射された未燃燃料に起因するデポジットによってEGRクーラー58等が閉塞するのを回避するべく、第1EGRバルブ57および第2EGRバルブ60を全閉にする。   On the other hand, in the second region R2, the PCM 200 (NOx catalyst rich purge control unit 201) determines that the post-injected fuel does not burn in the combustion chamber 6 (second half of the expansion stroke, for example, 100 ° CA after compression top dead center). Passive DeNOx control that performs post-injection at ˜120 ° CA) is performed. Further, in the passive DeNOx control, the first EGR valve 57 and the second EGR valve 60 are fully closed in order to avoid the EGR cooler 58 and the like from being blocked by deposits resulting from post-injected unburned fuel.

前記のように、第1領域R1と第2領域R2とでDeNOx制御の制御内容を変更しているのは、次の理由による。   As described above, the control content of the DeNOx control is changed between the first region R1 and the second region R2 for the following reason.

エンジン負荷が低い、あるいは、エンジン負荷は比較的高いがエンジン回転数が低い領域では、排気の温度が低いことに伴ってNOx触媒41の温度が吸蔵NOxを還元できる温度よりも低くなりやすい。そこで、本実施形態では、この領域ではDeNOx制御を停止する。   In a region where the engine load is low or the engine load is relatively high but the engine speed is low, the temperature of the NOx catalyst 41 tends to be lower than the temperature at which the stored NOx can be reduced as the exhaust gas temperature is low. Therefore, in this embodiment, DeNOx control is stopped in this region.

また、前記のようにDeNOx制御ではポスト噴射を実施するが、ポスト噴射された燃料が燃焼せずにそのまま排気通路40に排出されると、この未燃燃料に起因するデポジットによってEGRクーラー58等が閉塞するおそれがある。そのため、ポスト噴射された燃料は燃焼室6内で燃焼させるのが好ましい。しかしながら、エンジン負荷が高い、あるいは、エンジン負荷は比較的低いがエンジン回転数が高い領域では、燃焼室6内の温度が高いこと、あるいは、1クランク角度あたりの時間が短いことに伴って、燃焼室6内のガスが排気されるまでの間にポスト噴射された燃料と空気とを十分に混合させることが難しく、ポスト噴射された燃料を燃焼室6内で十分に燃焼させることができないおそれがある。また、前記混合が不十分でることによって煤が増大するおそれがある。従って、このような領域では基本的にDeNOx制御を停止する。   In addition, as described above, post injection is performed in the DeNOx control. If the post-injected fuel is discharged without being burned into the exhaust passage 40, the EGR cooler 58 and the like are caused by deposits caused by the unburned fuel. There is a risk of blockage. Therefore, the post-injected fuel is preferably burned in the combustion chamber 6. However, in a region where the engine load is high or the engine load is relatively low but the engine speed is high, combustion occurs due to the high temperature in the combustion chamber 6 or the short time per crank angle. It is difficult to sufficiently mix the post-injected fuel and air until the gas in the chamber 6 is exhausted, and the post-injected fuel may not be sufficiently combusted in the combustion chamber 6. is there. Moreover, there exists a possibility that wrinkles may increase when the said mixing is inadequate. Accordingly, the DeNOx control is basically stopped in such a region.

ただし、エンジン負荷が非常に高い第2領域R2では、メイン噴射の噴射量(以下、適宜、メイン噴射量という)が多いことに伴って通常運転時であっても混合気の空燃比が小さく抑えられる。そのため、第2領域R2では、吸蔵NOxを還元するために必要なポスト噴射の噴射量(以下、適宜、ポスト噴射量という)を小さくして、未燃燃料が排気通路40に排出されることによる前記影響を小さく抑えることができる。   However, in the second region R2 where the engine load is very high, the air-fuel ratio of the air-fuel mixture is kept small even during normal operation due to the large injection amount of the main injection (hereinafter referred to as the main injection amount as appropriate). It is done. Therefore, in the second region R2, the amount of post-injection necessary for reducing the stored NOx (hereinafter referred to as post-injection amount as appropriate) is reduced, and unburned fuel is discharged into the exhaust passage 40. The influence can be suppressed small.

そこで、本実施形態では、エンジン負荷およびエンジン回転数のいずれもが低すぎず且つ高すぎない第1領域R1では、ポスト噴射された燃料が燃焼室6内で燃焼するアクティブDeNOx制御を実施し、第2領域R2では、ポスト噴射された燃料を燃焼室6内で燃焼させないパッシブDeNOx制御を実施する。なお、第2領域R2は、排気の温度が十分に高く酸化触媒42が十分に活性化する領域である。そのため、排気通路40に排出された未燃燃料はこの酸化触媒42によって浄化される。また、このように、中回転中負荷域でのみDeNOx制御を許可することで、DeNOx制御実施時のポスト噴射の燃焼安定性を確保して排気性能の悪化を抑制することができる。   Therefore, in the present embodiment, in the first region R1 in which neither the engine load nor the engine speed is neither too low nor too high, active DeNOx control is performed in which the post-injected fuel burns in the combustion chamber 6, In the second region R2, passive DeNOx control is performed in which the post-injected fuel is not burned in the combustion chamber 6. The second region R2 is a region where the exhaust temperature is sufficiently high and the oxidation catalyst 42 is sufficiently activated. Therefore, the unburned fuel discharged to the exhaust passage 40 is purified by the oxidation catalyst 42. In addition, by permitting DeNOx control only in the middle-rotation middle load region in this way, it is possible to ensure the combustion stability of post-injection during the execution of DeNOx control and suppress the deterioration of exhaust performance.

アクティブDeNOx制御およびパッシブDeNOx制御は、それぞれ、SCR触媒46の温度が所定の温度未満、NOx触媒41の温度が所定の温度以上、かつ、NOx触媒41が吸蔵しているNOx量であるNOx吸蔵量が所定量以上であると、実施が許可される。ただし、前記のように、アクティブDeNOx制御は、エンジン本体1が第1領域R1で運転されているときにのみ実施され、パッシブDeNOx制御は、エンジン本体1が第2領域R2で運転されているときにのみ実施される。また、本実施形態では、実施が許可されるNOx吸蔵量の最小値は、パッシブDeNOx制御の方がアクティブDeNOx制御よりも小さい値に設定されている。   In the active DeNOx control and the passive DeNOx control, the NOx occlusion amount, which is the NOx occlusion amount that the NOx catalyst 41 occludes, and the temperature of the SCR catalyst 46 is lower than the predetermined temperature, the temperature of the NOx catalyst 41 is equal to or higher than the predetermined temperature, respectively. If the value is equal to or greater than a predetermined amount, the implementation is permitted. However, as described above, the active DeNOx control is performed only when the engine body 1 is operated in the first region R1, and the passive DeNOx control is performed when the engine body 1 is operated in the second region R2. Will be implemented only. Further, in the present embodiment, the minimum value of the NOx occlusion amount that is permitted to be implemented is set to a value that is smaller in the passive DeNOx control than in the active DeNOx control.

本実施形態では、アクティブDeNOx制御は、後述するように、エンジン本体1が第1領域R1で運転されている状態でDPF再生制御が開始されるときにこのDPF再生制御の実施前に行われるが、これに代えて、DPF再生制御の実施時であるかどうかによらず、NOx吸蔵量が非常に高い場合にはアクティブDeNOx制御を行うようにしてもよい。ただし、この場合であっても、エンジン本体1が第1領域R1で運転されているときにアクティブDeNOx制御を実施する。また、前記場合においても、SCR触媒46の温度がSCR触媒46にてNOxを浄化可能な温度にまで高められているときには、SCR触媒46によってNOxを浄化できるためアクティブDeNOx制御は実施しない。また、前記場合においても、NOx触媒41の温度が吸蔵NOxを還元可能な温度まで高められていないときは、アクティブDeNOx制御を実施しない。   In the present embodiment, as will be described later, the active DeNOx control is performed before the DPF regeneration control is performed when the DPF regeneration control is started in a state where the engine body 1 is operated in the first region R1. Alternatively, the active DeNOx control may be performed when the NOx occlusion amount is very high regardless of whether or not the DPF regeneration control is being performed. However, even in this case, active DeNOx control is performed when the engine body 1 is operated in the first region R1. Also in the above case, when the temperature of the SCR catalyst 46 is raised to a temperature at which the SCR catalyst 46 can purify NOx, the SCR catalyst 46 can purify NOx, so that the active DeNOx control is not performed. Also in the above case, when the temperature of the NOx catalyst 41 is not increased to a temperature at which the stored NOx can be reduced, the active DeNOx control is not performed.

なお、NOx触媒41の温度は、例えば、NOx触媒41の直上流側に設けられた温度センサによって検出された温度に基づいて推定される。SCR触媒46の温度は、例えば、SCR触媒46の直上流側に設けられた温度センサによって検出された温度に基づいて推定される。NOx吸蔵量は、例えば、エンジン本体1の運転状態や排気の流量および温度等に基づいて推定された排気中のNOx量を積算していくことで推定される。   Note that the temperature of the NOx catalyst 41 is estimated based on, for example, a temperature detected by a temperature sensor provided immediately upstream of the NOx catalyst 41. The temperature of the SCR catalyst 46 is estimated based on, for example, a temperature detected by a temperature sensor provided immediately upstream of the SCR catalyst 46. The NOx occlusion amount is estimated by, for example, integrating the NOx amount in the exhaust estimated based on the operating state of the engine body 1, the exhaust flow rate, the temperature, and the like.

(2−3)DPF再生制御
本実施形態では、PMフィルタ再生制御部203は、DPF44に捕集されたPMを除去してDPF44の浄化能力を再生するための制御であるDPF再生制御(PMフィルタ再生制御)を実施する。
(2-3) DPF regeneration control In this embodiment, the PM filter regeneration control unit 203 removes the PM collected by the DPF 44 and regenerates the purification ability of the DPF 44. (Playback control) is performed.

DPF再生制御は、酸化触媒42が所定の温度となって酸化反応が可能となり、且つ、DPF44に捕集されているPMの量(以下、単に、PM堆積量という)が予め設定された再生開始堆積量以上になると開始される。PM堆積量は、例えば、DPF44の上流側および下流側に設けられた圧力センサから算出されるDPF44の前後差圧(DPF44よりも上流側の圧力と下流側の圧力との差)等から算出される。また、再生開始堆積量は、DPF44が捕集可能なPM堆積量の最大量よりも所定量小さい値に設定されている。   In the DPF regeneration control, the oxidation catalyst 42 becomes a predetermined temperature so that the oxidation reaction is possible, and the regeneration amount in which the amount of PM trapped in the DPF 44 (hereinafter simply referred to as PM deposition amount) is set in advance is started. It starts when the accumulated amount is exceeded. The amount of accumulated PM is calculated from, for example, the differential pressure across the DPF 44 (difference between the pressure upstream and downstream of the DPF 44) calculated from pressure sensors provided on the upstream and downstream sides of the DPF 44. The Further, the regeneration start accumulation amount is set to a value that is a predetermined amount smaller than the maximum amount of PM accumulation that the DPF 44 can collect.

前記のように、DPF44に捕集されているPMは、高温下で燃焼除去することができる。これに対して、DPF44の上流側に設けられた第1触媒43に含まれる酸化触媒42においてHC等つまり未燃燃料を酸化反応させれば、DPF44に流入する排気の温度ひいてはDPF44の温度を高めることができる。さらにまた、DPF44の酸化触媒層44dにおいても未燃燃料を酸化反応させることにより、DPF44の温度を高めることができる。   As described above, the PM collected in the DPF 44 can be burned and removed at a high temperature. In contrast, if the oxidation catalyst 42 included in the first catalyst 43 provided on the upstream side of the DPF 44 is subjected to an oxidation reaction of HC or the like, that is, unburned fuel, the temperature of the exhaust gas flowing into the DPF 44 and thus the temperature of the DPF 44 is increased. be able to. Furthermore, the temperature of the DPF 44 can be increased by oxidizing the unburned fuel in the oxidation catalyst layer 44 d of the DPF 44.

そこで、本実施形態では、DPF再生制御として、混合気の空燃比を理論空燃比よりもリーンとしつつポスト噴射を行って、酸化触媒42に空気と未燃燃料とを流入させてこれらを酸化触媒42で酸化させる制御を実施する。具体的には、DPF再生制御では、ポスト噴射された燃料が燃焼室6内で燃焼しないタイミング(膨張行程の後半であって、例えば、圧縮上死点後100°CA〜120°CA)でポスト噴射を実施する。例えば、DPF再生制御では、混合気および排気の空気過剰率λがλ=1.2〜1.4程度とされる。   Therefore, in the present embodiment, as DPF regeneration control, post-injection is performed while the air-fuel ratio of the air-fuel mixture is leaner than the stoichiometric air-fuel ratio, and air and unburned fuel are allowed to flow into the oxidation catalyst 42 to convert them into the oxidation catalyst. Control to oxidize at 42 is performed. Specifically, in the DPF regeneration control, the post-injected fuel is not burned in the combustion chamber 6 (the second half of the expansion stroke, for example, 100 ° CA to 120 ° CA after compression top dead center). Inject. For example, in the DPF regeneration control, the excess air ratio λ of the air-fuel mixture and the exhaust is set to about λ = 1.2 to 1.4.

また、DPF再生制御では、未燃燃料がEGR通路56およびEGRクーラー58に流入してこれらが閉塞されるのを回避するべく第1EGRバルブ57および第2EGRバルブ60を全閉とする。また、DPF再生制御では、ポスト噴射を燃焼させる必要がないためグロープラグ11への通電は停止する。   In the DPF regeneration control, the first EGR valve 57 and the second EGR valve 60 are fully closed in order to prevent unburned fuel from flowing into the EGR passage 56 and the EGR cooler 58 and closing them. Further, in the DPF regeneration control, energization to the glow plug 11 is stopped because there is no need to burn the post injection.

(2−4)DeSOx制御
NOx触媒再生制御部202により実施される、NOx触媒41に吸蔵されたSOx(硫黄成分、以下、適宜、吸蔵SOxという)を還元して除去するための制御であるDeSOx制御(NOx触媒再生制御)について次に説明する。
(2-4) DeSOx Control DeSOx, which is performed by the NOx catalyst regeneration control unit 202, is control for reducing and removing SOx occluded in the NOx catalyst 41 (a sulfur component, hereinafter referred to as occluded SOx as appropriate). The control (NOx catalyst regeneration control) will be described next.

前記のように、NOx触媒41では、排気の空燃比が理論空燃比近傍である状態(λ≒1)あるいは理論空燃比よりも小さいリッチな状態(λ<1)において、吸蔵SOxが還元される。これに伴い、DeSOx制御でも、混合気の空燃比を理論空燃比近傍である状態(λ≒1)あるいは理論空燃比よりも小さいリッチな状態(λ<1)にするべく、メイン噴射に加えてポスト噴射を実施する。   As described above, in the NOx catalyst 41, the stored SOx is reduced in a state where the air-fuel ratio of the exhaust is in the vicinity of the stoichiometric air-fuel ratio (λ≈1) or in a rich state where the air-fuel ratio is smaller than the stoichiometric air-fuel ratio (λ <1). . Accordingly, in DeSOx control, in addition to the main injection, the air-fuel ratio of the air-fuel mixture is in the vicinity of the stoichiometric air-fuel ratio (λ≈1) or in a rich state smaller than the stoichiometric air-fuel ratio (λ <1). Perform post-injection.

ただし、SOxはNOxに比べて結合力が強いため、吸蔵SOxを還元するためには、DeNOx制御時よりもNOx触媒41の温度ひいてはこれを通過する排気の温度をより高温(600℃程度)にする必要がある。これに対して、前記のように、酸化触媒42において未燃燃料を酸化反応させれば第1触媒43ひいてはNOx触媒41を通過する排気の温度を高めることができる。   However, since SOx has a stronger binding force than NOx, in order to reduce the stored SOx, the temperature of the NOx catalyst 41 and thus the temperature of the exhaust gas passing through the NOx catalyst 41 are made higher than that at the time of DeNOx control (about 600 ° C.). There is a need to. On the other hand, as described above, if the unburned fuel is oxidized in the oxidation catalyst 42, the temperature of the exhaust gas passing through the first catalyst 43 and thus the NOx catalyst 41 can be increased.

そこで、本実施形態では、DeSOx制御として、DeNOx制御と同様にポスト噴射を行って排気の空燃比を通常運転時よりもリッチにして理論空燃比近傍あるいはこれよりも小さくする(以下、適宜、単にリッチにするという)リッチステップと、排気の空燃比を理論空燃比よりもリーンとしつつ(以下、適宜、単にリーンにするという)ポスト噴射を行って酸化触媒42に空気と未燃の燃料とを供給してこれらを酸化触媒42で酸化させるリーンステップとを含むリッチリーンサイクルを複数回実施する。   Therefore, in the present embodiment, post-injection is performed as DeSOx control in the same manner as DeNOx control so that the air-fuel ratio of the exhaust gas is made richer than that in normal operation and is made close to or smaller than the theoretical air-fuel ratio (hereinafter simply referred to as appropriate). A rich step (to make it rich), and post-injection while making the air-fuel ratio of the exhaust gas leaner than the stoichiometric air-fuel ratio (hereinafter simply referred to as “lean” as appropriate) A rich lean cycle including a lean step of supplying and oxidizing these with the oxidation catalyst 42 is performed a plurality of times.

リッチステップでは、アクティブDeNOx制御と同様に、ポスト噴射された燃料が燃焼室6内で燃焼するタイミング(膨張行程の前半であって、例えば、圧縮上死点後30〜70°CA)でポスト噴射を実施する。   In the rich step, as with the active DeNOx control, the post-injected fuel is combusted in the combustion chamber 6 (the first half of the expansion stroke, for example, 30 to 70 ° CA after compression top dead center). To implement.

そして、リッチステップでは、混合気および排気の空気過剰率λを1.0程度として混合気および排気の空燃比を理論空燃比近傍にする。具体的には、リッチステップにおける空気過剰率λは、最初のリッチリーンサイクルにおいて最も小さい初期空気過剰率λ0に設定されており、後続するリッチリーンサイクルにおいて空気過剰率λが段階的に増大した後、最終的に最終空気過剰率λEに一定に維持される。例えば、初期空気過剰率λ0が0.93、最終空気過剰率λEが0.96に設定され、この間に2回のリッチリーンサイクルが設定されている場合に、この間の空気過剰率λ1,2は、初期空気過剰率λ0から最終空気過剰率λEへ向かって段階的に増大するように、λ1が0.94に設定され、λ2が0.95に設定されている。   In the rich step, the excess air ratio λ of the mixture and exhaust is set to about 1.0, and the air-fuel ratio of the mixture and exhaust is made close to the theoretical air-fuel ratio. Specifically, the excess air ratio λ in the rich step is set to the smallest initial excess air ratio λ0 in the first rich lean cycle, and after the excess air ratio λ increases stepwise in the subsequent rich lean cycle. Finally, the final excess air ratio λE is kept constant. For example, when the initial excess air ratio λ0 is set to 0.93 and the final excess air ratio λE is set to 0.96, and two rich lean cycles are set between them, Λ1 is set to 0.94 and λ2 is set to 0.95 so as to increase stepwise from the initial excess air ratio λ0 to the final excess air ratio λE.

また、リッチステップでは、アクティブDeNOx制御と同様に、ポスト噴射された燃料の燃焼に伴う煤を抑制しつつこの燃焼の安定性を高めるべく、第1EGRバルブ57を全閉にする一方、第2EGRバルブ60を開弁させ且つ第2EGRバルブ60の開度を通常運転時よりも小さくする。また、PCM200(NOx触媒再生制御部202)は、混合気の空燃比が低くなるように、スロットルバルブ23、排気側バイパスバルブ49およびウエストゲートバルブ54を、それぞれ、吸入空気量が通常運転時よりも減少するように制御する。   Further, in the rich step, as in the active DeNOx control, the first EGR valve 57 is fully closed while the second EGR valve 57 is fully closed in order to increase the stability of combustion while suppressing soot associated with the combustion of post-injected fuel. 60 is opened and the opening of the second EGR valve 60 is made smaller than that during normal operation. In addition, the PCM 200 (NOx catalyst regeneration control unit 202) sets the intake air amount of the throttle valve 23, the exhaust side bypass valve 49, and the waste gate valve 54 so that the air-fuel ratio of the air-fuel mixture becomes lower than that during normal operation. Also control to decrease.

一方、リーンステップでは、ポスト噴射された燃料が燃焼室6内で燃焼しないタイミング(膨張行程の後半であって、例えば、圧縮上死点後100°CA〜120°CA)でポスト噴射を実施する。そして、混合気および排気の空気過剰率λを1以上として混合気および排気の空燃比を理論空燃比よりもリーンにする。例えば、リーンステップでは、混合気および排気の空気過剰率λをλ=1.2〜1.4程度とする。また、リーンステップでは、未燃燃料に起因するデポジットによってEGRクーラー等が閉塞するのを防止するべく、第1EGRバルブ57および第2EGRバルブ60を全閉にする。   On the other hand, in the lean step, post-injection is performed at a timing at which post-injected fuel does not burn in the combustion chamber 6 (second half of the expansion stroke, for example, 100 ° CA to 120 ° CA after compression top dead center). . Then, the air / fuel ratio of the mixture and exhaust is set to 1 or more so that the air / fuel ratio of the mixture and exhaust becomes leaner than the stoichiometric air / fuel ratio. For example, in the lean step, the excess air ratio λ of the air-fuel mixture and exhaust is set to about λ = 1.2 to 1.4. In the lean step, the first EGR valve 57 and the second EGR valve 60 are fully closed in order to prevent the EGR cooler and the like from being blocked by deposits caused by unburned fuel.

このようにDeSOx制御では燃焼室6内の混合気の空燃比をリーンにする必要がある。そのため、エンジン負荷が高く混合気の空燃比を十分にリーンにできない第2領域R2ではDeSOx制御を実施するのは難しい。一方、前記のように、ポスト噴射を燃焼させる制御は第1領域R1で行われるのが好ましい。そこで、本実施形態では、第1領域(特定運転領域)R1でエンジン本体1が運転されているときにのみDeSOx制御を実施する。   Thus, in DeSOx control, it is necessary to make the air-fuel ratio of the air-fuel mixture in the combustion chamber 6 lean. Therefore, it is difficult to perform DeSOx control in the second region R2 where the engine load is high and the air-fuel ratio of the air-fuel mixture cannot be made sufficiently lean. On the other hand, as described above, the control for burning the post-injection is preferably performed in the first region R1. Therefore, in the present embodiment, DeSOx control is performed only when the engine body 1 is operating in the first region (specific operation region) R1.

なお、PCM200は、アクセル開度等から算出される要求トルクに対応する燃料噴射量をメイン噴射量として算出する。次に、PCM200は、第1触媒43(NOx触媒41)の上流側に設けられた排気O2センサSN4によって検出された排気の酸素濃度と、エアフローセンサSN2によって検出された吸入空気量と、燃焼室6に導入されるEGRガスの量とに基づいて燃焼室6内の酸素濃度(燃焼前の酸素濃度)を推定する。そして、推定した燃焼室6内の酸素濃度つまり吸気の酸素濃度に基づいてポスト噴射量の基本的な値を算出する。なお、EGRガスの量はエンジンの運転状態やEGRバルブ57、60の前後差圧等から推定される。次に、PCM200は、この基本的なポスト噴射量を、排気O2センサSN4によって検出された排気の酸素濃度とメイン噴射の量等に基づいてフィードバック補正する。つまり、PCM200は、検出された排気の酸素濃度に対応する排気の空燃比が目標の空燃比となるようにポスト噴射量をフィードバック制御し、これにより排気の空燃比を適切な値にする。このように、本実施形態では、ポスト噴射の噴射量を変更することで排気ガスの空気過剰率λを変更する。   Note that the PCM 200 calculates the fuel injection amount corresponding to the required torque calculated from the accelerator opening and the like as the main injection amount. Next, the PCM 200 detects the oxygen concentration of the exhaust detected by the exhaust O2 sensor SN4 provided on the upstream side of the first catalyst 43 (NOx catalyst 41), the intake air amount detected by the airflow sensor SN2, the combustion chamber The oxygen concentration in the combustion chamber 6 (the oxygen concentration before combustion) is estimated based on the amount of EGR gas introduced into the combustion chamber 6. Then, a basic value of the post-injection amount is calculated based on the estimated oxygen concentration in the combustion chamber 6, that is, the oxygen concentration of the intake air. The amount of EGR gas is estimated from the operating state of the engine, the differential pressure across the EGR valves 57 and 60, and the like. Next, the PCM 200 performs feedback correction on the basic post-injection amount based on the oxygen concentration of the exhaust detected by the exhaust O2 sensor SN4, the amount of main injection, and the like. That is, the PCM 200 feedback-controls the post-injection amount so that the air-fuel ratio of the exhaust corresponding to the detected oxygen concentration of the exhaust becomes the target air-fuel ratio, thereby setting the air-fuel ratio of the exhaust to an appropriate value. Thus, in this embodiment, the excess air ratio λ of the exhaust gas is changed by changing the injection amount of the post injection.

ここで、前記のように、燃焼室6内の混合気の空燃比を理論空燃比よりもリーンとし且つポスト噴射をその燃料を燃焼させることなく実施すれば、PMを燃焼除去することができるため、リーンステップの実施時にPMの燃焼除去が可能となる。そして、本実施形態では、リーンステップの実施時にPMの燃焼除去が可能となるように、リーンステップにおける混合気の空燃比を、前記のように、DPF再生制御時の空燃比と同じ値となるように(空気過剰率λがλ=1.2〜1.4となるように)している。   Here, as described above, if the air-fuel ratio of the air-fuel mixture in the combustion chamber 6 is leaner than the stoichiometric air-fuel ratio and the post-injection is performed without burning the fuel, PM can be removed by combustion. The PM can be removed by combustion during the lean step. In this embodiment, the air-fuel ratio of the air-fuel mixture in the lean step is the same value as the air-fuel ratio in the DPF regeneration control as described above so that PM can be removed by combustion when the lean step is performed. (Excess air ratio λ is set to λ = 1.2 to 1.4).

(2−5)尿素水の噴射制御
次に、尿素インジェクタ45の噴射制御について説明する。以下では、適宜、尿素インジェクタ45から噴射される尿素の量を、尿素噴射量という。前記のように、尿素インジェクタ45の噴射制御は、PCM200からの情報を得ながらDCU300が実施する。
(2-5) Urea Water Injection Control Next, the injection control of the urea injector 45 will be described. Hereinafter, the amount of urea injected from the urea injector 45 is referred to as a urea injection amount as appropriate. As described above, the injection control of the urea injector 45 is performed by the DCU 300 while obtaining information from the PCM 200.

NOx還元持、すなわちDeNOx制御持若しくはDeSOx制御持には、NOx触媒41から、NHが放出されてSCR触媒46に導入される。そのため、DeNOx制御若しくはDeSOx制御の実施時の尿素噴射量を、これらの制御を実施していないときの尿素噴射量と同じ量にすると、SCR触媒46に供給されるNHの量が過大となり、SCR触媒46よりも下流側にNHがすり抜けるおそれがある。そこで、DeNOx制御時及びDeSOx制御持はこれらの制御を実施していない時よりも尿素噴射量を少なくする。 For NOx reduction, that is, DeNOx control or DeSOx control, NH 3 is released from the NOx catalyst 41 and introduced into the SCR catalyst 46. Therefore, if the urea injection amount at the time of performing DeNOx control or DeSOx control is set to the same amount as the urea injection amount when these controls are not performed, the amount of NH 3 supplied to the SCR catalyst 46 becomes excessive, There is a possibility that NH 3 slips downstream from the SCR catalyst 46. Therefore, when the DeNOx control is performed and when the DeSOx control is performed, the urea injection amount is made smaller than when these controls are not performed.

しかしながら、DeNOx制御時及びDeSOx制御持の尿素噴射量を、運転条件によらず単純にこれらの制御を実施していない時よりも少ない所定の量に制御しただけでは、SCR触媒46に供給されるNHの量が、過大になるあるいは不足して、SCR触媒46よりも下流側に多くのNHがすり抜け若しくはSCR触媒46において適切にNOxが浄化されないおそれがあることが分かった。したがって、本実施形態では、DCU300によって、DeNOx制御持及びDeSOx制御持にNOx触媒41から放出されるNH量が推定され、推定されたNH量が多いほど尿素噴射量が少なくなるように尿素インジェクタ45が制御されている。 However, the urea injection amount with DeNOx control and with DeSOx control is supplied to the SCR catalyst 46 only by controlling the urea injection amount to a predetermined amount smaller than when not performing these controls regardless of the operating conditions. It has been found that the amount of NH 3 becomes excessive or insufficient, and a lot of NH 3 passes through the downstream side of the SCR catalyst 46, or NOx may not be properly purified in the SCR catalyst 46. Therefore, in this embodiment, the amount of NH 3 released from the NOx catalyst 41 is estimated by the DCU 300 with DeNOx control and DeSOx control, and the urea injection amount decreases as the estimated NH 3 amount increases. The injector 45 is controlled.

以下に、NOx触媒41から放出されるNH量の推定手順について説明する。 Hereinafter, an estimation procedure of the amount of NH 3 released from the NOx catalyst 41 will be described.

本実施形態では、DCU300に、機能的に、第1推定部301と、第2推定部302とが設けられている。   In the present embodiment, the DCU 300 is functionally provided with a first estimation unit 301 and a second estimation unit 302.

第1推定部301は、DeNOx制御時及びDeSOx制御持において、NOx触媒41に吸蔵されていたNOxと、還元剤であるH等が結合することで生成されたNH(以下、適宜、第1NHという)の量を推定する。 When the DeNOx control and the DeSOx control are performed, the first estimation unit 301 generates NH 3 (hereinafter referred to as a first NH as appropriate) generated by combining NOx occluded in the NOx catalyst 41 with H as a reducing agent. 3 )).

第2推定部302は、DeNOx制御時及びDeSOx制御時に、エンジン本体1で生成されてNOx触媒41に流入したNOx(以下、適宜、RawNOx)と還元剤であるH等がNOx触媒41にて結合することで生成されたNH(以下、適宜、第2NHという)の量を推定する。 The second estimating unit 302 combines NOx (hereinafter, appropriately referred to as RawNOx) generated by the engine body 1 and flowing into the NOx catalyst 41 with H as a reducing agent at the NOx catalyst 41 during DeNOx control and DeSOx control. NH 3 generated by (hereinafter referred to as the called 2NH 3) to estimate the amount of.

第1推定部301は、まず、NOx触媒41の現在のNOx吸蔵量を推定する。次に、第1推定部301は、このNOx吸蔵量の推定値に、第1温度係数β1、第1流量係数β2、第1A/F係数β3、および、第1熱劣化係数β4をそれぞれ掛けることで、第1NHの量を算出する。 The first estimation unit 301 first estimates the current NOx occlusion amount of the NOx catalyst 41. Next, the first estimation unit 301 multiplies the estimated value of the NOx occlusion amount by the first temperature coefficient β1, the first flow coefficient β2, the first A / F coefficient β3, and the first thermal deterioration coefficient β4. Then, the amount of the first NH 3 is calculated.

第1温度係数β1は、NOx触媒41の温度に応じて設定される。具体的には、温度係数β1は、NOx触媒41の温度が高いほど小さい値とされる。つまり、NOx触媒41の温度が高い方がNOx触媒41に吸蔵されているNOxがHNに変換される反応が促進されることがわかっており、NOx触媒41の温度が高い方が第1NH量が大きく算出されるように、第1温度係数β1が設定されている。 The first temperature coefficient β1 is set according to the temperature of the NOx catalyst 41. Specifically, the temperature coefficient β1 is set to a smaller value as the temperature of the NOx catalyst 41 is higher. That has been found that the reaction of NOx which towards the temperature of the NOx catalyst 41 is high is stored in the NOx catalyst 41 is converted into HN 3 is promoted, towards the temperature of the NOx catalyst 41 is high the 1N H 3 The first temperature coefficient β1 is set so that the amount is calculated to be large.

第1流量係数β2は、排気流量に応じて設定される。具体的には、第1流量係数β2は、排気流量が多いほど大きい値とされる。つまり、排気流量が多いほどNOx触媒41に流入する還元材の量が多くなりNOx触媒41から放出されるHN量は増大するので、これに対応して、排気流量が多い方が第1NH量が大きく算出されるように第1流量係数β2が設定されている。 The first flow coefficient β2 is set according to the exhaust flow rate. Specifically, the first flow coefficient β2 is increased as the exhaust flow rate increases. That is, as the exhaust gas flow rate increases, the amount of reducing material flowing into the NOx catalyst 41 increases and the amount of HN 3 released from the NOx catalyst 41 increases. Accordingly, the higher the exhaust gas flow rate, the higher the first NH 3. The first flow coefficient β2 is set so that the amount is calculated to be large.

第1A/F係数β3は、排気ガスの空燃比(A/F)に応じて設定される。具体的には、A/F係数β3は、排気ガスの空燃比が小さい(リッチ)ほど大きい値とされる。つまり、排気ガスの空燃比がリッチであるほどNOx触媒41に流入する還元材の量が多くなりNOx触媒41から放出されるNH量は増大するので、これに対応して、排気流量が多い方が第1NH量が大きく算出されるように第1A/F係数β3が設定されている。 The first A / F coefficient β3 is set according to the air-fuel ratio (A / F) of the exhaust gas. Specifically, the A / F coefficient β3 is set to a larger value as the air-fuel ratio of the exhaust gas is smaller (rich). That is, as the air-fuel ratio of the exhaust gas is richer, the amount of reducing material flowing into the NOx catalyst 41 increases and the amount of NH 3 released from the NOx catalyst 41 increases. The first A / F coefficient β3 is set so that the first NH 3 amount is calculated to be larger.

第1熱劣化係数β4は、NOx触媒41の劣化度合いに応じて設定される係数である。PCM200は、車両の走行時間やDeNOx制御の実施回数等に基づいてNOx触媒41の劣化度合いを推定しており、熱劣化係数β4は、この推定された劣化度合いが高いほど(劣化が進んでいるほど)、大きい値とされる。つまり、NOx触媒41の劣化度合いが高い方がNOx触媒41に吸蔵されているNOxがNHに変換される反応が促進されることがわかっており、これに対応して劣化度合いが高い方が第1NH量が大きく算出されるように、熱劣化係数β4が設定されている。 The first thermal deterioration coefficient β4 is a coefficient set according to the degree of deterioration of the NOx catalyst 41. The PCM 200 estimates the degree of deterioration of the NOx catalyst 41 based on the running time of the vehicle, the number of executions of DeNOx control, and the like, and the thermal deterioration coefficient β4 increases as the estimated degree of deterioration increases (deterioration progresses). And so on). That is, it is known that the higher the degree of deterioration of the NOx catalyst 41, the more the reaction of converting NOx occluded in the NOx catalyst 41 into NH 3 is promoted. The thermal deterioration coefficient β4 is set so that the first NH 3 amount is greatly calculated.

第2推定部302は、まず、エンジン本体1から排出されるRawNOxの量(流量)を推定する。本実施形態では、RawNOxの流量は、排気流量と混合気の空気過剰率λ等から推定される。次に、第2推定部302は、この吸蔵NOx量の推定値に、第2流量係数β22および第2A/F係数β23をそれぞれ掛けることで、第2NHの量を算出する。 The second estimation unit 302 first estimates the amount (flow rate) of RawNOx discharged from the engine body 1. In the present embodiment, the RawNOx flow rate is estimated from the exhaust flow rate, the excess air ratio λ of the air-fuel mixture, and the like. Next, the second estimation unit 302 calculates the amount of second NH 3 by multiplying the estimated value of the occluded NOx amount by the second flow coefficient β22 and the second A / F coefficient β23, respectively.

第2流量係数β22は、排気流量に応じて設定される。具体的には、第2流量係数β22は、第1流量係数β2と同様に、排気流量が多いほど大きい値とされる。ただし、NOx触媒41に吸蔵されていたNOxと異なり、RawNOxに対してNOx触媒41の温度が与える影響はNOx触媒41の温度が所定温度以上になると同等となり、第2流量係数β22はNOx触媒41の温度が所定温度以上では一定値とされる。   The second flow coefficient β22 is set according to the exhaust flow rate. Specifically, the second flow coefficient β22 is set to a larger value as the exhaust flow rate is larger, like the first flow coefficient β2. However, unlike NOx stored in the NOx catalyst 41, the influence of the temperature of the NOx catalyst 41 on RawNOx is equivalent when the temperature of the NOx catalyst 41 becomes equal to or higher than the predetermined temperature, and the second flow coefficient β22 is equal to the NOx catalyst 41. When the temperature is equal to or higher than a predetermined temperature, it is a constant value.

第2A/F係数β23は、排気ガスの空燃比(A/F)に応じて設定される。具体的には、第2A/F係数β23は、第2A/F係数β3と同様に、排気ガスの空燃比が小さい(リッチ)ほど大きい値とされる。ただし、NOx触媒41に吸蔵されていたNOxと異なり、RawNOxに対して排気ガスの空燃比が与える影響は排気の空燃比が所定値以下になると同等となり、第2A/F係数β23は排気ガスの空燃比が所定値以上では一定値とされる。   The second A / F coefficient β23 is set according to the air-fuel ratio (A / F) of the exhaust gas. Specifically, the second A / F coefficient β23 is set to a larger value as the air-fuel ratio of the exhaust gas is smaller (rich), like the second A / F coefficient β3. However, unlike the NOx stored in the NOx catalyst 41, the influence of the air-fuel ratio of the exhaust gas on the RawNOx is equivalent when the air-fuel ratio of the exhaust gas becomes a predetermined value or less, and the second A / F coefficient β23 is When the air-fuel ratio is greater than or equal to a predetermined value, it is a constant value.

このようにして、本実施形態では、第1NHの量と第2NHの量とが推定される。
そして、DCU300は、これら第1NHの量と第2NHの量とを合わせた量を、D
eNOx制御時及びDeSOx制御時に、NOx触媒41から放出されるNHとして算出する。
In this manner, in the present embodiment, the amount and the amount of the 2NH 3 of the 1N H 3 is estimated.
Then, DCU300 is the combined amount of the amount and quantity of the 2NH 3 of the 1N H 3, D
It is calculated as NH 3 released from the NOx catalyst 41 during eNOx control and DeSOx control.

DCU300は、DeNOx制御時およびDeSOx制御持においてNOx触媒41から放出されるNH量を推定し、これを、これらの制御が実施されていないときの尿素噴射量から減算し、その値を最終的な尿素噴射量として尿素インジェクタ45を制御する。 The DCU 300 estimates the amount of NH 3 released from the NOx catalyst 41 during DeNOx control and with DeSOx control, and subtracts this from the urea injection amount when these controls are not performed, and finally calculates the value. The urea injector 45 is controlled as a proper urea injection amount.

(2−6)制御の流れ
次に、アクティブDeNOx制御、DPF再生制御およびDeSOx制御の流れについて図6のフローチャートを用いて説明する。
(2-6) Flow of Control Next, the flow of active DeNOx control, DPF regeneration control, and DeSOx control will be described using the flowchart of FIG.

ステップS1では、PCM200は、DPF再生許可フラグが1であるか否かを判定する。この判定がNOであれば、ステップS20に進み、PCM200は通常制御を実施した後、処理を終了する(ステップS1に戻る)。一方、ステップS1の判定がYESであれば、ステップS2に進む。DPF再生許可フラグは、DPF44の再生が許可されると1となり、DPFの再生を禁止するときに0となるフラグである。本実施形態では、DPF再生許可フラグは、DPF44のPM堆積量が前記再生開始堆積量以上になると1とされ、PM堆積量が再生終了堆積量以下になると0とされる。再生終了堆積量は、もはやDPF44からPMを除去することが必要ない程度にまで低下したPM堆積量であり、例えば、0付近の値に設定されている。   In step S1, the PCM 200 determines whether or not the DPF regeneration permission flag is 1. If this judgment is NO, it will progress to Step S20, PCM200 will complete processing after implementing normal control (it returns to Step S1). On the other hand, if determination of step S1 is YES, it will progress to step S2. The DPF regeneration permission flag is a flag that becomes 1 when the regeneration of the DPF 44 is permitted and becomes 0 when the regeneration of the DPF is prohibited. In the present embodiment, the DPF regeneration permission flag is set to 1 when the PM deposition amount of the DPF 44 is equal to or greater than the regeneration start deposition amount, and is set to 0 when the PM deposition amount is equal to or less than the regeneration end deposition amount. The regeneration-completed accumulation amount is a PM accumulation amount that has been reduced to such an extent that it is no longer necessary to remove PM from the DPF 44, and is set to a value near 0, for example.

ステップS2にて、PCM200は、エンジン本体1が第1領域R1で運転されているか否かを判定する。この判定がNOであれば、ステップS20に進み、PCM200は通常制御を実施した後、処理を終了する(ステップS1に戻る)。一方、ステップS2の判定がYESであれば、ステップS3に進む。   In step S2, PCM 200 determines whether engine body 1 is operating in first region R1. If this judgment is NO, it will progress to Step S20, PCM200 will complete processing after implementing normal control (it returns to Step S1). On the other hand, if determination of step S2 is YES, it will progress to step S3.

ステップS3では、PCM200(NOx触媒リッチパージ制御部201)は、アクティブDeNOx制御を実施する。   In step S3, the PCM 200 (NOx catalyst rich purge control unit 201) performs active DeNOx control.

ステップS3の後はステップS4に進む。ステップS4では、PCM200(NOx触媒リッチパージ制御部201)は、吸蔵NOx量が予め設定されたDeNOx終了判定量以下であるか否か、つまり、アクティブDeNOx制御の実施に伴って吸蔵NOx量がDeNOx終了判定量以下まで低下したか否かを判定する。この判定がNOであれば、ステップS2に戻る。一方、この判定がYESであれば、ステップS5に進む。つまり、PCM200(NOx触媒リッチパージ制御部201)は、吸蔵NOx量がDeNOx終了判定量以下となりステップS4の判定がYESとなるまで、アクティブDeNOx制御を継続する。DeNOx終了判定量は、例えば、0付近の値に設定されている。   After step S3, the process proceeds to step S4. In step S4, the PCM 200 (NOx catalyst rich purge control unit 201) determines whether or not the occlusion NOx amount is equal to or less than a preset DeNOx end determination amount, that is, the occlusion NOx amount becomes DeNOx as the active DeNOx control is performed. It is determined whether or not the amount has fallen below the end determination amount. If this determination is NO, the process returns to step S2. On the other hand, if this determination is YES, the process proceeds to step S5. That is, the PCM 200 (NOx catalyst rich purge control unit 201) continues the active DeNOx control until the occluded NOx amount is equal to or less than the DeNOx end determination amount and the determination in step S4 is YES. The DeNOx end determination amount is set to a value near 0, for example.

なお、DeNOx制御の実施中に、DCU300は、NOx触媒41から放出されるNHの量を推定し、該推定量が多いほど尿素噴射量が少なくなるように尿素インジェクタ45を制御する。 During the DeNOx control, the DCU 300 estimates the amount of NH 3 released from the NOx catalyst 41 and controls the urea injector 45 so that the urea injection amount decreases as the estimated amount increases.

そして、ステップS4の判定がYESとなると、PCM200(NOx触媒リッチパージ制御部201)は、ステップS5に進む。ステップS5では、PCM200は、アクティブDeNOx制御を停止してDPF再生制御を実施(開始)する。ステップS5の次は、ステップS6に進む。   When the determination in step S4 is YES, the PCM 200 (NOx catalyst rich purge control unit 201) proceeds to step S5. In step S5, the PCM 200 stops active DeNOx control and performs (starts) DPF regeneration control. After step S5, the process proceeds to step S6.

ステップS6では、PCM200(PMフィルタ再生制御部203)は、PM堆積量が予め設定されたDeSOx開始堆積量(基準量)以下か否かを判定する。この判定がNOであれば、PCM200(PMフィルタ再生制御部203)は、ステップS5に戻る。つまり、PCM200(PMフィルタ再生制御部203)は、PM堆積量がDeSOx開始堆積量以下に低下するまでDPF再生制御を継続する。DeSOx開始堆積量は、再生開始堆積量の10%以上20%以下の量に設定されており、本実施形態では再生開始堆積量の10%に設定されている。   In step S6, the PCM 200 (PM filter regeneration control unit 203) determines whether or not the PM accumulation amount is equal to or less than a preset DeSOx start accumulation amount (reference amount). If this determination is NO, the PCM 200 (PM filter regeneration control unit 203) returns to step S5. That is, the PCM 200 (PM filter regeneration control unit 203) continues the DPF regeneration control until the PM accumulation amount decreases below the DeSOx start accumulation amount. The DeSOx start deposition amount is set to 10% or more and 20% or less of the regeneration start deposition amount, and is set to 10% of the regeneration start deposition amount in this embodiment.

そして、PM堆積量がDeSOx開始堆積量以下に低下してステップS6の判定がYESとなると、PCM200は、ステップS7に進む。ステップS7では、PCM200は、エンジン本体1が第1領域R1で運転されているか否かを判定する。この判定がNOであれば、ステップS20に進み、PCM200は通常制御を実施した後、処理を終了する(ステップS1に戻る)。   Then, when the PM accumulation amount decreases below the DeSOx start accumulation amount and the determination in step S6 becomes YES, the PCM 200 proceeds to step S7. In step S7, the PCM 200 determines whether or not the engine body 1 is operated in the first region R1. If this judgment is NO, it will progress to Step S20, PCM200 will complete processing after implementing normal control (it returns to Step S1).

一方、ステップS7の判定がYESであれば、ステップS100に進み、PCM200(NOx触媒再生制御部202)は、DeSOx制御を開始する。すなわち、PM堆積量がDeSOx開始堆積量以下に低下するとDeSOx制御に切り替わるので、NOx触媒41が、DPF44を再生させるのに適したDPF再生条件、すなわち理論空燃比よりリーンとされ且つ高温の条件下に晒されることが抑制される。   On the other hand, if determination of step S7 is YES, it will progress to step S100 and PCM200 (NOx catalyst regeneration control part 202) will start DeSOx control. That is, when the PM accumulation amount falls below the DeSOx start accumulation amount, the control is switched to DeSOx control, so that the NOx catalyst 41 is suitable for regenerating the DPF 44, that is, leaner than the stoichiometric air-fuel ratio and at a high temperature. Exposure to water is suppressed.

ここで、本願の発明者は、NOx触媒41が、DPF再生条件下に長く晒されると、DeSOx制御によっても吸蔵SOxを脱離させ難くなることを突き止めた。DeSOx制御によっても吸蔵SOxを脱離させ難くなるのは次の理由によると考えられる。図7に模式的に示すように、吸蔵SOxは、NOx触媒41上で例えば吸蔵剤41bに吸蔵されている。図7(a)に示すように、NOx触媒41がDPF再生条件下に晒されると、吸蔵剤41bが凝集しやすくなる。   Here, the inventor of the present application has found that when the NOx catalyst 41 is exposed for a long time under the DPF regeneration condition, it is difficult to desorb the stored SOx even by DeSOx control. The reason why it is difficult to desorb the occluded SOx even by DeSOx control is considered to be as follows. As schematically shown in FIG. 7, the storage SOx is stored on the NOx catalyst 41, for example, in the storage agent 41b. As shown in FIG. 7A, when the NOx catalyst 41 is exposed to the DPF regeneration condition, the storage agent 41b tends to aggregate.

さらにNOx触媒41がDPF再生条件の下より高温若しくはより長時間晒されると、図7(b)に示すように吸蔵剤41bの凝集がさらに促進されて、吸蔵SOxが触媒金属41aと反応し難くなってしまう。なお、DPF44の再生には一般に長時間を要するため、NOx触媒41はDPF再生条件下に長時間晒されやすい。この結果、吸蔵SOxは、DeSOx制御によっても、NOx触媒41から脱離させ難くなる。   Further, when the NOx catalyst 41 is exposed to a higher temperature or a longer time under the DPF regeneration conditions, the aggregation of the storage agent 41b is further promoted as shown in FIG. 7B, and the storage SOx hardly reacts with the catalyst metal 41a. turn into. Since regeneration of the DPF 44 generally requires a long time, the NOx catalyst 41 is easily exposed to the DPF regeneration condition for a long time. As a result, the occluded SOx is difficult to desorb from the NOx catalyst 41 even by DeSOx control.

これに対して、本実施形態では、上述したように、PM堆積量がDeSOx開始堆積量以下に低下するとDeSOx制御が開始されるので、NOx触媒41がDPF再生条件下に長時間晒されることが抑制される。この結果、NOx触媒41における吸蔵剤41bの凝集が抑制されるので、後続するDeSOx制御によって、SOxをNOx触媒41から容易に脱離させやすい。   On the other hand, in the present embodiment, as described above, when the PM deposition amount falls below the DeSOx start deposition amount, DeSOx control is started, so the NOx catalyst 41 may be exposed to the DPF regeneration condition for a long time. It is suppressed. As a result, the aggregation of the storage agent 41b in the NOx catalyst 41 is suppressed, so that the SOx can be easily desorbed from the NOx catalyst 41 by the subsequent DeSOx control.

図8を参照して、ステップS100に係るDeSOx制御を説明する。PCM200(NOx触媒再生制御部202)は、ステップS101において、DeSOxサイクル数nが1か否かを判定する。ここで、DeSOxサイクル数nとは、DeSOx制御において、次に実施されるリッチリーンサイクルが何回目の実施回数であるかを示している。すなわち、DeSOxサイクル数nが1であれば、DPF再生制御からDeSOx制御に切り替えられて、最初のリッチリーンサイクルであることを意味している。   With reference to FIG. 8, DeSOx control according to step S100 will be described. In step S101, the PCM 200 (NOx catalyst regeneration control unit 202) determines whether or not the DeSOx cycle number n is one. Here, the DeSOx cycle number n indicates how many times the rich lean cycle to be executed next is executed in DeSOx control. That is, if the DeSOx cycle number n is 1, it means that the DPF regeneration control is switched to the DeSOx control and it is the first rich lean cycle.

ステップS101の判定がYES、すなわち最初のリッチリーンサイクルである場合、PCM200(NOx触媒再生制御部202)は、ステップS103に進み、リッチステップの空気過剰率λを初期空気過剰率λ0に設定する。本実施形態では、初期空気過剰率λ0は0.93に設定されており、これは全てのリッチリーンサイクルにおいて最も小さい値である。   If the determination in step S101 is YES, that is, the first rich lean cycle, the PCM 200 (NOx catalyst regeneration control unit 202) proceeds to step S103, and sets the excess air ratio λ of the rich step to the initial excess air ratio λ0. In this embodiment, the initial excess air ratio λ0 is set to 0.93, which is the smallest value in all the rich lean cycles.

ステップS101の判定がNOであれば、PCM200(NOx触媒再生制御部202)は、ステップS102に進み、DeSOxサイクル数nが所定サイクル数n0未満か否かを判定する。ここで所定サイクル数n0とは、リッチステップにおける空気過剰率λが最終空気過剰率λEより小さい値に設定されるサイクル数を意味している。   If the determination in step S101 is NO, the PCM 200 (NOx catalyst regeneration control unit 202) proceeds to step S102 and determines whether the DeSOx cycle number n is less than the predetermined cycle number n0. Here, the predetermined number of cycles n0 means the number of cycles in which the excess air ratio λ in the rich step is set to a value smaller than the final excess air ratio λE.

ステップS102の判定がYESであれば、リッチステップにおける空気過剰率λは1回前のリッチリーンサイクルのリッチステップにおける空気過剰率λより増大される。ステップS102の判定がNOであれば、リッチステップにおける空気過剰率λは、最終空気過剰率λEに設定される。   If the determination in step S102 is YES, the excess air ratio λ in the rich step is increased from the excess air ratio λ in the rich step of the previous rich lean cycle. If the determination in step S102 is NO, the excess air ratio λ in the rich step is set to the final excess air ratio λE.

本実施形態では、所定サイクル数n0は3に設定されている。すなわち、DeSOx制御において、3回目のリッチリーンサイクルまで、リッチステップにおける空気過剰率λが段階的に増大し、4回目以降は最終空気過剰率λEに一定に維持される。例えば、リッチステップにおける空気過剰率λは、最初が最も小さい値である0.93に設定され、その後、リッチリーンサイクルの回数が増大するにつれて、0.94、0.95と段階的に増大し、4回目以降に0.95に一定に維持される。   In the present embodiment, the predetermined number of cycles n0 is set to 3. That is, in DeSOx control, the excess air ratio λ in the rich step increases stepwise until the third rich-lean cycle, and is maintained constant at the final excess air ratio λE after the fourth time. For example, the excess air ratio λ in the rich step is initially set to 0.93, which is the smallest value, and then gradually increases to 0.94 and 0.95 as the number of rich lean cycles increases. It is kept constant at 0.95 after the fourth time.

ステップS103〜S105の後はいずれも、ステップS106に進む。ステップS106ではリッチステップが所定時間実施され、次にステップS107に進む。ステップS107ではリーンステップが所定時間実施され、次にステップS108に進む。ステップS108では、DeSOxサイクル数nがn+1にカウントアップされ、すなわちDeSOxサイクル数が1つ増大する。   After steps S103 to S105, the process proceeds to step S106. In step S106, a rich step is performed for a predetermined time, and then the process proceeds to step S107. In step S107, a lean step is performed for a predetermined time, and then the process proceeds to step S108. In step S108, the DeSOx cycle number n is counted up to n + 1, that is, the DeSOx cycle number is increased by one.

ステップS108の後はステップS8に進む。前記のように、DeSOx制御では、リッチステップとリーンステップとを含むリッチリーンサイクルが複数サイクル数実施され、リッチステップでは吸蔵SOxが脱離され、リーンステップではNOx触媒の温度が高く維持されるともにDPF44からPMが燃焼除去される。すなわち、リッチステップにおいて吸蔵SOxが減少し、リーンステップにおいてPMが減少する。 After step S108, the process proceeds to step S8. As described above, in the DeSOx control, a plurality of rich lean cycles including a rich step and a lean step are performed, the stored SOx is desorbed in the rich step, and the temperature of the NOx catalyst is maintained high in the lean step. PM is burned and removed from the DPF 44. That is, the storage SOx decreases in the rich step, and PM decreases in the lean step.

また、DeSOx制御の実施中に、DCU300は、NOx触媒41から放出されたNHの量を推定し、該推定量が多いほど尿素噴射量が少なくなるように尿素インジェクタ45を制御する。 Further, during the execution of the DeSOx control, the DCU 300 estimates the amount of NH 3 released from the NOx catalyst 41, and controls the urea injector 45 so that the urea injection amount decreases as the estimated amount increases.

ここで、本実施形態では、DeSOx制御時に、最初のリッチリーンサイクルにおけるリッチステップの空気過剰率λが最も小さい初期空気過剰率λ0に設定されており、この結果、NOx触媒41に還元剤が多く供給されるので、NOx触媒41から放出されるNHの量が増大しやすい。後続するリッチリーンサイクルにおいて、リッチステップの空気過剰率λが段階的に増大するので、NOx触媒41から放出されるNH3の量が段階的に減少する。したがって、DCU300は、リッチステップにおける空気過剰率λが小さいほど、尿素噴射量が少なくなるように尿素インジェクタ45を制御する。 Here, in the present embodiment, during the DeSOx control, the air excess ratio λ of the rich step in the first rich lean cycle is set to the smallest initial air excess ratio λ0. As a result, the NOx catalyst 41 has a large amount of reducing agent. Since it is supplied, the amount of NH 3 released from the NOx catalyst 41 tends to increase. In the subsequent rich lean cycle, the excess air ratio λ of the rich step increases stepwise, so the amount of NH 3 released from the NOx catalyst 41 decreases stepwise. Therefore, the DCU 300 controls the urea injector 45 so that the urea injection amount decreases as the excess air ratio λ in the rich step decreases.

ステップS9では、PM堆積量が予め設定された再生終了堆積量以下か否かを判定する。この判定がNOであれば、PCM200(NOx触媒再生制御部202)は、ステップS7に戻る。つまり、PCM200(NOx触媒再生制御部202)は、PM堆積量が再生終了堆積量以下に低下するまでDeSOx制御を継続、すなわちリッチリーンサイクルを繰り返す。一方、この判定がYESであれば、PCM200(NOx触媒再生制御部202)は、ステップS20に進み、PCM200は通常制御を実施した後、処理を終了する。   In step S9, it is determined whether the PM accumulation amount is equal to or less than a preset regeneration end accumulation amount. If this determination is NO, the PCM 200 (NOx catalyst regeneration control unit 202) returns to step S7. That is, the PCM 200 (NOx catalyst regeneration control unit 202) continues the DeSOx control until the PM accumulation amount falls below the regeneration completion accumulation amount, that is, repeats the rich lean cycle. On the other hand, if this determination is YES, the PCM 200 (NOx catalyst regeneration control unit 202) proceeds to step S20, and the PCM 200 ends the processing after performing normal control.

図9は、前記の制御を実施したときの各パラメータの時間変化を模式的に示した図である。   FIG. 9 is a diagram schematically showing a time change of each parameter when the control is performed.

時刻t1にてDPF再生許可フラグが0から1に変化すると、アクティブDeNOx制御が実施される。具体的には、排気の空燃比が理論空燃比よりもリッチとされるとともにポスト噴射が実施される。このとき、ポスト噴射された燃料が燃焼室6内で燃焼するように、ポスト噴射の噴射タイミングが比較的進角側(膨張行程前半)とされる。また、第1EGRバルブ57が全閉とされるとともに、第2EGRバルブ60の開度が通常運転時すなわち時刻t1直前の開度よりも小さく(閉じ側に)、ただし、全閉よりも開き側にされる。   When the DPF regeneration permission flag changes from 0 to 1 at time t1, active DeNOx control is performed. Specifically, the air-fuel ratio of the exhaust is made richer than the stoichiometric air-fuel ratio, and post injection is performed. At this time, the injection timing of the post injection is relatively advanced (first half of the expansion stroke) so that the post-injected fuel burns in the combustion chamber 6. Further, the first EGR valve 57 is fully closed, and the opening degree of the second EGR valve 60 is smaller than that at the time of normal operation, that is, just before the time t1 (to the closing side), but it is to the opening side rather than the full closing. Is done.

アクティブDeNOx制御の実施に伴い、時刻t1以後、NOx吸蔵量は徐々に低下していく。また、ポスト噴射された燃料が燃焼室6内で燃焼することで排気の温度が増大することに伴い、時刻t1以後、DPF44の温度が徐々に増大する。また、図示していないが、酸化触媒42の温度も徐々に増大する。   With the execution of the active DeNOx control, the NOx occlusion amount gradually decreases after time t1. Further, as the post-injected fuel burns in the combustion chamber 6 and the temperature of the exhaust gas increases, the temperature of the DPF 44 gradually increases after time t1. Although not shown, the temperature of the oxidation catalyst 42 gradually increases.

さらに、図示は省略するが、DeNOx制御の実施により、NOx触媒41からNHが放出され、尿素噴射量が、DeNOx制御を実施していない場合に比して少なくなるように、尿素インジェクタ45が制御される。 Furthermore, although illustration is omitted, the urea injector 45 is arranged so that NH 3 is released from the NOx catalyst 41 by the execution of the DeNOx control, and the urea injection amount becomes smaller than that when the DeNOx control is not executed. Be controlled.

時刻t2にて、吸蔵NOx量がDeNOx終了判定量以下になると、アクティブDeN
Ox制御は停止され、続いて、DPF再生制御が開始される(PMフィルタ再生ステップ)。
When the occlusion NOx amount becomes equal to or less than the DeNOx end determination amount at time t2, the active DeN
Ox control is stopped, and then DPF regeneration control is started (PM filter regeneration step).

具体的には、時刻t2にて、排気の空燃比は理論空燃比よりもリーンに切り替えられる。また、時刻t2以後もポスト噴射が実施されるが、このポスト噴射の噴射タイミングは遅角側のタイミング(膨張行程後半)とされ、ポスト噴射された燃料は燃焼室6内で燃焼せずに排気通路40に排出される。また、第1EGRバルブ57に加えて第2EGRバルブ60が全閉とされる。   Specifically, at time t2, the air-fuel ratio of the exhaust gas is switched to leaner than the stoichiometric air-fuel ratio. Further, post injection is performed after time t2, but the injection timing of this post injection is set to the retarded side timing (the second half of the expansion stroke), and the post-injected fuel is exhausted without being burned in the combustion chamber 6. It is discharged into the passage 40. In addition to the first EGR valve 57, the second EGR valve 60 is fully closed.

この制御により、酸化触媒42及び酸化触媒層44dにおける酸化反応によって排気の温度が上昇し、これによりDPF44の温度がさらに増大する。   By this control, the temperature of the exhaust gas rises due to the oxidation reaction in the oxidation catalyst 42 and the oxidation catalyst layer 44d, thereby further increasing the temperature of the DPF 44.

図例では、時刻t2にてDPF44の温度がまだPMを燃焼させることができる温度にまで到達しておらず、時刻t3にてこの温度に到達することでPM堆積量が低下し始める。また、図例では、DPF44の温度がPMを燃焼させることができる温度に到達すると、ポスト噴射量を低減する。   In the illustrated example, the temperature of the DPF 44 has not yet reached a temperature at which PM can be combusted at time t2, and the PM deposition amount starts to decrease by reaching this temperature at time t3. Further, in the illustrated example, when the temperature of the DPF 44 reaches a temperature at which PM can be combusted, the post injection amount is reduced.

時刻t4にてPM堆積量がDeSOx開始堆積量以下に低下、すなわち再生開始堆積量から10%低下すると、DeSOx制御が開始される(NOx触媒再生ステップ)。具体的には、時刻t4にてまずリッチステップが実施されて、噴射時期が比較的進角側であって噴射された燃料が燃焼室6内で燃焼するように設定されたポスト噴射が実施されるとともに、排気の空燃比が理論空燃比よりもリッチにされる。また、第2EGRバルブ60が開弁される。ただし、アクティブDeNOx制御と同様に、リッチステップにおいても第2EGRバルブ60の開度は、通常運転時の開度つまり時刻t1直前の開度よりも小さく(閉じ側に)される。本実施形態では、リッチステップ時とアクティブDeNOx制御時とで第2EGRバルブ60の開度はほぼ同じとされる。なお、第1EGRバルブ57は全閉に維持される。   When the PM deposition amount falls below the DeSOx start deposition amount at time t4, that is, when the regeneration start deposition amount falls by 10%, DeSOx control is started (NOx catalyst regeneration step). Specifically, the rich step is first performed at time t4, and post-injection in which the injection timing is relatively advanced and set so that the injected fuel burns in the combustion chamber 6 is performed. In addition, the air-fuel ratio of the exhaust is made richer than the stoichiometric air-fuel ratio. Further, the second EGR valve 60 is opened. However, as in the active DeNOx control, the opening degree of the second EGR valve 60 is made smaller (closed side) than the opening degree at the time of normal operation, that is, the opening degree just before the time t1, even in the rich step. In the present embodiment, the opening degree of the second EGR valve 60 is substantially the same during the rich step and during the active DeNOx control. The first EGR valve 57 is kept fully closed.

次に、時刻t5にてリーンステップが実施されて、噴射時期が比較的遅角側であって噴射された燃料が燃焼室6内で燃焼しないように設定されたポスト噴射が実施されるとともに、排気の空燃比が理論空燃比よりもリーンにされる。また、第2EGRバルブ60が再び全閉とされる。なお、このときも、第1EGRバルブ57は全閉に維持される。   Next, a lean step is performed at time t5, post injection is performed in which the injection timing is relatively retarded and set so that the injected fuel does not burn in the combustion chamber 6, and The air-fuel ratio of the exhaust is made leaner than the stoichiometric air-fuel ratio. Further, the second EGR valve 60 is fully closed again. Also at this time, the first EGR valve 57 is kept fully closed.

そして、このリッチステップとリーンステップとが繰り返され、これにより時刻t4以後、吸蔵SOx量は低減していく。詳細には、リッチステップの実施に伴って吸蔵SOx量は低減していく。また、リーンステップの実施によってPM堆積量も低下していく。   Then, the rich step and the lean step are repeated, whereby the amount of occluded SOx decreases after time t4. Specifically, the amount of occluded SOx decreases as the rich step is performed. In addition, the amount of PM deposition also decreases as a result of the lean step.

このとき、最初のリッチリーンサイクルにおいて、リッチステップにおける空気過剰率λが最も小さくなるようにポスト噴射量が増大されている。以降のリッチリーンサイクルにおいて、リッチステップにおける空気過剰率λは、段階的に増大され、所定サイクル数n0である4回目以降のリッチリーンサイクルにおいて最終空気過剰率λEに一定に設定されている。上述したように、リッチステップにおける空気過剰率λは、ポスト噴射量を調整することによって変化されており、最初のリッチリーンサイクルから4回目のリッチリーンサイクルまでポスト噴射量が段階的に減少し、4回目以降は一定量に維持されている。   At this time, in the first rich-lean cycle, the post injection amount is increased so that the excess air ratio λ in the rich step is minimized. In the subsequent rich lean cycle, the excess air ratio λ in the rich step is increased stepwise, and the final excess air ratio λE is set constant in the fourth and subsequent rich lean cycles, which is the predetermined number of cycles n0. As described above, the excess air ratio λ in the rich step is changed by adjusting the post injection amount, and the post injection amount gradually decreases from the first rich lean cycle to the fourth rich lean cycle. From the fourth time onward, the amount is maintained at a constant level.

また、図示は省略するが、DeSOx制御の実施により、NOx触媒41からNHが放出され、尿素噴射量が、DeSOx制御を実施していない場合に比して少なくなるように、尿素インジェクタ45が制御される。 Although illustration is omitted, the urea injector 45 is arranged so that NH 3 is released from the NOx catalyst 41 by performing DeSOx control, and the urea injection amount becomes smaller than that in the case where DeSOx control is not performed. Be controlled.

ここで、本実施形態では、DeSOx制御時に、最初のリッチリーンサイクルにおけるリッチステップの空気過剰率λが最も小さい初期空気過剰率λ0に設定されており、この結果、NOx触媒41に還元剤が多く供給されるので、NOx触媒41から放出されるNHの量が増大しやすい。後続するリッチリーンサイクルにおいて、リッチステップの空気過剰率λが段階的に増大するので、NOx触媒41から放出されるNHの量が段階的に減少する。したがって、NOx触媒41から放出されるNHの量は、リッチリーンサイクル数が進むにつれて段階的に減少するので、尿素インジェクタ45による尿素噴射量は段階的に増大する。 Here, in the present embodiment, during the DeSOx control, the air excess ratio λ of the rich step in the first rich lean cycle is set to the smallest initial air excess ratio λ0. As a result, the NOx catalyst 41 has a large amount of reducing agent. Since it is supplied, the amount of NH 3 released from the NOx catalyst 41 tends to increase. In the subsequent rich lean cycle, the excess air ratio λ of the rich step increases stepwise, so the amount of NH 3 released from the NOx catalyst 41 decreases stepwise. Therefore, the amount of NH 3 released from the NOx catalyst 41 decreases step by step as the rich lean cycle number advances, so the urea injection amount by the urea injector 45 increases stepwise.

そして、時刻t6にてSOx吸蔵量がもはやDeSOx制御を必要としない量(例えばゼロ付近)まで低下するが、PM堆積量はまだ再生終了堆積量より多いのでDeSOx制御が継続される。   At time t6, the SOx occlusion amount decreases to an amount that no longer requires DeSOx control (for example, near zero), but the PM accumulation amount is still larger than the regeneration completion accumulation amount, so DeSOx control is continued.

その後、時刻t7にてPM堆積量が再生終了堆積量以下に低下することに伴い、DeSOx制御が終了されて通常制御に切り替わる。具体的には、ポスト噴射量が0とされてポスト噴射が停止される。また、第1EGRバルブ57が開弁されるとともに、第2EGRバルブ60の開度がDeNOx制御時およびDeSOx制御のリッチステップ時よりも大きく(開側)にされる。また、DPF再生フラグが0とされる。   Thereafter, the DeSOx control is terminated and the control is switched to the normal control as the PM accumulation amount decreases below the regeneration completion accumulation amount at time t7. Specifically, the post injection amount is set to 0 and the post injection is stopped. Further, the first EGR valve 57 is opened, and the opening degree of the second EGR valve 60 is made larger (open side) than during the DeNOx control and the rich step of the DeSOx control. Further, the DPF regeneration flag is set to 0.

なお、本実施形態では、DeSOx制御において、リッチステップでNOx触媒から吸蔵SOxが減少し、リーンステップでDPF44からPMが燃焼除去されるが、この場合にPM堆積量が再生終了堆積量まで低減する前にS被毒が解消するようにNOx触媒41及びDPF44の容量が適切に設定されている。また、NOx触媒41は、SCR触媒46の上流側に設けたNOxセンサによりNOx触媒41からのNOxのすり抜け量を検出しており、NOxのすり抜け量に基づいて、NOx触媒41がS被毒によりNOx吸蔵量が問題となる状態まで低下していないか間接的に検出可能に構成されている。   In this embodiment, in the DeSOx control, the stored SOx is reduced from the NOx catalyst in the rich step, and PM is burned and removed from the DPF 44 in the lean step. In this case, the PM accumulation amount is reduced to the regeneration completion accumulation amount. The capacities of the NOx catalyst 41 and the DPF 44 are appropriately set so that the S poisoning is eliminated. Further, the NOx catalyst 41 detects the amount of NOx slipped from the NOx catalyst 41 by a NOx sensor provided on the upstream side of the SCR catalyst 46. Based on the amount of NOx slipped, the NOx catalyst 41 is subjected to S poisoning. Whether or not the NOx occlusion amount has decreased to a problem state is configured to be indirectly detectable.

(3)作用等
以上のように、本実施形態では、最初のリッチリーンサイクルにおいて、リッチステップの空気過剰率λが最も小さい初期空気過剰率λ0に設定されている。ここで、DeSOx制御によるNOx触媒41からのSOxの脱離量は、NOx触媒41に吸着されているSOxが多いほど多く望める。また、DeSOx制御において、リッチステップの空気過剰率λをよりリッチ側に設定することによってNOx触媒41に供給される未燃燃料及び一酸化炭素等の還元剤が増大するので、これによってもNOx触媒41からのSOxの脱離量が多く望める。
(3) Operation and the like As described above, in the present embodiment, the initial excess air ratio λ0 is set to the smallest excess air ratio λ of the rich step in the first rich lean cycle. Here, the amount of SOx desorbed from the NOx catalyst 41 by DeSOx control can be expected to increase as the amount of SOx adsorbed on the NOx catalyst 41 increases. Further, in the DeSOx control, by setting the excess air ratio λ of the rich step to a richer side, the unburned fuel and the reducing agent such as carbon monoxide supplied to the NOx catalyst 41 increase. A large amount of SOx desorbed from 41 can be expected.

すなわち、NOx触媒41に吸蔵されたSOxが最も多く、このためSOxの脱離量が多く望めるDeSOx制御の開始時において、リッチステップの空気過剰率λを最も小さい初期空気過剰率λ0に設定することによってSOxのNOx触媒41からの脱離量を効率的に増大させることができる。   That is, at the start of the DeSOx control in which the SOx stored in the NOx catalyst 41 is the largest and therefore the amount of SOx desorption is expected to be large, the rich step excess air ratio λ is set to the smallest initial excess air ratio λ0. Thus, the amount of SOx desorbed from the NOx catalyst 41 can be increased efficiently.

また、リッチステップの空気過剰率λを段階的に増大させることにより、DeSOx制御におけるリッチステップの空気過剰率λが長期にわたってより小さく設定されることがないので、空気過剰率を小さく設定したことによるスモークの増大が抑制される。   Further, by increasing the rich step excess air ratio λ stepwise, the rich step excess air ratio λ in DeSOx control is not set to be smaller over a long period of time. The increase in smoke is suppressed.

また、リッチステップの空気過剰率λは、所定サイクル数n0以降は、最終空気過剰率λEに一定に維持されるので、NOx触媒41におけるSOxの堆積量が相対的に大きい、DeSOx制御の初期段階において、リッチステップの空気過剰率をより小さく設定することにより、NOx触媒41からのSOxの脱離が促進される。一方、DeSOx制御の初期段階以降は、SOxの堆積量が相対的に減少するので、リッチステップの空気過剰率λを初期段階より大きい最終空気過剰率λEに一定に維持することにより、スモークの増大が抑制される。すなわち、NOx触媒41からSOxを効率的に脱離させつつ、スモークの増大が抑制される。   Further, since the excess air ratio λ of the rich step is maintained constant at the final excess air ratio λE after the predetermined number of cycles n0, the initial stage of DeSOx control in which the amount of SOx deposited on the NOx catalyst 41 is relatively large. In this case, by setting the excess air ratio of the rich step smaller, the desorption of SOx from the NOx catalyst 41 is promoted. On the other hand, after the initial stage of DeSOx control, the amount of SOx deposited is relatively reduced. Therefore, by increasing the excess air ratio λ of the rich step to a final excess air ratio λE that is larger than the initial stage, smoke increases. Is suppressed. That is, the increase in smoke is suppressed while SOx is efficiently desorbed from the NOx catalyst 41.

また、DeSOx制御において、リッチステップの空気過剰率λが小さいほど、すなわちNOx触媒41からのNHの放出量が多いほど、尿素噴射量が少なくなるように尿素インジェクタ45は制御されるので、SCR触媒46にNHが過剰に供給されて、スリップ触媒47にすり抜けることが抑制される。 In the DeSOx control, the urea injector 45 is controlled such that the urea injection amount decreases as the excess air ratio λ of the rich step decreases, that is, as the amount of NH 3 released from the NOx catalyst 41 increases. It is suppressed that NH 3 is excessively supplied to the catalyst 46 and slips through the slip catalyst 47.

PM堆積量がDeSOx開始堆積量以下に低下したとき、すなわちDPF再生制御の開始後の比較的早いタイミングで、DeSOx制御が開始されるので、NOx触媒41がDPF再生条件に晒される時間が制限される。この結果、NOx触媒41における吸蔵剤41bの凝集が抑制されるので、SOxが触媒金属41aと反応し難くなることが抑制される。よって、NOx触媒再生制御において、NOx触媒41から吸蔵SOxを脱離させやすく、NOx触媒41をS被毒から効率的に回復させることができる。   Since the DeSOx control is started when the PM deposition amount is reduced below the DeSOx start deposition amount, that is, at a relatively early timing after the start of the DPF regeneration control, the time during which the NOx catalyst 41 is exposed to the DPF regeneration conditions is limited. The As a result, the aggregation of the storage agent 41b in the NOx catalyst 41 is suppressed, so that it is suppressed that SOx hardly reacts with the catalyst metal 41a. Therefore, in the NOx catalyst regeneration control, the stored SOx can be easily desorbed from the NOx catalyst 41, and the NOx catalyst 41 can be efficiently recovered from S poisoning.

さらに、DeSOx制御は、DPF44に堆積しているPMがある程度除去された後に実施されるので、DeSOx制御におけるDPF44の温度が過度に昇温することが抑制される。   Furthermore, since the DeSOx control is performed after the PM accumulated in the DPF 44 is removed to some extent, an excessive increase in the temperature of the DPF 44 in the DeSOx control is suppressed.

なぜなら、NOx触媒再生制御におけるリッチ状態では未燃燃料がDPF44に付着しやすく、該未燃燃料がリーン状態において供給される酸素と反応してDPF44の温度が上昇しやすい。このとき、DPF44に多量のPMが堆積していると、DPF44の温度上昇に伴って、PMの燃焼が連鎖的に促進され、これによりDPF44の温度が過度に上昇してしまうおそれがある。しかしながら、本発明によれば、DPF44におけるPM堆積量をある程度減らした後に、DeSOx制御が実施されるので、DeSOx制御によりDPPF44の温度が過度に上昇することが抑制される。   This is because the unburned fuel tends to adhere to the DPF 44 in the rich state in the NOx catalyst regeneration control, and the temperature of the DPF 44 tends to rise due to the unburned fuel reacting with oxygen supplied in the lean state. At this time, if a large amount of PM is accumulated in the DPF 44, the combustion of the PM is promoted in a chain as the temperature of the DPF 44 rises, which may cause the temperature of the DPF 44 to rise excessively. However, according to the present invention, since the DeSOx control is performed after the PM accumulation amount in the DPF 44 is reduced to some extent, the temperature of the DPPF 44 is prevented from excessively rising due to the DeSOx control.

また、アクティブDeNOx制御時において、ポスト噴射された燃料を燃焼室6内で燃焼させるとともに、アクティブDeNOx制御の後にこれと連続してDPF再生制御を実施している。   Further, during the active DeNOx control, the post-injected fuel is combusted in the combustion chamber 6, and the DPF regeneration control is continuously performed after the active DeNOx control.

そのため、アクティブDeNOx制御時に排気の温度を高めて、これにより酸化触媒42を活性化させることおよびDPF44の温度を高めることができ、その後のDPF再生制御時においてDPF44に捕集されているPMをより早いタイミングから燃焼させることができる。従って、アクティブDeNOx制御とDPF再生制御とをそれぞれ異なるタイミングで実施する場合に比べて、DPF再生制御を開始してからDPF44の温度がPMが燃焼する温度に到達するまでの時間を短くすることができ、この温度上昇のために酸化触媒42に供給せねばならない未燃の燃料量を少なく抑えて燃費性能を高めることができる。   Therefore, the temperature of the exhaust gas can be increased during the active DeNOx control, thereby activating the oxidation catalyst 42 and the temperature of the DPF 44, and the PM trapped in the DPF 44 during the subsequent DPF regeneration control can be increased. It can be burned from an early timing. Therefore, compared with the case where the active DeNOx control and the DPF regeneration control are performed at different timings, the time from the start of the DPF regeneration control until the temperature of the DPF 44 reaches the temperature at which PM burns can be shortened. In addition, the amount of unburned fuel that must be supplied to the oxidation catalyst 42 for this temperature rise can be suppressed to a low level, thereby improving fuel efficiency.

さらに、DPF再生制御の実施前にNOx触媒41に吸蔵されたNOxが還元されていることで、DPF再生制御の実施によってNOx触媒41の温度が上昇しても、この温度上昇に伴ってNOx触媒41から多量のNOxが離脱するのを防止できるため、排気性能を良好にすることができる。   Furthermore, even if the temperature of the NOx catalyst 41 increases due to the execution of the DPF regeneration control because the NOx stored in the NOx catalyst 41 is reduced before the execution of the DPF regeneration control, the NOx catalyst is increased along with this temperature rise. Since a large amount of NOx can be prevented from being released from 41, the exhaust performance can be improved.

また、本実施形態では、アクティブDeNOx制御時においてポスト噴射された燃料が燃焼室6内で燃焼するように構成されていることで、ポスト噴射をその燃料が燃焼室6内で燃焼しない遅角側のタイミングで実施する場合に比べて、ポスト噴射された燃料が燃焼室6からクランクケース側に漏えいしてエンジンオイルに混入する量を少なく抑えることができるともに、未燃燃料に起因するデポジットによって排気通路に設けられた各種装置が閉塞するのを抑制できる。   In the present embodiment, the post-injected fuel at the time of active DeNOx control is configured to burn in the combustion chamber 6, so that the post-injection is retarded so that the fuel does not burn in the combustion chamber 6. Compared with the case where it is carried out at the timing of the above, the amount of post-injected fuel leaking from the combustion chamber 6 to the crankcase side and entering the engine oil can be reduced, and the exhaust caused by deposits caused by unburned fuel can be reduced. It is possible to prevent the various devices provided in the passage from being blocked.

また、本実施形態では、DPF再生制御を開始した後、PM堆積量がDeSOx開始堆積量以下に低減すると、リーンステップを含むDeSOx制御が開始されるようになっている。そのため、DeSOx制御の実施によって、NOx触媒に吸蔵されているSOxを還元および除去しつつDPF44のPMをも燃焼および除去することができ、効率よくNOx触媒41とDPF44の浄化性能を高い状態に戻すことができる。つまり、DPF再生制御とDeSOx制御とを個別に実施する場合に比べて、DPF44の再生制御に係る時間を短くすることができ、DPF44のPMの燃焼に必要な燃料の量を少なく抑えて燃費性能をより一層高めることができる。   In this embodiment, after the DPF regeneration control is started, the DeSOx control including the lean step is started when the PM deposition amount is reduced below the DeSOx start deposition amount. Therefore, by implementing DeSOx control, the PM of the DPF 44 can be combusted and removed while reducing and removing the SOx stored in the NOx catalyst, and the purification performance of the NOx catalyst 41 and the DPF 44 is efficiently returned to a high state. be able to. In other words, compared with the case where DPF regeneration control and DeSOx control are performed individually, the time required for regeneration control of the DPF 44 can be shortened, and the amount of fuel required for PM combustion of the DPF 44 can be reduced to reduce fuel consumption. Can be further increased.

また、本実施形態では、DeSOx制御のリッチステップの実施時において、EGRバルブ57、60の開度を通常運転時(つまり、仮にDeSOx制御を実施しないとしたとき)よりも閉じ側の開度に制御するとともに、DPF再生制御において、EGRバルブ60を全閉(つまり、DeSOx制御の実施時よりもさらに閉じ側の開度)に制御している。   In the present embodiment, when the rich step of the DeSOx control is performed, the opening degree of the EGR valves 57 and 60 is set to a closing side opening degree than the normal operation (that is, when the DeSOx control is not performed). In addition to the control, in the DPF regeneration control, the EGR valve 60 is controlled to be fully closed (that is, the opening on the closing side further than when the DeSOx control is performed).

そのため、DPF再生制御の実施時において、排気通路40に排出された未燃燃料に起因するデポジットによってEGRクーラー58等の排気通路40に設けられた各種装置が閉塞するのを抑制できるとともに、DeSOx制御のリッチステップの実施時において、ポスト噴射された燃料の燃焼安定性を高めつつポスト噴射された燃料の燃焼によって生成される煤の量を少なく抑えることができる。   Therefore, when performing DPF regeneration control, it is possible to prevent various devices provided in the exhaust passage 40 such as the EGR cooler 58 from being blocked by deposits resulting from unburned fuel discharged to the exhaust passage 40, and to perform DeSOx control. When the rich step is performed, the amount of soot produced by the combustion of the post-injected fuel can be reduced while improving the combustion stability of the post-injected fuel.

同様に、本実施形態では、アクティブDeNOx制御の実施時において、EGRバルブ57、60の開度を通常運転時(つまり、仮にアクティブDeNOx制御を実施しないとしたとき)よりも閉じ側の開度に制御している。そのため、DeNOx制御の実施時において、ポスト噴射された燃料の燃焼安定性を高めつつポスト噴射された燃料の燃焼によって生成される煤の量を少なく抑えることができる。   Similarly, in the present embodiment, when the active DeNOx control is performed, the opening degrees of the EGR valves 57 and 60 are set to the opening side closer to the closing side than during normal operation (that is, when the active DeNOx control is not performed). I have control. Therefore, at the time of performing DeNOx control, the amount of soot generated by the combustion of the post-injected fuel can be suppressed while increasing the combustion stability of the post-injected fuel.

また、本実施形態では、DPF再生制御の度にDeSOx制御を実施するようにしたため、SOx堆積量を少ない状態に維持しやすく、凝集によりSOxが取り込まれることが抑制されて、高いNOx浄化効率を確保できる。   In this embodiment, since the DeSOx control is performed every time the DPF regeneration control is performed, it is easy to maintain the SOx accumulation amount in a small state, and SOx is prevented from being taken in due to aggregation, so that a high NOx purification efficiency is achieved. It can be secured.

(4)変形例
前記実施形態に加えて、SCR触媒46におけるNHの吸着量に基づいて、DeSOx制御におけるリッチステップの空気過剰率λを調整してもよい。具体的には、SCR触媒46におけるNHの吸着量が多い場合には、NOx触媒41から放出されるNHの量を抑制するように、DeSOx制御時のリッチステップにおける空気過剰率λを小さくする度合いを抑制してもよい。
(4) Modifications In addition to the above embodiment, the rich air excess ratio λ of the rich step in the DeSOx control may be adjusted based on the adsorption amount of NH 3 in the SCR catalyst 46. Specifically, when the amount of NH 3 adsorbed on the SCR catalyst 46 is large, the excess air ratio λ in the rich step during DeSOx control is reduced so as to suppress the amount of NH 3 released from the NOx catalyst 41. You may suppress the degree to do.

すなわち、図10に示すように、SCR触媒46におけるNHの吸着量が多いほど、DeSOx制御時のリッチステップにおける空気過剰率λを小さくする度合いを抑制すればよく、所定サイクル数n0以降は、最終空気過剰率λEに一定に維持すればよい。これによって、リッチステップにおいてNOx触媒41から放出されるNHの量を抑制しながらSOxを脱離させ、リーンステップにおいてPMを燃焼させてDPFの再生44から除去できる。 That is, as shown in FIG. 10, as the amount of NH 3 adsorbed on the SCR catalyst 46 increases, the degree of reduction of the excess air ratio λ in the rich step during DeSOx control may be suppressed. The final excess air ratio λE may be kept constant. Thus, SOx can be desorbed while suppressing the amount of NH 3 released from the NOx catalyst 41 in the rich step, and PM can be burned and removed from the DPF regeneration 44 in the lean step.

ここで、SCR触媒46におけるNHの吸着量は、インジェクタ45によりSCR触媒46に供給される尿素噴射量に、上述した推定により算出されたNOx触媒41から放出されるNOxの放出量を加算し、これからSCR触媒46におけるNHの消費量を減じればよい。SCR触媒46におけるNHの消費量は、SCR触媒46の直上流側及び直下流側に一対に設けたNOxセンサに基づいて、SCR触媒46におけるNOxの浄化量を算出し、該量のNOxを浄化するのに要するNHの量として算出される。 Here, the adsorption amount of NH 3 in the SCR catalyst 46 is obtained by adding the NOx release amount released from the NOx catalyst 41 calculated by the above-described estimation to the urea injection amount supplied to the SCR catalyst 46 by the injector 45. From this, the consumption amount of NH 3 in the SCR catalyst 46 may be reduced. The consumption amount of NH 3 in the SCR catalyst 46 is calculated based on the NOx purification amount in the SCR catalyst 46 based on a pair of NOx sensors provided upstream and downstream of the SCR catalyst 46. Calculated as the amount of NH 3 required for purification.

前記実施形態では、最初のリッチリーンサイクルにおいて、リッチステップの空気過剰率λが最も小さい初期空気過剰率λ0に設定されており、後続するサイクルにおいて段階的に増大し、所定サイクル数n0以降のサイクルでは最終空気過剰率λEに一定に設定されている。しかしながら、実施時期が早いサイクルにおけるリッチステップの空気過剰率が、実施時期が遅いサイクルにおける空気過剰率よりもリッチであればよく、例えば、所定サイクル数n0までのサイクルにおけるリッチステップの空気過剰率λが、所定サイクル数n0以降のサイクルにおけるリッチステップの空気過剰率λに比してリッチ側に設定されていればよく、必ずしも最初のリッチリーンサイクルにおけるリッチステップの空気過剰率λを最もリッチ側に設定しなくてもよい。例えば、所定サイクル数n0までのサイクルにおいて、最初のリッチリーンサイクルにおけるリッチステップの空気過剰率λよりも、2回目のリッチリーンサイクルにおけるリッチステップの空気過剰率λをよりリッチ側に設定してもよい。また、所定のサイクル数n0は複数でなくてもよく、1であってもよい。この場合、最初のリッチリーンサイクルのみ、リッチステップの空気過剰率λが、これ以降のリッチリーンサイクルにおけるリッチステップの空気過剰率λよりもリッチ側に設定される。   In the above-described embodiment, the excess air ratio λ of the rich step is set to the smallest initial excess air ratio λ0 in the first rich-lean cycle, and gradually increases in subsequent cycles, and cycles after the predetermined number of cycles n0. Then, the final excess air ratio λE is set to be constant. However, it is sufficient that the air excess ratio of the rich step in the cycle with the earlier execution time is richer than the air excess ratio in the cycle with the later execution time. However, it is only necessary to set the rich step air excess ratio λ in the cycle after the predetermined number of cycles n0 to the rich side. It is not necessary to set. For example, in the cycle up to a predetermined number of cycles n0, the rich step air excess ratio λ in the second rich lean cycle may be set to be richer than the rich step air excess ratio λ in the first rich lean cycle. Good. Further, the predetermined number of cycles n0 may not be plural but may be one. In this case, only in the first rich-lean cycle, the excess air ratio λ of the rich step is set to a richer side than the excess air ratio λ of the rich step in the subsequent rich-lean cycle.

また、前記実施形態では、第1領域R1でエンジン本体1が運転されているときに、アクティブDeNOx制御およびこれに続くDPF再生制御およびDeSOx制御が実施される場合について説明したが、これらの制御は、第1領域R1以外で実施されてもよい。   In the above-described embodiment, the case where the active DeNOx control and the subsequent DPF regeneration control and DeSOx control are performed when the engine body 1 is operated in the first region R1 has been described. This may be carried out outside the first region R1.

また、前記実施形態では、DPF再生制御時に第2EGRバルブ60が全閉にされる場合について説明したが、DPF再生制御時に第2EGRバルブ60を開弁させてもよい。ただし、この場合であっても、DPF再生制御ではポスト噴射された燃料が燃焼しないため、EGRクーラー等の閉塞を防止するために、DPF再生制御時の第2EGRバルブ60の開度は、通常運転時、アクティブDeSOx制御時およびDeNOx制御のリッチステップ時のいずれよりも小さくするのが好ましい。また、DeNOx制御時とDeSOx制御時とにおいて、第2EGRバルブ60の開度を異なる開度としてもよい。   In the embodiment, the case where the second EGR valve 60 is fully closed during the DPF regeneration control has been described. However, the second EGR valve 60 may be opened during the DPF regeneration control. However, even in this case, the post-injected fuel is not combusted in the DPF regeneration control, so that the opening degree of the second EGR valve 60 at the time of the DPF regeneration control is the normal operation in order to prevent the EGR cooler and the like from being blocked. It is preferable to make it smaller than both during active DeSOx control and during rich step of DeNOx control. Further, the opening degree of the second EGR valve 60 may be different between the DeNOx control and the DeSOx control.

1 エンジン本体(エンジン)
2 気筒
6 燃焼室
10 インジェクタ(燃料噴射装置)
40 排気通路
41 NOx触媒
42 酸化触媒
44 DPF(PMフィルタ)
200 PCM(制御手段)
201 NOx触媒リッチパージ制御部
202 NOx触媒再生制御部
203 PMフィルタ再生制御部
1 Engine body (Engine)
2 cylinder 6 combustion chamber 10 injector (fuel injection device)
40 Exhaust passage 41 NOx catalyst 42 Oxidation catalyst 44 DPF (PM filter)
200 PCM (control means)
201 NOx catalyst rich purge control unit 202 NOx catalyst regeneration control unit 203 PM filter regeneration control unit

Claims (7)

排気中の未燃燃料を酸化可能な酸化触媒と、前記酸化触媒と一体若しくはこの下流側に設けられて排気の空燃比が理論空燃比よりリーンであるリーン状態で排気中のNOxを吸蔵し且つ前記空燃比が理論空燃比又は理論空燃比よりリッチであるリッチ状態になると吸蔵したNOxを還元するNOx触媒と、前記酸化触媒の下流側に設けられ排気中の微粒子状物質を捕集可能なPMフィルタとを排気通路に備えたエンジンの制御装置であって、
前記NOx触媒に導入される排気ガスの空燃比が理論空燃比又は理論空燃比よりリッチ空燃比であるリッチ状態に設定するリッチステップと、理論空燃比よりリーン空燃比かつ未燃燃料が前記酸化触媒に導入されるリーン状態に設定するリーンステップとを含むリッチリーンサイクルを複数サイクル繰り返すことにより、前記NOx触媒に吸蔵された硫黄成分を除去するNOx触媒再生制御を実施するNOx触媒再生制御部と、
前記PMフィルタに導入される排気ガスの空燃比を理論空燃比よりもリーン空燃比かつ未燃燃料が前記酸化触媒に導入されるようにして、捕集された前記微粒子状物質を前記PMフィルタから除去するPMフィルタ再生制御を実施するPMフィルタ再生制御部と、
を備え、
前記NOx触媒再生制御部は、前記複数サイクルのうち、実施時期が早いサイクルの方が実施時期が遅いサイクルよりも、前記リッチリーンサイクルにおける前記リッチステップの空燃比がリッチになるよう設定する、エンジンの制御装置。
An oxidation catalyst capable of oxidizing unburned fuel in the exhaust, and the NOx in the exhaust is occluded in a lean state provided integrally with or downstream of the oxidation catalyst and in which the exhaust air-fuel ratio is leaner than the stoichiometric air-fuel ratio; A NOx catalyst that reduces the stored NOx when the air-fuel ratio is richer than the stoichiometric air-fuel ratio or the stoichiometric air-fuel ratio, and a PM that is provided downstream of the oxidation catalyst and that can collect particulate matter in the exhaust gas An engine control device having a filter and an exhaust passage,
A rich step in which the air-fuel ratio of the exhaust gas introduced into the NOx catalyst is set to a rich state in which the air-fuel ratio is richer than the stoichiometric air-fuel ratio or the stoichiometric air-fuel ratio; A NOx catalyst regeneration control unit that performs NOx catalyst regeneration control to remove sulfur components stored in the NOx catalyst by repeating a plurality of rich lean cycles including a lean step that is set to a lean state that is introduced into
The air-fuel ratio of the exhaust gas introduced into the PM filter is leaner than the stoichiometric air-fuel ratio, and unburned fuel is introduced into the oxidation catalyst so that the collected particulate matter is removed from the PM filter. A PM filter regeneration control unit for performing PM filter regeneration control to be removed;
With
The NOx catalyst regeneration control unit sets the air-fuel ratio of the rich step in the rich lean cycle to be richer in a cycle in which the implementation timing is earlier than in a cycle in which the implementation timing is late among the plurality of cycles. Control device.
前記NOx触媒再生制御部は、前記複数サイクルのうち、実施時期が早いサイクルの方が実施時期が遅いサイクルよりも、前記リッチリーンサイクルにおける前記リッチステップの空燃比が段階的にリッチになるよう空燃比を設定する、
請求項1に記載のエンジンの制御装置。
The NOx catalyst regeneration control unit is configured so that the air-fuel ratio of the rich step in the rich lean cycle becomes richer in stages in the rich lean cycle than in the cycle with the earlier implementation time among the plurality of cycles. Set the fuel ratio,
The engine control apparatus according to claim 1.
前記NOx触媒再生制御部は、前記リッチリーンサイクルを所定サイクル数繰り返した後、前記リッチステップにおける前記空燃比を一定に設定する、
請求項1又は2に記載のエンジンの制御装置。
The NOx catalyst regeneration control unit sets the air-fuel ratio in the rich step to be constant after repeating the rich lean cycle for a predetermined number of cycles.
The engine control device according to claim 1 or 2.
前記エンジンは前記排気通路に、前記NOx触媒の下流側に設けられたSCR触媒と、前記NOx触媒と前記SCR触媒との間に、NHの原料あるいはNHからなるSCR用還元剤を供給するSCR用還元剤供給手段とを更に備え、
前記制御装置は、前記NOx触媒再生制御において、前記リッチステップにおける前記空燃比が小さいほど、前記SCR用還元剤供給手段を、前記SCR用還元剤の供給量が少なくなるように制御する、
請求項1〜3のいずれか1つに記載のエンジンの制御装置。
Supplying the engine to the exhaust passage, and the SCR catalyst provided downstream of the NOx catalyst, between the NOx catalyst and the SCR catalyst, the SCR reducing agent for consisting raw material or NH 3 in NH 3 Further comprising a reducing agent supply means for SCR,
In the NOx catalyst regeneration control, the control device controls the SCR reducing agent supply means so that the supply amount of the SCR reducing agent decreases as the air-fuel ratio in the rich step decreases.
The engine control device according to any one of claims 1 to 3.
前記エンジンは前記排気通路に、前記SCR触媒の上流側及び下流側に設けられNOxの濃度を計測する一対のNOxセンサを、更に備え、
前記NOx触媒再生制御部は、
前記一対のNOxセンサにより検出された前記SCR触媒の上流側及び下流側におけるNOxの濃度差に基づいて、前記SCR触媒におけるNHの消費量を算出し、
前記NHの消費量と、前記SCR用還元剤の供給量とに基づいて、前記SCR触媒におけるNHの吸着量を算出し、
前記リッチステップにおける空燃比を、前記SCR触媒における前記NHの前記吸着量が多いほど小さくする度合いを抑制する、
請求項4に記載のエンジンの制御装置。
The engine further includes a pair of NOx sensors provided in the exhaust passage on the upstream side and the downstream side of the SCR catalyst for measuring the concentration of NOx,
The NOx catalyst regeneration control unit
Based on the NOx concentration difference between the upstream side and the downstream side of the SCR catalyst detected by the pair of NOx sensors, the consumption amount of NH 3 in the SCR catalyst is calculated,
Based on the consumption amount of NH 3 and the supply amount of the reducing agent for SCR, the adsorption amount of NH 3 in the SCR catalyst is calculated,
The degree to which the air-fuel ratio in the rich step is reduced as the adsorption amount of the NH 3 in the SCR catalyst is increased is suppressed.
The engine control device according to claim 4.
前記空燃比を前記リッチ状態にすることにより、前記NOx触媒から吸蔵されたNOxを還元する、NOx触媒リッチパージ制御を実施するNOx触媒リッチパージ制御部を更に備え、
前記PMフィルタ再生制御部は、前記PMフィルタ再生制御を、前記NOx触媒リッチパージ制御の終了後に続いて開始する、
請求項1〜5のいずれか1つに記載のエンジンの制御装置。
A NOx catalyst rich purge control unit that performs NOx catalyst rich purge control to reduce the NOx stored from the NOx catalyst by bringing the air-fuel ratio into the rich state;
The PM filter regeneration control unit starts the PM filter regeneration control after the end of the NOx catalyst rich purge control,
The engine control device according to any one of claims 1 to 5.
排気中の未燃燃料を酸化可能な酸化触媒と、前記酸化触媒と一体若しくはこの下流側に設けられて排気の空燃比が理論空燃比よりリーンであるリーン状態で排気中のNOxを吸蔵し且つ前記空燃比が理論空燃比又は理論空燃比よりリッチであるリッチ状態になると吸蔵したNOxを還元するNOx触媒と、前記酸化触媒の下流側に設けられ排気中の微粒子状物質を捕集可能なPMフィルタとを排気通路に備えたエンジンの制御方法であって、
前記NOx触媒に導入される排気ガスの空燃比が理論空燃比又は理論空燃比よりリッチ空燃比であるリッチ状態に設定するリッチステップと、理論空燃比よりリーン空燃比かつ未燃燃料が前記酸化触媒に導入されるリーン状態に設定するリーンステップとを含むリッチリーンサイクルを複数サイクル繰り返すことにより、前記NOx触媒に吸蔵された硫黄成分を除去するNOx触媒再生ステップと、
前記PMフィルタに導入される排気ガスの空燃比を理論空燃比よりもリーン空燃比かつ未燃燃料が前記酸化触媒に導入されるようにして、捕集された前記微粒子状物質を前記PMフィルタから除去するPMフィルタ再生ステップと、
を有し、
前記NOx触媒再生ステップは、前記複数サイクルのうち、実施時期が早いサイクルの方が実施時期が遅いサイクルよりも、前記リッチリーンサイクルにおける前記リッチステップの空燃比がリッチになるよう設定されている、エンジンの制御方法。
An oxidation catalyst capable of oxidizing unburned fuel in the exhaust, and the NOx in the exhaust is occluded in a lean state provided integrally with or downstream of the oxidation catalyst and in which the exhaust air-fuel ratio is leaner than the stoichiometric air-fuel ratio; A NOx catalyst that reduces the stored NOx when the air-fuel ratio is richer than the stoichiometric air-fuel ratio or the stoichiometric air-fuel ratio, and a PM that is provided downstream of the oxidation catalyst and that can collect particulate matter in the exhaust gas An engine control method including a filter in an exhaust passage,
A rich step in which the air-fuel ratio of the exhaust gas introduced into the NOx catalyst is set to a rich state in which the air-fuel ratio is richer than the stoichiometric air-fuel ratio or the stoichiometric air-fuel ratio; NOx catalyst regeneration step for removing sulfur components stored in the NOx catalyst by repeating a plurality of rich lean cycles including a lean step for setting a lean state introduced into
The air-fuel ratio of the exhaust gas introduced into the PM filter is leaner than the stoichiometric air-fuel ratio, and unburned fuel is introduced into the oxidation catalyst so that the collected particulate matter is removed from the PM filter. A PM filter regeneration step to be removed;
Have
The NOx catalyst regeneration step is set such that the air-fuel ratio of the rich step in the rich lean cycle becomes richer in the cycle with the earlier execution time than the cycle with the later execution time among the plurality of cycles. How to control the engine.
JP2018019453A 2018-02-06 2018-02-06 Control device for engine Pending JP2019138160A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018019453A JP2019138160A (en) 2018-02-06 2018-02-06 Control device for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018019453A JP2019138160A (en) 2018-02-06 2018-02-06 Control device for engine

Publications (1)

Publication Number Publication Date
JP2019138160A true JP2019138160A (en) 2019-08-22

Family

ID=67695122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018019453A Pending JP2019138160A (en) 2018-02-06 2018-02-06 Control device for engine

Country Status (1)

Country Link
JP (1) JP2019138160A (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005155374A (en) * 2003-11-21 2005-06-16 Isuzu Motors Ltd Exhaust emission control method and exhaust emission control system
JP2009250210A (en) * 2008-04-10 2009-10-29 Toyota Motor Corp Exhaust emission control device of internal combustion engine
WO2010113278A1 (en) * 2009-03-31 2010-10-07 トヨタ自動車株式会社 Internal combustion engine exhaust gas purification system
JP2013160106A (en) * 2012-02-02 2013-08-19 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2013231363A (en) * 2012-04-27 2013-11-14 Toyota Motor Corp Control device for internal combustion engine
JP2015078698A (en) * 2014-12-17 2015-04-23 トヨタ自動車株式会社 Exhaust emission control device for internal combustion engine
JP2016061143A (en) * 2014-09-12 2016-04-25 いすゞ自動車株式会社 Exhaust emission control system
JP2016118135A (en) * 2014-12-19 2016-06-30 いすゞ自動車株式会社 Exhaust emission control system
JP2017145703A (en) * 2016-02-15 2017-08-24 本田技研工業株式会社 Exhaust emission control system for internal combustion engine
JP2018003747A (en) * 2016-07-05 2018-01-11 マツダ株式会社 Exhaust emission control device for engine

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005155374A (en) * 2003-11-21 2005-06-16 Isuzu Motors Ltd Exhaust emission control method and exhaust emission control system
JP2009250210A (en) * 2008-04-10 2009-10-29 Toyota Motor Corp Exhaust emission control device of internal combustion engine
WO2010113278A1 (en) * 2009-03-31 2010-10-07 トヨタ自動車株式会社 Internal combustion engine exhaust gas purification system
JP2013160106A (en) * 2012-02-02 2013-08-19 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2013231363A (en) * 2012-04-27 2013-11-14 Toyota Motor Corp Control device for internal combustion engine
JP2016061143A (en) * 2014-09-12 2016-04-25 いすゞ自動車株式会社 Exhaust emission control system
JP2015078698A (en) * 2014-12-17 2015-04-23 トヨタ自動車株式会社 Exhaust emission control device for internal combustion engine
JP2016118135A (en) * 2014-12-19 2016-06-30 いすゞ自動車株式会社 Exhaust emission control system
JP2017145703A (en) * 2016-02-15 2017-08-24 本田技研工業株式会社 Exhaust emission control system for internal combustion engine
JP2018003747A (en) * 2016-07-05 2018-01-11 マツダ株式会社 Exhaust emission control device for engine

Similar Documents

Publication Publication Date Title
US7669410B2 (en) Sulfur purge control method for exhaust gas purifying system and exhaust gas purifying system
US10443525B2 (en) Exhaust emission control system of engine
JP7095295B2 (en) Engine exhaust purification control device
JP7163585B2 (en) engine controller
JP7024470B2 (en) Engine control
JP7024471B2 (en) Engine control
JP2019138162A (en) Control device for engine
JP6504474B2 (en) Engine exhaust purification system
JP4284919B2 (en) Exhaust gas purification device for internal combustion engine and control method thereof
JP6586976B2 (en) Engine control device
JP2019138160A (en) Control device for engine
JP7172047B2 (en) Engine exhaust purification control device
JP6627839B2 (en) Engine exhaust purification control device
JP6627840B2 (en) Engine exhaust purification control device
JP6649634B2 (en) Engine exhaust purification control device
JP6649633B2 (en) Engine exhaust purification control device
JP7095317B2 (en) Engine exhaust purification control device
JP6508264B2 (en) Engine control device
JP7172048B2 (en) Engine exhaust purification control device
JP2005291058A (en) Exhaust emission control device
KR20070016948A (en) Device of purifying exhaust gas
JP2019132229A (en) Exhaust emission control device for engine
JP2019132228A (en) Exhaust emission control device for engine
JP2019132224A (en) Exhaust emission control device for engine
JP2005291059A (en) Exhaust emission control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220105

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220628