JP2019129798A - Quick and efficient isothermal amplification reaction using heating sample - Google Patents
Quick and efficient isothermal amplification reaction using heating sample Download PDFInfo
- Publication number
- JP2019129798A JP2019129798A JP2018017426A JP2018017426A JP2019129798A JP 2019129798 A JP2019129798 A JP 2019129798A JP 2018017426 A JP2018017426 A JP 2018017426A JP 2018017426 A JP2018017426 A JP 2018017426A JP 2019129798 A JP2019129798 A JP 2019129798A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- isothermal amplification
- amplification reaction
- sample
- nucleic acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Investigating Or Analysing Biological Materials (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
本発明は、加熱したサンプルを用いた効率的な等温増幅反応を用いた標的核酸を増幅、検出する方法に関する。 The present invention relates to a method for amplifying and detecting a target nucleic acid using an efficient isothermal amplification reaction using a heated sample.
核酸を増幅する方法として、ポリメラーゼ連鎖反応法(PCR法)が広く知られている。この方法は、標的DNA中の特定塩基配列の一部と相補的または相同的な配列を有する一組のプライマーと耐熱性DNAポリメラーゼ存在下で、熱変性−プライマーアニール−伸長反応からなるサイクルを繰り返し行なうことによってDNAを増幅する方法である。また標的核酸がRNAの場合、逆転写酵素によって一旦cDNAを合成してからPCR法を行なう、いわゆるRT−PCR法が知られている。しかし、PCR法およびRT−PCR法は急激に何度も反応温度を昇降させる必要があり、自動化の際の反応装置の省力化や低コスト化のための障壁となっていた。 As a method for amplifying a nucleic acid, a polymerase chain reaction method (PCR method) is widely known. This method repeats a cycle consisting of heat denaturation-primer annealing-extension reaction in the presence of a pair of primers having a sequence complementary to or homologous to a part of a specific base sequence in the target DNA and a thermostable DNA polymerase. It is a method of amplifying DNA by performing. In addition, when the target nucleic acid is RNA, a so-called RT-PCR method is known in which a PCR method is performed after cDNA is once synthesized by reverse transcriptase. However, the PCR method and the RT-PCR method need to raise and lower the reaction temperature a number of times rapidly, which has been a barrier for labor saving and cost reduction of the reaction apparatus at the time of automation.
一方、RNAを標的として一定温度で核酸を増幅する方法としてNASBA法(特許文献1および2)、TMA法(特許文献3)、TRC法(特許文献4および非特許文献1)といった方法が知られている。これらの方法は、反応温度を昇降させることなく一定温度で核酸が増幅する等温増幅反応のため、簡便に核酸を増幅することができる。そのため自動化の際の反応装置省力化や低コスト化ができる点で好ましい方法といえる。 On the other hand, methods such as NASBA method (Patent Documents 1 and 2), TMA method (Patent Document 3), and TRC method (Patent Document 4 and Non-Patent Document 1) are known as methods for amplifying nucleic acids at a constant temperature using RNA as a target. ing. Since these methods are isothermal amplification reactions in which nucleic acids are amplified at a constant temperature without raising or lowering the reaction temperature, nucleic acids can be easily amplified. Therefore, it can be said that it is a preferable method from the viewpoint of labor saving and cost reduction of the reaction apparatus at the time of automation.
感染症の臨床検査分野においては、簡便、迅速かつ高感度に病原体を検出することが重要である。高感度に病原体を検出する方法として、核酸増幅法を利用した検出法が知られている。しかし、これらの核酸増幅反応は、緊急を要する場合がしばしばある臨床検査分野ではより短時間に結果を得ることが求められている。 In the clinical laboratory field of infectious diseases, it is important to detect pathogens simply, quickly and with high sensitivity. As a method for detecting a pathogen with high sensitivity, a detection method using a nucleic acid amplification method is known. However, these nucleic acid amplification reactions are required to obtain results in a shorter time in the clinical laboratory field, which is often urgent.
本発明の目的は、より迅速で効率的な等温増幅反応により、標的核酸を増幅、検出する方法を提供することにある。 An object of the present invention is to provide a method for amplifying and detecting a target nucleic acid by a more rapid and efficient isothermal amplification reaction.
本発明者らは上記課題を解決するべく鋭意検討を重ねた結果、本発明を完成するに至った。すなわち本発明は以下の(1)〜(5)の態様を包含する。
(1)等温増幅反応において、等温増幅反応を実施する温度よりも高い温度のサンプルを反応試薬に添加する工程を含む、標的核酸を増幅し検出する方法
(2)より高い温度が0.8℃以上である(1)記載の方法。
(3)より高い温度が3.4℃以上である(1)記載の方法。
(4)より高い温度が9.9℃以上である(1)記載の方法。
(5)前記反応試薬が乾燥状態である(1)から(4)のいずれかに記載の方法。
As a result of intensive studies to solve the above problems, the present inventors have completed the present invention. That is, the present invention includes the following aspects (1) to (5).
(1) In the isothermal amplification reaction, the temperature higher than that of the method (2) for amplifying and detecting the target nucleic acid, including the step of adding to the reaction reagent a sample having a temperature higher than the temperature at which the isothermal amplification reaction is performed is 0.8 ° C The method described in (1) above.
(3) The method according to (1), wherein the higher temperature is 3.4 ° C. or higher.
(4) The method according to (1), wherein the higher temperature is 9.9 ° C. or higher.
(5) The method according to any one of (1) to (4), wherein the reaction reagent is in a dry state.
以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
本発明の一態様において等温増幅反応とは、等温で実施される核酸増幅反応であればよく、例えば、ウイルス核酸の一部と相同的な配列を有する第一のプライマーと、ウイルス核酸の一部と相補的な配列を有する第二のプライマーと、RNA依存性DNAポリメラーゼ活性を有する酵素と、DNA依存性DNAポリメラーゼ活性を有する酵素と、リボヌクレアーゼH(RNase H)活性を有する酵素と、RNAポリメラーゼ活性を有する酵素とを用いて、標的核酸を増幅する方法であって、前記第一のプライマーまたは前記第二のプライマーのいずれかには、その5’末端側に前記RNAポリメラーゼ活性を有する酵素に対応したプロモーター配列を付加している方法(例えば、TMA法、TRC法、NASBA法)が例示される。 In one embodiment of the present invention, the isothermal amplification reaction may be a nucleic acid amplification reaction that is performed isothermally. For example, a first primer having a sequence homologous to part of a viral nucleic acid and part of the viral nucleic acid. A second primer having a complementary sequence, an enzyme having RNA-dependent DNA polymerase activity, an enzyme having DNA-dependent DNA polymerase activity, an enzyme having ribonuclease H (RNase H) activity, and RNA polymerase activity Wherein either of the first primer and the second primer corresponds to the enzyme having the RNA polymerase activity on the 5 ′ end side thereof. Examples of the method for adding the promoter sequence (for example, TMA method, TRC method, NASBA method).
本発明の一態様において等温増幅反応を実施する温度とは、それぞれの等温増幅反応に適した温度を適宜選択できる。例えばTRC法では用いる酵素の耐熱性により43℃もしくは46℃から選択される。 In one embodiment of the present invention, a temperature suitable for each isothermal amplification reaction can be appropriately selected as the temperature at which the isothermal amplification reaction is performed. For example, in the TRC method, it is selected from 43 ° C. or 46 ° C. depending on the heat resistance of the enzyme used.
本発明の一態様におけるより高い温度のサンプルとは、上記等温増幅反応を実施する温度よりも高い温度であればよく、例えば0.8℃以上、好ましくは3.4℃以上、より好ましくは9.9℃以上高い液温に加熱されたサンプルである。加熱の方法はどのような方法でもよく、一般的なヒートブロックによる加熱が例示できる。 The higher temperature sample in one embodiment of the present invention may be a temperature higher than the temperature at which the isothermal amplification reaction is performed, for example, 0.8 ° C. or higher, preferably 3.4 ° C. or higher, more preferably 9 A sample heated to a liquid temperature higher than 9 ° C. Any heating method may be used, and heating by a general heat block can be exemplified.
本発明の一態様において検出対象とする核酸は、DNAでもRNAでもよく、例えばTRC法ではRNAが選択されてよい。またこの核酸はDNA、RNAそのものであってもよく、さらにはDNA、RNAを含む微生物、細胞、ウイルス等であってもよい本発明の一態様における核酸を含んだ試料の一例として、好ましくはエンベロープを有するウイルスや一本鎖RNAを有するウイルスが例示される。エンベロープを有するウイルスとは、ウイルスカプシドが主に脂質から構成されるエンベロープにより覆われたウイルスのことをいい、一例として、単純ヘルペスウイルス、インフルエンザウイルス、RSウイルス、エイズウイルス(HIV)があげられる。一本鎖RNAを有するウイルスとは、ボルティモア分類における第4群(1本鎖RNA +鎖)、第5群(1本鎖RNA −鎖)、第6群(1本鎖RNA 逆転写)に属するウイルスであり、一例として、コロナウイルス、RSウイルス、ヒト・メタニューモウイルス、インフルエンザウイルス、エイズウイルス(HIV)があげられる。一本鎖RNAを有するウイルスは、TRC法等のRNAを出発物質とする核酸増幅法に適する点で好ましい。中でもインフルエンザウイルスは、本発明の抽出試薬における核酸を含んだ試料として特に好ましい。 In one embodiment of the present invention, the nucleic acid to be detected may be DNA or RNA. For example, RNA may be selected in the TRC method. The nucleic acid may be DNA or RNA itself, and may be a microorganism, cell, virus, or the like containing DNA or RNA. As an example of a sample containing nucleic acid in one embodiment of the present invention, preferably an envelope. And viruses having a single-stranded RNA. An enveloped virus refers to a virus whose viral capsid is covered by an envelope mainly composed of lipids, and examples include herpes simplex virus, influenza virus, RS virus, and AIDS virus (HIV). Viruses having single-stranded RNA belong to the fourth group (single-stranded RNA + strand), the fifth group (single-stranded RNA-strand), and the sixth group (single-stranded RNA reverse transcription) in the Baltimore classification. Examples thereof include coronavirus, RS virus, human metapneumovirus, influenza virus, and AIDS virus (HIV). Viruses having single-stranded RNA are preferred because they are suitable for nucleic acid amplification methods using RNA as a starting material, such as the TRC method. Among them, influenza virus is particularly preferable as a sample containing nucleic acid in the extraction reagent of the present invention.
本発明の一態様においてサンプルとは、検出対象の核酸を含む試料を含んでいればよく、例えば、単にRNA、DNA、微生物、細胞、ウイルス等を水、生理食塩水や緩衝液に溶解したものや、微生物、細胞、ウイルス等を含んだ生体試料そのものや、前記生体試料を含んだ濾紙、スワブ等があげられる。前記生体試料の一例として、血液、糞便、尿、痰、リンパ液、血漿、射精液、肺吸引物、脳脊髄液、咽頭拭い液、鼻腔拭い液、うがい液、唾液、涙液があげられるが、これらに限定されない。サンプルには、さらに核酸の抽出に必要な成分として、界面活性剤、変性剤、有機溶媒等を含んでいてよく、等温増幅反応に必要な成分、例えばマグネシウム塩、カリウム塩等の塩類、トレハロース等の糖類、グリセロール等の糖アルコール、核酸成分、有機溶媒、プライマーやプローブ等の核酸類、緩衝液成分等を含むことができる。 In one embodiment of the present invention, the sample only needs to include a sample containing the nucleic acid to be detected. For example, RNA, DNA, microorganisms, cells, viruses, etc. are simply dissolved in water, physiological saline, or a buffer solution. And biological samples containing microorganisms, cells, viruses, and the like, filter papers containing the biological samples, swabs, and the like. Examples of the biological sample include blood, stool, urine, sputum, lymph, plasma, ejaculate, lung aspirate, cerebrospinal fluid, pharyngeal wipe, nasal wipe, gargle, saliva, tears, It is not limited to these. The sample may further contain a surfactant, a denaturant, an organic solvent, etc. as components necessary for nucleic acid extraction. Components necessary for isothermal amplification reaction, for example, salts such as magnesium salt and potassium salt, trehalose, etc. Sugars, sugar alcohols such as glycerol, nucleic acid components, organic solvents, nucleic acids such as primers and probes, buffer solution components, and the like.
本発明の一態様における反応試薬には、等温増幅反応に必要な成分が含まれ、例えば酵素、マグネシウム塩、カリウム塩等の塩類、トレハロース等の糖類、グリセロール等の糖アルコール、核酸成分、有機溶媒、プライマーやプローブ等の核酸類、緩衝液成分等を含むことができ、前記核酸を含む試料とあわせ、最終的に必要な濃度になるように調整される。 The reaction reagent in one embodiment of the present invention includes components necessary for isothermal amplification reaction, such as enzymes, salts such as magnesium salts and potassium salts, sugars such as trehalose, sugar alcohols such as glycerol, nucleic acid components, organic solvents. In addition, nucleic acids such as primers and probes, buffer components, and the like can be contained, and together with the sample containing the nucleic acids, the final concentration is adjusted to a necessary level.
本発明の一態様における反応試薬は、乾燥形態であってもよい。反応試薬には酵素が含まれるため、乾燥状態にすることで液状の場合よりも保存期間を延ばし、保存に適する温度もより室温に近い状態にすることが出来る。さらに乾燥状態にすることで輸送や使う際に操作し易いという利点がある。 The reaction reagent in one embodiment of the present invention may be in a dry form. Since the reaction reagent contains an enzyme, when it is in a dry state, the storage period can be extended as compared with the liquid state, and the temperature suitable for storage can be made closer to room temperature. Furthermore, there exists an advantage that it is easy to operate when transporting and using it by making it dry.
乾燥形態とする方法としては酵素の活性を失わない方法であればいずれの方法であってもよく、凍結乾燥法、蒸発乾燥法などを例示できる。 Any method may be used as a method for obtaining a dry form as long as it does not lose the activity of the enzyme, and examples thereof include a freeze drying method and an evaporation drying method.
本発明により、増幅温度よりも高温のサンプルを用いることで、高温にしない場合と比べて、より迅速かつ高効率で等温増幅反応を実施することができる。 According to the present invention, by using a sample having a temperature higher than the amplification temperature, the isothermal amplification reaction can be carried out more rapidly and efficiently than when the sample is not heated to a high temperature.
以下、ウイルスとしてインフルエンザウイルスを用いたときの実施例および参考例により本発明を詳細に説明するが、本発明はこれら例により限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to examples and reference examples when an influenza virus is used as a virus, but the present invention is not limited to these examples.
実施例1 標準RNAの調製
後述の実施例で使用したプライマー及びインターカレーター性蛍光色素標準核酸プローブは特開2016−131498号公報に記載の方法で調製した。
Example 1 Preparation of Standard RNA Primers and intercalator fluorescent dye standard nucleic acid probes used in Examples described later were prepared by the method described in JP-A-2006-131498.
実施例2 蒸発乾燥増幅試薬の調製方法
以下の組成からなる試薬液18.5μLを0.5mL容量PCRチューブ(Individual Dome Cap PCR Tube、SSI製)に分注し、真空凍結乾燥機(Virtis advantage Plus、セントラル科学貿易社製)にて、25℃ 100torr16時間、50℃ 1.5時間、25℃ で庫内温度が落ち着くまで蒸発乾燥した。乾燥後の増幅試薬は密栓した上で乾燥剤と共に4℃で保存した。
Example 2 Preparation Method of Evaporative Drying Amplification Reagent A 18.5 μL reagent solution having the following composition was dispensed into a 0.5 mL PCR tube (Individual Dome Cap PCR Tube, manufactured by SSI), and a vacuum freeze dryer (Virtis Advantage Plus). (Manufactured by Central Scientific Trading Co., Ltd.) at 25 ° C., 100 torr for 16 hours, 50 ° C., 1.5 hours, and 25 ° C. until the inside temperature settled down. The amplification reagent after drying was sealed and stored at 4 ° C. with a desiccant.
試薬液の組成:濃度はTRC反応(30μL中)の最終濃度
6mM Tris−HCl(pH8.65)
各0.25mM dATP、dCTP、dGTP、dTTP
各2.7mM ATP、CTP、UTP、GTP
3.06mM ITP
198.9mM トレハロース
9.1U AMV逆転写酵素
142U T7 RNAポリメラーゼ
各20nM INAFプローブ(配列番号1;実施例1で調製)
第一のプライマー(配列番号2;実施例1で調製)
第二のプライマー(配列番号3;実施例1で調製)
8.2%(w/w)2−ヒドロキシプロピル−γ−シクロデキストリン。
Composition of reagent solution: concentration is final concentration of TRC reaction (in 30 μL) 6 mM Tris-HCl (pH 8.65)
0.25 mM dATP, dCTP, dGTP, dTTP each
2.7 mM each ATP, CTP, UTP, GTP
3.06 mM ITP
198.9 mM trehalose 9.1 U AMV reverse transcriptase 142 U T7 RNA polymerase each 20 nM INAF probe (SEQ ID NO: 1; prepared in Example 1)
First primer (SEQ ID NO: 2; prepared in Example 1)
Second primer (SEQ ID NO: 3; prepared in Example 1)
8.2% (w / w) 2-hydroxypropyl-γ-cyclodextrin.
実施例3 加熱サンプルの効果
以下の方法により、加熱サンプルの効果を調べた。
(1)B型インフルエンザウイルス(B/Massachusetts/2/2012株)を、注射用水で1.0×10−1TCID50/mlの濃度に希釈することでウイルス試料を調製した。
(2)(1)で調製したウイルス試料50μLを、以下の組成からなるウイルス抽出液1000μLに添加、撹拌しサンプル液とした。
Example 3 Effect of Heated Sample The effect of the heated sample was examined by the following method.
(1) A virus sample was prepared by diluting influenza B virus (B / Massachettes / 2/2012 strain) to a concentration of 1.0 × 10 −1 TCID 50 / ml with water for injection.
(2) 50 μL of the virus sample prepared in (1) was added to 1000 μL of a virus extract solution having the following composition and stirred to obtain a sample solution.
ウイルス抽出液の組成:
22.2mM 塩化マグネシウム
75.0mM 塩化カリウム
1.2% グリセロール
11.0% DMSO
0.05% (v/v)Tween20
1.5% (w/w)コール酸ナトリウム
54mM Tris−HCl(pH8.65)
4mM Tris(2−carboxyethyl)phosphineHydrochloride
3mM KOH
(3)(2)のサンプル液を表1に記載の設定温度で1分間加熱した後、実施例2で作製した蒸発乾燥試薬にマイクロピペットで30μL添加、混合した。
(4)引き続きPCRチューブを直接測定可能な温調機能付き蛍光分光光度計(TRCRapid−160、東ソー製)を用い、46℃で反応させると同時に反応液の蛍光強度(励起波長470nm、蛍光波長520nm)を経時的に30分間測定した。反応液の蛍光強度比(所定時間の蛍光強度値をバックグラウンドの蛍光強度比で割った値)が1.2を超えた場合を陽性判定とした。試薬混合時を0分として、陽性判定が得られるまでに要した時間を検出時間とし表1に記載した。
(5)また、別途調整したウイルス抽出液1000μLを同様に加熱し、その液温を測定することで、加熱したサンプルの液温とし表1に記載した。
Composition of virus extract:
22.2 mM Magnesium chloride 75.0 mM Potassium chloride 1.2% Glycerol 11.0% DMSO
0.05% (v / v) Tween 20
1.5% (w / w) sodium cholate 54 mM Tris-HCl (pH 8.65)
4 mM Tris (2-carbethyl) phosphine Hydrochloride
3 mM KOH
(3) After heating the sample solution of (2) at the set temperature shown in Table 1 for 1 minute, 30 μL of the evaporated dry reagent prepared in Example 2 was added and mixed with a micropipette.
(4) Using a fluorescence spectrophotometer with temperature control function (TRCRapid-160, manufactured by Tosoh Corp.) capable of directly measuring a PCR tube, the reaction solution is reacted at 46 ° C. and simultaneously the fluorescence intensity of the reaction solution (excitation wavelength: 470 nm, fluorescence wavelength: 520 nm). ) Was measured over time for 30 minutes. The case where the fluorescence intensity ratio of the reaction solution (the value obtained by dividing the fluorescence intensity value for a predetermined time by the background fluorescence intensity ratio) exceeded 1.2 was determined as positive. Table 1 shows the detection time as the time required until a positive determination was obtained with the reagent mixing time of 0 minutes.
(5) Moreover, 1000 microliters of virus extracts prepared separately were heated similarly, and the liquid temperature of the sample was measured by measuring the liquid temperature.
その結果、サンプルの温度を反応温度と同じ約46℃にした場合は検出時間が6.39分であるのに対し、サンプルの温度をより高い46.8℃にした場合は4.83分とより迅速に増幅反応を実施することができた。さらにこの効果は液温を上げていくと向上し、反応温度よりも約10℃高い液温55.9℃で2.92分となり、その後は74.4℃までほぼ同等の迅速性を示した。 As a result, the detection time was 6.39 minutes when the sample temperature was about 46 ° C., the same as the reaction temperature, whereas it was 4.83 minutes when the sample temperature was higher, 46.8 ° C. The amplification reaction could be performed more quickly. Furthermore, this effect was improved as the liquid temperature was raised, and it reached 2.92 minutes at a liquid temperature of 55.9 ° C., which was about 10 ° C. higher than the reaction temperature, and then almost the same rapidity was exhibited up to 74.4 ° C. .
すなわち増幅温度よりも高温のサンプルを用いることで、高温にしない場合と比べて、より迅速かつ高効率で等温増幅反応を実施することができることが示された。 That is, it was shown that by using a sample having a temperature higher than the amplification temperature, the isothermal amplification reaction can be carried out more quickly and efficiently than in the case where the temperature is not increased.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018017426A JP2019129798A (en) | 2018-02-02 | 2018-02-02 | Quick and efficient isothermal amplification reaction using heating sample |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018017426A JP2019129798A (en) | 2018-02-02 | 2018-02-02 | Quick and efficient isothermal amplification reaction using heating sample |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2019129798A true JP2019129798A (en) | 2019-08-08 |
Family
ID=67544601
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018017426A Pending JP2019129798A (en) | 2018-02-02 | 2018-02-02 | Quick and efficient isothermal amplification reaction using heating sample |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2019129798A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021010349A1 (en) | 2019-07-12 | 2021-01-21 | 国立大学法人北海道大学 | Development of blood fibrosis marker for non-alcoholic steatohepatitis |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008278774A (en) * | 2007-05-09 | 2008-11-20 | Toppan Printing Co Ltd | Nucleic acid amplification method using un-purified blood as sample |
JP2014239692A (en) * | 2007-08-31 | 2014-12-25 | 国立大学法人鳥取大学 | METHOD FOR PRODUCTION OF cDNA FOR TERT GENE, NUCLEIC ACID AMPLIFICATION METHOD AND DETECTION METHOD USING THE SAME, PRIMER FOR USE IN THE SAME, AND TUMOR DIAGNOSIS KIT USING THE SAME |
JP2015092870A (en) * | 2013-11-13 | 2015-05-18 | 東ソー株式会社 | Nucleic acid amplification reagent which can be preserved for long term |
-
2018
- 2018-02-02 JP JP2018017426A patent/JP2019129798A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008278774A (en) * | 2007-05-09 | 2008-11-20 | Toppan Printing Co Ltd | Nucleic acid amplification method using un-purified blood as sample |
JP2014239692A (en) * | 2007-08-31 | 2014-12-25 | 国立大学法人鳥取大学 | METHOD FOR PRODUCTION OF cDNA FOR TERT GENE, NUCLEIC ACID AMPLIFICATION METHOD AND DETECTION METHOD USING THE SAME, PRIMER FOR USE IN THE SAME, AND TUMOR DIAGNOSIS KIT USING THE SAME |
JP2015092870A (en) * | 2013-11-13 | 2015-05-18 | 東ソー株式会社 | Nucleic acid amplification reagent which can be preserved for long term |
Non-Patent Citations (2)
Title |
---|
ANALYTICAL BIOCHEMISTRY, vol. 314, JPN6021042566, 2003, pages 77 - 86, ISSN: 0004634486 * |
SYSMEX JOURNAL WEB, vol. 2, 2, JPN6021042565, 2001, pages 29 - 38, ISSN: 0004634485 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021010349A1 (en) | 2019-07-12 | 2021-01-21 | 国立大学法人北海道大学 | Development of blood fibrosis marker for non-alcoholic steatohepatitis |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lobato et al. | Recombinase polymerase amplification: Basics, applications and recent advances | |
JP6480511B2 (en) | Compositions and methods for quantifying nucleic acid sequences in a sample | |
JP6129921B2 (en) | Multistage nucleic acid amplification reaction in closed system | |
JPH03133379A (en) | Extraction of nucleic acid without using protein decomposing enzyme and pcr augmenting method | |
CN110791592A (en) | Primer and kit for rapidly detecting African swine fever virus | |
KR20230019965A (en) | A method for providing a preparation for detecting a target nucleic acid sequence in a specimen | |
CN116348614A (en) | Switching oligonucleotides | |
JP2016182112A (en) | Reagent for extracting nucleic acid from virus | |
JP2019129798A (en) | Quick and efficient isothermal amplification reaction using heating sample | |
JP2018000124A (en) | Kit for nucleic acid extraction and amplification from virus and extraction and amplification method using the same | |
US20240093278A1 (en) | Rapid molecular diagnostics with unified-one-pot sample processing, nucleic acid amplification, and result readout | |
CN111826467A (en) | Compositions, test tube devices and methods for rapid detection of novel coronavirus nucleic acids | |
Kuriakose et al. | Detection of avian influenza viruses and differentiation of H5, H7, N1, and N2 subtypes using a multiplex microsphere assay | |
JP5798631B2 (en) | Method for cell lysis in RT-PCR reaction buffer | |
JP7385471B2 (en) | PHI6 Internal Control Compositions, Devices, and Methods | |
EP4204577A1 (en) | Methods and reagents for rapid detection of pathogens in biological samples | |
WO2021192320A1 (en) | Examination method for novel coronavirus and examination reagent for same | |
US20120082995A1 (en) | Method for quantitative pcr amplification of deoxyribonucleic acids from a sample containing pcr inhibitors | |
JP6801237B2 (en) | Nucleic acid extraction and amplification reagents from viruses | |
US20240110252A1 (en) | Compositions and Kits for Rapid Detection of SARS-CoV-2 and Methods of Production and Use Thereof | |
US20220136074A1 (en) | Isothermal amplification and ambient visualization in a single tube for the detection of sars-cov-2 using loop-mediated amplification and crispr technology | |
JP2018007580A (en) | Nucleic acid amplification method in the presence of nonionic surfactant | |
Maity et al. | PCR Technology and Its Importance In Covid-19 Pandemic | |
Loveday et al. | Screening of additives for droplet qRT-PCR thermocycling enables single influenza A virus genome quantification | |
CN116144843A (en) | Real-time fluorescent isothermal amplification detection kit for HPV16 and/or HPV18 genotypes and special primer and probe thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210112 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20211021 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20211109 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20220524 |