JP2019129164A - 磁気抵抗効果デバイス - Google Patents
磁気抵抗効果デバイス Download PDFInfo
- Publication number
- JP2019129164A JP2019129164A JP2018007710A JP2018007710A JP2019129164A JP 2019129164 A JP2019129164 A JP 2019129164A JP 2018007710 A JP2018007710 A JP 2018007710A JP 2018007710 A JP2018007710 A JP 2018007710A JP 2019129164 A JP2019129164 A JP 2019129164A
- Authority
- JP
- Japan
- Prior art keywords
- magnetoresistive effect
- magnetic body
- effect element
- magnetization
- magnetoresistive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000000694 effects Effects 0.000 title claims abstract description 218
- 230000005291 magnetic effect Effects 0.000 claims abstract description 216
- 230000005415 magnetization Effects 0.000 claims abstract description 150
- 125000006850 spacer group Chemical group 0.000 claims abstract description 23
- 230000007246 mechanism Effects 0.000 claims description 29
- 239000000696 magnetic material Substances 0.000 abstract description 19
- 238000003475 lamination Methods 0.000 abstract description 5
- 238000010030 laminating Methods 0.000 abstract 1
- 229910045601 alloy Inorganic materials 0.000 description 24
- 239000000956 alloy Substances 0.000 description 24
- 239000000463 material Substances 0.000 description 19
- 230000005350 ferromagnetic resonance Effects 0.000 description 15
- 230000008859 change Effects 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 9
- 238000009826 distribution Methods 0.000 description 9
- 230000004048 modification Effects 0.000 description 8
- 238000012986 modification Methods 0.000 description 8
- 239000004020 conductor Substances 0.000 description 7
- 229910052742 iron Inorganic materials 0.000 description 7
- 229910003321 CoFe Inorganic materials 0.000 description 6
- 239000012212 insulator Substances 0.000 description 5
- 238000004088 simulation Methods 0.000 description 5
- 229910019236 CoFeB Inorganic materials 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 230000010355 oscillation Effects 0.000 description 4
- 229910019222 CoCrPt Inorganic materials 0.000 description 3
- 229910005335 FePt Inorganic materials 0.000 description 3
- 230000005290 antiferromagnetic effect Effects 0.000 description 3
- 239000002885 antiferromagnetic material Substances 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 3
- 239000000395 magnesium oxide Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000010287 polarization Effects 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- 229910018979 CoPt Inorganic materials 0.000 description 2
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 239000003302 ferromagnetic material Substances 0.000 description 2
- 229910001291 heusler alloy Inorganic materials 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000010295 mobile communication Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 229910015371 AuCu Inorganic materials 0.000 description 1
- 229910000684 Cobalt-chrome Inorganic materials 0.000 description 1
- 229910015136 FeMn Inorganic materials 0.000 description 1
- -1 ITO Inorganic materials 0.000 description 1
- 229910019041 PtMn Inorganic materials 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000010952 cobalt-chrome Substances 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 229910000484 niobium oxide Inorganic materials 0.000 description 1
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 229910000938 samarium–cobalt magnet Inorganic materials 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 229910001936 tantalum oxide Inorganic materials 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/32—Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
- H01F10/324—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
- H01F10/329—Spin-exchange coupled multilayers wherein the magnetisation of the free layer is switched by a spin-polarised current, e.g. spin torque effect
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/32—Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
- H01F10/324—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/32—Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
- H01F10/324—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
- H01F10/3254—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/32—Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
- H01F10/324—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
- H01F10/3268—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/32—Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
- H01F10/324—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
- H01F10/3286—Spin-exchange coupled multilayers having at least one layer with perpendicular magnetic anisotropy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/32—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying conductive, insulating or magnetic material on a magnetic film, specially adapted for a thin magnetic film
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F15/00—Amplifiers using galvano-magnetic effects not involving mechanical movement, e.g. using Hall effect
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H11/00—Networks using active elements
- H03H11/02—Multiple-port networks
- H03H11/04—Frequency selective two-port networks
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H11/00—Networks using active elements
- H03H11/02—Multiple-port networks
- H03H11/16—Networks for phase shifting
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H2/00—Networks using elements or techniques not provided for in groups H03H3/00 - H03H21/00
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N50/00—Galvanomagnetic devices
- H10N50/01—Manufacture or treatment
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N50/00—Galvanomagnetic devices
- H10N50/10—Magnetoresistive devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N50/00—Galvanomagnetic devices
- H10N50/80—Constructional details
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N50/00—Galvanomagnetic devices
- H10N50/80—Constructional details
- H10N50/85—Magnetic active materials
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Hall/Mr Elements (AREA)
Abstract
【課題】磁気抵抗効果素子に対して、積層面内方向の磁場をより均一に印加することが可能な磁気抵抗効果デバイスを提供する。【解決手段】本発明の磁気抵抗効果デバイス100は、第1の磁化自由層101Bと、磁化固定層101A又は第2の磁化自由層101Aと、第1の磁化自由層101Bと磁化固定層101A又は第2の磁化自由層101Aとの間に挟持されたスペーサ層101Cとを有する磁気抵抗効果素子101と、磁気抵抗効果素子101に磁場を印加する磁性体部102と、を備え、磁気抵抗効果素子101の積層方向Lからの平面視において、磁性体部102が、磁気抵抗効果素子101の外周を囲むように配されている。【選択図】図1
Description
本発明は、磁気抵抗効果デバイスに関する。
近年、携帯電話等の移動通信端末の高機能化に伴い、無線通信の高速化が進められている。通信速度は使用する周波数の帯域幅に比例するため、通信に必要な周波数バンドが増加し、それに伴って、移動通信端末に必要な高周波フィルタの搭載数も増加している。また、新しい高周波用部品への応用が期待されるスピントロニクスの分野の研究が、盛んに行われている。その中で注目されている現象の一つに、磁気抵抗効果素子による強磁性共鳴現象がある(非特許文献1参照)。
例えば、磁気抵抗効果素子に交流電流を流すのと同時に、磁場印加機構を用いて静磁場を印加することにより、磁気抵抗効果素子に含まれる磁化自由層の磁化に強磁性共鳴を起こすことができる。このとき、強磁性共鳴周波数に対応した周波数で周期的に、磁気抵抗効果素子の抵抗値が振動する。磁気抵抗効果素子に印加される静磁場の強さによって、強磁性共鳴周波数は変化し、一般的にその共鳴周波数は数〜数十GHzの高周波帯域に含まれる(特許文献1参照)。
Nature、Vol.438、No.7066、pp.339−342、17 November 2005
磁気ヘッド等を構成する従来の磁気抵抗効果デバイスでは、磁気抵抗効果素子に磁場を印加する2つのバイアス部の磁性体部が、磁気抵抗効果素子を挟んで対向するように配置されていることが一般的である(特許文献1、2参照)。このような配置の場合、磁性体部から磁気抵抗効果素子に印加される、積層面内方向の磁場の磁気抵抗効果素子における分布の偏りが大きくなり、その結果として、磁化自由層の磁化の分布に偏りが生じ、ドメインが形成され、磁化の挙動(例えば強磁性共鳴周波数)がドメインごとに異なったものとなり、例えば共振特性のQ値が低下してしまうことがわかった。
本発明は上記事情に鑑みてなされたものであり、磁気抵抗効果素子に対して、積層面内方向の磁場をより均一に印加することが可能な磁気抵抗効果デバイスを提供することを目的とする。
本発明は、上記課題を解決するため、以下の手段を提供する。
(1)本発明の一態様に係る磁気抵抗効果デバイスは、第1の磁化自由層と、磁化固定層又は第2の磁化自由層と、前記第1の磁化自由層と前記磁化固定層又は第2の磁化自由層との間に挟持されたスペーサ層とを有する磁気抵抗効果素子と、前記磁気抵抗効果素子に磁場を印加する磁性体部と、を備え、前記磁気抵抗効果素子の積層方向からの平面視において、前記磁性体部が、前記磁気抵抗効果素子の外周を囲むように配されている。
(2)上記(1)に記載の磁気抵抗効果デバイスの前記積層方向からの平面視において、前記磁性体部が、前記磁気抵抗効果素子の全周を囲むように配されていることが好ましい。
(3)上記(1)に記載の磁気抵抗効果デバイスの前記積層方向からの平面視において、前記磁気抵抗効果素子の外周のうち一部が前記磁性体部に囲まれないように、ギャップ部を有し、当該平面視におけるギャップ部の幅が、前記ギャップ部の幅の方向に平行な方向の前記磁気抵抗効果素子の幅より小さくてもよい。
(4)上記(1)〜(3)のいずれか一つに記載の磁気抵抗効果デバイスにおいて、前記磁性体部が、少なくとも前記第1の磁化自由層の外周を囲むように配されていることが好ましい。
(5)上記(1)〜(4)のいずれか一つに記載の磁気抵抗効果デバイスにおいて、前記磁性体部が、硬磁性体を含んでもよい。
(6)上記(1)〜(4)のいずれか一つに記載の磁気抵抗効果デバイスにおいて、前記磁性体部が、磁気的に結合した軟磁性体と反強磁性体とを含んでもよい。
(7)上記(1)〜(4)のいずれか一つに記載の磁気抵抗効果デバイスにおいて、前記磁性体部が軟磁性体を含み、前記軟磁性体の少なくとも一部にコイルが巻かれていてもよい。
(8)上記(1)〜(7)のいずれか一つに記載の磁気抵抗効果デバイスにおいて、前記磁気抵抗効果素子に対し、前記積層方向の成分を有する磁場を印加する磁場印加機構を、さらに備えていてもよい。
本発明の磁気抵抗効果デバイスでは、磁気抵抗効果素子の積層方向からの平面視において、磁性体部が、磁気抵抗効果素子の外周を囲むように配されることで、磁気抵抗効果素子に印加される積層面内方向の磁場が均一化される。
以下、本発明について、図を適宜参照しながら詳細に説明する。以下の説明で用いる図面は、本発明の特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率等は実際とは異なっていることがある。以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、本発明の効果を奏する範囲で適宜変更して実施することが可能である。本発明の素子において、本発明の効果を奏する範囲で他の層を備えてもよい。
<第一実施形態>
(磁気抵抗効果デバイスの構成)
図1(a)、(b)は、本発明の第一実施形態に係る磁気抵抗効果デバイス100の構成を模式的に示す断面図である。図1(a)は、図1(b)のEE’線を通る断面を示し、図1(b)は、図1(a)の積層方向Lにおける一端側から見た平面を示している。磁気抵抗効果デバイス100は、少なくとも、磁気抵抗効果素子(MR素子)101と、磁気抵抗効果素子101に磁場を印加する磁性体部102と、を備えている。
(磁気抵抗効果デバイスの構成)
図1(a)、(b)は、本発明の第一実施形態に係る磁気抵抗効果デバイス100の構成を模式的に示す断面図である。図1(a)は、図1(b)のEE’線を通る断面を示し、図1(b)は、図1(a)の積層方向Lにおける一端側から見た平面を示している。磁気抵抗効果デバイス100は、少なくとも、磁気抵抗効果素子(MR素子)101と、磁気抵抗効果素子101に磁場を印加する磁性体部102と、を備えている。
<磁気抵抗効果素子>
磁気抵抗効果素子101は、第1層(磁化固定層)101Aと、第2層(磁化自由層)101Bと、スペーサ層101Cと、を有する。スペーサ層101Cは、磁化固定層101Aと磁化自由層101Bとの間に位置する。磁化固定層101Aの磁化は、磁化自由層101Bの磁化より動きにくく、所定の磁場環境下では一方向に固定される。磁化固定層101Aの磁化の向きに対して磁化自由層101Bの磁化の向きが相対的に変化することで、磁気抵抗効果素子101として機能する。
磁気抵抗効果素子101は、第1層(磁化固定層)101Aと、第2層(磁化自由層)101Bと、スペーサ層101Cと、を有する。スペーサ層101Cは、磁化固定層101Aと磁化自由層101Bとの間に位置する。磁化固定層101Aの磁化は、磁化自由層101Bの磁化より動きにくく、所定の磁場環境下では一方向に固定される。磁化固定層101Aの磁化の向きに対して磁化自由層101Bの磁化の向きが相対的に変化することで、磁気抵抗効果素子101として機能する。
以下の説明では、上記のように第1層が磁化固定層、第2層が磁化自由層の場合を例として説明する。一方で、第1層と第2層は、いずれか一方が必ず磁化固定層となっている必要はなく、第1層と第2層のいずれもが磁化自由層であってもよい。この場合、第1層と第2層のいずれか一方が第1の磁化自由層となり、他方が第2の磁化自由層となる。第1層と第2層は、互いの磁化方向が相対的に変化可能である。一例として、2つの磁化自由層同士が、スペーサ層を介して磁気的に結合した磁気抵抗効果素子を挙げることができる。より具体的には、外部磁場が印加されない状態で、2つの磁化自由層の磁化の方向が互いに反平行になるように、2つの磁化自由層同士がスペーサ層を介して磁気的に結合する例が挙げられる。
磁化固定層101Aは、強磁性体材料で構成されている。磁化固定層101Aは、Fe、Co、Ni、NiとFeの合金、FeとCoの合金、またはFeとCoとBの合金などの高スピン分極率材料から構成されることが好ましい。これらの材料を用いることで、磁気抵抗効果素子101の磁気抵抗変化率が大きくなる。また磁化固定層101Aは、ホイスラー合金で構成されても良い。磁化固定層101Aの膜厚は、1〜20nmとすることが好ましい。
磁化固定層101Aの磁化固定方法は、特に問わない。例えば、磁化固定層101Aの磁化を固定するために、磁化固定層101Aに接するように反強磁性層を付加してもよい。また、結晶構造、形状などに起因する磁気異方性を利用して、磁化固定層11の磁化を固定してもよい。反強磁性層には、FeO、CoO、NiO、CuFeS2、IrMn、FeMn、PtMn、CrまたはMnなどを用いることができる。
磁化自由層101Bは、外部磁場もしくはスピン偏極電子によって、その磁化の方向が変化可能な強磁性体材料で構成されている。
磁化自由層101Bは、磁化自由層101Bを積層する積層方向と垂直な面内方向に、磁化容易軸を有する場合の材料として、CoFe、CoFeB、CoFeSi、CoMnGe、CoMnSiまたはCoMnAlなどを用いることができ、磁化自由層101Bの積層方向に磁化容易軸を有する場合の材料として、Co、CoCr系合金、Co多層膜、CoCrPt系合金、FePt系合金、希土類を含むSmCo系合金またはTbFeCo合金などを用いることができる。また、磁化自由層101Bは、ホイスラー合金で構成されても良い。
磁化自由層101Bの厚さは、0.5〜20nm程度とすることが好ましい。また、磁化自由層101Bとスペーサ層101Cとの間には、高スピン分極率材料を挿入しても良い。高スピン分極率材料を挿入することによって、高い磁気抵抗変化率を得ることが可能となる。
高スピン分極率材料としては、CoFe合金またはCoFeB合金などが挙げられる。CoFe合金またはCoFeB合金いずれの膜厚も0.2〜1.0nm程度とすることが好ましい。
スペーサ層101Cには、非磁性の材料を用いることが好ましい。スペーサ層101Cは、導電体、絶縁体もしくは半導体によって構成される層、または、絶縁体中に導体によって構成される通電点を含む層によって構成されている。
例えば、スペーサ層101Cが絶縁体によって構成される場合は、磁気抵抗効果素子101はトンネル磁気抵抗(TMR:Tunneling Magnetoresistance)素子となり、スペーサ層101Cが金属によって構成される場合は巨大磁気抵抗(GMR:Giant Magnetoresistance)素子となる。
スペーサ層101Cとして絶縁材料を適用する場合、Al2O3またはMgO等の絶縁材料を用いることができる。磁化固定層101Aと磁化自由層101Bとの間にコヒーレントトンネル効果が発現するように、スペーサ層101Cの膜厚を調整することで高い磁気抵抗変化率が得られる。TMR効果を効率よく利用するためには、スペーサ層101Cの厚さは、0.5〜3.0nm程度であることが好ましい。
スペーサ層101Cが導電材料によって構成される場合、Cu、Ag、Au又はRu等の導電材料を用いることができる。GMR効果を効率よく利用するためには、スペーサ層101Cの厚さは、0.5〜3.0nm程度であることが好ましい。
スペーサ層101Cが半導体によって構成される場合、ZnO、In2O3、SnO2、ITO、GaOx又はGa2Ox等の材料を用いることができる。この場合、スペーサ層101Cの厚さは、1.0〜4.0nm程度であることが好ましい。
スペーサ層101Cとして、絶縁体中の導体によって構成される通電点を含む層を適用する場合、Al2O3またはMgOによって構成される絶縁体中に、CoFe、CoFeB、CoFeSi、CoMnGe、CoMnSi、CoMnAl、Fe、Co、Au、Cu、AlまたはMgなどの導体によって構成される通電点を含む構造とすることが好ましい。この場合、スペーサ層101Cの厚さは、0.5〜2.0nm程度であることが好ましい。
<磁性体部>
磁性体部102は、磁性体によって構成され、磁気抵抗効果素子の積層方向Lからの平面視において、磁気抵抗効果素子101の外周を囲むように配されている。磁性体部102の積層方向Lの位置についての制限はないが、磁化自由層101Bの外周を囲むように配されていることが好ましい。
磁性体部102は、磁性体によって構成され、磁気抵抗効果素子の積層方向Lからの平面視において、磁気抵抗効果素子101の外周を囲むように配されている。磁性体部102の積層方向Lの位置についての制限はないが、磁化自由層101Bの外周を囲むように配されていることが好ましい。
また、磁性体部102は、磁気抵抗効果素子の積層面内方向成分を有する磁化Mを有している。これにより、磁性体部102は磁気抵抗効果素子101に対して、磁気抵抗効果素子の積層面内方向成分を有する磁場を印加する。また、磁性体部102は、磁気抵抗効果素子101に一定の向きの磁場を印加する。磁性体部102は、実質的に一方向に磁化されていることが好ましい。また、磁性体部102は、その磁化容易軸が磁気抵抗効果素子の積層面内方向に平行な方向にあることが好ましい。
図1(a)の磁性体部102は、磁化自由層101Bの周囲から、積層方向Lと略直交する方向に延在しているが、異なる方向に延在していてもよい。図2は、異なる方向に磁性体部102が延在する一例を示す図である。例えば図2に示すように、磁性体部102は、磁化自由層101Bの周囲から離れるにつれて、積層方向Lに曲がるように延在していてもよい。この場合、磁化自由層101Bの周囲(積層方向Lと略直交する方向)には、磁性体部102の少なくとも一部が存在していることが好ましいが、存在する磁性体部の幅102Aは1.0nm以上であることがより好ましい。
磁性体部102を構成する磁性体としては、例えば硬磁性体(磁石)を用いることができ、その材料として、CoPt合金、FePt合金、CoCrPt合金等を用いることができる。磁性体部102を構成する磁性体の他の例については、他の実施形態の説明として後述する。
磁気抵抗効果素子101と磁性体部102との間には、絶縁部(絶縁層)103が設けられている。絶縁部103の材料としては、例えば、酸化シリコン、酸化アルミニウム、窒化シリコン、窒化アルミニウム、酸化タンタル、酸化チタン、酸化マグネシウムまたは酸化ニオブ等を用いることができる。
積層方向Lからの平面視において、絶縁部103の幅103Aは、0.5nm以上であることが好ましく、1.0〜20.0nmであればより好ましく、1.5〜10.0nmであればさらに好ましい。また、積層方向Lからの平面視において、磁気抵抗効果素子101の中心(重心)を通る任意の方向における幅(ここでは直径)101Dに対する、同方向における絶縁部の幅103Aの比率は、0.1%以上であることが好ましく、0.2〜50%であればより好ましく、0.3〜25%であればさらに好ましい。当該比率が0.1%未満であると、磁気抵抗効果素子101と磁性体部102とが導通してしまう虞があるので、好ましくない。
磁性体部102は、積層方向Lからの平面視において、磁気抵抗効果素子101の外周を囲むように配されている。磁気抵抗効果素子101の外周のうち磁性体部102に囲まれている部分は、多いほど好ましく、当該平面視において、磁気抵抗効果素子101の全周が磁性部材102に囲まれていれば、より好ましい。図1(b)は、当該平面視において、磁性体部102が、磁気抵抗効果素子101の全周を囲むように配されている場合について、例示している。
磁気抵抗効果素子101に対する磁性体部102の等方性を高める観点から、絶縁部の幅103Aは、磁気抵抗効果素子101の全周にわたって揃っていればより好ましい。
磁気抵抗効果素子101への通電性を高める上で、磁気抵抗効果素子101の両端に、電極が設けられていることが好ましい。ここでは、磁気抵抗効果素子101の積層方向において、上端に設けられた電極を上部電極106、下端に設けられた電極を下部電極107と呼ぶ。上部電極106および下部電極107の材料としては、例えば、Ta、Cu、Au、AuCu、Ru、Al等の導電性を有するものを用いることができる。
図3(a)〜(c)は、本実施形態の変形例1〜3に係る磁気抵抗効果デバイス110、120、130を、上部電極106側から見た場合の平面図である。
(変形例1)
磁気抵抗効果素子101の外周のうち一部が、磁性体部102に囲まれていなくてもよい。図3(a)は、磁気抵抗効果素子101の外周の2箇所が、磁性体部102に囲まれていない場合の磁気抵抗効果デバイス110について、例示している。第一実施形態と同じ箇所は、形状の違いによらず、同じ符号で示している。磁気抵抗効果デバイス110は、積層方向Lからの平面視において、磁気抵抗効果素子101の外周のうち一部が磁性体部102に囲まれないように、ギャップ部102Gを有しており、当該平面視におけるギャップ部102Gの幅W1が、ギャップ部102Gの幅W1の方向に平行な方向の磁気抵抗効果素子101の幅W2より小さくなっている。ギャップ部102Gは、磁性体部102の間に設けられている。図3(a)に示す例では、ギャップ部102Gは磁性体部102を分割するように設けられているが、ギャップ部102Gが磁性体部102を完全には分割せず、ギャップ部102Gを挟む磁性体部102同士が一部でつながっていても良い。磁気抵抗効果デバイス110では、全周にわたって囲まれている場合に比べて、磁性体部の等方性が崩れる分、磁気抵抗効果素子101における磁場の分布が若干乱れることにはなるが、囲まれていない部分が十分小さければ問題ない。具体的には、ギャップ部102Gの幅W1が、磁気抵抗効果素子101の幅W2の60%以下であることが好ましい。また、磁気抵抗効果素子101の外周の30%以上が、磁性体部102に囲まれていることが好ましい。
磁気抵抗効果素子101の外周のうち一部が、磁性体部102に囲まれていなくてもよい。図3(a)は、磁気抵抗効果素子101の外周の2箇所が、磁性体部102に囲まれていない場合の磁気抵抗効果デバイス110について、例示している。第一実施形態と同じ箇所は、形状の違いによらず、同じ符号で示している。磁気抵抗効果デバイス110は、積層方向Lからの平面視において、磁気抵抗効果素子101の外周のうち一部が磁性体部102に囲まれないように、ギャップ部102Gを有しており、当該平面視におけるギャップ部102Gの幅W1が、ギャップ部102Gの幅W1の方向に平行な方向の磁気抵抗効果素子101の幅W2より小さくなっている。ギャップ部102Gは、磁性体部102の間に設けられている。図3(a)に示す例では、ギャップ部102Gは磁性体部102を分割するように設けられているが、ギャップ部102Gが磁性体部102を完全には分割せず、ギャップ部102Gを挟む磁性体部102同士が一部でつながっていても良い。磁気抵抗効果デバイス110では、全周にわたって囲まれている場合に比べて、磁性体部の等方性が崩れる分、磁気抵抗効果素子101における磁場の分布が若干乱れることにはなるが、囲まれていない部分が十分小さければ問題ない。具体的には、ギャップ部102Gの幅W1が、磁気抵抗効果素子101の幅W2の60%以下であることが好ましい。また、磁気抵抗効果素子101の外周の30%以上が、磁性体部102に囲まれていることが好ましい。
(変形例2、3)
図3(b)(c)は、それぞれ、積層方向Lの平面視における磁気抵抗効果素子101および磁性体部102の形状に関する変形例として、磁気抵抗効果デバイス120、130を示している。第一実施形態と同じ箇所は、形状の違いによらず、同じ符号で示している。磁気抵抗効果素子および磁性体部の形状が限定されることはなく、図3(b)のように矩形であってもよいし、図3(c)のように楕円形であってもよい。ただし、磁気抵抗効果素子の外周と磁性体部の内周との距離は、全周にわたって同程度の大きさであることが好ましい。
図3(b)(c)は、それぞれ、積層方向Lの平面視における磁気抵抗効果素子101および磁性体部102の形状に関する変形例として、磁気抵抗効果デバイス120、130を示している。第一実施形態と同じ箇所は、形状の違いによらず、同じ符号で示している。磁気抵抗効果素子および磁性体部の形状が限定されることはなく、図3(b)のように矩形であってもよいし、図3(c)のように楕円形であってもよい。ただし、磁気抵抗効果素子の外周と磁性体部の内周との距離は、全周にわたって同程度の大きさであることが好ましい。
(磁気抵抗効果デバイスの製造方法)
本実施形態に係る磁気抵抗効果デバイス100は、一例として、次のように製造することができる。
本実施形態に係る磁気抵抗効果デバイス100は、一例として、次のように製造することができる。
まず、下地となる層または基材に対し、磁化固定層、スペーサ層、磁化自由層等の必要な層を積層し、不要な部分をエッチング除去して磁気抵抗効果素子101を形成する。各層の積層は、スパッタリング法、CVD法等の公知の成膜法を用いて行うことができる。続いて、所望の厚さの絶縁層を全面に形成し、その上に、磁性体部102となる部分を含む磁性層を形成した後に、絶縁層および磁性層の不要な部分をエッチング除去することによって、本実施形態に係る磁気抵抗効果デバイス100を得ることができる。絶縁層、磁性層についても、スパッタリング法、CVD法等の公知の成膜法を用いて行うことができる。
なお、上記製造方法において、磁気抵抗効果素子101を形成した後に、磁性層を全面に形成してから、磁気抵抗効果素子101の周囲に所定の幅の溝を形成し、そこに絶縁層を埋め込み形成することによっても、同様に磁気抵抗効果デバイス100を得ることができる。
本実施形態に係る磁気抵抗効果デバイス100では、磁性体部102が、磁気抵抗効果素子101の外周を囲むように配されており、従来構造のように2方向から挟む場合に比べて、磁気抵抗効果素子101に対する磁性体部102の等方性が高くなっている。したがって、積層方向の平面視における磁気抵抗効果素子に対して、印加される積層面内方向の磁場が均一化される。
<第二実施形態>
図4は、本発明の第二実施形態に係る、磁気抵抗効果デバイス140の構成を模式的に示す断面図である。第一実施形態と同じ箇所は、形状の違いによらず、同じ符号で示している。磁気抵抗効果デバイス140では、磁性体部102を構成する磁性体が、軟磁性体102Aに反強磁性体102Bを磁気的に結合させ、軟磁性体102Aの磁化を固定したものとなっている。反強磁性体202Bは、磁気抵抗効果素子101の積層方向Lにおいて、軟磁性体202Aのいずれの側にあってもよい。
図4は、本発明の第二実施形態に係る、磁気抵抗効果デバイス140の構成を模式的に示す断面図である。第一実施形態と同じ箇所は、形状の違いによらず、同じ符号で示している。磁気抵抗効果デバイス140では、磁性体部102を構成する磁性体が、軟磁性体102Aに反強磁性体102Bを磁気的に結合させ、軟磁性体102Aの磁化を固定したものとなっている。反強磁性体202Bは、磁気抵抗効果素子101の積層方向Lにおいて、軟磁性体202Aのいずれの側にあってもよい。
図4に示すように、磁性体部202のうち少なくとも軟磁性体102Aの一部が、積層方向Lからの平面視において、磁気抵抗効果素子201を構成する2つの強磁性層のうち、磁化自由層101Bの外周を囲むように配されていることが好ましい。
軟磁性体202Aの材料としては、Fe、NiおよびCoのうちの少なくとも1つを含む金属又は合金等の軟磁性材料(一例として、NiFe合金やCoFe合金等)を用いることができる。反強磁性体202Bの材料としては、IrMn等を用いることができる。
本実施形態の磁気抵抗効果デバイス140は、磁性体102以外の構成については、第一実施形態の磁気抵抗効果デバイス100の構成と同様であり、磁化自由層101Bに印加される積層面内方向の磁場が均一化されることにより、磁気抵抗効果デバイス100と同等の効果を奏する。
<第三実施形態>
図5は、本発明の第三実施形態に係る、磁気抵抗効果デバイス150の構成を模式的に示す断面図である。第一実施形態と同じ箇所は、形状の違いによらず、同じ符号で示している。磁気抵抗効果デバイス150は、第1軟磁性体102Cと第2軟磁性体102Dとで構成される磁性体部102と、コイル104と、を備えている。
図5は、本発明の第三実施形態に係る、磁気抵抗効果デバイス150の構成を模式的に示す断面図である。第一実施形態と同じ箇所は、形状の違いによらず、同じ符号で示している。磁気抵抗効果デバイス150は、第1軟磁性体102Cと第2軟磁性体102Dとで構成される磁性体部102と、コイル104と、を備えている。
第1軟磁性体102Cの少なくとも一部は、第一、第二実施形態の磁性体部102と同様に、磁化自由層101Bの外周を囲むように配されている。第2軟磁性体102Dは、第1軟磁性体102Cの一方の端部P1側と他方の端部P2側とを、中央部P3を介さずに直接連結するように配されている。コイル104は、第2軟磁性体102Dの周りの少なくとも一部分に巻かれている。コイル104を周りに巻いた第2軟磁性体302Bは、複数備わっていてもよい。
第1軟磁性体102Cの材料、第2軟磁性体102Dの材料としては、それぞれ、Fe、NiおよびCoのうちの少なくとも1つを含む金属又は合金等の軟磁性材料(一例として、NiFe合金やCoFe合金等)を用いることができる。第1軟磁性体102Cと第2軟磁性体102Dとは、一体であってもよいし、別体であってもよい。
本実施形態の磁気抵抗効果デバイス150は、磁性体部102以外の構成については、第一、第二実施形態の磁気抵抗効果デバイス100、140の構成と同様であり、磁化自由層101Bに印加される積層面内方向の磁場が均一化されることにより、磁気抵抗効果デバイス100、140と同等の効果を奏する。
<第四実施形態>
図6は、本発明の第四実施形態に係る、磁気抵抗効果デバイス160の構成を模式的に示す断面図である。第一実施形態と同じ箇所は、形状の違いによらず、同じ符号で示している。磁気抵抗効果デバイス160では、第一実施形態と同様に磁気抵抗効果素子101の外周を囲むように配された磁性体部102とは別に、磁場印加機構105を備えている。磁場印加機構105は、磁気抵抗効果素子101の積層方向Lにおいて、各端部(図6では上部電極106、下部電極107)と対向する位置に配されており、磁気抵抗効果素子101に対し、積層方向Lの成分を有する磁場を印加することができる。
図6は、本発明の第四実施形態に係る、磁気抵抗効果デバイス160の構成を模式的に示す断面図である。第一実施形態と同じ箇所は、形状の違いによらず、同じ符号で示している。磁気抵抗効果デバイス160では、第一実施形態と同様に磁気抵抗効果素子101の外周を囲むように配された磁性体部102とは別に、磁場印加機構105を備えている。磁場印加機構105は、磁気抵抗効果素子101の積層方向Lにおいて、各端部(図6では上部電極106、下部電極107)と対向する位置に配されており、磁気抵抗効果素子101に対し、積層方向Lの成分を有する磁場を印加することができる。
磁場印加機構105は、硬磁性体で構成されており、その材料としては、CoPt合金、FePt合金、CoCrPt合金等を用いることができる。磁場印加機構105は、磁気抵抗効果素子101の積層方向Lと略平行な方向の磁化M2を有している。これにより、磁場印加機構105は磁気抵抗効果素子101に対して、磁気抵抗効果素子101の積層方向Lの成分を有する磁場を印加する。また、磁場印加機構105は、磁気抵抗効果素子101に一定の向きの磁場を印加する。また、磁場印加機構105は、その磁化容易軸が磁気抵抗効果素子101の積層方向Lに平行な方向であることが好ましい。図6の例では、磁場印加機構105の磁化M2の方向は、磁性体部102の磁化M1の方向と直交している。なお、本実施形態において、磁場印加機構105は、軟磁性体と反強磁性体とを磁気的に結合させ、軟磁性体の磁化を固定したもので構成されるようにしてもよい。
本実施形態の磁気抵抗効果デバイス160は、磁場印加機構105以外の構成については、第一〜第三実施形態の磁気抵抗効果デバイス100、140、150の構成と同様である。磁気抵抗効果デバイス160は、磁化方向が直交する、磁性体部102および磁場印加機構105を備えているため、用途に応じて、磁気抵抗効果素子101の積層面内方向及び積層方向Lに対して斜めの方向に磁場を印加することができる。
<第五実施形態>
図7は、本発明の第五実施形態に係る、磁気抵抗効果デバイス170の構成を模式的に示す断面図である。第一実施形態と同じ箇所は、形状の違いによらず、同じ符号で示している。磁気抵抗効果デバイス170は、第一実施形態と同様に配された磁性体部102と、磁場印加機構108とを備えている。磁性体部102を構成する磁性体は硬磁性体であり、磁場印加機構108の一部(後述する部分S1〜S3)を構成する磁性体は軟磁性体である。
図7は、本発明の第五実施形態に係る、磁気抵抗効果デバイス170の構成を模式的に示す断面図である。第一実施形態と同じ箇所は、形状の違いによらず、同じ符号で示している。磁気抵抗効果デバイス170は、第一実施形態と同様に配された磁性体部102と、磁場印加機構108とを備えている。磁性体部102を構成する磁性体は硬磁性体であり、磁場印加機構108の一部(後述する部分S1〜S3)を構成する磁性体は軟磁性体である。
第四実施形態の磁場印加機構105は、磁気抵抗効果素子101の各端部と対向する側に、分離して配されているが、本実施形態の磁場印加機構108は、両者が連結されている。具体的には、磁場印加機構108は、積層方向Lにおける磁気抵抗効果素子101の一方の端部(図7では上部電極106)と対向する側に配された部分S1、他方の端部(図7では下部電極107)と対向する側に配された部分S2、部分S1と部分S2を連結する部分S3及びコイル104によって構成されている。コイル104は、部分S3の少なくとも一部の周りに巻かれている。コイル104から発生する磁束が部分S3、部分S1及び部分S2及び部分S3を伝わり、磁場印加機構は磁気抵抗効果素子101に対して、磁気抵抗効果素子101の積層方向Lの成分を有する磁場を印加する。
本実施形態の磁気抵抗効果デバイス170は、磁場印加機構108以外の構成については、第四実施形態の磁気抵抗効果デバイス160の構成と同様であり、磁気抵抗効果デバイス160と同等の効果を奏する。
<第六実施形態>
図8は、本発明の第六実施形態に係る、磁気抵抗効果デバイス180の構成を模式的に示す断面図である。第一実施形態と同じ箇所は、形状の違いによらず、同じ符号で示している。磁気抵抗効果デバイス180は、第一実施形態と同様に配された磁性体部102と、磁場印加機構109とを備えている。
図8は、本発明の第六実施形態に係る、磁気抵抗効果デバイス180の構成を模式的に示す断面図である。第一実施形態と同じ箇所は、形状の違いによらず、同じ符号で示している。磁気抵抗効果デバイス180は、第一実施形態と同様に配された磁性体部102と、磁場印加機構109とを備えている。
磁場印加機構109は、積層方向Lにおける磁気抵抗効果素子101の一方の端部(図8では上部電極106)と対向する側に配された部分T1、他方の端部(図8では下部電極107)と対向する側に配された部分T2、部分T1と部分T2を連結する部分T3、部分T3の少なくとも一部に含まれた硬磁性体T4と、で構成されている。磁場印加機構109のうちT4を除いた部分は、軟磁性体で構成されている。硬磁性体T4は実質的に一方向に磁化M3を有しており、これにより部分T1及び部分T2は磁気抵抗効果素子101の積層方向Lと略平行な方向の磁化M2を有するように磁化される。これにより、磁場印加機構109は、磁気抵抗効果素子101に対して、磁気抵抗効果素子101の積層方向Lの成分を有する磁場を印加する。なお、本実施形態において、硬磁性体T4の部分は、軟磁性体と反強磁性体とを磁気的に結合させ、軟磁性体の磁化を固定したもので置き換えてもよい。
本実施形態の磁気抵抗効果デバイス180は、磁場印加機構109以外の構成については、第五実施形態の磁気抵抗効果デバイス170の構成と同様であり磁気抵抗効果デバイス170と同等の効果を奏する。
<第七実施形態>
図9は、第一実施形態に係る磁気抵抗効果デバイスを用いた第七実施形態に係る高周波デバイス200の回路構成を示した模式図である。図9に示す高周波デバイス200は、磁気抵抗効果素子101と、磁性体部102と、第1の信号線路30と、直流印加端子40とを備える。高周波デバイス200は、第1のポート1から信号が入力され、第2のポート2から信号を出力する。
図9は、第一実施形態に係る磁気抵抗効果デバイスを用いた第七実施形態に係る高周波デバイス200の回路構成を示した模式図である。図9に示す高周波デバイス200は、磁気抵抗効果素子101と、磁性体部102と、第1の信号線路30と、直流印加端子40とを備える。高周波デバイス200は、第1のポート1から信号が入力され、第2のポート2から信号を出力する。
<磁気抵抗効果素子、磁場印加機構>
磁気抵抗効果素子101と磁性体部20は、上述の第一実施形態に係る磁気抵抗効果デバイスの構成を満たすものが用いられる。図9に示す磁性体部102は、要部のみを図示している。
磁気抵抗効果素子101と磁性体部20は、上述の第一実施形態に係る磁気抵抗効果デバイスの構成を満たすものが用いられる。図9に示す磁性体部102は、要部のみを図示している。
<第1のポート及び第2のポート>
第1のポート1は、高周波デバイス200の入力端子である。第1のポート1は、第1の信号線路30の一端に対応する。第1のポート1に交流信号源(図示略)を接続することで、高周波デバイス200に交流信号(高周波信号)を印加できる。高周波デバイス200に印加される高周波信号は、例えば、100MHz以上の周波数を有する信号である。
第1のポート1は、高周波デバイス200の入力端子である。第1のポート1は、第1の信号線路30の一端に対応する。第1のポート1に交流信号源(図示略)を接続することで、高周波デバイス200に交流信号(高周波信号)を印加できる。高周波デバイス200に印加される高周波信号は、例えば、100MHz以上の周波数を有する信号である。
第2のポート2は、高周波デバイス200の出力端子である。第2のポート2は、磁気抵抗効果素子101から出力する信号を伝える、出力信号線路(第2の信号線路)50の一端に対応する。
<第1の信号線路>
図9における第1の信号線路30は、一端が第1のポート1に接続されている。また、高周波デバイス200は、第1の信号線路30の他端が基準電位端子32を介して基準電位に接続されて用いられる。図9では、基準電位としてグラウンドGに接続している。グラウンドGは高周波デバイス200の外部のものとすることができる。第1のポート1に入力される高周波信号とグラウンドGとの電位差に応じて、第1の信号線路30内に高周波電流が流れる。第1の信号線路30内に高周波電流が流れると、第1の信号線路30から高周波磁場が発生する。磁気抵抗効果素子101の磁化自由層101Bには、この高周波磁場が印加される。
図9における第1の信号線路30は、一端が第1のポート1に接続されている。また、高周波デバイス200は、第1の信号線路30の他端が基準電位端子32を介して基準電位に接続されて用いられる。図9では、基準電位としてグラウンドGに接続している。グラウンドGは高周波デバイス200の外部のものとすることができる。第1のポート1に入力される高周波信号とグラウンドGとの電位差に応じて、第1の信号線路30内に高周波電流が流れる。第1の信号線路30内に高周波電流が流れると、第1の信号線路30から高周波磁場が発生する。磁気抵抗効果素子101の磁化自由層101Bには、この高周波磁場が印加される。
第1の信号線路30は、一本の信号線路に限られず、複数本の信号線路でもよい。この場合、各信号線路から発生する高周波磁場が磁気抵抗効果素子101の位置で強めあうように、複数の信号線路を配設することが好ましい。
<出力信号線路、線路>
出力信号線路50は、磁気抵抗効果素子101から出力された信号を伝播する。磁気抵抗効果素子101から出力される信号は、磁化自由層101Bの強磁性共鳴を利用して選択された周波数の信号である。図9における出力信号線路50は、一端が磁気抵抗効果素子101に接続され、他端が第2のポート2に接続されている。すなわち、図9における出力信号線路50は、磁気抵抗効果素子101と第2のポート2とを繋ぐ。
出力信号線路50は、磁気抵抗効果素子101から出力された信号を伝播する。磁気抵抗効果素子101から出力される信号は、磁化自由層101Bの強磁性共鳴を利用して選択された周波数の信号である。図9における出力信号線路50は、一端が磁気抵抗効果素子101に接続され、他端が第2のポート2に接続されている。すなわち、図9における出力信号線路50は、磁気抵抗効果素子101と第2のポート2とを繋ぐ。
また、電源41、出力信号線路50、磁気抵抗効果素子101、線路51、グラウンドGによる閉回路を構成する部分と第2のポート2との間の出力信号線路50(一例として、インダクタ42の出力信号線路50への接続箇所と第2のポート2との間の出力信号線路50)には、コンデンサを設けてもよい。当該部分にコンデンサを設けることで、第2のポート2から出力される出力信号に、電流の不変成分が加わることを避けることができる。
線路51は、一端が磁気抵抗効果素子101に接続されている。また、高周波デバイス200は、線路51の他端が基準電位端子52を介して基準電位に接続されて用いられる。図9では線路51を、第1の信号線路30の基準電位と共通のグラウンドGに接続しているが、その他の基準電位に接続してもよい。回路構成を簡便にするためには、第1の信号線路30の基準電位と線路51の基準電位とは共通していることが好ましい。
各線路及びグラウンドGの形状は、マイクロストリップライン(MSL)型やコプレーナウェーブガイド(CPW)型に規定することが好ましい。マイクロストリップライン(MSL)型やコプレーナウェーブガイド(CPW)型に設計する場合、線路の特性インピーダンスと、回路系のインピーダンスとが等しくなるように、線路幅やグラウンド間距離を設計することが好ましい。このように設計することによって線路の伝送損失を抑えることができる。
<直流印加端子>
直流印加端子40は、電源41に接続され、磁気抵抗効果素子101の積層方向に直流電流又は直流電圧を印加する。本明細書において直流電流とは、時間によって方向が変化しない電流であり、時間によって大きさが変化する電流を含む。また、直流電圧とは、時間によって方向が変化しない電圧であり、時間によって大きさが変化する電圧も含む。電源41は直流電流源でも、直流電圧源でもよい。
直流印加端子40は、電源41に接続され、磁気抵抗効果素子101の積層方向に直流電流又は直流電圧を印加する。本明細書において直流電流とは、時間によって方向が変化しない電流であり、時間によって大きさが変化する電流を含む。また、直流電圧とは、時間によって方向が変化しない電圧であり、時間によって大きさが変化する電圧も含む。電源41は直流電流源でも、直流電圧源でもよい。
電源41は、一定の直流電流を発生可能な直流電流源でも、一定の直流電圧を発生可能な直流電圧源でもよい。また、電源41は、発生する直流電流値の大きさが変化可能な直流電流源でもよく、発生する直流電圧値の大きさが変化可能な直流電圧源でもよい。
磁気抵抗効果素子101に印加される電流の電流密度は、磁気抵抗効果素子101の発振閾値電流密度よりも小さいことが好ましい。磁気抵抗効果素子101の発振閾値電流密度とは、この値以上の電流密度の電流が印加されることにより、磁気抵抗効果素子101の磁化自由層101Bの磁化が一定周波数及び一定の振幅で歳差運動を開始し、磁気抵抗効果素子101が発振する(磁気抵抗効果素子101の出力(抵抗値)が一定周波数及び一定の振幅で変動する)閾値の電流密度のことである。
直流印加端子40と出力信号線路50との間には、インダクタ42が配設されている。インダクタ42は、電流の高周波成分をカットし、電流の不変成分を通す。インダクタ42により磁気抵抗効果素子101から出力された出力信号(高周波信号)は第2のポート2に効率的に流れる。また、インダクタ42により電流の不変成分は、電源41、出力信号線路50、磁気抵抗効果素子101、線路51、グラウンドGという閉回路を流れる。
インダクタ42には、チップインダクタ、パターン線路によるインダクタ、インダクタ成分を有する抵抗素子等を用いることができる。インダクタ42のインダクタンスは、10nH以上であることが好ましい。
<高周波デバイスの機能>
高周波デバイス200に第1のポート1から高周波信号が入力されると、高周波信号に対応する高周波電流が第1の信号線路30内を流れる。第1の信号線路30内を流れる高周波電流により発生する高周波磁場が、磁気抵抗効果素子101の磁化自由層101Bに印加される。
高周波デバイス200に第1のポート1から高周波信号が入力されると、高周波信号に対応する高周波電流が第1の信号線路30内を流れる。第1の信号線路30内を流れる高周波電流により発生する高周波磁場が、磁気抵抗効果素子101の磁化自由層101Bに印加される。
磁化自由層101Bの磁化は、第1の信号線路30により磁化自由層101Bに印加された高周波磁場の周波数が、磁化自由層101Bの強磁性共鳴周波数の近傍の場合に大きく振動する。この現象が、強磁性共鳴現象である。
磁化自由層101Bの磁化の振動が大きくなると、磁気抵抗効果素子101における抵抗値変化が大きくなる。例えば直流印加端子40から一定の直流電流が磁気抵抗効果素子101に印加される場合には、磁気抵抗効果素子101の抵抗値変化は、下部電極107と上部電極106との間の電位差の変化として、第2のポート2から出力される。また、例えば直流印加端子40から一定の直流電圧が磁気抵抗効果素子101に印加される場合には、磁気抵抗効果素子101の抵抗値変化は、下部電極107と上部電極106との間を流れる電流値の変化として、第2のポート2から出力される。
すなわち、第1のポート1から入力された高周波信号の周波数が磁化自由層101Bの強磁性共鳴周波数近傍の場合は、磁気抵抗効果素子101の抵抗値の変動量が大きく、第2のポート2から大きな信号が出力される。これに対し、高周波信号の周波数が磁化自由層101Bの強磁性共鳴周波数から外れている場合は、磁気抵抗効果素子101の抵抗値の変動量が小さく、第2のポート2から信号がほとんど出力されない。すなわち、高周波デバイス200は特定の周波数の高周波信号を選択的に通過させることができる高周波フィルタとして機能する。
<他の用途>
また上記では高周波デバイスを高周波フィルタとして用いる場合を例に提示したが、磁気抵抗効果デバイスはアイソレータ、フェイズシフタ、増幅器(アンプ)等の高周波デバイスとしても利用できる。
また上記では高周波デバイスを高周波フィルタとして用いる場合を例に提示したが、磁気抵抗効果デバイスはアイソレータ、フェイズシフタ、増幅器(アンプ)等の高周波デバイスとしても利用できる。
高周波デバイスをアイソレータとして用いる場合は、第2のポート2から信号を入力する。第2のポート2から信号を入力しても第1のポート1から出力されることはないため、アイソレータとして機能する。
また、高周波デバイスをフェイズシフタとして用いる場合は、出力される周波数帯域が変化する場合において、出力される周波数帯域の任意の1点の周波数に着目する。出力される周波数帯域が変化する際に、特定の周波数における位相は変化するため、フェイズシフタとして機能する。
また、高周波デバイスを増幅器として用いる場合は、電源41から印加する直流電流又は直流電圧を所定の大きさ以上にする。このようにすることで、第1のポート1から入力される信号より第2のポート2から出力される信号が大きくなり、増幅器として機能する。
上述のように、第七実施形態に係る高周波デバイス200は、高周波フィルタ、アイソレータ、フェイズシフタ、増幅器等の高周波デバイスとして機能できる。
また、図9では磁気抵抗効果素子101が一つである場合を例示したが、磁気抵抗効果素子101は複数あってもよい。この場合、複数の磁気抵抗効果素子101は、互いに並列接続されていてもよいし、直列接続されていてもよい。例えば、強磁性共鳴周波数の異なる磁気抵抗効果素子101を複数利用することで、選択周波数の帯域(通過周波数帯域)を広くできる。また、一つの磁気抵抗効果素子から出力された出力信号を出力する出力信号線路50で発生した高周波磁場を、別の磁気抵抗効果素子に印加する構成としてもよい。このような構成にすると、出力される信号が複数回に渡ってフィルタリングされる。したがって、高周波信号のフィルタリング精度を高めることができる。
ここで、図9に示す高周波デバイス200は、第1の信号線路30からの高周波磁場を磁化自由層101Bに印加することで駆動する、磁場駆動型の高周波デバイスである。高周波デバイスは、磁場駆動型に限られず、電流駆動型であってもよい。図10は、第一実施形態にかかる磁気抵抗効果デバイスを用いた、電流駆動型の高周波デバイスの回路構成を示した模式図である。
図10に示す高周波デバイス300は、磁気抵抗効果素子101と、磁性体部102と、直流印加端子40と、入力信号線路60と、出力信号線路70とを備える。図10においても、磁性体部102は要部のみを図示している。また、図9に示す高周波デバイス200と同様の構成については、同様の符号を付す。入力信号線路60は、第1のポート1と上部電極106の間の配線であり、出力信号線路70は、第2のポート2と下部電極107の間の配線である。
高周波デバイス300は、第1のポート1から信号が入力され、第2のポート2から信号を出力する。図10に示す高周波デバイス300では、磁気抵抗効果素子101の積層方向に電流を流すことで生じるスピントランスファートルクにより、磁化自由層101Bの磁化が振動する。入力される高周波信号が、磁化自由層101Bの強磁性共鳴周波数(この場合、磁気抵抗効果素子101のスピントルク共鳴周波数ともいう)の近傍の場合、磁化自由層101Bの磁化は大きく振動する。磁化自由層101Bの磁化が周期的に振動することで、磁気抵抗効果素子101の抵抗値が周期的に変化する。
つまり第1のポート1から入力された高周波信号の周波数が磁化自由層101Bの強磁性共鳴周波数近傍の場合は、磁気抵抗効果素子101の抵抗値の変動量が大きく、第2のポート2から大きな信号が出力される。これに対し、高周波信号の周波数が磁化自由層101Bの強磁性共鳴周波数から外れている場合は、磁気抵抗効果素子101の抵抗値の変動量が小さく、第2のポート2から信号がほとんど出力されない。すなわち、高周波デバイス300も特定の周波数の高周波信号を選択的に通過させることができる高周波フィルタとして機能できる。
以上、本発明の実施形態について図面を参照して詳述したが、各実施形態における各構成及びそれらの組み合わせ等は一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換、及びその他の変更が可能である。
例えば、第1の信号線路30が、磁気抵抗効果素子101に接続された下部電極107又は上部電極106を兼ねてもよい。図11は、第1の信号線路30が、磁気抵抗効果素子101に接続された上部電極106を兼ねる高周波デバイスの模式図である。図11に示す高周波デバイスは、第1の信号線路30が、磁気抵抗効果素子101の磁化自由層101Bに接続されている。この場合、第1の信号線路30内を流れる高周波電流により発生し磁化自由層101Bに印加される高周波磁場を利用して、磁化自由層101Bの磁化を振動させることができる。また、第1の信号線路30から磁気抵抗効果素子101の積層方向に流れる高周波電流により生じるスピントランスファートルクを利用して、磁化自由層101Bの磁化を振動させてもよい。また、第1の信号線路30の上部電極106に相当する部分を流れる高周波電流の向きと直交する方向に、スピン流が生じる。このスピン流によるスピンオービットトルクを利用して、磁化自由層101Bの磁化を振動させてもよい。つまり、これら高周波磁場、スピントランスファートルクおよびスピンオービットトルクのうち少なくとも1つを利用して、磁化自由層101Bの磁化を振動させることができる。
また高周波デバイス200、300において、直流印加端子40は、インダクタ42とグラウンドGとの間に接続されてもよいし、上部電極106とグラウンドGとの間に接続されてもよい。
また、上記実施形態におけるインダクタ42にかえて、抵抗素子を用いてもよい。この抵抗素子は、抵抗成分により電流の高周波成分をカットする機能を有する。この抵抗素子は、チップ抵抗またはパターン線路による抵抗のいずれであってもよい。この抵抗素子の抵抗値は、出力信号線路50の特性インピーダンス以上であることが好ましい。例えば、出力信号線路50の特性インピーダンスが50Ωであり、抵抗素子の抵抗値が50Ωの場合は、45%の高周波電力が抵抗素子によりカットできる。また、出力信号線路50の特性インピーダンスが50Ωであり、抵抗素子の抵抗値が500Ωである場合は、90%の高周波電力を抵抗素子によりカットできる。この場合でも、磁気抵抗効果素子101から出力された出力信号を第2のポート2に効率的に流すことができる。
また、上記実施形態において、直流印加端子40に接続される電源41が、電流の高周波成分をカットすると同時に電流の不変成分を通す機能を有する場合、インダクタ42は無くても良い。この場合でも、磁気抵抗効果素子101から出力された出力信号を第2のポート2に効率的に流すことができる。
本実施形態に係る磁気抵抗効果デバイスは、磁気抵抗効果素子に直流電流を印加することで磁化自由層の磁化に振動が発生するスピントルク発振効果を用いた発振器にも適用可能である。また、本実施形態に係る磁気抵抗効果デバイスは、磁気抵抗効果素子に高周波電流(交流電流)を印加した際に、磁化自由層の磁化が振動することに起因して直流電圧が発生するスピントルクダイオード効果を用いた整流器や検波器にも適用可能である。
第七実施形態では、高周波デバイスに対し、第一実施形態の磁気抵抗効果デバイスを適用した場合を例に挙げて説明したが、他の実施形態の磁気抵抗効果デバイスも同様に適用することができる。また、第三、第五実施形態のようにコイルを有する形態を適用した場合には、磁気抵抗効果素子に印加される静磁場の強度を変化させることができるので、磁気抵抗効果素子の磁化自由層の強磁性共鳴周波数を制御することができる。
また、ここでは、一例として、磁気抵抗効果デバイスを高周波デバイスとして用いることを記載したが、磁気センサなどの他のデバイスにも適用可能である。
以下、実施例により本発明の効果をより明らかなものとする。なお、本発明は、以下の実施例に限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することができる。
磁性体部の構成に応じて、磁気抵抗効果素子(磁化自由層)に形成される磁場の分布について、シミュレーションを行った。ここでは、磁気抵抗効果素子の積層面内において、互いに直交する2つの方向をX方向、Y方向とする。
(実施例1)
図12(a)は、第一実施形態(図1(b))の磁気抵抗効果デバイス100を、磁化自由層101Bを通る面で切断した場合の断面図であり、磁性体部102を用いて、磁化自由層101Bに磁場を印加した状態の磁場分布を示している。磁性体部102は、いずれの部分もX方向(ここでは右方向)に磁化している(矢印で表示)。シミュレーションの設定条件として、磁気抵抗効果素子101の直径101Dを120nmとし、絶縁部103の幅103Aを40nmとし、磁性体部102の磁化の大きさを、1.5kGとした。
図12(a)は、第一実施形態(図1(b))の磁気抵抗効果デバイス100を、磁化自由層101Bを通る面で切断した場合の断面図であり、磁性体部102を用いて、磁化自由層101Bに磁場を印加した状態の磁場分布を示している。磁性体部102は、いずれの部分もX方向(ここでは右方向)に磁化している(矢印で表示)。シミュレーションの設定条件として、磁気抵抗効果素子101の直径101Dを120nmとし、絶縁部103の幅103Aを40nmとし、磁性体部102の磁化の大きさを、1.5kGとした。
(実施例2)
図12(b)は、第一実施形態の変形例1(図3(a))の磁気抵抗効果デバイス110を、磁化自由層101Bを通る面で切断した場合の断面図であり、磁性体部102を用いて、磁化自由層101Bに磁場を印加した状態を、実施例1と同様に示している。磁性体部102は、いずれの部分もX方向(ここでは右方向)に磁化している(矢印で表示)。シミュレーションの設定条件として、磁気抵抗効果素子101の直径101Dを120nmとし、磁化自由層101Bと磁性体部102との間、磁性体部102同士の間の絶縁部103の幅103A、103Bを、いずれも40nmとし、磁性体部102の磁化の大きさを1.5kGとした。
図12(b)は、第一実施形態の変形例1(図3(a))の磁気抵抗効果デバイス110を、磁化自由層101Bを通る面で切断した場合の断面図であり、磁性体部102を用いて、磁化自由層101Bに磁場を印加した状態を、実施例1と同様に示している。磁性体部102は、いずれの部分もX方向(ここでは右方向)に磁化している(矢印で表示)。シミュレーションの設定条件として、磁気抵抗効果素子101の直径101Dを120nmとし、磁化自由層101Bと磁性体部102との間、磁性体部102同士の間の絶縁部103の幅103A、103Bを、いずれも40nmとし、磁性体部102の磁化の大きさを1.5kGとした。
(比較例1)
図12(c)は、比較例1の磁気抵抗効果デバイスの断面図であり、磁性体部302を用いて、磁化自由層301Bに磁場を印加した状態を、実施例1、2と同様に示している。比較例1の磁気抵抗効果デバイスは、2つの磁性体部302が、磁気抵抗効果素子(磁化自由層301B)を挟んで対向するように構成されている。磁性体部302は、いずれの部分もX方向(ここでは右方向)に磁化している(矢印で表示)。シミュレーションの設定条件として、磁化自由層の直径301Dを120nmとし、磁性体部302同士の間の絶縁部303の幅303Bを200nmとし、磁性体部302の磁化の大きさを1.5kGとした。
図12(c)は、比較例1の磁気抵抗効果デバイスの断面図であり、磁性体部302を用いて、磁化自由層301Bに磁場を印加した状態を、実施例1、2と同様に示している。比較例1の磁気抵抗効果デバイスは、2つの磁性体部302が、磁気抵抗効果素子(磁化自由層301B)を挟んで対向するように構成されている。磁性体部302は、いずれの部分もX方向(ここでは右方向)に磁化している(矢印で表示)。シミュレーションの設定条件として、磁化自由層の直径301Dを120nmとし、磁性体部302同士の間の絶縁部303の幅303Bを200nmとし、磁性体部302の磁化の大きさを1.5kGとした。
図13(a)、(b)は、実施例1、2、比較例1の磁化自由層に印加される磁場の分布について、シミュレーションを行った結果を示すグラフである。図13(a)のグラフでは、横軸が、X方向における磁化自由層の中心Oからの距離を示し、縦軸が、中心Oを含む面内において、磁化自由層に印加される磁場のX成分Hxを示している。図13(b)のグラフでは、横軸が、Y方向における磁化自由層の中心Oからの距離を示し、縦軸が、中心Oを含む面内において、磁化自由層に印加される磁場のX成分Hxを示している。
図13(a)では、X方向において、実施例1、2の磁場のX成分Hxが、比較例1の磁場のX成分Hxに比べて広い範囲で均一に分布している。図13(b)では、Y方向において、実施例1、2の磁場のY成分Hyが、比較例1の磁場のY成分Hyに比べて広い範囲で均一に分布している。これらの結果から、実施例1、2においては、X方向及びY方向における磁場の均一性が、比較例1に比べて改善されており、磁化自由層にドメインが形成されにくいことが分かる。
なお、実施例2で磁化自由層に印加される磁場は、X方向、Y方向の両方において実施例1と同様の分布を示している。この結果から、磁性体部が磁気抵抗効果素子の全周にわたって形成されていなくても、形成されていない範囲が十分小さければ、実施例1と同等の磁場分布を得ることができることが分かる。
100、110、120、130、140、150・・・磁気抵抗効果デバイス
160、170、180・・・磁気抵抗効果デバイス
101・・・磁気抵抗効果素子
101A・・・磁化固定層
101B、301B・・・磁化自由層
101C・・・スペーサ層
101D、301D・・・直径
102、302・・・磁性体部
102A・・・軟磁性体
102B・・・反強磁性体
102C・・・第1軟磁性体
102D・・・第2軟磁性体
102F・・・第1磁性体部
102G・・・ギャップ部
103、303・・・絶縁部
103A、・・・幅
103B、303B・・・幅
104・・・コイル
105・・・磁場印加機構
106・・・上部電極
107・・・下部電極
108、109・・・磁場印加機構
200、300・・・高周波デバイス
30・・・第1の信号線路
32、52・・・基準電位端子
40・・・直流印加端子
41・・・電源
42・・・インダクタ
50、70・・・出力信号線路
51・・・線路
60・・・入力信号線路
1・・・第1のポート
2・・・第2のポート
G・・・グラウンド
L・・・積層方向
M・・・磁化
P1、P2・・・端部
P3・・・中央部
S1、S2、S3、T1、T2、T3、T4・・・部分
W1、W2・・・幅
160、170、180・・・磁気抵抗効果デバイス
101・・・磁気抵抗効果素子
101A・・・磁化固定層
101B、301B・・・磁化自由層
101C・・・スペーサ層
101D、301D・・・直径
102、302・・・磁性体部
102A・・・軟磁性体
102B・・・反強磁性体
102C・・・第1軟磁性体
102D・・・第2軟磁性体
102F・・・第1磁性体部
102G・・・ギャップ部
103、303・・・絶縁部
103A、・・・幅
103B、303B・・・幅
104・・・コイル
105・・・磁場印加機構
106・・・上部電極
107・・・下部電極
108、109・・・磁場印加機構
200、300・・・高周波デバイス
30・・・第1の信号線路
32、52・・・基準電位端子
40・・・直流印加端子
41・・・電源
42・・・インダクタ
50、70・・・出力信号線路
51・・・線路
60・・・入力信号線路
1・・・第1のポート
2・・・第2のポート
G・・・グラウンド
L・・・積層方向
M・・・磁化
P1、P2・・・端部
P3・・・中央部
S1、S2、S3、T1、T2、T3、T4・・・部分
W1、W2・・・幅
Claims (8)
- 第1の磁化自由層と、磁化固定層又は第2の磁化自由層と、前記第1の磁化自由層と前記磁化固定層又は第2の磁化自由層との間に挟持されたスペーサ層とを有する磁気抵抗効果素子と、
前記磁気抵抗効果素子に磁場を印加する磁性体部と、を備え、
前記磁気抵抗効果素子の積層方向からの平面視において、
前記磁性体部が、前記磁気抵抗効果素子の外周を囲むように配されていることを特徴とする磁気抵抗効果デバイス。 - 前記積層方向からの平面視において、前記磁性体部が、前記磁気抵抗効果素子の全周を囲むように配されていることを特徴とする請求項1に記載の磁気抵抗効果デバイス。
- 前記積層方向からの平面視において、前記磁気抵抗効果素子の外周のうち一部が前記磁性体部に囲まれないように、ギャップ部を有し、
当該平面視におけるギャップ部の幅が、前記ギャップ部の幅の方向に平行な方向の前記磁気抵抗効果素子の幅より小さいことを特徴とする請求項1に記載の磁気抵抗効果デバイス。 - 前記磁性体部が、少なくとも前記第1の磁化自由層の外周を囲むように配されていることを特徴とする請求項1〜3のいずれか一項に記載の磁気抵抗効果デバイス。
- 前記磁性体部が、硬磁性体を含むことを特徴とする請求項1〜4のいずれか一項に記載の磁気抵抗効果デバイス。
- 前記磁性体部が、磁気的に結合した軟磁性体と反強磁性体とを含むことを特徴とする請求項1〜4のいずれか一項に記載の磁気抵抗効果デバイス。
- 前記磁性体部が軟磁性体を含み、前記軟磁性体の少なくとも一部にコイルが巻かれていることを特徴とする請求項1〜4のいずれか一項に記載の磁気抵抗効果デバイス。
- 前記磁気抵抗効果素子に対し、前記積層方向の成分を有する磁場を印加する磁場印加機構を、さらに備えていることを特徴とする請求項1〜7のいずれか一項に記載の磁気抵抗効果デバイス。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018007710A JP2019129164A (ja) | 2018-01-19 | 2018-01-19 | 磁気抵抗効果デバイス |
US16/235,089 US10984938B2 (en) | 2018-01-19 | 2018-12-28 | Magnetoresistance effect device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018007710A JP2019129164A (ja) | 2018-01-19 | 2018-01-19 | 磁気抵抗効果デバイス |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2019129164A true JP2019129164A (ja) | 2019-08-01 |
Family
ID=67299309
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018007710A Pending JP2019129164A (ja) | 2018-01-19 | 2018-01-19 | 磁気抵抗効果デバイス |
Country Status (2)
Country | Link |
---|---|
US (1) | US10984938B2 (ja) |
JP (1) | JP2019129164A (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11758823B2 (en) * | 2017-11-29 | 2023-09-12 | Everspin Technologies, Inc. | Magnetoresistive stacks and methods therefor |
US11456100B2 (en) * | 2019-05-17 | 2022-09-27 | Taiwan Semiconductor Manufacturing Company Ltd. | MRAM stacks, MRAM devices and methods of forming the same |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3863992A (en) | 1974-05-10 | 1975-02-04 | Bendix Corp | Inverting limiting relay valve with interlock |
JP2004005923A (ja) * | 2002-03-29 | 2004-01-08 | Fujitsu Ltd | 磁気ヘッドの製造方法および磁気ヘッド、パターン形成方法 |
JP2008085185A (ja) * | 2006-09-28 | 2008-04-10 | Fujitsu Ltd | 磁気抵抗効果素子、その製造方法、および磁気記憶装置 |
JP5127861B2 (ja) * | 2010-03-24 | 2013-01-23 | 株式会社東芝 | 磁気メモリ |
US8379350B2 (en) * | 2010-06-30 | 2013-02-19 | Tdk Corporation | CPP-type magnetoresistive element including spacer layer |
US8493694B2 (en) | 2010-11-22 | 2013-07-23 | Headway Technologies, Inc. | Fabrication of a coercivity hard bias using FePt containing film |
US9906199B2 (en) | 2015-03-16 | 2018-02-27 | Tdk Corporation | Magnetoresistive effect device |
JP6738612B2 (ja) | 2015-03-16 | 2020-08-12 | Tdk株式会社 | 磁気抵抗効果デバイス |
CN107104181B (zh) | 2016-02-23 | 2020-01-03 | Tdk株式会社 | 磁阻效应器件 |
-
2018
- 2018-01-19 JP JP2018007710A patent/JP2019129164A/ja active Pending
- 2018-12-28 US US16/235,089 patent/US10984938B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
US20190228894A1 (en) | 2019-07-25 |
US10984938B2 (en) | 2021-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6738612B2 (ja) | 磁気抵抗効果デバイス | |
WO2018052062A1 (ja) | 磁気抵抗効果デバイスおよび磁気抵抗効果モジュール | |
WO2018084007A1 (ja) | 磁気抵抗効果デバイス | |
JP6511532B2 (ja) | 磁気抵抗効果デバイス | |
US10439592B2 (en) | Magnetoresistance effect device and high frequency device | |
JP2017153066A (ja) | 磁気抵抗効果デバイス | |
JP2019179901A (ja) | 磁気抵抗効果デバイス | |
US10984938B2 (en) | Magnetoresistance effect device | |
JP2019179902A (ja) | 磁気抵抗効果デバイス | |
JP6511531B2 (ja) | 磁気抵抗効果デバイス | |
JP6717137B2 (ja) | 共振素子、共振器および磁気抵抗効果デバイス | |
CN106559039B (zh) | 磁阻效应器件 | |
JP7087587B2 (ja) | 磁気抵抗効果デバイス | |
JP2017157581A (ja) | 磁気抵抗効果デバイス | |
JP2017028022A (ja) | 磁気抵抗効果デバイス | |
JP2019186270A (ja) | 磁気抵抗効果デバイス | |
JP2019186280A (ja) | 磁気抵抗効果デバイス | |
JP7091783B2 (ja) | 磁気抵抗効果デバイス | |
JP2018186266A (ja) | 磁気抵抗効果デバイス及び高周波デバイス | |
US10680165B2 (en) | Magnetoresistance effect device having magnetic member with concave portion | |
CN110034230B (zh) | 磁阻效应器件 | |
JP6569349B2 (ja) | 磁気抵抗効果デバイス | |
JP2019103086A (ja) | 磁気抵抗効果デバイス | |
JP6822301B2 (ja) | 磁気抵抗効果デバイス及び高周波デバイス | |
JP2019103085A (ja) | 磁気抵抗効果デバイス |