[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2019125480A - Cell-to-cell connection member, cell for solid oxide type fuel battery, solid oxide type fuel battery, sofc mono-generation system, and sofc co-generation system - Google Patents

Cell-to-cell connection member, cell for solid oxide type fuel battery, solid oxide type fuel battery, sofc mono-generation system, and sofc co-generation system Download PDF

Info

Publication number
JP2019125480A
JP2019125480A JP2018004987A JP2018004987A JP2019125480A JP 2019125480 A JP2019125480 A JP 2019125480A JP 2018004987 A JP2018004987 A JP 2018004987A JP 2018004987 A JP2018004987 A JP 2018004987A JP 2019125480 A JP2019125480 A JP 2019125480A
Authority
JP
Japan
Prior art keywords
cell
solid oxide
sofc
oxide fuel
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018004987A
Other languages
Japanese (ja)
Other versions
JP7080060B2 (en
Inventor
孝之 中尾
Takayuki Nakao
孝之 中尾
井上 修一
Shuichi Inoue
修一 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2018004987A priority Critical patent/JP7080060B2/en
Publication of JP2019125480A publication Critical patent/JP2019125480A/en
Application granted granted Critical
Publication of JP7080060B2 publication Critical patent/JP7080060B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

To provide a cell-to-cell connection member of a cell for solid oxide fuel battery with high power generation performance.SOLUTION: A cell-to-cell connection member 1 includes: a metal base 11 constituted of alloy member containing Ti, Si, Al, using Fe and Cr as a main constituent; an oxide coating 13 formed on a surface of the metal base 11 and containing TiO, using CrOas a main constituent; and a conductive coating 12 formed on a surface of the oxide coating 13 and constituted of conductive ceramic material containing at least two types of Zn, Co, Mn.SELECTED DRAWING: Figure 3

Description

本発明は、セル間接続部材、及び、固体酸化物形燃料電池用セル、及び、固体酸化物形燃料電池、及び、SOFCモノジェネレーションシステム、及び、SOFCコージェネレーションシステムに関する。   The present invention relates to an inter-cell connection member, a cell for a solid oxide fuel cell, a solid oxide fuel cell, an SOFC monogeneration system, and an SOFC cogeneration system.

固体酸化物形燃料電池(以下、適宜「SOFC」と記載する。)用セルは、電解質層の一方面側に空気極を接合すると共に、同電解質層の他方面側に燃料極を接合してなる単セルを、空気極又は燃料極に対して電子の授受を行う一対の電子伝導性のセル間接続部材により挟み込んで積層した構造を有する。そして、このようなSOFC用セルでは、例えば700℃〜900℃程度の作動温度で作動し、空気極側から燃料極側への電解質膜を介した酸化物イオンの移動に伴って、一対の電極の間に起電力が発生し、その起電力を外部に取り出し利用できる。   A cell for a solid oxide fuel cell (hereinafter referred to as “SOFC” as appropriate) has an air electrode bonded to one side of an electrolyte layer and a fuel electrode bonded to the other side of the electrolyte layer. The single cell is stacked and sandwiched by a pair of electron conductive inter-cell connecting members that exchange electrons with the air electrode or the fuel electrode. And in such a SOFC cell, for example, it operates at an operating temperature of about 700 ° C. to 900 ° C., and along with the movement of oxide ions from the air electrode side to the fuel electrode side through the electrolyte membrane, a pair of electrodes An electromotive force is generated between them, and the electromotive force can be taken out and used outside.

このようなSOFC用セルで利用されるセル間接続部材は、電子伝導性及び耐熱性に優れたFe及びCrを主成分として含むステンレス製の合金材料を用いて製作される。ところが、SOFC用セルに用いられる金属基材には、高温作動条件下にて耐酸化被膜であるCrが形成される。この酸化被膜は高抵抗な層であり、燃料電池の発電出力を低下させたり、Crの蒸発(飛散)により燃料電池の空気極と反応し、電極性能を著しく低下させたりする等の耐久性への問題がある。 The inter-cell connecting member used in such a SOFC cell is manufactured using a stainless alloy material containing Fe and Cr, which are excellent in electron conductivity and heat resistance, as main components. However, Cr 2 O 3, which is an oxidation resistant film, is formed on the metal base used for the SOFC cell under high temperature operating conditions. This oxide film is a high-resistance layer, and can reduce the power generation output of the fuel cell, react with the air electrode of the fuel cell by Cr evaporation (scattering), and significantly reduce the electrode performance, etc. There is a problem with

特許文献1には、Crを含有するステンレス合金等の金属基材を用いて製作されるセル間接続部材と空気極とを接合した状態で焼成する焼成処理を行うにあたり、その合金又は酸化物におけるCr(VI)の酸化物の生成を抑制するCr(VI)酸化物抑制状態とすることが記載されている。このCr(VI)酸化物抑制状態とするためには、焼成処理を行う前に、合金又は酸化物の表面に、標準生成自由エネルギーがWO以下である酸化物からなるn型半導体被膜(保護膜)を形成する被膜形成処理を行うことが記載されている。このように、Cr酸化被膜の形成抑制及びCr飛散防止等の対策が施されることで、近年、SOFCは、合金材料に安価なステンレス鋼材を使用することができるようになった。 Patent Document 1 discloses that, in the case of performing a firing process of firing in a state in which an inter-cell connecting member manufactured using a metal base such as a stainless steel alloy containing Cr and an air electrode are fired, It is described that the formation of a Cr (VI) oxide is suppressed to suppress the formation of an oxide of Cr (VI). In order to make this Cr (VI) oxide suppressed state, an n-type semiconductor film (protection is formed of an oxide whose standard free energy of formation is WO 3 or less) on the surface of the alloy or oxide before the baking treatment is performed It is described that the film formation process which forms a film | membrane is performed. As described above, SOFC can use inexpensive stainless steel as an alloy material in recent years by taking measures such as formation suppression of a Cr 2 O 3 oxide film and prevention of Cr scattering.

また、金属基材として用いられるステンレス合金には主成分のFe、Crの他に、耐熱性や耐食性の付与のために様々な元素が添加されている。これらの微量な添加元素が、金属基材とその表面に形成される保護膜との界面の近傍の酸素ポテンシャルによって、金属基材の内部に酸化物の膜状領域を形成するという問題が報告されている(非特許文献1)。この文献では、金属基材の内部にMnとCrの複合酸化物(スピネル化合物)が形成されることが報告されている。そして、Crリッチな組成では、その複合酸化物が高抵抗な層として存在することになる。また、金属基材が、Si及びAl及びTiを含むステンレス鋼を用いて構成される場合、その金属基材に含まれるAl、Si、Ti等がエリンガム図に従い、金属内部に絶縁性の高い酸化被膜として形成され、金属基材中の電子導電性が低下する、即ち、発電性能が低下することが懸念される。   In addition to Fe and Cr as main components, various elements are added to the stainless steel alloy used as the metal base in order to impart heat resistance and corrosion resistance. It has been reported that these trace amounts of additive elements form an oxide film-like region inside the metal substrate due to the oxygen potential in the vicinity of the interface between the metal substrate and the protective film formed on the surface thereof. (Non-Patent Document 1). In this document, it is reported that a composite oxide of Mn and Cr (a spinel compound) is formed inside a metal substrate. And, in the Cr rich composition, the complex oxide exists as a high resistance layer. In addition, when the metal base is configured using stainless steel containing Si and Al and Ti, Al, Si, Ti, etc. contained in the metal base are oxidized according to the Ellingham diagram, and the oxidation is high in the metal. When formed as a film, there is a concern that the electron conductivity in the metal substrate may be reduced, that is, the power generation performance may be reduced.

国際公開第2007/083627号International Publication No. 2007/083627

Hideto Kurokawa et al., “Oxidation behavior of Fe-16Cr alloy interconnect for SOFC under hydrogen potential gradient”, Solid State Ionics 168 (2004) 13-21Hideto Kurokawa et al., “Oxidation behavior of Fe-16 Cr alloy interconnect for SOFC under hydrogen potential gradient”, Solid State Ionics 168 (2004) 13-21

本発明は、上記の課題に鑑みてなされたものであり、その目的は、発電性能の高い固体酸化物形燃料電池用セルのセル間接続部材、及び、固体酸化物形燃料電池用セル、及び、固体酸化物形燃料電池、及び、SOFCモノジェネレーションシステム、及び、SOFCコージェネレーションシステムを提供する点にある。   The present invention has been made in view of the above problems, and an object thereof is to provide an inter-cell connecting member for a solid oxide fuel cell having high power generation performance, a cell for a solid oxide fuel cell, and A solid oxide fuel cell, an SOFC monogeneration system, and an SOFC cogeneration system are provided.

上記目的を達成するための本発明に係るセル間接続部材の特徴構成は、Fe及びCrを主成分とし、Ti,Si,Alを含む合金部材で構成される金属基材と、
前記金属基材の表面に形成された、Crを主成分とし、TiOを含む酸化物被膜と、
前記酸化物被膜上に形成された、Zn,Co,Mnのうちの少なくとも2種類以上を含む導電性セラミックス材料によって構成される導電性コーティング膜とを備える点にある。
ここで、前記酸化物被膜でのTiの含有率が0.9質量%以上であると好適である。
A characterizing feature of an inter-cell connection member according to the present invention for achieving the above object is a metal base composed mainly of Fe and Cr, and an alloy member containing Ti, Si, and Al;
An oxide film containing Cr 2 O 3 as a main component and containing TiO 2 formed on the surface of the metal substrate;
And a conductive coating film formed of a conductive ceramic material containing at least two or more of Zn, Co, and Mn formed on the oxide film.
Here, it is preferable that the content of Ti in the oxide film is 0.9% by mass or more.

本願発明者らは、セル間接続部材を構成する金属基材と導電性コーティング膜の間に存在する酸化物被膜にTiOが含まれると、Crを主成分とする酸化物被膜の電気抵抗が低下することを見いだした。
つまり本特徴構成によれば、セル間接続部材が、Fe及びCrを主成分とし、Ti,Si,Alを含む合金部材で構成される金属基材と、金属基材の表面に形成された、Crを主成分とし、TiOを含む酸化物被膜と、酸化物被膜上に形成された、Zn,Co,Mnのうちの少なくとも2種類以上を含む導電性セラミックス材料によって構成される導電性コーティング膜とを備えることにより、セル間接続部材の電気抵抗を低減して、発電性能の高い固体酸化物形燃料電池用セルを実現できる。
The present inventors have found that if TiO 2 is contained in the oxide film existing between the metal base material forming the inter-cell connection member and the conductive coating film, the oxide film containing Cr 2 O 3 as the main component It was found that the electrical resistance decreased.
That is, according to the present characteristic configuration, the inter-cell connection member is formed on the surface of the metal base, and the metal base composed of an alloy member containing Fe and Cr as main components and containing Ti, Si, and Al. A conductive composed mainly of Cr 2 O 3 and an oxide film containing TiO 2 , and a conductive ceramic material formed on the oxide film and containing at least two or more of Zn, Co and Mn. By providing the conductive coating film, the electric resistance of the inter-cell connection member can be reduced to realize a solid oxide fuel cell with high power generation performance.

本発明に係るセル間接続部材の更に別の特徴構成は、前記合金部材でのTiの含有率が0.20質量%以上である点にある。   Another characteristic configuration of the inter-cell connecting member according to the present invention is that the content of Ti in the alloy member is 0.20 mass% or more.

上記特徴構成によれば、合金部材でのTiの含有率が0.20質量%以上であることで、その表面に形成される酸化物被膜に含まれるTiの含有率を高めることができる。その結果、酸化物被膜の電気抵抗を低減できる。   According to the said characteristic structure, when the content rate of Ti in an alloy member is 0.20 mass% or more, the content rate of Ti contained in the oxide film formed in the surface can be raised. As a result, the electrical resistance of the oxide film can be reduced.

本発明に係るセル間接続部材の更に別の特徴構成は、前記導電性コーティング膜がZnとMnとCoとを含む金属酸化物を主材料とする点にある。   Another feature of the cell-to-cell connection member according to the present invention is that the conductive coating film is mainly composed of a metal oxide containing Zn, Mn and Co.

上記特徴構成によれば、保護膜がZnとMnとCoとを含む金属酸化物を主材料とすることで、保護膜の熱膨張率と基材や空気極の熱膨張率との不一致を小さくでき、SOFC用セルの耐久性を高めることができ好適である。保護膜がZn(CoMn(1−y)(3−x)(0<x<1、0<y×(3−x)≦2)を主材料とすると更に好適である。また保護膜がZnCoMnOを主材料とすると更に好適である。 According to the above feature configuration, the protective film is mainly made of a metal oxide containing Zn, Mn and Co, so that the mismatch between the thermal expansion coefficient of the protective film and the thermal expansion coefficient of the base or the air electrode is small. It is preferable that the durability of the SOFC cell can be enhanced. It is further preferable that the protective film has Zn x (Co y Mn (1-y) ) (3-x) O 4 (0 <x <1, 0 <y x (3-x) ≦ 2) as a main material. . Further, it is more preferable that the protective film contains ZnCoMnO 4 as a main material.

本発明に係るセル間接続部材の更に別の特徴構成は、前記導電性コーティング膜が電着塗装により形成されている点にある。   Yet another feature of the intercell connecting member according to the present invention is that the conductive coating film is formed by electrodeposition coating.

上記特徴構成によれば、緻密で強固な保護膜を実現できる。   According to the above feature configuration, a dense and strong protective film can be realized.

本発明に係る固体酸化物形燃料電池用セルの特徴構成は、上記セル間接続部材と空気極とを接合してなる点にある。   The characterizing feature of the solid oxide fuel cell according to the present invention is that the inter-cell connecting member and the air electrode are joined.

上記特徴構成によれば、上述のセル間接続部材と空気極とを接合して固体酸化物形燃料電池用セルが構成されるので、セル間接続部材の電気抵抗を大きく低減して、発電性能の高いSOFC用セルを実現できる。   According to the above-mentioned characteristic configuration, since the cell-to-cell connecting member and the air electrode are joined to constitute the cell for the solid oxide fuel cell, the electric resistance of the cell-to-cell connecting member is largely reduced, and the power generation performance is achieved. It is possible to realize a high SOFC cell.

本発明に係る固体酸化物形燃料電池の特徴構成は、上記固体酸化物形燃料電池用セルを搭載する点にある。   The characterizing feature of the solid oxide fuel cell according to the present invention is that the solid oxide fuel cell is mounted.

上記特徴構成によれば、発電性能の高い固体酸化物形燃料電池を実現できる。   According to the above characteristic configuration, a solid oxide fuel cell with high power generation performance can be realized.

本発明に係るSOFCモノジェネレーションシステムの特徴構成は、上記固体酸化物形燃料電池を備え、前記固体酸化物形燃料電池で発生した電力を電力負荷に供給する点にある。   The characterizing feature of the SOFC monogeneration system according to the present invention is that the solid oxide fuel cell is provided, and the electric power generated by the solid oxide fuel cell is supplied to the electric load.

上記特徴構成によれば、発電性能の高い固体酸化物形燃料電池を用いて、その固体酸化物形燃料電池で発生した電力を電力負荷に供給するSOFCモノジェネレーションシステムを実現できる。   According to the above-described feature configuration, it is possible to realize an SOFC monogeneration system that supplies the power load with the power generated by the solid oxide fuel cell using the solid oxide fuel cell with high power generation performance.

本発明に係るSOFCコージェネレーションシステムの特徴構成は、上記固体酸化物形燃料電池を備え、前記固体酸化物形燃料電池で発生した電力及び熱を電力負荷及び熱負荷に供給する点にある。   A feature of the SOFC cogeneration system according to the present invention is that the solid oxide fuel cell is provided, and the power and heat generated by the solid oxide fuel cell are supplied to the power load and the heat load.

上記特徴構成によれば、発電性能の高い固体酸化物形燃料電池を用いて、その固体酸化物形燃料電池で発生した電力及び熱を電力負荷及び熱負荷に供給するSOFCコージェネレーションシステムを実現できる。   According to the above-described feature configuration, it is possible to realize an SOFC cogeneration system that supplies the power load and the heat load with the power and heat generated by the solid oxide fuel cell using the solid oxide fuel cell with high power generation performance. .

固体酸化物形燃料電池用セルの概略図である。FIG. 1 is a schematic view of a solid oxide fuel cell. 固体酸化物形燃料電池の作動時の反応の説明図である。It is explanatory drawing of the reaction at the time of the action | operation of a solid oxide fuel cell. セル間接続部材の構造を示す断面図である。It is sectional drawing which shows the structure of an inter-cell connection member. 固体酸化物形燃料電池用セルを搭載した固体酸化物形燃料電池を備えるシステムの構成を示す図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the structure of a system provided with the solid oxide fuel cell which mounts the cell for solid oxide fuel cells. 通電試験治具の概略図である。It is the schematic of an electricity supply test jig. 電気抵抗の経時変化を示す通電試験結果のグラフである。It is a graph of the electricity supply test result which shows a time-dependent change of electrical resistance. 固体酸化物形燃料電池用セルの断面のSEM画像である。It is a SEM image of the cross section of the cell for solid oxide fuel cells. 固体酸化物形燃料電池用セルの断面のSEM画像である。It is a SEM image of the cross section of the cell for solid oxide fuel cells. 固体酸化物形燃料電池用セルの断面のSEM画像である。It is a SEM image of the cross section of the cell for solid oxide fuel cells.

以下、図面を参照して本発明の実施形態に係る固体酸化物形燃料電池(SOFC)用セル及びそれに用いられるセル間接続部材について説明する。
図1は固体酸化物形燃料電池用セルの概略図である。図2は固体酸化物形燃料電池の作動時の反応の説明図である。図1及び図2に示すように、SOFC用セルCは、酸素イオン伝導性の固体酸化物の緻密体からなる電解質膜30の一方面側に、酸素イオンおよび電子伝導性の多孔体からなる空気極31を接合するとともに、同電解質膜30の他方面側に電子伝導性の多孔体からなる燃料極32を接合してなる単セル3を備える。
さらに、SOFC用セルCは、この単セル3を、空気極31または燃料極32に対して電子の授受を行うとともに空気および水素を供給するための溝2が形成された一対の電子伝導性の合金または酸化物からなるセル間接続部材1により、適宜外周縁部においてガスシール体を挟持した状態で挟み込んだ構造を有する。空気極31とセル間接続部材1とが密着配置されることで、空気極31側の溝2が空気極31に空気を供給するための空気流路2aとして機能する。燃料極32とセル間接続部材1が密着配置されることで、燃料極32側の上記溝2が燃料極32に水素を供給するための燃料流路2bとして機能する。セル間接続部材1はインターコネクタとセルC間を電気的に接続する部材が接続された構成となることもある。
Hereinafter, a cell for a solid oxide fuel cell (SOFC) according to an embodiment of the present invention will be described with reference to the drawings, and an inter-cell connecting member used therefor.
FIG. 1 is a schematic view of a solid oxide fuel cell. FIG. 2 is an explanatory view of a reaction during operation of the solid oxide fuel cell. As shown in FIG. 1 and FIG. 2, the cell C for SOFC is an air comprising an oxygen ion and an electron conducting porous body on one side of an electrolyte membrane 30 comprising an oxygen ion conducting solid oxide dense body. A single cell 3 is formed by joining the electrode 31 and joining the fuel electrode 32 made of an electron conductive porous body to the other surface side of the electrolyte membrane 30.
Furthermore, the SOFC cell C has a pair of electron conductivity in which the single cell 3 is used to exchange electrons with the air electrode 31 or the fuel electrode 32 and to form a groove 2 for supplying air and hydrogen. It has a structure in which the gas seal body is appropriately held in the outer peripheral edge portion by the intercell connecting member 1 made of an alloy or an oxide. By closely arranging the air electrode 31 and the inter-cell connecting member 1, the groove 2 on the air electrode 31 side functions as an air flow path 2 a for supplying air to the air electrode 31. By closely arranging the fuel electrode 32 and the inter-cell connecting member 1, the groove 2 on the fuel electrode 32 side functions as a fuel flow passage 2 b for supplying hydrogen to the fuel electrode 32. The inter-cell connection member 1 may have a configuration in which a member for electrically connecting the interconnector and the cell C is connected.

上記単セル3を構成する各要素で利用される一般的な材料について説明を加えると、例えば、上記空気極31の材料としては、LaMO(例えばM=Mn,Fe,Co,Ni)中のLaの一部をアルカリ土類金属AE(AE=Sr,Ca)で置換した(La,AE)MOのペロブスカイト型酸化物を利用できる。上記燃料極32の材料としては、Niとイットリア安定化ジルコニア(YSZ)とのサーメットを利用でき、さらに、電解質膜30の材料としては、イットリア安定化ジルコニア(YSZ)を利用できる。 For example, the material of the air electrode 31 in LaMO 3 (for example, M = Mn, Fe, Co, Ni) is described as a general material used in each element constituting the unit cell 3. A perovskite-type oxide of (La, AE) MO 3 in which a part of La is substituted by an alkaline earth metal AE (AE = Sr, Ca) can be used. As a material of the fuel electrode 32, a cermet of Ni and yttria stabilized zirconia (YSZ) can be used, and further, as a material of the electrolyte film 30, yttria stabilized zirconia (YSZ) can be used.

そして、複数のSOFC用セルCが積層配置された状態で、複数のボルトおよびナットにより積層方向に押圧力を与えて挟持され、セルスタックとなる。このセルスタックにおいて、積層方向の両端部に配置されたセル間接続部材1は、燃料流路2bまたは空気流路2aの一方のみが形成されるものであればよく、その他の中間に配置されたセル間接続部材1は、一方の面に燃料流路2bが形成され、他方の面に空気流路2aが形成されるものを利用できる。なお、このような積層構造のセルスタックでは、上記セル間接続部材1をセパレータと呼ぶ場合がある。   Then, in a state where the plurality of SOFC cells C are stacked and arranged, a pressing force is applied in the stacking direction by the plurality of bolts and nuts, and the cells are held to form a cell stack. In this cell stack, the inter-cell connecting members 1 disposed at both ends in the stacking direction may be any as long as only one of the fuel flow path 2b or the air flow path 2a is formed, and they are disposed in the middle The inter-cell connection member 1 can utilize the one in which the fuel flow path 2b is formed on one side and the air flow path 2a is formed on the other side. In the cell stack having such a laminated structure, the inter-cell connection member 1 may be called a separator.

セルスタックは、燃料ガス(水素)を供給するマニホールドに、ガラスシール材等の接着材により取り付けられる。ガラスシール材としては、例えば結晶化ガラスが用いられる。ガラスシール材は、マニホールドの接着の他、単セル3とセル間接続部材1の間など、封止(シール)が必要な箇所に用いられる。このようなセルスタックの構造を有するSOFCを一般的に平板形SOFCと呼ぶ。本実施形態では、一例として平板形SOFCについて説明するが、本発明はその他の構造のSOFCについても適用可能である。   The cell stack is attached to a manifold for supplying fuel gas (hydrogen) by an adhesive such as a glass sealing material. For example, crystallized glass is used as the glass sealing material. The glass sealing material is used in places where sealing (sealing) is required such as between the unit cell 3 and the inter-cell connecting member 1 in addition to adhesion of the manifold. An SOFC having such a cell stack structure is generally referred to as a flat SOFC. In the present embodiment, a flat SOFC is described as an example, but the present invention is also applicable to SOFCs having other structures.

このようなSOFC用セルCを備えたSOFCの作動時には、図2に示すように、空気極31に対して隣接するセル間接続部材1に形成された空気流路2aを介して空気を供給するとともに、燃料極32に対して隣接するセル間接続部材1に形成された燃料流路2bを介して水素を供給し、例えば800℃程度の作動温度で作動する。すると、空気極31において酸素分子Oが電子eと反応して酸素イオンO2−が生成され、そのO2−が電解質膜30を通って燃料極32に移動し、燃料極32において供給されたHがそのO2−と反応してHOとeとが生成されることで、一対のセル間接続部材1の間に起電力Eが発生し、その起電力Eを外部に取り出し利用できる。 At the time of operation of the SOFC provided with such an SOFC cell C, as shown in FIG. 2, air is supplied via the air flow path 2a formed in the inter-cell connection member 1 adjacent to the air electrode 31. At the same time, hydrogen is supplied via the fuel flow path 2b formed in the adjacent inter-cell connecting member 1 to the fuel electrode 32, and the fuel cell is operated at an operating temperature of, for example, about 800.degree. Then, oxygen molecules O 2 in the air electrode 31 is an electron e - is reacted with oxygen ions O 2- is generated, the O 2- passes through the electrolyte membrane 30 to move to the fuel electrode 32, provided at the fuel electrode 32 been H 2 reacts with the O 2-H 2 O and e - and that is generated, the electromotive force E is generated between the pair of cell connecting member 1, outside the electromotive force E It can be taken out and used.

〔セル間接続部材〕
図3は、セル間接続部材の構造を示す断面図である。セル間接続部材1は、金属基材11と、その金属基材11の表面に形成された酸化物被膜13と、その酸化物被膜13上に形成された保護膜12とを備えて構成される。そして、セル間接続部材1が、接着層4を間に挟んで単セル3と接合されている。このように、金属基材11の表面を覆うように保護膜12を設けることでCr被毒を抑制でき、固体酸化物形燃料電池用セルCとして好適である。
[Inter-cell connecting member]
FIG. 3 is a cross-sectional view showing the structure of the inter-cell connecting member. The inter-cell connection member 1 is configured to include a metal base 11, an oxide film 13 formed on the surface of the metal base 11, and a protective film 12 formed on the oxide film 13. . Then, the inter-cell connection member 1 is joined to the unit cell 3 with the adhesive layer 4 interposed therebetween. Thus, Cr poisoning can be suppressed by providing the protective film 12 so as to cover the surface of the metal base 11, and it is suitable as the cell C for a solid oxide fuel cell.

金属基材11の材料としては、電子伝導性および耐熱性の優れた材料であって、Fe及びCrを主成分とし、Ti,Si,Alを含む合金部材(ステンレス鋼)で構成される。   The material of the metal base 11 is a material excellent in electron conductivity and heat resistance, and is made of an alloy member (stainless steel) which contains Fe and Cr as main components and contains Ti, Si and Al.

〔酸化物被膜〕
金属基材11の表面には、酸化物被膜13が形成される。酸化物被膜13は、周囲雰囲気中の酸素によって金属基材11の合金部材の表面が酸化されて生じる。本実施形態のようにCrを含有するステンレス合金の場合は、酸化物被膜13は、クロミア(Cr)を主成分とし、TiOを含む緻密な被膜として形成される。酸化物被膜13は、後述する保護膜12の焼結工程や接着層4の焼き付け(接合工程)等における熱処理に伴って形成される。
[Oxide film]
An oxide film 13 is formed on the surface of the metal substrate 11. The oxide film 13 is generated by oxidation of the surface of the alloy member of the metal substrate 11 by oxygen in the ambient atmosphere. In the case of a stainless alloy containing Cr as in the present embodiment, the oxide film 13 is formed as a dense film containing chromia (Cr 2 O 3 ) as a main component and containing TiO 2 . The oxide film 13 is formed along with heat treatment in a sintering process of the protective film 12 described later, baking (bonding process) of the adhesive layer 4 and the like.

〔保護膜〕
金属基材11の上には保護膜12が形成されている。保護膜12は、Zn,Co,Mnのうちの少なくとも2種類以上を含む導電性セラミックス材料によって構成される導電性コーティング膜である。例えば、導電性コーティング膜は、ZnとMnとCoとを含む金属酸化物、例えば、亜鉛コバルトマンガン系酸化物のZn(CoMn1−y(3−x)(0<x<1、0<y×(3−x)≦2)を含む金属酸化物を主材料とする。或いは、導電性コーティング膜はZnCoMnOを主材料としてもよい。他にも、導電性コーティング膜は、MnとCoとを含むコバルトマンガン系の金属酸化物:MnCo(0<x,y<3、x+y=3)である、例えばMnCoなどを主材料としてもよい。尚、「主材料」とは主たる材料であることを意味し、複数の種類の金属酸化物を混合して用いたり、他の成分を混合して用いることも可能である。このような導電性コーティング膜である保護膜12を用いることで、保護膜12の熱膨張率と金属基材11や空気極31の熱膨張率との不一致を小さくでき、SOFC用セルCの耐久性を高めることができる。
〔Protective film〕
A protective film 12 is formed on the metal substrate 11. The protective film 12 is a conductive coating film made of a conductive ceramic material containing at least two or more of Zn, Co, and Mn. For example, the conductive coating film is a metal oxide containing Zn, Mn, and Co, for example, Zn x (Co y Mn 1-y ) (3-x) O 4 (0 <x ) of zinc cobalt manganese oxide. A metal oxide containing <1, 0 <y × (3-x) ≦ 2) is a main material. Alternatively, the conductive coating film may be mainly made of ZnCoMnO 4 . Besides, the conductive coating film is a cobalt manganese metal oxide containing Mn and Co: Mn x Co y O 4 (0 <x, y <3, x + y = 3), for example, MnCo 2 O 4 or the like may be used as the main material. In addition, "main material" means that it is a main material, and it is also possible to mix and use a plurality of types of metal oxides or to mix and use other components. By using the protective film 12 which is such a conductive coating film, the mismatch between the thermal expansion coefficient of the protective film 12 and the thermal expansion coefficient of the metal base 11 and the air electrode 31 can be reduced, and the durability of the cell C for SOFC Can be enhanced.

保護膜12の形成方法としては、スクリーン印刷法、ドクターブレード法、スプレーコート法、インクジェット法、スピンコート法、ディップコート、電気めっき法、無電解めっき法、電着塗装法等の湿式製膜が例示できる。   As a method of forming the protective film 12, wet film forming methods such as screen printing method, doctor blade method, spray coating method, inkjet method, spin coating method, dip coating, electroplating method, electroless plating method, electrodeposition coating method, etc. It can be illustrated.

例えば、電着塗装法を適用すれば、下記のような手法で保護膜12を形成できる。
金属酸化物微粒子を電着液1リットル当り100gになるように分散し、ポリアクリル酸等のアニオン型樹脂とを含有している混合液を用いて電着塗装を行う。ここでは、(金属酸化物微粒子:アニオン型樹脂)=(1:1)(質量比)とした。電着塗装は、例えば混合液を満たした通電槽中に金属基材11を完全にまたは部分的に浸漬し、金属基材11をプラス、対極としてSUS304の極板をマイナスの極性として通電を行うことによって、金属基材11表面に未硬化の電着塗膜が形成される。電着塗装条件も特に制限されず、金属基材11である金属の種類、混合液の種類、通電槽の大きさおよび形状、得られるセル間接続部材1の用途などの各種条件に応じて広い範囲から適宜選択できるが、通常は、浴温度(混合液温度)10〜40℃程度、印加電圧10V〜450V程度、電圧印加時間1分〜10分程度、混合液の液温10℃〜40℃とすればよい。尚、電着電圧、電着時間を変更することにより電着塗膜の膜厚をコントロールできる。また、金属基材11に対して、種々前処理を行うこともできる。
For example, if the electrodeposition coating method is applied, the protective film 12 can be formed by the following method.
The metal oxide fine particles are dispersed to 100 g per liter of the electrodeposition solution, and electrodeposition coating is performed using a mixed solution containing an anionic resin such as polyacrylic acid. Here, (metal oxide fine particles: anion type resin) = (1: 1) (mass ratio). The electrodeposition coating is carried out, for example, by completely or partially immersing the metal substrate 11 in a current-carrying tank filled with the mixture liquid, and conducting the current with the metal substrate 11 as a plus and the electrode plate of SUS304 as a counter electrode of minus polarity. Thus, an uncured electrodeposited film is formed on the surface of the metal substrate 11. The electrodeposition coating conditions are also not particularly limited, and are wide depending on various conditions such as the type of metal that is the metal substrate 11, the type of mixed solution, the size and shape of the current tank, and the application of the intercell connecting member 1 obtained. The temperature can be appropriately selected from the range, but usually, the bath temperature (mixed liquid temperature) is about 10 to 40 ° C., the applied voltage is about 10 V to 450 V, the voltage application time is about 1 to 10 minutes, the liquid temperature of the mixed liquid is 10 ° C. to 40 ° C. And it is sufficient. The film thickness of the electrodeposition coating can be controlled by changing the electrodeposition voltage and the electrodeposition time. In addition, various pretreatments can be performed on the metal substrate 11.

この未硬化の電着塗膜(後述する保護膜材料層)が形成された金属基材11に加熱処理(後述する焼結工程)を施すことによって、金属基材11上に硬化した電着塗膜(保護膜12)が形成される。加熱処理は、電着塗膜を乾燥させる予備乾燥と、電着塗膜を硬化させる硬化加熱とを含み、予備乾燥後に硬化加熱が行われる。その後、電気炉を使用して例えば1000℃よりも高い温度で大気雰囲気下で熱処理(例えば2時間焼成)し、その後徐冷する。   The electrodeposition coating cured on the metal substrate 11 by subjecting the metal substrate 11 on which the uncured electrodeposition coating film (protective film material layer described later) is formed to a heat treatment (sintering step described later) A film (protective film 12) is formed. The heat treatment includes pre-drying to dry the electrodeposition coating and curing heating to cure the electrodeposition coating, and curing heating is performed after the pre-drying. After that, heat treatment (for example, baking for 2 hours) in an air atmosphere at a temperature higher than, for example, 1000 ° C. using an electric furnace, and then gradually cooled.

〔接着層〕
接着層4により、セル間接続部材1と単セル3の空気極31とが接合される。詳しくは、セル間接続部材1の金属基材11の表面に形成された保護膜12と、単セル3の空気極31とが、接着層4により接着・接合されている。接着層4の主材料としては、空気極31と類似のペロブスカイト型酸化物や、スピネル型酸化物が用いられる。たとえばLSCF6428(La0.6Sr0.4Co0.2Fe0.83−δ)が用いられる。
[Adhesive layer]
The inter-cell connection member 1 and the air electrode 31 of the single cell 3 are joined by the adhesive layer 4. Specifically, the protective film 12 formed on the surface of the metal base 11 of the inter-cell connecting member 1 and the air electrode 31 of the unit cell 3 are adhered and bonded by the adhesive layer 4. As a main material of the bonding layer 4, a perovskite type oxide similar to the air electrode 31 or a spinel type oxide is used. For example LSCF6428 (La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3- δ) is used.

〔固体酸化物形燃料電池用セルの製造方法〕
次に固体酸化物形燃料電池用セルCの製造方法について説明する。固体酸化物形燃料電池用セルCの製造方法は、セル間接続部材1を製造する過程(以下の「保護膜形成工程」)と、そのセル間接続部材1を空気極31及び燃料極32と接合する過程(以下の「接合工程」)とを含む。
[Method of Manufacturing Cell for Solid Oxide Fuel Cell]
Next, a method of manufacturing the solid oxide fuel cell C will be described. The method of manufacturing the cell C for solid oxide fuel cell comprises the steps of manufacturing the inter-cell connecting member 1 (the following “protective film forming step”), and the inter-cell connecting member 1 with the air electrode 31 and the fuel electrode 32. And a bonding process (hereinafter referred to as "bonding process").

〔保護膜形成工程〕
本発明のセル間接続部材1の製造方法である保護膜形成工程は、製膜工程と焼結工程とを有する。保護膜形成工程では、セル間接続部材1の金属基材11の表面に保護膜12を形成する。
[Protective film formation process]
The protective film formation process which is a manufacturing method of the cell connection member 1 of this invention has a film forming process and a sintering process. In the protective film forming step, the protective film 12 is formed on the surface of the metal base 11 of the inter-cell connecting member 1.

製膜工程では、金属基材11の表面に、Zn,Co,Mnのうちの少なくとも2種類以上を含む保護膜材料層を湿式製膜する。例えば、Zn,Co,Mnのうちの少なくとも2種類以上を含む金属酸化物の微粉末を含有するスラリーを用いてセル間接続部材1の金属基材11に塗膜(保護膜材料層)を湿式製膜する。湿式製膜は、上述した電着塗装法により行ってもよいし、スラリーに金属基材11を浸けて引き上げる(ディップ)ことで行ってもよいし、先に例示した他の方法のいずれかを用いてもよい。湿式製膜は、金属基材11の全体に対して行ってもよいし、平板状の金属基材11の一方の面のみに行ってもよい。なお後者の場合、湿式製膜が行われ保護膜12が形成された面が、単セル3の空気極31に接合されることになる。湿式製膜が行われず金属基材11の素材が露出している面が、単セル3の燃料極32に接合されることになる。   In the film forming step, a protective film material layer containing at least two or more of Zn, Co, and Mn is wet-formed on the surface of the metal substrate 11. For example, using a slurry containing a fine powder of a metal oxide containing at least two or more of Zn, Co, and Mn, the coating film (protective film material layer) is wetted on the metal base 11 of the intercell connection member 1 Produce a film. The wet film formation may be performed by the above-described electrodeposition coating method, or may be performed by dipping the metal substrate 11 in the slurry and pulling it up (dip), or any of the other methods exemplified above. You may use. The wet film formation may be performed on the whole of the metal base 11 or may be performed only on one side of the flat metal base 11. In the latter case, the surface on which the wet film formation is performed and the protective film 12 is formed is bonded to the air electrode 31 of the unit cell 3. The wet film formation is not performed, and the surface of the metal base 11 exposed is bonded to the fuel electrode 32 of the unit cell 3.

焼結工程では、上記製膜工程によって塗膜(保護膜材料層)が製膜された金属基材11に対して1000℃よりも高い温度で大気雰囲気下で熱処理を施すことで塗膜(保護膜材料層)を焼結させ、金属基材11の表面に導電性セラミックス材料によって構成される導電性コーティング膜である保護膜12を形成する。熱処理は、大気雰囲気下で、例えば1000℃よりも高い温度で2時間行われる。このように、保護膜形成工程の焼結工程における熱処理は、SOFC用セルCの単セル3と金属基材11とを接合しない状態で行われる。つまり、この焼結工程を行って保護膜12を形成した後、後述する接合工程を行う。   In the sintering step, the metal base 11 on which the coating film (protective film material layer) is formed by the film forming step is subjected to heat treatment at a temperature higher than 1000.degree. The film material layer is sintered to form a protective film 12 which is a conductive coating film made of a conductive ceramic material on the surface of the metal substrate 11. The heat treatment is performed under an air atmosphere, for example, at a temperature higher than 1000 ° C. for 2 hours. As described above, the heat treatment in the sintering step of the protective film formation step is performed in a state where the unit cell 3 of the SOFC cell C and the metal base 11 are not joined. That is, after the protective film 12 is formed by performing this sintering process, a bonding process described later is performed.

〔接合工程〕
接合工程では、上記保護膜形成工程(製膜工程及び焼結工程)によって得られたセル間接続部材1と、単セル3の空気極31とを接着層4を介して接合する。同様に、単セル3の燃料極32とセル間接続部材1とを接着層4を介して接合する。詳しくは、上述の接着層4の材料を含有するペーストをセル間接続部材1に塗布して単セル3と接合し、熱処理を施して焼き付けにより接着層4を形成する。熱処理は通常であれば、燃料電池の作動温度〜950℃の低温で行うが、この温度に限定される訳ではない。
以上のようにして、セル間接続部材1と空気極31とを接合してなるSOFC用セルCが製造される。
Bonding process
In the bonding step, the inter-cell connecting member 1 obtained in the protective film forming step (the film forming step and the sintering step) is bonded to the air electrode 31 of the unit cell 3 through the adhesive layer 4. Similarly, the fuel electrode 32 of the unit cell 3 and the inter-cell connecting member 1 are joined via the adhesive layer 4. Specifically, a paste containing the material of the adhesive layer 4 described above is applied to the inter-cell connecting member 1 and bonded to the unit cell 3, and heat treatment is performed to form the adhesive layer 4 by baking. The heat treatment is usually performed at a low temperature of the fuel cell operating temperature to 950 ° C., but is not limited to this temperature.
As described above, the SOFC cell C formed by joining the inter-cell connection member 1 and the air electrode 31 is manufactured.

図4は、上述の方法で製造した固体酸化物形燃料電池用セルCを搭載する固体酸化物形燃料電池を備えるシステムの構成を示す図である。特に、図4に示すのは、固体酸化物形燃料電池(SOFC)20を備え、その固体酸化物形燃料電池20で発生した電力及び熱を電力負荷及び熱負荷に供給するSOFCコージェネレーションシステムの構成を示す図である。この固体酸化物形燃料電池20は、上述のように製造された固体酸化物形燃料電池用セルCが複数積層されたセルスタックを有する。また、図示は省略するが、固体酸化物形燃料電池20には、燃料極32に供給される水素などの燃料ガスを、都市ガスなどの炭化水素を改質して製造するための改質装置を併設してもよい。   FIG. 4 is a view showing the configuration of a system including a solid oxide fuel cell mounted with the solid oxide fuel cell C produced by the above-described method. In particular, FIG. 4 shows a SOFC cogeneration system including a solid oxide fuel cell (SOFC) 20 and supplying power and heat generated by the solid oxide fuel cell 20 to a power load and a heat load. It is a figure showing composition. The solid oxide fuel cell 20 has a cell stack in which a plurality of solid oxide fuel cell cells C manufactured as described above are stacked. Further, although not shown, in the solid oxide fuel cell 20, a reformer for producing a fuel gas such as hydrogen supplied to the fuel electrode 32 by reforming a hydrocarbon such as a city gas You may use

固体酸化物形燃料電池20から出力される電力は、インバータ等の電力変換器24を介して、商用電力系統21に接続されている電力線22に供給される。この電力線22には、固体酸化物形燃料電池20が設置されている施設で利用される照明機器や空調機器などの様々な電力負荷装置23が接続される。つまり、電力負荷装置23での電力負荷に対して、商用電力系統21及び固体酸化物形燃料電池20のうちの少なくとも一方から電力が供給される。   The power output from the solid oxide fuel cell 20 is supplied to the power line 22 connected to the commercial power system 21 through the power converter 24 such as an inverter. Connected to the power line 22 are various power load devices 23 such as lighting devices and air conditioners used in a facility where the solid oxide fuel cell 20 is installed. That is, power is supplied from at least one of the commercial power grid 21 and the solid oxide fuel cell 20 to the power load in the power load device 23.

固体酸化物形燃料電池20から排出される熱は、固体酸化物形燃料電池20が設置されている施設に設置されている給湯装置や暖房装置などの様々な熱負荷装置26の熱負荷に対して供給される。また、図示するように、蓄熱媒体を貯える蓄熱装置25を設けておけば、固体酸化物形燃料電池20から排出された熱をその蓄熱媒体で回収して蓄熱装置25で蓄えることもできる。そして、熱負荷装置26で熱需要が発生したときに、蓄熱装置25から熱負荷装置26へと熱供給を行うことができる。   The heat discharged from the solid oxide fuel cell 20 is applied to the heat load of various heat load devices 26 such as a water heater and a heating device installed in a facility where the solid oxide fuel cell 20 is installed. Is supplied. Further, as shown in the figure, if the heat storage device 25 for storing the heat storage medium is provided, the heat discharged from the solid oxide fuel cell 20 can be recovered by the heat storage medium and stored by the heat storage device 25. Then, when heat demand is generated in the heat load device 26, heat can be supplied from the heat storage device 25 to the heat load device 26.

〔金属基材11中のTi含有率の違いによるセル間接続部材の電気抵抗の変化〕
本実施形態では、セル間接続部材1を製造する際に用いる金属基材11に、Ti含有率の高い材料を採用することの効果を検証した。特に抵抗の高い酸化物被膜13内部の電子導電性を、TiをCr内に拡散することで改善できたことを検証した。具体的には、上述した固体酸化物形燃料電池用セルCの製造方法に沿って実験サンプルを作成し、電気抵抗の経時変化の測定、及び、セル間接続部材1の断面のSEM観察を行って、効果を検証した。
[Change in electrical resistance of inter-cell connection member due to difference in Ti content in metal substrate 11]
In the present embodiment, the effect of employing a material having a high Ti content rate as the metal base 11 used in manufacturing the inter-cell connecting member 1 was verified. In particular, it was verified that the electronic conductivity in the highly resistant oxide film 13 could be improved by diffusing Ti into Cr 2 O 3 . Specifically, experimental samples are prepared according to the method of manufacturing the solid oxide fuel cell C described above, and measurement of the change in electric resistance over time and SEM observation of the cross section of the inter-cell connecting member 1 are performed. The effect was verified.

〔実験サンプルの作成〕
〔サンプル1:実施例〕
金属基材11として用いた、Fe及びCrを主成分とし、Ti,Si,Alを含む合金材料の板の表面に、MnCoの微粉末を含有するスラリーを用いてアニオン電着塗装法にて塗膜(保護膜材料層)を製膜した(製膜工程)。このサンプル1に用いた合金材料でのCrの含有率は22.2(質量%)であり、Tiの含有率は0.200(質量%)であった。
その板を1050℃の大気雰囲気下にて2時間加熱する焼結工程を行って、MnCoを主材料とする保護膜12を形成した。板の両面にLSCF6428を塗布し、乾燥させ、1000℃で2時間焼き付けを行い、接着層4を模擬した層を形成した。以上の様にして、固体酸化物形燃料電池用セルのセル間接続部材1を模したサンプル1を作成した。上記焼結工程を行った後に形成された酸化物被膜(Cr)13でのTiの含有率は0.98(質量%)であった。
[Preparation of experimental sample]
[Sample 1: Example]
Anion electrodeposition coating method using a slurry containing fine powder of MnCo 2 O 4 on the surface of a plate of an alloy material containing Fe and Cr as main components and containing Ti, Si and Al used as the metal substrate 11 The coating film (protective film material layer) was formed into a film by this (film forming process). The content rate of Cr in the alloy material used for this sample 1 was 22.2 (mass%), and the content rate of Ti was 0.200 (mass%).
The plate was heated at a temperature of 1050 ° C. for 2 hours in a sintering process to form a protective film 12 mainly composed of MnCo 2 O 4 . LSCF 6428 was applied on both sides of the plate, dried, and baked at 1000 ° C. for 2 hours to form a layer simulating the adhesive layer 4. As described above, a sample 1 imitating the inter-cell connecting member 1 of the solid oxide fuel cell was prepared. The content of Ti in the oxide film (Cr 2 O 3 ) 13 formed after the sintering step was 0.98 (mass%).

〔サンプル2:実施例〕
実施例としてのサンプル2に用いた金属基材11の合金材料でのCrの含有率は22.2(質量%)であり、Tiの含有率は0.234(質量%)であった。その他の条件はサンプル1と同様にして、サンプル2を作成した。上記焼結工程を行った後に形成される酸化物被膜(Cr)13でのTiの含有率は1.13(質量%)であった。
[Sample 2: Example]
The content of Cr in the alloy material of the metal base 11 used for the sample 2 as an example is 22.2 (% by mass), and the content of Ti is 0.234 (% by mass). The other conditions were the same as those of sample 1 to prepare sample 2. The content of Ti in the oxide film (Cr 2 O 3 ) 13 formed after the sintering step was 1.13 (mass%).

〔サンプル3:比較例〕
比較例としてのサンプル3に用いた金属基材11の合金材料でのCrの含有率は22.2(質量%)であり、Tiの含有率は0.146(質量%)であった。その他の条件はサンプル1と同様にして、サンプル3を作成した。上記焼結工程を行った後に形成される酸化物被膜(Cr)13でのTiの含有率は0.56(質量%)であった。
[Sample 3: Comparative Example]
The content of Cr in the alloy material of the metal base 11 used for the sample 3 as a comparative example was 22.2 (% by mass), and the content of Ti was 0.146 (% by mass). The other conditions were the same as in Sample 1 to prepare Sample 3. The content of Ti in the oxide film (Cr 2 O 3 ) 13 formed after the sintering step was 0.56 (mass%).

表1は、サンプル1〜3に用いた金属基材11の合金材料(セル間接続部材1の製造前)でのCrの含有率及びTiの含有率をまとめたものであり、表2は、サンプル1〜3に対して焼結工程を行った後に形成される酸化物被膜13でのTiの含有率をまとめたものである。尚、表2では酸化物被膜13でのTiの含有率を示すが、Tiは酸化物被膜13において酸化物(TiO)の状態で存在していると考えられる。
表1及び表2から分かるように、金属基材11の合金材料中のTi含有率が増大するとともに、酸化物被膜13内のTi含有率、即ち、TiO含有率が増加していることが確認できる。
Table 1 summarizes the content of Cr and the content of Ti in the alloy material of the metal base 11 used in Samples 1 to 3 (before the production of the inter-cell connection member 1), and Table 2 shows The contents of Ti in the oxide film 13 formed after performing the sintering process on the samples 1 to 3 are summarized. Although Table 2 shows the content of Ti in the oxide film 13, it is considered that Ti is present in the oxide film 13 in the state of oxide (TiO 2 ).
As can be seen from Tables 1 and 2, the Ti content in the alloy material of the metal substrate 11 is increased, and the Ti content in the oxide film 13, that is, the TiO 2 content is increased. It can confirm.

〔電気抵抗の経時変化〕
サンプル1〜3について、電気抵抗値の経時変化を測定した。この通電試験結果を図6のグラフに示す。測定は、図5に示す通電試験治具5に各サンプルをセットし、800℃の環境下、定電流状態にて経時的に電気抵抗を測定して行った。通電試験治具5は、一対の金属板51の間にサンプルを挟んで、ネジ52で固定した構造である。接着層4にPtメッシュ53が接した状態とされ、この一対のPtメッシュ53の間の抵抗値を測定することで、サンプルの抵抗値を測定した。
[Temporal change of electric resistance]
About the samples 1-3, the time-dependent change of the electrical resistance value was measured. The results of the energization test are shown in the graph of FIG. The measurement was carried out by setting each sample in the energization test jig 5 shown in FIG. 5 and measuring the electric resistance over time in a constant current state under an environment of 800 ° C. The conduction test jig 5 has a structure in which a sample is sandwiched between a pair of metal plates 51 and fixed by screws 52. The Pt mesh 53 was in contact with the adhesive layer 4, and the resistance between the pair of Pt meshes 53 was measured to measure the resistance of the sample.

図6は、800℃での通電試験結果のグラフである。図6において、横軸は経過時間であり、縦軸は電気抵抗である。
例えば、サンプル1(実施例)を基準とした場合、金属基材11の合金材料でのTiの含有率が少ないサンプル3(比較例)では、初期抵抗が増大することがわかった。それに対して、金属基材11でのTiの含有率を増加させたサンプル2(実施例)は初期抵抗の低減ならびに経時的な抵抗低下も確認された。これはサンプル作製時に行われた熱処理によってTiが酸化物被膜(Cr)13内に拡散することで、電子導電性が向上し性能が向上したためだと考えられる。また、通電試験中の800℃の環境下でTiが徐々に酸化物被膜(Cr)13内に拡散することによる効果もあると考えられる。
FIG. 6 is a graph of the results of the electrification test at 800 ° C. In FIG. 6, the horizontal axis is the elapsed time, and the vertical axis is the electrical resistance.
For example, when based on sample 1 (example), it turned out that initial resistance increases in sample 3 (comparative example) in which the content of Ti in the alloy material of the metal base 11 is small. On the other hand, in the sample 2 (Example) in which the content of Ti in the metal substrate 11 was increased, a decrease in initial resistance and a decrease in resistance over time were also confirmed. This is considered to be because the electron conductivity is improved and the performance is improved by the diffusion of Ti into the oxide film (Cr 2 O 3 ) 13 by the heat treatment performed at the time of sample preparation. In addition, it is considered that there is also an effect by the diffusion of Ti gradually into the oxide film (Cr 2 O 3 ) 13 under the environment of 800 ° C. during the current test.

図7〜図9は、サンプル1〜3に対する上記通電試験後の固体酸化物形燃料電池用セルの断面のSEM画像である。画像の上から順に金属基材11と酸化物被膜13と保護膜12とが並んでいる。サンプル1〜3では、酸化物被膜13の成長度合い、即ち厚み、はほぼ同じであることを確認できる。また保護膜12のコーティング組成・焼成条件・厚みも、サンプル1〜3ではほぼ同一であることから、本実施例・比較例での抵抗差は、酸化物被膜13での抵抗差によるものであると考えられる。以上のことから、金属基材11の合金材料にTi含有率の高いステンレス鋼材を用いることで、絶縁性の高い酸化物被膜層にTiが優先的に拡散され、初期抵抗の低減効果並びに経時的な抵抗の低減効果も得られると考えられる。   FIGS. 7-9 is a SEM image of the cross section of the cell for solid oxide fuel cells after the said conduction test with respect to the samples 1-3. The metal substrate 11, the oxide film 13 and the protective film 12 are arranged in order from the top of the image. In the samples 1 to 3, it can be confirmed that the growth degree of the oxide film 13, that is, the thickness, is substantially the same. Moreover, since the coating composition, the baking condition, and the thickness of the protective film 12 are almost the same in Samples 1 to 3, the resistance difference in the present example and the comparative example is due to the resistance difference in the oxide film 13 it is conceivable that. From the above, by using a stainless steel material having a high Ti content as the alloy material of the metal substrate 11, Ti is preferentially diffused in the oxide coating layer having high insulating property, and the initial resistance reduction effect and temporally It is considered that the effect of reducing various resistances can be obtained.

以上のように、Crを主成分とする酸化物被膜13がTiOを含むことで、セル間接続部材の電気抵抗を低減して、発電性能の高い固体酸化物形燃料電池用セルを実現できる。
また、酸化物被膜13でのTiの含有率が0.9質量%以上であると、セル間接続部材1の電気抵抗の低減効果が大きくなる点で好ましい。ここで、酸化物被膜13でのTiの含有率が1.1質量%以上であると、セル間接続部材1の電気抵抗の低減効果が更に大きくなる点で好ましい。
更に、金属基材11を構成する合金部材でのTiの含有率が0.20質量%以上であることで、その表面に形成される酸化物被膜13に含まれるTiの含有率を高めて、酸化物被膜13の電気抵抗を低減できる点で好ましい。ここで、金属基材11を構成する合金部材でのTiの含有率が0.23質量%以上であると、その表面に形成される酸化物被膜13に含まれるTiの含有率を更に高めることができる点で好ましい。
As described above, when the oxide coating 13 mainly composed of Cr 2 O 3 contains TiO 2 , the electric resistance of the inter-cell connecting member is reduced, and the cell for solid oxide fuel cell with high power generation performance Can be realized.
Moreover, when the content rate of Ti in the oxide film 13 is 0.9 mass% or more, it is preferable at the point to which the reduction effect of the electrical resistance of the cell connection member 1 becomes large. Here, it is preferable in the point which the reduction effect of the electrical resistance of the cell connection member 1 becomes large as the content rate of Ti in the oxide film 13 is 1.1 mass% or more.
Furthermore, when the content of Ti in the alloy member constituting the metal substrate 11 is 0.20 mass% or more, the content of Ti contained in the oxide film 13 formed on the surface is increased, It is preferable in that the electrical resistance of the oxide film 13 can be reduced. Here, when the content of Ti in the alloy member constituting the metal substrate 11 is 0.23 mass% or more, the content of Ti contained in the oxide film 13 formed on the surface is further increased. Is preferable in that

<別実施形態>
<1>
上記実施形態では、本発明のセル間接続部材及び固体酸化物形燃料電池用セル及び固体酸化物形燃料電池及びSOFCモノジェネレーションシステム及びSOFCコージェネレーションシステムについて具体例を挙げて説明したが、その構成は適宜変更可能である。
Another Embodiment
<1>
In the above embodiment, the inter-cell connecting member, the solid oxide fuel cell, the solid oxide fuel cell, the SOFC monogeneration system, and the SOFC cogeneration system of the present invention have been described by way of specific examples. Can be changed as appropriate.

<2>
上記実施形態では、固体酸化物形燃料電池(SOFC)20を備えたコージェネレーションシステムを構築する例を説明したが、SOFC20を備えたモノジェネレーションシステムを構築することもできる。即ち、固体酸化物形燃料電池20を備え、固体酸化物形燃料電池20で発生した電力を電力負荷に供給するSOFCモノジェネレーションシステムを構築することもできる。
<2>
Although the example which built the cogeneration system provided with solid oxide fuel cell (SOFC) 20 was demonstrated in the said embodiment, the monogeneration system provided with SOFC 20 can also be built. That is, it is also possible to construct an SOFC monogeneration system that includes the solid oxide fuel cell 20 and supplies the power generated by the solid oxide fuel cell 20 to the power load.

<3>
上記実施形態(別実施形態を含む、以下同じ)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用でき、また、本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変できる。
<3>
The configurations disclosed in the above embodiments (including the other embodiments, the same shall apply hereinafter) can be applied in combination with the configurations disclosed in the other embodiments as long as no contradiction arises, and are disclosed in the present specification. The embodiment is an exemplification, and the embodiment of the present invention is not limited thereto, and can be appropriately modified within the scope of the object of the present invention.

本発明は、発電性能の高い固体酸化物形燃料電池用セルのセル間接続部材、及び、固体酸化物形燃料電池用セル、及び、固体酸化物形燃料電池、及び、SOFCモノジェネレーションシステム、及び、SOFCコージェネレーションシステムに利用できる。   The present invention relates to an inter-cell connection member for a solid oxide fuel cell having high power generation performance, a cell for a solid oxide fuel cell, a solid oxide fuel cell, and an SOFC monogeneration system, , SOFC cogeneration system can be used.

1 セル間接続部材
11 金属基材
12 保護膜
13 酸化物被膜
20 固体酸化物形燃料電池(SOFC)
23 電力負荷装置
26 熱負荷装置
31 空気極
C 固体酸化物形燃料電池用セル(SOFC用セル)
Reference Signs List 1 inter-cell connection member 11 metal base 12 protective film 13 oxide film 20 solid oxide fuel cell (SOFC)
23 Power Load Device 26 Heat Load Device 31 Anode C Solid Oxide Fuel Cell Cell (SOFC Cell)

Claims (11)

Fe及びCrを主成分とし、Ti,Si,Alを含む合金部材で構成される金属基材と、
前記金属基材の表面に形成された、Crを主成分とし、TiOを含む酸化物被膜と、
前記酸化物被膜上に形成された、Zn,Co,Mnのうちの少なくとも2種類以上を含む導電性セラミックス材料によって構成される導電性コーティング膜とを備えるセル間接続部材。
A metal base composed of an alloy member containing Fe and Cr as main components and containing Ti, Si and Al;
An oxide film containing Cr 2 O 3 as a main component and containing TiO 2 formed on the surface of the metal substrate;
And a conductive coating film formed of a conductive ceramic material containing at least two or more of Zn, Co, and Mn formed on the oxide film.
前記酸化物被膜でのTiの含有率が0.9質量%以上である請求項1に記載のセル間接続部材。   The inter-cell connecting member according to claim 1, wherein the content of Ti in the oxide film is 0.9% by mass or more. 前記合金部材でのTiの含有率が0.20質量%以上である請求項1又は2に記載のセル間接続部材。   The inter-cell connecting member according to claim 1 or 2, wherein the content of Ti in the alloy member is 0.20 mass% or more. 前記導電性コーティング膜がZnとMnとCoとを含む金属酸化物を主材料とする請求項1〜3の何れか一項に記載のセル間接続部材。   The inter-cell connection member according to any one of claims 1 to 3, wherein the conductive coating film mainly contains a metal oxide containing Zn, Mn and Co. 前記導電性コーティング膜がZn(CoMn1−y(3−x)(0<x<1、0<y×(3−x)≦2)を含む金属酸化物を主材料とする請求項1〜3の何れか一項に記載のセル間接続部材。 The conductive coating film is mainly composed of a metal oxide containing Zn x (Co y Mn 1-y ) (3-x) O 4 (0 <x <1, 0 <y × (3-x) ≦ 2) The inter-cell connection member according to any one of claims 1 to 3, wherein 前記導電性コーティング膜がZnCoMnOを主材料とする請求項1〜3の何れか一項に記載のセル間接続部材。 Intercell connecting member according to claim 1, wherein the conductive coating film is a ZnCoMnO 4 as a main material. 前記導電性コーティング膜が電着塗装により形成されている請求項1〜6の何れか一項に記載のセル間接続部材。   The inter-cell connection member according to any one of claims 1 to 6, wherein the conductive coating film is formed by electrodeposition coating. 請求項1〜7の何れか一項に記載のセル間接続部材と空気極とを接合してなる固体酸化物形燃料電池用セル。   The cell for solid oxide fuel cells by joining the cell connection member as described in any one of Claims 1-7, and an air electrode. 請求項8に記載の固体酸化物形燃料電池用セルを搭載する固体酸化物形燃料電池。   A solid oxide fuel cell equipped with the solid oxide fuel cell according to claim 8. 請求項9に記載の固体酸化物形燃料電池を備え、前記固体酸化物形燃料電池で発生した電力を電力負荷に供給するSOFCモノジェネレーションシステム。   An SOFC monogeneration system comprising the solid oxide fuel cell according to claim 9, and supplying power generated by the solid oxide fuel cell to an electric load. 請求項9に記載の固体酸化物形燃料電池を備え、前記固体酸化物形燃料電池で発生した電力及び熱を電力負荷及び熱負荷に供給するSOFCコージェネレーションシステム。   An SOFC cogeneration system comprising the solid oxide fuel cell according to claim 9, and supplying power and heat generated by the solid oxide fuel cell to the power load and the heat load.
JP2018004987A 2018-01-16 2018-01-16 Cell-to-cell connection member, solid oxide fuel cell cell, solid oxide fuel cell, SOFC monogeneration system, and SOFC cogeneration system Active JP7080060B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018004987A JP7080060B2 (en) 2018-01-16 2018-01-16 Cell-to-cell connection member, solid oxide fuel cell cell, solid oxide fuel cell, SOFC monogeneration system, and SOFC cogeneration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018004987A JP7080060B2 (en) 2018-01-16 2018-01-16 Cell-to-cell connection member, solid oxide fuel cell cell, solid oxide fuel cell, SOFC monogeneration system, and SOFC cogeneration system

Publications (2)

Publication Number Publication Date
JP2019125480A true JP2019125480A (en) 2019-07-25
JP7080060B2 JP7080060B2 (en) 2022-06-03

Family

ID=67398982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018004987A Active JP7080060B2 (en) 2018-01-16 2018-01-16 Cell-to-cell connection member, solid oxide fuel cell cell, solid oxide fuel cell, SOFC monogeneration system, and SOFC cogeneration system

Country Status (1)

Country Link
JP (1) JP7080060B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110548519A (en) * 2019-08-07 2019-12-10 广东工业大学 porous nano cobalt-doped zinc manganate spinel catalyst and preparation method and application thereof
JP2021153017A (en) * 2020-03-24 2021-09-30 大阪瓦斯株式会社 Cell-cell connection member, solid oxide fuel cell, sofc monogeneration system, sofc cogeneration system, and manufacturing method of cell-cell connection member
WO2022220268A1 (en) * 2021-04-13 2022-10-20 京セラ株式会社 Conductor member, electrochemical cell device, module, module accommodating device, slurry, conductor member manufacturing method, conductive material, and conductive powder material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011204390A (en) * 2010-03-24 2011-10-13 Osaka Gas Co Ltd Solid oxide fuel cell system and cogeneration system equipped with this
JP2014209452A (en) * 2013-03-26 2014-11-06 大阪瓦斯株式会社 Cell connection member, cell for solid oxide fuel cell and electrodeposition paint for use in production thereof
JP2017063012A (en) * 2015-09-24 2017-03-30 大阪瓦斯株式会社 Method for manufacturing fuel cell member

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011204390A (en) * 2010-03-24 2011-10-13 Osaka Gas Co Ltd Solid oxide fuel cell system and cogeneration system equipped with this
JP2014209452A (en) * 2013-03-26 2014-11-06 大阪瓦斯株式会社 Cell connection member, cell for solid oxide fuel cell and electrodeposition paint for use in production thereof
JP2017063012A (en) * 2015-09-24 2017-03-30 大阪瓦斯株式会社 Method for manufacturing fuel cell member

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110548519A (en) * 2019-08-07 2019-12-10 广东工业大学 porous nano cobalt-doped zinc manganate spinel catalyst and preparation method and application thereof
CN110548519B (en) * 2019-08-07 2022-07-12 广东工业大学 Porous nano cobalt-doped zinc manganate spinel catalyst and preparation method and application thereof
JP2021153017A (en) * 2020-03-24 2021-09-30 大阪瓦斯株式会社 Cell-cell connection member, solid oxide fuel cell, sofc monogeneration system, sofc cogeneration system, and manufacturing method of cell-cell connection member
JP7357577B2 (en) 2020-03-24 2023-10-06 大阪瓦斯株式会社 Inter-cell connection member, solid oxide fuel cell, SOFC monogeneration system, SOFC cogeneration system, and method for manufacturing inter-cell connection member
WO2022220268A1 (en) * 2021-04-13 2022-10-20 京セラ株式会社 Conductor member, electrochemical cell device, module, module accommodating device, slurry, conductor member manufacturing method, conductive material, and conductive powder material
JPWO2022220268A1 (en) * 2021-04-13 2022-10-20
JP7242970B2 (en) 2021-04-13 2023-03-20 京セラ株式会社 Conductive member, electrochemical cell device, module, module housing device, and method for manufacturing conductive member

Also Published As

Publication number Publication date
JP7080060B2 (en) 2022-06-03

Similar Documents

Publication Publication Date Title
JP7080060B2 (en) Cell-to-cell connection member, solid oxide fuel cell cell, solid oxide fuel cell, SOFC monogeneration system, and SOFC cogeneration system
JP6584097B2 (en) Inter-cell connecting member joining method and method for producing solid oxide fuel cell
JP6289170B2 (en) Inter-cell connecting member joining structure and inter-cell connecting member joining method
JP6910172B2 (en) Manufacturing method of cell-to-cell connection member
JP6268209B2 (en) Fuel cell power generation unit and fuel cell stack
JP6917182B2 (en) Conductive members, electrochemical reaction units, and electrochemical reaction cell stacks
JP7357577B2 (en) Inter-cell connection member, solid oxide fuel cell, SOFC monogeneration system, SOFC cogeneration system, and method for manufacturing inter-cell connection member
JP6358921B2 (en) Method for producing solid oxide fuel cell and method for joining cells
JP6177836B2 (en) Method for producing bonding material precursor and method for producing electrochemical reaction cell stack
JP6967894B2 (en) Manufacturing method of cell-to-cell connection member
JP7236966B2 (en) Electrochemical reaction cell stack
JP6906310B2 (en) Manufacturing method of solid oxide fuel cell
JP2018206693A (en) Conductive member, electrochemical reaction unit and electrochemical reaction cell stack
JP6821613B2 (en) Conductive members, electrochemical reaction units and electrochemical reaction cell stack
JP7324983B2 (en) INTERCONNECTOR MEMBER AND METHOD FOR MANUFACTURING INTERCONNECTOR MEMBER
JP7390648B2 (en) Interconnector member and method for manufacturing interconnector member
JP2017154968A (en) Joint material precursor, electrochemical reaction cell stack, and their production methods
JP5256598B2 (en) Single-chamber solid oxide fuel cell and its stack structure
JP6475082B2 (en) Bonding material precursor and electrochemical reaction cell stack
JP2024132600A (en) Alloy member, electrochemical module, solid oxide fuel cell, solid oxide electrolysis cell, and method for manufacturing electrochemical module
JP6878257B2 (en) Current collector-electrochemical reaction single cell complex and electrochemical reaction cell stack
JP2018113127A (en) Method for manufacturing electrochemical reaction cell stack
JP6948791B2 (en) Manufacturing method of cell-to-cell connection member and manufacturing method of cell for solid oxide fuel cell
JP2017139183A (en) Method of manufacturing inter-cell connection member and method of manufacturing cell for solid oxide fuel cell
JP2022156330A (en) Alloy member, electrochemical module, solid oxide type fuel battery, solid oxide type electrolysis cell, electrochemical device, energy system and production method of alloy member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220524

R150 Certificate of patent or registration of utility model

Ref document number: 7080060

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150