JP2019124710A - Optical element and manufacturing method thereof - Google Patents
Optical element and manufacturing method thereof Download PDFInfo
- Publication number
- JP2019124710A JP2019124710A JP2016096421A JP2016096421A JP2019124710A JP 2019124710 A JP2019124710 A JP 2019124710A JP 2016096421 A JP2016096421 A JP 2016096421A JP 2016096421 A JP2016096421 A JP 2016096421A JP 2019124710 A JP2019124710 A JP 2019124710A
- Authority
- JP
- Japan
- Prior art keywords
- volume hologram
- light
- hologram recording
- recording layer
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/32—Holograms used as optical elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/02—Viewing or reading apparatus
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Holo Graphy (AREA)
- Diffracting Gratings Or Hologram Optical Elements (AREA)
Abstract
Description
本発明は、光学素子およびその製造方法に関する。 The present invention relates to an optical element and a method of manufacturing the same.
従来、体積位相型ホログラムを含むホログラフィック光学素子(HOE;Holographic Optical Element、以下単に「HOE」とも称する)を用い、表示素子からの映像光をHOEで回折反射させて観察者の瞳に導き、観察者に映像(虚像)を観察させる映像表示装置が種々提案されている。例えば、特許文献1では、平面状のHOEを接眼プリズムに貼り付け、表示素子から出射され接眼プリズム内部で導光された映像光をHOEで回折反射させ、観察者の瞳に導く映像表示装置が開示されている。 Conventionally, a holographic optical element (HOE; Holographic Optical Element, hereinafter also simply referred to as “HOE”) including a volume phase hologram is used to diffract and reflect the image light from the display element by the HOE and guide it to the pupil of the observer Various image display apparatuses for allowing an observer to observe an image (virtual image) have been proposed. For example, in Patent Document 1, a flat HOE is attached to an eyepiece prism, and the image light emitted from the display element and guided in the eyepiece prism is diffracted and reflected by the HOE, and the image display device leads to the pupil of the observer. It is disclosed.
一般に、HOEは波長依存性を有しており、波長に応じて回折される方向が変わる。このため、特許文献1に記載の技術のように、接眼プリズムにおけるHOE貼り付け面で映像光が反射する方向と、HOEで映像光が回折する方向とが、画面中心(映像観察時の画角中心)において略一致する構成では、平面状のHOEを用いると、画面中心から放射状の方向に映像光の波長が分散される。この結果、画面中心以外の位置では、表示された点(画像)が画面中心から放射状に引き伸ばされて、画像品位が劣化するという問題が生じる。 In general, HOE has wavelength dependency, and the diffracted direction changes depending on the wavelength. For this reason, as in the technique described in Patent Document 1, the direction in which the image light is reflected by the HOE attachment surface in the eyepiece prism and the direction in which the image light is diffracted by the HOE are the screen center In the configuration in which the center portions substantially coincide with each other, the wavelength of the image light is dispersed in the radial direction from the center of the screen by using a flat HOE. As a result, at a position other than the center of the screen, the displayed point (image) is radially stretched from the center of the screen, resulting in a problem that the image quality is deteriorated.
この画像品位劣化の問題を解決する手段として、映像光を回折反射する体積位相型ホログラムが接する接眼プリズム面を曲面とし、画面中心以外の位置において、HOEの波長依存性によって点(画像)が伸びる方向を制限することが挙げられる。これにより、平面状のHOEを用いた場合に比べて、HOEの画像品位の劣化を抑えることができる。 As a means to solve the problem of this image quality deterioration, the eyepiece prism surface in contact with the volume phase hologram that diffracts and reflects the image light is a curved surface, and the point (image) is elongated by the HOE wavelength dependency at positions other than the screen center. Restricting the direction can be mentioned. This makes it possible to suppress the deterioration of the image quality of the HOE as compared to the case where a flat HOE is used.
一方、湿度等の外部環境からの影響を受けにくいホログラム記録材料を用いた光学素子として、特許文献2は、2つの湾曲した透明プリズムの間にホログラム記録材料を配置し、2つの透明プリズムをポリビニルブチラール(PVB)により接着させた積層構造物を開示している。この特許文献2に記載の積層構造物は、ヘッドアップディスプレイや自動車用の風防ガラスに好適に用いられると報告されている。 On the other hand, as an optical element using a hologram recording material that is less susceptible to the influence of external environment such as humidity, Patent Document 2 arranges the hologram recording material between two curved transparent prisms, and uses two transparent prisms made of polyvinyl A laminated structure bonded with butyral (PVB) is disclosed. The laminated structure described in Patent Document 2 is reported to be suitably used for a head-up display and a windshield for an automobile.
しかしながら、特許文献2に記載の技術では、ホログラム記録材料の領域において所望の干渉縞が形成できず、画像品位の劣化を招く課題があった。 However, in the technique described in Patent Document 2, desired interference fringes can not be formed in the area of the hologram recording material, and there is a problem that the image quality is degraded.
そこで本発明は、良好な画像品位を有し、高湿条件下であっても高い回折効率を長期に維持できる耐久性を有する光学素子を提供することを目的とする。 Therefore, an object of the present invention is to provide an optical element having good image quality, and having durability that can maintain high diffraction efficiency for a long time even under high humidity conditions.
本発明者らは鋭意研究を行った。その結果、隣り合う2つの透明光学部材の一対の接合面の少なくとも一方が曲面を有しており、前記一対の接合面のうち曲面を有する接合面の少なくとも一部の領域に配置される体積ホログラム記録層に対して、ポリウレタンを含有させることにより、上記課題が解決することを見出し、本発明を完成するに至った。 The present inventors conducted intensive studies. As a result, at least one of a pair of bonding surfaces of two adjacent transparent optical members has a curved surface, and the volume hologram is disposed in at least a partial region of the bonding surface having a curved surface among the pair of bonding surfaces. It has been found that the above problems are solved by containing polyurethane in the recording layer, and the present invention has been completed.
すなわち、本発明は、隣り合う2つの透明光学部材の一対の接合面の少なくとも一方が曲面を有しており、前記一対の接合面のうち曲面を有する接合面の少なくとも一部領域にフォトポリマーを含む体積ホログラム記録層を含む層が配置され、前記曲面を有する接合面全体を覆うように放射線硬化性接着層を備えた光学素子において、前記体積ホログラム記録層がポリウレタンを含む、光学素子である。 That is, according to the present invention, at least one of a pair of bonding surfaces of two adjacent transparent optical members has a curved surface, and at least a partial region of the bonding surface having a curved surface among the pair of bonding surfaces. In the optical element provided with a layer including a volume hologram recording layer and including a radiation curable adhesive layer so as to cover the entire bonding surface having the curved surface, the volume hologram recording layer contains polyurethane.
本発明によれば、良好な画像品位を有し、高湿条件下であっても高い回折効率を長期に維持できる耐久性を有する光学素子が提供される。 According to the present invention, there is provided an optical element having good image quality and having durability capable of maintaining high diffraction efficiency for a long time even under high humidity conditions.
以下、本発明の一実施形態である光学素子について説明する。 Hereinafter, an optical element according to an embodiment of the present invention will be described.
なお、以下においては、ホログラフィ露光(干渉露光)前の重合性モノマーを含む層を感光層と称し、感光層にホログラフィ露光を行って体積ホログラムが記録された層を体積ホログラム記録層と称する。また、重合性モノマー、光重合開始剤、マトリクス樹脂やその前駆体等を含む感光性組成物に光照射して重合反応させることにより得られたポリマーをフォトポリマーと称する。 Hereinafter, a layer containing a polymerizable monomer before holographic exposure (interference exposure) is referred to as a photosensitive layer, and a layer on which a holographic exposure is performed on the photosensitive layer to record a volume hologram is referred to as a volume hologram recording layer. In addition, a polymer obtained by irradiating a photosensitive composition containing a polymerizable monomer, a photopolymerization initiator, a matrix resin, a precursor thereof and the like with light to cause a polymerization reaction is referred to as a photopolymer.
本実施形態の光学素子は、隣り合う2つの透明光学部材の一対の接合面の少なくとも一方が曲面を有しており、前記一対の接合面のうち曲面を有する接合面の少なくとも一部の領域にフォトポリマーを含む体積ホログラム記録層を含む層が配置され、前記曲面を有する接合面全体を覆うように放射線硬化性接着層を備える。このような構成を有する本実施形態の光学素子は、良好な画像品位を有し、高湿条件下であっても高い回折効率を長期に維持できる耐久性を有する。 In the optical element according to the present embodiment, at least one of the pair of bonding surfaces of two adjacent transparent optical members has a curved surface, and at least a partial region of the bonding surface having a curved surface among the pair of bonding surfaces. A layer including a volume hologram recording layer including a photopolymer is disposed, and a radiation curable adhesive layer is provided so as to cover the entire bonding surface having the curved surface. The optical element of the present embodiment having such a configuration has good image quality, and has durability capable of maintaining high diffraction efficiency for a long time even under high humidity conditions.
特許文献2に記載の積層構造物は、2つの湾曲した透明プリズムの間にホログラム記録材料を配置し、2つの透明プリズムをポリビニルブチラール(PVB)により接着させることにより、湿度等の外部環境からの影響を受けにくいとされている。しかしながら、特許文献2に記載の積層構造物は、ホログラム記録材料を有する領域とホログラム記録材料がない領域とで、接着層の厚みが違うため、接着層を硬化する際の収縮率に差が生じてその結果内部応力が発生し、また、接合面が曲面を有するため、より顕著に内部応力が発生しやすい。そのため、ホログラム記録材料を有する領域において、所望の干渉縞が形成できなくなり、画像品位の劣化を招くという問題があった。 The laminated structure described in Patent Document 2 has a hologram recording material disposed between two curved transparent prisms, and the two transparent prisms are bonded with polyvinyl butyral (PVB) to obtain moisture from the external environment such as humidity. It is said that it is unlikely to be affected. However, in the laminated structure described in Patent Document 2, since the thickness of the adhesive layer is different between the region having the hologram recording material and the region having no hologram recording material, a difference occurs in the shrinkage when curing the adhesive layer. As a result, internal stress is generated, and since the joint surface has a curved surface, internal stress is more likely to be generated. Therefore, in the area | region which has a hologram recording material, a desired interference fringe can not be formed and there existed a problem of causing degradation of an image quality.
一方、本実施形態の光学素子は、体積ホログラム記録層がポリウレタンを含有する。これにより、接着剤の硬化収縮に伴う局所的な内部応力が発生しても、体積ホログラム記録層に含まれるポリウレタンが内部応力を分散させ、所望の干渉縞が維持され、良好な画像品位が得られると考えられる。また、ポリウレタンを内部に含有することにより、体積ホログラム記録層の高湿条件下での耐久性が向上すると考えられる。なお、上記メカニズムは推測に基づくものであり、その正誤が本実施形態の技術的範囲に影響を及ぼすものではない。 On the other hand, in the optical element of the present embodiment, the volume hologram recording layer contains polyurethane. As a result, even if local internal stress occurs due to curing and shrinkage of the adhesive, polyurethane contained in the volume hologram recording layer disperses the internal stress, desired interference fringes are maintained, and good image quality is obtained. It is thought that Further, it is considered that the durability of the volume hologram recording layer under high humidity conditions is improved by containing the polyurethane inside. The above mechanism is based on speculation, and its correctness does not affect the technical scope of the present embodiment.
以下、好ましい実施形態をより詳細に説明するが、下記の実施形態のみには限定されない。 Hereinafter, preferred embodiments will be described in more detail, but the present invention is not limited to the following embodiments.
本明細書において、範囲を示す「X〜Y」は「X以上Y以下」を意味する。また、特記しない限り、操作および物性等の測定は室温(20〜25℃)/相対湿度40〜50%RHの条件で測定する。 In the present specification, “X to Y” indicating a range means “X or more and Y or less”. Moreover, unless otherwise indicated, measurement of operation, a physical property, etc. is measured on the conditions of room temperature (20-25 degreeC) / 40 to 50% relative humidity RH.
[光学素子の構成]
<透明光学部材>
本実施形態に係る隣り合う2つの透明光学部材は、一対の接合面のうち少なくとも一方が曲面を有している。もう1つの接合面は、平面状であってもよいし曲面を有していてもよい。
[Configuration of optical element]
<Transparent optical member>
In two adjacent transparent optical members according to the present embodiment, at least one of the pair of bonding surfaces has a curved surface. Another bonding surface may be flat or may have a curved surface.
曲面の形状の例としては、シリンドリカル形状(円柱状)、球面状、凸レンズ状、凹レンズ状等が挙げられ、特に制限されない。係る曲面の形状の曲率は、画像を表示する光学素子の瞳に対する設置位置によって適宜変更され、設置位置が近いほど曲率が大きくなる。光学素子と瞳との距離をRとしたとき、曲率は1/Rと同等もしくはそれより小さいことが好ましい。また曲率は、透明光学部材の曲面に渡って一定であってもよく、変化していてもよい。変化する場合、透明光学部材の周端部に向かって、小さくなっていくことが好ましい。 Examples of the shape of the curved surface include a cylindrical shape (cylindrical shape), a spherical shape, a convex lens shape, a concave lens shape and the like, and the shape is not particularly limited. The curvature of the shape of the curved surface is appropriately changed depending on the installation position of the optical element for displaying an image with respect to the pupil, and the curvature becomes larger as the installation position is closer. When the distance between the optical element and the pupil is R, the curvature is preferably equal to or less than 1 / R. In addition, the curvature may be constant or change over the curved surface of the transparent optical member. When changing, it is preferable to become smaller toward the peripheral end of the transparent optical member.
透明光学部材の材料は、光学的に透明であればよく、公知の材料を適宜選択することができる。なお、本明細書中、「透明」とは、可視光波長領域における全光線透過率が60%以上であることをいう。材料の例としては、例えば、ガラス、シリコン、石英などの無機材料;アクリル樹脂、ポリカーボネート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフトエート、ポリエチレン、ポリプロピレン、アモルファスポリオレフィン、酢酸セルロース、水和セルロース、硝酸セルロース、シクロオレフィンポリマー、ポリスチレン、ポリエポキシド、ポリスルホン、セルロースアシレート、ポリアミド、ポリイミド、ポリメチルメタクリレート、ポリ塩化ビニル、ポリビニルブチラール、ポリジシクロペンタジエンなどの有機材料;等が挙げられる。これら材料は、単独でもまたは2種以上組み合わせて用いてもよい。また、一対の透明光学部材の材料は、互いに同じでもよいし異なっていてもよい。 The material of the transparent optical member may be optically transparent, and a known material can be appropriately selected. In the present specification, "transparent" means that the total light transmittance in the visible light wavelength region is 60% or more. Examples of the material include, for example, inorganic materials such as glass, silicon and quartz; acrylic resin, polycarbonate, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthoate, polyethylene, polypropylene, amorphous polyolefin, cellulose acetate, cellulose hydrate, cellulose nitrate And organic materials such as cycloolefin polymer, polystyrene, polyepoxide, polysulfone, cellulose acylate, polyamide, polyimide, polymethyl methacrylate, polyvinyl chloride, polyvinyl butyral, polydicyclopentadiene and the like. These materials may be used alone or in combination of two or more. The materials of the pair of transparent optical members may be the same as or different from each other.
透明光学部材は、上記材料を、例えば金型を用いて公知の条件によって射出成形、押出成形等の成形を行うことで得ることができる。 The transparent optical member can be obtained, for example, by subjecting the above-mentioned material to injection molding, extrusion molding or the like under known conditions using a mold.
透明光学部材の大きさとしては、特に制限はなく、用いる用途などに応じて適宜選択することができる。また、上記曲面を有する適当な大きさの透明光学部材は、公知の方法を用いて、またはこれを適宜改変して作製することができる。 There is no restriction | limiting in particular as a magnitude | size of a transparent optical member, According to the use to be used etc., it can select suitably. In addition, a transparent optical member of a suitable size having the above-mentioned curved surface can be manufactured using a known method or by modifying this as appropriate.
<隣接層>
本実施形態の光学素子は、体積ホログラム記録層に接する樹脂を含む隣接層を有することが好ましい。隣接層は、体積ホログラム記録層を保護する役割および/または体積ホログラム記録層を安定的に保持する役割を有しうる。
<Adjacent layer>
The optical element of this embodiment preferably has an adjacent layer containing a resin in contact with the volume hologram recording layer. The adjacent layer may play a role of protecting the volume hologram recording layer and / or a role of stably holding the volume hologram recording layer.
上記の構成を有する隣接層は、体積ホログラム記録層の両面に接するように設けられてもよいし、片面にのみ接するように設けられてもよい。すなわち、本実施形態の光学素子は、樹脂を含む隣接層を少なくとも1つ有することが好ましい。体積ホログラム記録層の両面に隣接層が設けられる場合、それぞれの隣接層の構成材料および厚さは同じでもよいし、異なっていてもよい。 The adjacent layer having the above configuration may be provided in contact with both sides of the volume hologram recording layer, or may be provided in contact with only one side. That is, it is preferable that the optical element of this embodiment has at least one adjacent layer containing resin. When adjacent layers are provided on both sides of the volume hologram recording layer, the constituent material and thickness of each adjacent layer may be the same or different.
隣接層に含まれる樹脂としては、透明性を有する公知の樹脂が挙げられる。樹脂の具体的な例としては、アクリル樹脂、ポリカーボネート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフトエート、ポリエチレン、ポリプロピレン、アモルファスポリオレフィン、酢酸セルロース、水和セルロース、硝酸セルロース、シクロオレフィンポリマー、ポリスチレン、ポリエポキシド、ポリスルホン、セルロースアシレート、ポリアミド、ポリイミド、ポリメチルメタクリレート、ポリ塩化ビニル、ポリビニルブチラール、ポリジシクロペンタジエン等が挙げられる。これら樹脂は、単独でもまたは2種以上混合して用いてもよい。 As resin contained in an adjacent layer, the well-known resin which has transparency is mentioned. Specific examples of the resin include acrylic resin, polycarbonate, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthoate, polyethylene, polypropylene, amorphous polyolefin, cellulose acetate, hydrated cellulose, cellulose nitrate, cycloolefin polymer, polystyrene, polyepoxide, Polysulfone, cellulose acylate, polyamide, polyimide, polymethyl methacrylate, polyvinyl chloride, polyvinyl butyral, polydicyclopentadiene and the like can be mentioned. These resins may be used alone or in combination of two or more.
これらの中でも、光学特性等の観点から、ポリエチレンテレフタレート、シクロオレフィンポリマー、セルロースアシレート、ポリメチルメタクリレートが好ましく、セルロースアシレートがより好ましい。 Among these, polyethylene terephthalate, cycloolefin polymer, cellulose acylate and polymethyl methacrylate are preferable, and cellulose acylate is more preferable, from the viewpoint of optical properties and the like.
該隣接層は、上記成分以外に、例えば、紫外線吸収剤、酸化防止剤、劣化防止剤、光安定剤、熱安定剤、滑剤、帯電防止剤、難燃剤、充填剤、微粒子、光学特性調整剤等、他の成分を含んでもよい。他の成分の添加量(2種以上添加する場合はその合計)としては、隣接層の全質量に対して、0.1〜29.5質量%が好ましい。 The adjacent layer may contain, for example, an ultraviolet absorber, an antioxidant, an antidegradant, a light stabilizer, a heat stabilizer, a lubricant, an antistatic agent, a flame retardant, a filler, fine particles, an optical property modifier, in addition to the components described above. Etc., may contain other components. The amount of addition of the other components (the total amount when two or more are added) is preferably 0.1 to 29.5% by mass with respect to the total mass of the adjacent layer.
隣接層の厚さは、特に制限はされないが、10〜1000μmが好ましく、50〜200μmであることがより好ましい。 The thickness of the adjacent layer is not particularly limited, but is preferably 10 to 1000 μm, and more preferably 50 to 200 μm.
隣接層を形成する方法としては、特に制限されず、樹脂を溶融押出法、溶液キャスト法(溶液流延法)、カレンダー法、圧縮成形法等、従来公知の方法を用いて成形を行う方法が挙げられる。これらの方法のうち、溶融押出法、溶液キャスト法(溶液流延法)が好ましい。また、隣接層として、市販の樹脂フィルムを用いてもよい。 The method for forming the adjacent layer is not particularly limited, and the resin may be molded using a conventionally known method such as melt extrusion, solution casting (solution casting), calendaring, compression molding, etc. It can be mentioned. Among these methods, the melt extrusion method and the solution casting method (solution casting method) are preferable. Moreover, you may use a commercially available resin film as an adjacent layer.
<体積ホログラム記録層>
体積ホログラム記録層は、重合性モノマー、光重合開始剤、ポリウレタンの前駆体であるポリイソシアネート化合物およびポリオール化合物、ならびに必要に応じて含まれるポリウレタン以外のマトリクス樹脂またはその前駆体を含有する感光性組成物を、例えば隣接層上に塗布し、乾燥することで得られる塗膜(感光層)に対して、少なくともホログラフィ露光を行うことにより作製されることが好ましい。このようにして、該感光層内に高屈折率領域と低屈折率領域とからなる回折格子が形成され、体積ホログラム記録層となる。
<Volume hologram recording layer>
The volume hologram recording layer is a photosensitive composition containing a polymerizable monomer, a photopolymerization initiator, a polyisocyanate compound and a polyol compound which are precursors of polyurethane, and a matrix resin other than polyurethane optionally contained or a precursor thereof. It is preferable that the product is produced by applying at least holographic exposure to a coating film (photosensitive layer) obtained by, for example, applying it on an adjacent layer and drying it. In this way, a diffraction grating composed of a high refractive index area and a low refractive index area is formed in the photosensitive layer to form a volume hologram recording layer.
体積ホログラム記録層形成に用いられる感光性組成物は、好ましくはラジカル重合性モノマー、光重合開始剤、ならびにポリイソシアネート化合物およびポリオール化合物を含有するポリウレタンの前駆体を含み、必要に応じてポリウレタン以外のマトリクス樹脂またはその前駆体、増感剤、溶媒等を含みうる。以下、これらの成分について説明する。 The photosensitive composition used for forming a volume hologram recording layer preferably contains a radical polymerizable monomer, a photopolymerization initiator, and a polyurethane precursor containing a polyisocyanate compound and a polyol compound, and if necessary, other than polyurethane. It may contain a matrix resin or its precursor, a sensitizer, a solvent and the like. Hereinafter, these components will be described.
≪ラジカル重合性モノマー≫
ラジカル重合性モノマーとしては、分子内に1つ以上のラジカル重合性のエチレン性不飽和結合を有するものであれば特に制限されないが、比較的高屈折率を呈するものが好ましい。具体的には、例えば、アクリルアミド、メタクリルアミド、メチレンビスアクリルアミド、ポリエチレングリコールジアクリレート、トリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート、ジペンタエリスリトールヘキサアクリレート、2,3−ジブロモプロピルアクリレート、ジシクロペンタニルアクリレート、ジブロモネオペンチルグリコールジアクリレート、2−フェノキシエチルアクリレート、2−フェノキシメチルメタクリレート、フェノールエトキシレートモノアクリレート、2−(p−クロロフェノキシ)エチルアクリレート、p−クロロフェニルアクリレート、フェニルアクリレート、2−フェニルエチルアクリレート、2−(1−ナフチルオキシ)エチルアクリレート、o−ビフェニルメタクリレート、o−ビフェニルアクリレート、スチレン、メトキシスチレン、ベンジルアクリレート、フェニルアクリレート、2−フェニルエチルアクリレート、2−フェノキシエチルアクリレート、2−フェノキシエチルメタクリレート、フェノールエトキシレートアクリレート、メチルフェノキシエチルアクリレート、ノニルフェノキシエチルアクリレート、2−ヒドロキシ−3−フェノキシプロピルアクリレート、フェノキシポリエチレングリコールアクリレート、1,4−ベンゼンジオールジメタクリレート、1,4−ジイソプロペニルベンゼン、1,3,5−トリイソプロペニルベンゼン、ベンゾキノンモノメタクリレート、2−(1−ナフチロキシ)エチルアクリレート、2,3−ナフタレンジカルボン酸(アクリロキシエチル)モノエステル、ジフェノール酸のジ(3−メタクリロキシ−2−ヒドロキシプロピル)エーテル、β−アクリロキシエチルハイドロゲンフタレート、2,2−ジ(p−ヒドロキシフェニル)プロパンジアクリレート、2,3−ジ(p−ヒドロキシフェニル)プロパンジメタクリレート、2,2−ジ(p−ヒドロキシフェニル)プロパンジメタクリレート、ポリオキシエチレン−2,2−ジ(p−ヒドロキシフェニル)プロパンジメタクリレート、ビスフェノール−Aのジ(2−メタクリロキシエチル)エーテル、エトキシ化ビスフェノール−Aジアクリレート、ビスフェノール−Aのジ(3−アクリロキシ−2−ヒドロキシプロピル)エーテル、ビスフェノール−Aのジ(2−アクリロキシエチル)エーテル、2,2−ビス(4−アクリロキシエトキシフェニル)プロパン、2,2−ビス(4−メタクリロキシエトキシフェニル)プロパン、2,2−ビス(4−アクリロキシジエトキシフェニル)プロパン、2,2−ビス(4−メタクリロキシジエトキシフェニル)プロパン、ビス(4−アクリロキシジエトキシフェニル)メタン、ビス(4−メタクリロキシジエトキシフェニル)メタン、2−クロロスチレン、2−ブロモスチレン、2−(p−クロロフェノキシ)エチルアクリレート、テトラクロロ−ビスフェノール−Aのジ(3−アクリロキシ−2−ヒドロキシプロピル)エーテル、テトラクロロ−ビスフェノール−Aのジ(2−メタクリロキシエチル)エーテル、テトラブロモ−ビスフェノール−Aのジ(3−メタクリロキシ−2−ヒドロキシプロピル)エーテル、テトラブロモ−ビスフェノール−Aのジ(2−メタクリロキシエチル)エーテル、ビス(4−アクリロキシエトキシ−3,5−ジプロモフェニル)メタン、ビス(4−メタクリロキシエトキシ−3,5−ジブロモフェニル)メタン、2,2−ビス(4−アクリロキシエトキシ−3,5−ジブロモフェニル)プロパン、2,2−ビス(4−メタクリロキシエトキシ−3,5−ジブロモフェニル)プロパン、ビス(4−アクリロキシエトキシフェニル)スルホン、ビス(4−メタクリロキシエトキシフェニル)スルホン、ビス(4−アクリロキシジエトキシフェニル)スルホン、ビス(4−メタクリロキシジエトキシフェニル)スルホン、ビス(4−アクリロキシプロポキシフェニル−ジブロモフェニル)スルホン、ビス(4−メタクリロキシプロポキシフェニル−ジブロモフェニル)スルホン、ジエチレンジチオグリコールジアクリレート、ジエチレンジチオグリコールジメタクリレート、トリフェニルメチルチオアクリレート、2−(トリシクロ[5,2,102,6]ジブロモデシルチオ)エチルアクリレート、S−(1−ナフチルメチル)チオアクリレート、特開平2−247205号公報や特開平2−261808号公報に記載の分子内に少なくともS原子を2個以上含むエチレン性不飽和結合含有化合物、N−ビニルカルバゾール、2−(9−カルバゾリル)エチルアクリレート、2−〔β−(N−カルバジル)プロピオニロキシ〕エチルアクリレート、2−ナフチルアクリレート、ペンタクロロフェニルアクリレート、2,4,6−トリブロモフェニルアクリレート、2−(2−ナフチルオキシ)エチルアクリレート、N−フェニルマレイミド、p−ビフェニルメタクリレート、2−ビニルナフタレン、2−ナフチルメタクリレート、2,3−ナフタリンジカルボン酸(2−アクリロキシエチル)(3−アクリロキシプロピル−2−ヒドロキシ)ジエステル、N−フェニルメタクリルアミド、t−ブチルフェニルメタクリレート、ジフェン酸(2−メタクリロキシエチル)モノエステル、ジフェン酸(2−アクリロキシエチル)(3−アクリロキシプロピル−2−ヒドロキシ)ジエステル、4,5−フェナントレンジカルボン酸(2−アクリロキシエチル)(3−アクリロキシプロピル−2−ヒドロキシ)ジエステル、2−{{[3−(メチルスルファニル)フェニル]カルバモイル}オキシ}エチルプロパ−2−エノエートなどが挙げられる。
<< radically polymerizable monomer >>
The radically polymerizable monomer is not particularly limited as long as it has one or more radically polymerizable ethylenic unsaturated bonds in the molecule, but those exhibiting a relatively high refractive index are preferred. Specifically, for example, acrylamide, methacrylamide, methylenebisacrylamide, polyethylene glycol diacrylate, trimethylolpropane triacrylate, pentaerythritol triacrylate, dipentaerythritol hexaacrylate, 2,3-dibromopropyl acrylate, dicyclopentanyl Acrylate, dibromo neopentyl glycol diacrylate, 2-phenoxyethyl acrylate, 2-phenoxymethyl methacrylate, phenol ethoxylate monoacrylate, 2- (p-chlorophenoxy) ethyl acrylate, p-chlorophenyl acrylate, phenyl acrylate, 2-phenylethyl Acrylate, 2- (1-naphthyloxy) ethyl acrylate, o-biphenyl meta Lilate, o-biphenyl acrylate, styrene, methoxystyrene, benzyl acrylate, phenyl acrylate, 2-phenylethyl acrylate, 2-phenoxyethyl acrylate, 2-phenoxyethyl methacrylate, phenol ethoxylate acrylate, methylphenoxyethyl acrylate, nonylphenoxyethyl acrylate 2-hydroxy-3-phenoxypropyl acrylate, phenoxy polyethylene glycol acrylate, 1,4-benzenediol dimethacrylate, 1,4-diisopropenyl benzene, 1,3,5-triisopropenyl benzene, benzoquinone monomethacrylate, 2 -(1-Naphthyloxy) ethyl acrylate, 2,3-naphthalenedicarboxylic acid (acryloxyethyl) Esters, di (3-methacryloxy-2-hydroxypropyl) ether of diphenolic acid, β-acryloxyethyl hydrogen phthalate, 2,2-di (p-hydroxyphenyl) propane diacrylate, 2,3-di (p-) Hydroxyphenyl) propane dimethacrylate, 2,2-di (p-hydroxyphenyl) propane dimethacrylate, polyoxyethylene-2,2-di (p-hydroxyphenyl) propane dimethacrylate, bisphenol-A di (2-methacrylic acid) Roxyethyl) ether, ethoxylated bisphenol-A diacrylate, di (3-acryloxy-2-hydroxypropyl) ether of bisphenol-A, di (2-acryloxyethyl) ether of bisphenol-A, 2,2-bis 4-acryloxy Toxiphenyl) propane, 2,2-bis (4-methacryloxyethoxyphenyl) propane, 2,2-bis (4-acryloxydiethoxyphenyl) propane, 2,2-bis (4-methacryloxydiethoxyphenyl) Propane, bis (4-acryloxydiethoxyphenyl) methane, bis (4-methacryloxydiethoxyphenyl) methane, 2-chlorostyrene, 2-bromostyrene, 2- (p-chlorophenoxy) ethyl acrylate, tetrachloro- Di (3-acryloxy-2-hydroxypropyl) ether of bisphenol-A, di (2-methacryloxyethyl) ether of tetrachloro-bisphenol-A, di (3-methacryloxy-2-hydroxypropyl of tetrabromo-bisphenol-A ) Ether, Tetrabro -Di (2-methacryloxyethyl) ether of bisphenol-A, bis (4-acryloxyethoxy-3,5-dibromophenyl) methane, bis (4-methacryloxyethoxy-3,5-dibromophenyl) methane, 2,2-bis (4-acryloxyethoxy-3,5-dibromophenyl) propane, 2,2-bis (4-methacryloxyethoxy-3,5-dibromophenyl) propane, bis (4-acryloxyethoxyphenyl) ) Sulfone, bis (4-methacryloxyethoxyphenyl) sulfone, bis (4-acryloxydiethoxyphenyl) sulfone, bis (4-methacryloxydiethoxyphenyl) sulfone, bis (4-acryloxypropoxyphenyl-dibromophenyl) Sulfone, bis (4-methacryloxypropoxyphene -Dibromophenyl) sulfone, diethylenedithioglycol diacrylate, diethylenedithioglycol dimethacrylate, triphenylmethyl thioacrylate, 2- (tricyclo [5,2,10 2,6 ] dibromodecylthio) ethyl acrylate, S- (1-) Naphthylmethyl) thioacrylates, compounds described in JP-A-2-247205 and JP-A-2-261808 that contain at least two S atoms in the molecule, N-vinylcarbazole, 2-vinyl carbazole (9-carbazolyl) ethyl acrylate, 2- [β- (N-carpathyl) propionyloxy] ethyl acrylate, 2-naphthyl acrylate, pentachlorophenyl acrylate, 2,4,6-tribromophenyl acrylate, 2- (2- Nahu Thiryloxy) ethyl acrylate, N-phenylmaleimide, p-biphenyl methacrylate, 2-vinylnaphthalene, 2-naphthyl methacrylate, 2,3-naphthalenedicarboxylic acid (2-acryloxyethyl) (3-acryloxypropyl-2-hydroxy) 4, diester, N-phenyl methacrylamide, t-butylphenyl methacrylate, diphenic acid (2-methacryloxyethyl) monoester, diphenic acid (2-acryloxyethyl) (3-acryloxypropyl-2-hydroxy) diester 4, 5-phenanthrenedicarboxylic acid (2-acryloxyethyl) (3-acryloxypropyl-2-hydroxy) diester, 2-{{[3- (methylsulfanyl) phenyl] carbamoyl} oxy} ethyl propa-2-enoe And the like.
また、9,9−ジアリールフルオレン骨格を有し、分子中に少なくとも一つのエチレン性不飽和結合を有するものが挙げられる。具体的には下記構造を有する化合物である。 Further, those having a 9,9-diarylfluorene skeleton and having at least one ethylenically unsaturated bond in the molecule can be mentioned. Specifically, it is a compound having the following structure.
ここで、R1およびR2は、それぞれ独立して、末端にアクリロイル基またはメタクリロイル基を含むラジカル重合性基である。好ましい形態としては、末端にアクリロイル基またはメタクリロイル基を有し、オキシエチレン鎖、オキシプロピレン鎖、ウレタン結合、アミド結合などを介して、上記化合物のベンゼン環と結合し得る基である。 Here, R 1 and R 2 are each independently a radically polymerizable group containing an acryloyl group or a methacryloyl group at the terminal. As a preferable form, it is a group which has an acryloyl group or a methacryloyl group at the terminal, and which can be bonded to the benzene ring of the above compound via an oxyethylene chain, an oxypropylene chain, a urethane bond, an amide bond or the like.
また、X1〜X4は、それぞれ独立して、水素原子または置換基である。置換基の具体例としては、炭素数1〜4のアルキル基、炭素数1〜4のアルコキシ基、アミノ基、ジアルキルアミノ基、水酸基、カルボキシル基、ハロゲン基などが挙げられる。 Further, X 1 to X 4 are each independently hydrogen atom or a substituent. Specific examples of the substituent include an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, an amino group, a dialkylamino group, a hydroxyl group, a carboxyl group, a halogen group and the like.
また、フェニルイソシアネート化合物と、一分子中にヒドロキシ基およびアクリロイル基を有する化合物とによる縮合物からなるウレタンアクリレートも利用できる。具体的には、以下の構造を有する化合物である。 In addition, urethane acrylate composed of a condensation product of a phenyl isocyanate compound and a compound having a hydroxy group and an acryloyl group in one molecule can also be used. Specifically, it is a compound having the following structure.
上記化学式(I)〜(III)中、Rは、それぞれ独立して、エチレン性不飽和結合を有する基であり、Xは、それぞれ独立して、単結合、または直鎖状、分枝状、もしくは環状の2価の脂肪族炭化水素基である。 In the above chemical formulas (I) to (III), R each independently represents a group having an ethylenically unsaturated bond, and X each independently represents a single bond, or a linear, branched, Or a cyclic divalent aliphatic hydrocarbon group.
また、下記化学式(IV)で表される構造を有する化合物も使用することができる。 In addition, compounds having a structure represented by the following chemical formula (IV) can also be used.
上記化学式(IV)中、R1〜R5は、それぞれ独立して、水素原子、ハロゲン原子、炭素数1〜6のアルキル基、トリフルオロメチル基、炭素数1〜6のアルキルチオ基、炭素数1〜6のアルキルセレノ基、炭素数1〜6のアルキルテルロ基、またはニトロ基であり、R6およびR7は、それぞれ独立して、水素原子、または炭素数1〜6のアルキル基である。 In the above chemical formula (IV), R 1 to R 5 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, a trifluoromethyl group, an alkylthio group having 1 to 6 carbon atoms, R 6 and R 7 are each independently a hydrogen atom or an alkyl group having 1 to 6 carbon atoms. .
Aは、直鎖状もしくは分岐状の炭素数1〜6のアルキレン基、直鎖状もしくは分岐状の炭素数2〜6のアルケニレン基、または2〜6個のエチレンオキシド単位またはプロピレンオキシド単位を有するポリアルキレンオキシド基である。 A represents a linear or branched C 1 to C 6 alkylene group, a linear or branched C 2 to C 6 alkenylene group, or a poly having 2 to 6 ethylene oxide units or propylene oxide units It is an alkylene oxide group.
これらのラジカル重合性モノマーの内、置換または未置換のフェニル基を有するモノマー、置換または未置換のナフチル基を有するモノマー、3個までの環を有する置換または未置換の複素環式芳香族部分を有するモノマー、塩素原子を有するモノマー、臭素原子を含有するモノマーは、その屈折率が比較的高いため、好ましい。 Among these radically polymerizable monomers, monomers having a substituted or unsubstituted phenyl group, monomers having a substituted or unsubstituted naphthyl group, substituted or unsubstituted heterocyclic aromatic moieties having up to 3 rings The monomer which has, the monomer which has a chlorine atom, and the monomer which contains a bromine atom are preferable since the refractive index is comparatively high.
上記ラジカル重合性モノマーは、単独でもまたは2種以上組み合わせても用いることができる。 The radical polymerizable monomers may be used alone or in combination of two or more.
感光性組成物中のラジカル重合性モノマーの含有量は、1〜25質量%であることが好ましく、5〜20質量%であることがより好ましい。 The content of the radically polymerizable monomer in the photosensitive composition is preferably 1 to 25% by mass, and more preferably 5 to 20% by mass.
≪光ラジカル重合開始剤≫
光ラジカル重合開始剤は、ホログラフィ露光における、特定波長のレーザー光またはコヒーレンス性の優れた光の照射によって、ラジカル重合性モノマーの光重合を開始させる剤である。光ラジカル重合開始剤として、例えば米国特許第4766055号明細書、同第4868092号明細書、同第4965171号明細書、特開昭54−151024号公報、同58−15503号公報、同58−29803号公報、同59−189340号公報、同60−76735号公報、特開平1−28715号公報、特開平4−239505号公報および「プロシーディングス・オブ・コンフェレンス・オン・ラジエーション・キュアリング・エイジア(PROCEEDINGS OF CONFERENCE ON RADIATION CURING ASIA)」(pp.461〜477、1988年)等に記載されている公知の重合開始剤が使用できるが、これらに制限されない。
«Photo radical polymerization initiator»
The photo radical polymerization initiator is an agent which starts photopolymerization of a radically polymerizable monomer by irradiation with laser light of a specific wavelength or light with excellent coherence in holographic exposure. As a radical photopolymerization initiator, for example, US Pat. Nos. 4,766,055, 4,868,092, 4,965,171, JP-A-54-151024, JP-A-58-15503, and 58-29803. JP-A-59-189340, JP-A-60-76735, JP-A-1-28715, JP-A-4-239505 and "Procedures of conference on radiation cure curing Asia" The known polymerization initiators described in “PROCEDINGS OF CONFERENCE ON RADIATION ASIA” (pp. 461-477, 1988) and the like can be used, but the invention is not limited thereto.
光ラジカル重合開始剤の具体例として、例えば、ジアリールヨードニウム塩類、2,4,6−置換−1,3,5−トリアジン類(トリアジン系化合物)、アゾ化合物、アジド化合物、有機過酸化物、テトラブチルアンモニウムトリフェニルブチルボレート等の有機ホウ素酸塩、オニウム塩類、ハロゲン化炭化水素誘導体、チタノセン化合物、モノアシルホスフィンオキサイド、ビスアシルホスフィンオキサイド、ビスアシルホスフィンオキサイドとα−ヒドロキシケトンとの組み合わせなどが挙げられる。また、チオール化合物などの水素供与体とビスイミダゾール誘導体との併用による光ラジカル重合開始剤システムも利用できる。これら光ラジカル重合開始剤は、単独でもまたは2種以上を組み合わせて用いてもよい。 Specific examples of the photo radical polymerization initiator include, for example, diaryliodonium salts, 2,4,6-substituted-1,3,5-triazines (triazine compounds), azo compounds, azide compounds, organic peroxides, tetra Organic boronates such as butylammonium triphenylbutylborate, onium salts, halogenated hydrocarbon derivatives, titanocene compounds, monoacylphosphine oxides, bisacylphosphine oxides, combinations of bisacylphosphine oxides and α-hydroxy ketones, etc. Be In addition, a photoradical polymerization initiator system can also be used which is a combination of a hydrogen donor such as a thiol compound and a bisimidazole derivative. These radical photopolymerization initiators may be used alone or in combination of two or more.
光ラジカル重合開始剤の使用量は、ラジカル重合性モノマー100質量部に対して好ましくは0.05〜50質量部、より好ましくは0.1〜30質量部である。 The amount of the photo radical polymerization initiator used is preferably 0.05 to 50 parts by mass, more preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the radical polymerizable monomer.
≪増感剤≫
上記感光性組成物は、光ラジカル重合開始剤に対する増感機能を有する増感剤を含んでもよい。このような増感剤は400〜800nm、特に450〜700nmの範囲に吸収極大波長を有する。これらの増感剤が上記範囲の光を吸収し、これにより光ラジカル重合開始剤に対して増感作用が生じる。
«Sensitizer»
The photosensitive composition may contain a sensitizer having a sensitizing function to a photo radical polymerization initiator. Such sensitizers have a maximum absorption wavelength in the range of 400 to 800 nm, in particular 450 to 700 nm. These sensitizers absorb light in the above range, thereby producing a sensitizing effect on the photo radical polymerization initiator.
このような増感剤としては、例えば、シアニン系色素、スチリル系色素等のポリメチン系化合物、ローダミンB、ローダミン6G、ピロニンGY等のキサンテン系化合物、サフラニンO等のフェナジン系化合物、クレシルバイオレット、ブリリアントクレシルブルー等のフェノキサジン系化合物、メチレンブルー、ニューメチレンブルー等のフェノチアジン系化合物、オーラミン等のジアリールメタン系化合物、クリスタルバイオレット、ブリリアントグリーン、リサミングリーン等のトリアリールメタン系化合物、(チオ)ピリリウム塩系化合物、スクアリリウム系化合物、クマリン系色素、チオキサンテン系色素、アセン系色素、メロシアニン系色素、チアゾリウム系色素等が挙げられる。これら増感剤は、単独でもまたは2種以上組み合わせても用いることができる。 Examples of such sensitizers include polymethine compounds such as cyanine dyes and styryl dyes, xanthene compounds such as rhodamine B, rhodamine 6G and pyronine GY, phenazine compounds such as safranin O, cresyl violet, Phenoxazine compounds such as brilliant cresyl blue, phenothiazine compounds such as methylene blue and new methylene blue, diarylmethane compounds such as auramine, triarylmethane compounds such as crystal violet, brilliant green and lissamine green, (thio) pyrylium Salt compounds, squarylium compounds, coumarin dyes, thioxanthene dyes, acene dyes, merocyanine dyes, thiazolium dyes and the like can be mentioned. These sensitizers can be used alone or in combination of two or more.
増感剤を用いる場合の使用量は、光ラジカル重合開始剤100質量部に対して1〜2000質量部が好ましく、20〜1500質量部がより好ましい。 1-2000 mass parts is preferable with respect to 100 mass parts of radical photopolymerization initiators, and, as for the usage-amount in the case of using a sensitizer, 20-1500 mass parts is more preferable.
≪連鎖移動剤≫
上記感光性組成物は、連鎖移動剤を含んでもよい。連鎖移動剤としては、特に限定されず、公知のラジカル連鎖移動剤を使用することができる。
«Chain transfer agent»
The photosensitive composition may contain a chain transfer agent. The chain transfer agent is not particularly limited, and known radical chain transfer agents can be used.
連鎖移動剤としては、例えば、n−ブチルメルカプタン、t−ブチルメルカプタン、t−ドデシルメルカプタン、n−オクチルメルカプタン、n−ラウリルメルカプタン、5−クロロ−2−メルカプトベンゾチアゾール、6−エトキシ−2−メルカプトベンゾチアゾールなどのメルカプタン類;テトラメチルチウラジウムジスルフィド、テトラエチルチウラジウムジスルフィドなどのジスルフィド類;四塩化炭素、四臭化炭素などのハロゲン化合物;2−メチル−1−ブテン、α−メチルスチレンダイマー等のオレフィン類;等が挙げられる。これら連鎖移動剤は、単独でもまたは2種以上組み合わせても用いることができる。 As chain transfer agents, for example, n-butyl mercaptan, t-butyl mercaptan, t-dodecyl mercaptan, n-octyl mercaptan, n-lauryl mercaptan, 5-chloro-2-mercaptobenzothiazole, 6-ethoxy-2-mercapto Mercaptans such as benzothiazole; Disulfides such as tetramethylthiuradium disulfide and tetraethylthiuradium disulfide; Halogen compounds such as carbon tetrachloride and carbon tetrabromide; and 2-methyl-1-butene, α-methylstyrene dimer, etc. Olefins; and the like. These chain transfer agents can be used alone or in combination of two or more.
連鎖移動剤を用いる場合の使用量は、ラジカル重合性モノマー100質量部に対して好ましくは0.05〜50質量部、より好ましくは0.1〜30質量部である。 The amount used in the case of using a chain transfer agent is preferably 0.05 to 50 parts by mass, more preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the radical polymerizable monomer.
≪ポリウレタンの前駆体≫
本実施形態に係る感光性組成物は、ポリウレタンの前駆体であるポリイソシアネート化合物およびポリオール化合物を含むことが好ましい。これら化合物は、付加重合することによりポリウレタンとなり、体積ホログラム記録層がポリウレタンを含むことになる。すなわち、好ましい一実施形態によるポリウレタンは、ポリイソシアネート化合物由来の構成単位と、ポリオール化合物由来の構成単位と、を含む。
«Precursor of polyurethane»
The photosensitive composition according to the present embodiment preferably contains a polyisocyanate compound and a polyol compound which are precursors of polyurethane. These compounds become polyurethane by addition polymerization, and the volume hologram recording layer contains polyurethane. That is, the polyurethane according to a preferred embodiment includes a constituent unit derived from a polyisocyanate compound and a constituent unit derived from a polyol compound.
体積ホログラム記録層がポリウレタンを含むことにより、接着剤の硬化収縮に伴う局所的な内部応力が発生しても、ポリウレタンが内部応力を分散させ、体積ホログラム記録層に形成された所望の干渉縞が維持されて良好な画像品位が得られ、また、体積ホログラム記録層の高湿条件下での耐久性が向上すると考えられる。 When the volume hologram recording layer contains polyurethane, the polyurethane disperses the internal stress even if local internal stress occurs with curing and shrinkage of the adhesive, and the desired interference fringes formed in the volume hologram recording layer It is considered that the image quality is maintained and good image quality is obtained, and the durability of the volume hologram recording layer under high humidity conditions is improved.
また、ポリウレタンは、後述のマトリクス樹脂としての役割も果たし得る。 Polyurethane can also play a role as a matrix resin described later.
〔ポリイソシアネート化合物〕
ポリイソシアネート化合物は、1分子中に2つ以上のイソシアネート基を有する化合物であるが、その種類は特に制限されない。1分子中のイソシアネート基の数の上限は特に制限されないが、通常20以下、好ましくは8以下、より好ましくは4以下である。
[Polyisocyanate compound]
The polyisocyanate compound is a compound having two or more isocyanate groups in one molecule, but the type is not particularly limited. The upper limit of the number of isocyanate groups in one molecule is not particularly limited, but is usually 20 or less, preferably 8 or less, and more preferably 4 or less.
本実施形態で使用されるポリイソシアネート化合物の例としては、例えば、ブチレンジイソシアネート、ヘキサメチレンジイソシアネート、リジンメチルエステルジイソシアネート、2,4,4−トリメチルヘキサメチレンジイソシアネート等の脂肪族ポリイソシアネート化合物;イソホロンジイソシアネート、4,4’−メチレンビス(シクロヘキシルイソシアネート)等の脂環族ポリイソシアネート化合物;トリレンジイソシアネート、4,4’−ジフェニルメタンジイソシアネート、キシリレンジイソシアネート、ナフタレン−1,5’−ジイソシアネート等の芳香族ポリイソシアネート化合物;およびこれらの多量体等が挙げられる。また、これらの他に、水、トリメチロールエタン、トリメチロールプロパン等の多価アルコール類とこれら上記のイソシアネートとの反応物等やヘキサメチレンジイソシアネートの多量体、またはその誘導体を挙げることができる。これらポリイソシアネート化合物は、単独でもまたは2種以上組み合わせて用いてもよい。 Examples of the polyisocyanate compound used in the present embodiment include, for example, aliphatic polyisocyanate compounds such as butylene diisocyanate, hexamethylene diisocyanate, lysine methyl ester diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, isophorone diisocyanate, Alicyclic polyisocyanate compounds such as 4,4'-methylenebis (cyclohexyl isocyanate); Aromatic polyisocyanate compounds such as tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, xylylene diisocyanate, naphthalene-1,5'-diisocyanate And multimers thereof and the like. In addition to these, water, reaction products of polyhydric alcohols such as trimethylol ethane and trimethylol propane with these isocyanates and the like, multimers of hexamethylene diisocyanate, or derivatives thereof can be mentioned. These polyisocyanate compounds may be used alone or in combination of two or more.
〔ポリオール化合物〕
ポリオール化合物は、1分子中に2つ以上のヒドロキシ基を有する化合物であるが、その種類は特に制限されない。ポリオール化合物は、好ましくは1.5〜6.0の平均ヒドロキシ官能価および1000〜18500g/molの数平均分子量、より好ましくは1.8〜4.0の平均ヒドロキシ官能価および1000〜8500g/molの数平均分子量、さらに好ましくは1.9〜3.1の平均ヒドロキシ官能価および1000〜6500g/molの数平均分子量を有する。
[Polyol compound]
The polyol compound is a compound having two or more hydroxy groups in one molecule, but the type is not particularly limited. The polyol compound preferably has an average hydroxy functionality of 1.5 to 6.0 and a number average molecular weight of 1000 to 18500 g / mol, more preferably an average hydroxy functionality of 1.8 to 4.0 and 1000 to 8500 g / mol. And more preferably having an average hydroxy functionality of 1.9 to 3.1 and a number average molecular weight of 1000 to 6500 g / mol.
ポリオール化合物の例としては、例えば、ポリプロピレンポリオール、ポリカプロラクトンポリオール、ポリエステルポリオール、ポリカーボネートポリオール、エチレングリコール、プロピレングリコール、1,4−ブタンジオール、1,5−ペンタンジオール、3−メチル−1,5−ペンタンジオール、1,6−ヘキサンジオール、ネオペンチルグリコール、ジエチレングリコール、1,4−シクロヘキサンジオール、1,4−シクロヘキサンジメタノール、デカメチレングリコール、トリメチロールプロパン、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等が挙げられる。これらポリオール化合物は、単独でもまたは2種以上組み合わせて用いてもよい。 Examples of the polyol compound include, for example, polypropylene polyol, polycaprolactone polyol, polyester polyol, polycarbonate polyol, ethylene glycol, propylene glycol, 1,4-butanediol, 1,5-pentanediol, 3-methyl-1,5- Pentanediol, 1,6-hexanediol, neopentyl glycol, diethylene glycol, 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, decamethylene glycol, trimethylolpropane, polyethylene glycol, polypropylene glycol, polytetramethylene glycol, etc. Can be mentioned. These polyol compounds may be used alone or in combination of two or more.
ポリイソシアネート化合物とポリオール化合物とを付加重合(硬化)させる触媒を感光性組成物中に配合することができる。触媒を使うことにより室温(20〜25℃)で硬化させることができるが、加熱して硬化させてもよい。加熱硬化する場合の温度としては40〜90℃の範囲が好ましく、加熱硬化時間は1〜24時間の範囲が好ましい。 A catalyst for addition polymerization (curing) of the polyisocyanate compound and the polyol compound can be blended in the photosensitive composition. It can be cured at room temperature (20-25 ° C.) by using a catalyst, but may be cured by heating. The temperature for heat curing is preferably in the range of 40 to 90 ° C., and the heat curing time is preferably in the range of 1 to 24 hours.
上記触媒の例としては、通常のウレタン化反応触媒、例えば、ジラウリン酸ジブチルスズ、ジラウリン酸ジオクチルスズ、ジオクタン酸ジブチルスズ等のスズ化合物、トリエチルアミン、トリエチレンジアミン等の三級アミン化合物が挙げられる。これらのうちスズ化合物は溶解性や媒体としての性能がよく、特に、ジラウリン酸ジブチルスズが好ましい。 Examples of the catalyst include conventional urethane reaction catalysts, for example, tin compounds such as dibutyltin dilaurate, dioctyltin dilaurate and dibutyltin dioctoate, and tertiary amine compounds such as triethylamine and triethylenediamine. Among these, tin compounds have good solubility and performance as a medium, and in particular, dibutyltin dilaurate is preferable.
触媒の使用量は、ポリイソシアネート化合物およびポリオール化合物の合計量に対して、0.0001質量%以上が好ましく、0.001質量%以上がより好ましく、また、10質量%以下が好ましく、5質量%以下がより好ましい。なお、これら触媒を用いる場合は、感光層塗膜の均一性確保の観点から、触媒を添加してから10分以内に感光性組成物を塗布することが好ましい。 The amount of the catalyst used is preferably 0.0001% by mass or more, more preferably 0.001% by mass or more, and preferably 10% by mass or less, with respect to the total amount of the polyisocyanate compound and the polyol compound, and 5% by mass The following are more preferable. In addition, when using these catalysts, it is preferable to apply a photosensitive composition within 10 minutes after adding a catalyst from a viewpoint of ensuring the uniformity of a photosensitive layer coating film.
1分子に3つ以上のイソシアネート基を有するポリイソシアネート化合物および/または1分子中に3つ以上のヒドロキシ基を有するポリオール化合物を用いることにより、付加重合後に架橋構造を有するポリウレタンを得ることができる。体積ホログラム記録層が架橋構造を有するポリウレタンを含有させることにより、強度の高い体積ホログラム記録層を得ることができる。 By using a polyisocyanate compound having three or more isocyanate groups in one molecule and / or a polyol compound having three or more hydroxy groups in one molecule, it is possible to obtain a polyurethane having a crosslinked structure after addition polymerization. When the volume hologram recording layer contains a polyurethane having a crosslinked structure, a high-intensity volume hologram recording layer can be obtained.
感光性組成物中のポリイソシアネート化合物の含有量は、0.02〜0.5質量%であることが好ましく、0.05〜0.3質量%であることがより好ましい。また、感光性組成物中のポリオール化合物の含有量は、5〜35質量%であることが好ましく、10〜30質量%であることがより好ましい。 The content of the polyisocyanate compound in the photosensitive composition is preferably 0.02 to 0.5% by mass, and more preferably 0.05 to 0.3% by mass. Further, the content of the polyol compound in the photosensitive composition is preferably 5 to 35% by mass, and more preferably 10 to 30% by mass.
体積ホログラム記録層がポリウレタンを含むことは、体積ホログラム記録層の有機溶媒に溶解しない成分をフーリエ変換赤外分光光度計(Fourier transform infrared spectrometer: FT−IR)により分析し、イソシアネート基由来の2270cm−1の吸収、ならびにアミド基由来の1690cm−1および1470cm−1の吸収の存在により確認することができる。 The volume hologram recording layer comprises a polyurethane, the volume hologram recording layer is dissolved in an organic solvent which is not component of the Fourier transform infrared spectrophotometer (Fourier transform infrared spectrometer: FT- IR) by analyzing, 2270 cm-derived isocyanate groups - 1 of the absorption, and can be confirmed by the presence of absorption of 1690 cm -1 and 1470 cm -1 derived from an amide group.
<マトリクス樹脂またはその前駆体>
マトリクス樹脂は、体積ホログラム記録層の膜厚の均一性、耐熱性、機械的物性等を向上させ、ホログラフィ露光により形成されるホログラムを安定化させる働きを有する。また、体積ホログラム記録層形成時には、重合性モノマーやフォトポリマーの拡散移動現象を阻害しない、または効率よく発現させる機能を有し得る。なお、上記ポリウレタンは、本項で説明するマトリクス樹脂としての役割を果たし得る。
<Matrix resin or precursor thereof>
The matrix resin has the function of improving the uniformity of the film thickness of the volume hologram recording layer, the heat resistance, the mechanical properties and the like, and stabilizing the hologram formed by the holographic exposure. In addition, at the time of formation of the volume hologram recording layer, it may have a function of not inhibiting or efficiently expressing the diffusion and migration phenomenon of the polymerizable monomer or the photopolymer. The polyurethane can play a role as a matrix resin described in this section.
ポリウレタン以外のマトリクス樹脂としては、例えば、熱可塑性樹脂、熱硬化性樹脂、活性エネルギー線硬化性樹脂等、いずれも制限なく使用することができる。また、これら樹脂にポリシロキサン鎖やパーフルオロアルキレン鎖で修飾したものなども使用することができる。マトリクス樹脂は、単独でもまたは2種以上組み合わせても用いることができる。 As a matrix resin other than polyurethane, for example, any of thermoplastic resin, thermosetting resin, active energy ray curable resin, etc. can be used without limitation. In addition, those resins modified with a polysiloxane chain or a perfluoroalkylene chain can also be used. The matrix resins can be used alone or in combination of two or more.
熱可塑性樹脂の例としては、例えば、ポリビニルアセテート、ポリビニルブチラート、ポリビニルホルマール、ポリビニルカルバゾール、ポリアクリル酸、ポリメタクリル酸、ポリメチルアクリレート、ポリメチルメタクリレート、ポリエチルアクリレート、ポリブチルアクリレート、ポリメタクリロニトリル、ポリエチルメタクリレート、ポリブチルメタクリレート、ポリアクリロニトリル、ポリ−1,2−ジクロロエチレン、エチレン−酢酸ビニル共重合体、シンジオタクチック型ポリメチルメタクリレート、ポリ−α−ビニルナフタレート、ポリカーボネート、セルロースアセテート、セルローストリアセテート、セルロースアセテートブチラート、ポリスチレン、ポリ−α−メチルスチレン、ポリ−o−メチルスチレン、ポリ−p−メチルスチレン、ポリ−p−フェニルスチレン、ポリ−2,5−ジクロロスチレン、ポリ−p−クロロスチレン、ポリ−2,5−ジクロロスチレン、ポリアリーレート、ポリスルホン、ポリエーテルスルホン、スチレン−アクリロニトリル共重合体、スチレン−ジビニルベンゼン共重合体、スチレン−ブタジエン共重合体、スチレン−無水マレイン酸共重合体、ABS樹脂、ポリエチレン、ポリ塩化ビニル、ポリプロピレン、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリビニルピロリドン、ポリ塩化ビニリデン、水素化スチレン−ブタジエン−スチレン共重合体、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、テトラフルオロエチレンやヘキサフルオロエチレンとビニルアルコール、ビニルエステル、ビニルエーテル、ビニルアセタール、ビニルブチラールなどとの共重合体、(メタ)アクリル酸環状脂肪族エステルとメチル(メタ)アクリレートとの共重合体、ポリ酢酸ビニル、メチルメタクリレート−エチルアクリレート−アクリル酸共重合体等が挙げられる。 Examples of the thermoplastic resin include, for example, polyvinyl acetate, polyvinyl butyrate, polyvinyl formal, polyvinyl carbazole, polyacrylic acid, polymethacrylic acid, polymethyl acrylate, polymethyl methacrylate, polyethyl acrylate, polybutyl acrylate, polymethacrylic resin Nitrile, polyethyl methacrylate, polybutyl methacrylate, polyacrylonitrile, poly-1,2-dichloroethylene, ethylene-vinyl acetate copolymer, syndiotactic polymethyl methacrylate, poly-α-vinyl naphthalate, polycarbonate, cellulose acetate, Cellulose triacetate, cellulose acetate butyrate, polystyrene, poly-α-methylstyrene, poly-o-methylstyrene, poly-p-me Chilstyrene, poly-p-phenylstyrene, poly-2,5-dichlorostyrene, poly-p-chlorostyrene, poly-2,5-dichlorostyrene, polyarylate, polysulfone, polyether sulfone, styrene-acrylonitrile copolymer Styrene-divinylbenzene copolymer, styrene-butadiene copolymer, styrene-maleic anhydride copolymer, ABS resin, polyethylene, polyvinyl chloride, polypropylene, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polyvinyl pyrrolidone, Polyvinylidene chloride, hydrogenated styrene-butadiene-styrene copolymer, polytetrafluoroethylene, polyvinylidene fluoride, tetrafluoroethylene, hexafluoroethylene and vinyl alcohol, Copolymers with nyl ester, vinyl ether, vinyl acetal, vinyl butyral, etc., copolymer of (meth) acrylic acid cyclic aliphatic ester and methyl (meth) acrylate, polyvinyl acetate, methyl methacrylate-ethyl acrylate-acrylic acid co-polymer Polymer etc. are mentioned.
熱硬化性樹脂としては、不飽和ポリエステル樹脂、アクリルウレタン樹脂、エポキシ変性アクリル樹脂、エポキシ変性不飽和ポリエステル樹脂、アルキド樹脂、フェノール樹脂等が挙げられる。 As a thermosetting resin, unsaturated polyester resin, acrylic urethane resin, epoxy modified acrylic resin, epoxy modified unsaturated polyester resin, alkyd resin, phenol resin etc. are mentioned.
活性エネルギー線硬化性樹脂としては、エポキシアクリレート、ウレタンアクリレート、アクリル変性ポリエステル等が挙げられる。これらの活性エネルギー線硬化性樹脂に、架橋構造、粘度の調整等を目的として、下記のようなその他の単官能または多官能モノマー、オリゴマー等を包含させることができる。例えば、単官能ではテトラヒドロフルフリル(メタ)アクリレート、ヒドロキシエチル(メタ)アクリレート、ビニルピロリドン、(メタ)アクリロイルオキシエチルサクシネート、(メタ)アクリロイルオキシエチルフタレート等のモノ(メタ)アクリレート、多官能では骨格構造で分類するとポリオール(メタ)アクリレート(エポキシ変性ポリオール(メタ)アクリレート、ラクトン変性ポリオール(メタ)アクリレート等)、ポリエステル(メタ)アクリレート、エポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート、その他ポリブタジエン系、イソシアヌール酸系、ヒダントイン系、メラミン系、リン酸系、イミド系、ホスファゼン系等の骨格を有するポリ(メタ)アクリレートであり、紫外線、電子線硬化性である様々なモノマー、オリゴマー、ポリマーが利用できる。 As an active energy ray curable resin, epoxy acrylate, urethane acrylate, acrylic modified polyester etc. are mentioned. These active energy ray curable resins can include other monofunctional or polyfunctional monomers, oligomers and the like as described below for the purpose of adjusting the crosslinking structure, viscosity and the like. For example, monofunctional monofunctional (meth) acrylates such as tetrahydrofurfuryl (meth) acrylate, hydroxyethyl (meth) acrylate, vinylpyrrolidone, (meth) acryloyloxyethyl succinate, (meth) acryloyloxyethyl phthalate, etc. When classified by the framework structure, polyol (meth) acrylate (epoxy modified polyol (meth) acrylate, lactone modified polyol (meth) acrylate etc.), polyester (meth) acrylate, epoxy (meth) acrylate, urethane (meth) acrylate, other polybutadiene type Is a poly (meth) acrylate having a skeleton such as isocyanuric acid, hydantoin type, melamine type, phosphoric acid type, imide type and phosphazene type, and is UV and electron beam curable Monomers, oligomers, polymers may be utilized such.
上記の熱可塑性樹脂、熱硬化性樹脂、または活性エネルギー線硬化性樹脂を用いる場合は、ナフテン酸コバルト、ナフテン酸亜鉛等の金属石鹸、ベンゾイルパーオキサイド、メチルエチルケトンパーオキサイド等の有機過酸化物、ベンゾフェノン、アセトフェノン、アントラキノン、ナフトキノン、アゾビスイソブチロニトリル、ジフェニルスルフィド等の熱または活性エネルギー線硬化剤を、感光性組成物に含有させることができる。 When using the above-mentioned thermoplastic resin, thermosetting resin, or active energy ray curable resin, metal soap such as cobalt naphthenate and zinc naphthenate, organic peroxide such as benzoyl peroxide, methyl ethyl ketone peroxide, and benzophenone A heat or active energy ray curing agent such as acetophenone, anthraquinone, naphthoquinone, azobisisobutyronitrile or diphenyl sulfide can be contained in the photosensitive composition.
熱硬化性樹脂や活性エネルギー線硬化性樹脂を用いる場合には、感光層を形成した後、加熱または活性エネルギー線照射により硬化を行うことができる。硬化は、ホログラフィ露光の前に行ってもよいし後に行ってもよい。 In the case of using a thermosetting resin or an active energy ray curable resin, after forming the photosensitive layer, curing can be performed by heating or active energy ray irradiation. Curing may take place before or after holographic exposure.
また、マトリクス樹脂の別の前駆体として、カチオン重合性モノマーを用いてもよい。カチオン重合性モノマーによるマトリクス樹脂は、膜強度に優れた体積ホログラム記録層の作製を可能とする。 Moreover, you may use a cationically polymerizable monomer as another precursor of matrix resin. A matrix resin made of a cationically polymerizable monomer enables production of a volume hologram recording layer excellent in film strength.
係るカチオン重合性モノマーの具体例としては、ジグリセロールポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、1,4−ビス(2,3−エポキシプロポキシパーフルオロイソプロピル)シクロヘキサン、ソルビトールポリグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、レゾルシンジグリシジルエーテル、1,6−ヘキサンジオールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、フェニルグリシジルエーテル、パラ−t−ブチルフェニルグリシジルエーテル、アジピン酸ジグリシジルエステル、オルソフタル酸ジグリシジルエステル、ジブロモフェニルグリシジルエーテル、ジブロモネオペンチルグリコールジグリシジルエーテル、1,2,7,8−ジエポキシオクタン、1,6−ジメチロールパーフルオロヘキサンジグリシジルエーテル、4,4’−ビス(2,3−エポキシプロポキシパーフルオロイソプロピル)ジフェニルエーテル、3,4−エポキシシクロヘキシルメチル−3’,4’−エポキシシクロヘキサンカルボキシレート、3,4−エポキシシクロヘキシルオキシラン、1,2,5,6−ジエポキシ−4,7−メタノペルヒドロインデン、2−(3,4−エポキシシクロヘキシル)−3’,4’−エポキシ−1,3−ジオキサン−5−スピロシクロヘキサン、1,2−エチレンジオキシ−ビス(3,4−エポキシシクロヘキシルメタン)、4’,5’−エポキシ−2’−メチルシクロヘキシルメチル−4,5−エポキシ−2−メチルシクロヘキサンカルボキシレート、エチレングリコール−ビス(3,4−エポキシシクロヘキサンカルボキシレート)、ビス−(3,4−エポキシシクロヘキシルメチル)アジペート、ジ−2,3−エポキシシクロペンチルエーテル、ビニル−2−クロロエチルエーテル、ビニル−n−ブチルエーテル、トリエチレングリコールジビニルエーテル、1,4−シクロヘキサンジメタノールジビニルエーテル、トリメチロールエタントリビニルエーテル、ビニルグリシジルエーテル等が挙げられる。これらカチオン重合性モノマーは、単独でもまたは2種以上組み合わせても用いることができる。 Specific examples of such cationically polymerizable monomers include diglycerol polyglycidyl ether, pentaerythritol polyglycidyl ether, 1,4-bis (2,3-epoxypropoxyperfluoroisopropyl) cyclohexane, sorbitol polyglycidyl ether, trimethylolpropane poly Glycidyl ether, resorcine diglycidyl ether, 1,6-hexanediol diglycidyl ether, polyethylene glycol diglycidyl ether, phenyl glycidyl ether, para-t-butylphenyl glycidyl ether, adipic acid diglycidyl ester, orthophthalic acid diglycidyl ester, dibromo Phenyl glycidyl ether, dibromo neopentyl glycol diglycidyl ether, 1,2,7,8-diepoxy Cutane, 1,6-dimethylol perfluorohexane diglycidyl ether, 4,4'-bis (2,3-epoxypropoxyperfluoroisopropyl) diphenyl ether, 3,4-epoxycyclohexylmethyl-3 ', 4'-epoxycyclohexane Carboxylate, 3,4-epoxycyclohexyloxirane, 1,2,5,6-diepoxy-4,7-methanoperhydroindene, 2- (3,4-epoxycyclohexyl) -3 ', 4'-epoxy-1 , 3-dioxane-5-spirocyclohexane, 1,2-ethylenedioxy-bis (3,4-epoxycyclohexylmethane), 4 ′, 5′-epoxy-2′-methylcyclohexylmethyl-4,5-epoxy- 2-Methylcyclohexanecarboxylate, ethylene glycol -Bis (3,4-epoxycyclohexanecarboxylate), bis- (3,4-epoxycyclohexylmethyl) adipate, di-2,3-epoxycyclopentyl ether, vinyl-2-chloroethyl ether, vinyl-n-butyl ether, Triethylene glycol divinyl ether, 1,4-cyclohexane dimethanol divinyl ether, trimethylol ethane trivinyl ether, vinyl glycidyl ether and the like can be mentioned. These cationically polymerizable monomers may be used alone or in combination of two or more.
上記カチオン重合性モノマーを用いる場合は、光カチオン重合開始剤、熱カチオン重合開始剤を感光性組成物中に添加してもよい。 When using the said cationically polymerizable monomer, you may add a photocationic polymerization initiator and a thermal cationic polymerization initiator in a photosensitive composition.
光カチオン重合開始剤の具体例としては、例えばヨードニウム塩類、トリアリールスルホニウム塩類などが挙げられる。ヨードニウム塩類として具体的には、ヨードニウムのテトラフルオロボレート、ヘキサフルオロホスフェート、ヘキサフルオロアルセネート、ヘキサフルオロアンチモネート、トリフルオロメタンスルホネート、9,10−ジメトキシアントラセン−2−スルホネート等が挙げられる。トリアリールスルホニウム塩類として具体的には、トリアリールスルホニウム、トリフェニルスルホニウム、4−t−ブチルトリフェニルスルホニウム、トリス(4−メチルフェニル)スルホニウム、トリス(4−メトキシフェニル)スルホニウム、4−チオフェニルトリフェニルスルホニウム等スルホニウムのテトラフルオロボレート、ヘキサフルオロホスフェート、ヘキサフルオロアルセネート、ヘキサフルオロアンチモネート、トリフルオロメタンスルホネート、9,10−ジメトキシアントラセン−2−スルホネート等が挙げられる。これら光カチオン性重合開始剤は、単独でもまたは2種以上組み合わせても用いることができる。 Specific examples of the cationic photopolymerization initiator include, for example, iodonium salts and triarylsulfonium salts. Specific examples of iodonium salts include tetrafluoroborate of iodonium, hexafluorophosphate, hexafluoroarsenate, hexafluoroantimonate, trifluoromethanesulfonate, 9,10-dimethoxyanthracene-2-sulfonate and the like. Specific examples of triarylsulfonium salts include triarylsulfonium, triphenylsulfonium, 4-t-butyltriphenylsulfonium, tris (4-methylphenyl) sulfonium, tris (4-methoxyphenyl) sulfonium, 4-thiophenyltrinium. Examples thereof include tetrafluoroborate of sulfonium such as phenylsulfonium and the like, hexafluorophosphate, hexafluoroarsenate, hexafluoroantimonate, trifluoromethanesulfonate, 9,10-dimethoxyanthracene-2-sulfonate and the like. These photocationic polymerization initiators can be used alone or in combination of two or more.
熱カチオン重合開始剤の具体例としては、例えばトリフル酸塩、三弗化硼素エーテル錯化合物、三弗化硼素等のようなカチオン系またはプロトン酸触媒が挙げられ、好ましい熱カチオン重合開始剤としては、トリフル酸塩である。具体例としては、3M社から「FC−520」として入手できるトリフル酸ジエチルアンモニウム、トリフル酸トリエチルアンモニウム、トリフル酸ジイソプロピルアンモニウム、トリフル酸エチルジイソプロピルアンモニウム等(これらの多くはR.R.Almによって1980年10月発行のモダン・コーティングス(Modern Coatings)に記載されている)がある。また、活性エネルギー線カチオン重合開始剤としても用いられる芳香族オニウム塩のうち、熱によりカチオン種を発生するものがあり、これらも熱カチオン重合開始剤として用いることができる。市販品の例としては、「サンエイド(登録商標)SI−60L」、「サンエイド(登録商標)SI−80L」および「サンエイド(登録商標)SI−100L」(以上三新化学工業株式会社製)がある。マトリクス樹脂としてカチオン重合性モノマーを用いる場合、光カチオン重合開始剤または熱カチオン重合開始剤の使用量は、カチオン重合性モノマー100質量部に対して0.05〜50質量部が好ましく、0.1〜30質量部がより好ましい。 Specific examples of the thermal cationic polymerization initiator include, for example, cationic or protic acid catalysts such as triflic acid salt, boron trifluoride etherate, boron trifluoride and the like, and preferable thermal cationic polymerization initiators , Triflate. Specific examples thereof include diethylammonium triflate, triethylammonium triflate, diisopropylammonium triflate, ethyldiisopropylammonium triflate, etc., which are available from 3M, and the like (many of which are manufactured by R.R. Alm in 1980 Listed in the October issue of Modern Coatings. Further, among aromatic onium salts which are also used as an active energy ray cationic polymerization initiator, there are some which generate cationic species by heat, and these can also be used as a thermal cationic polymerization initiator. As examples of commercially available products, "San-Aid (registered trademark) SI-60L", "San-Aid (registered trademark) SI-80L" and "San-Aid (registered trademark) SI-100L" (manufactured by Sanshin Chemical Industries, Ltd.) is there. When a cationically polymerizable monomer is used as a matrix resin, the amount of the photocationic polymerization initiator or thermal cationic polymerization initiator used is preferably 0.05 to 50 parts by mass with respect to 100 parts by mass of the cationically polymerizable monomer. -30 mass parts are more preferable.
ポリウレタン以外のマトリクス樹脂またはその前駆体の含有量は、感光性組成物中1〜30質量%であることが好ましく、1〜28質量%であることがより好ましく、5〜25質量%であることがさらに好ましい。 The content of the matrix resin other than polyurethane or the precursor thereof is preferably 1 to 30% by mass, more preferably 1 to 28% by mass, and 5 to 25% by mass in the photosensitive composition. Is more preferred.
<溶媒>
感光性組成物には、塗工する際に必要に応じて溶媒を添加してもよい。ただし、感光性組成物に、常温で液状である成分が含まれている場合は、溶媒は添加しなくてもよい。
<Solvent>
At the time of coating, a solvent may be added to the photosensitive composition as needed. However, when the photosensitive composition contains a component which is liquid at normal temperature, the solvent may not be added.
溶媒としては、例えば、n−ペンタン、n−ヘキサン、n−ヘプタン、n−オクタン、シクロヘキサン、メチルシクロヘキサンなどの脂肪族系溶媒;メチルエチルケトン(2−ブタノン)、アセトン、シクロヘキサノンなどのケトン系溶媒;ジエチルエーテル、イソプロピルエーテル、テトラヒドロフラン、ジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、プロピレングリコールモノメチルエーテル、アニソール、フェネトールなどのエーテル系溶媒;酢酸エチル、酢酸ブチル、エチレングリコールジアセテートなどのエステル系溶媒;トルエン、キシレンなどの芳香族系溶媒;メチルセロソルブ、エチルセロソルブ、ブチルセロソルブなどのセロソルブ系溶媒;メタノール、エタノール、プロパノール、イソプロピルアルコールなどのアルコール系溶媒;テトラヒドロフラン、ジオキサンなどのエーテル系溶媒;ジクロロメタン、クロロホルムなどのハロゲン系溶媒;アセトニトリル、プロピオニトリルなどのニトリル系溶媒;N−メチル−2−ピロリドン、N−エチル−2−ピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等の極性溶媒などが挙げられる。これら溶媒は、単独でもまたは2種以上を組み合わせても用いることができる。 Examples of the solvent include aliphatic solvents such as n-pentane, n-hexane, n-heptane, n-octane, cyclohexane and methylcyclohexane; ketone solvents such as methyl ethyl ketone (2-butanone), acetone and cyclohexanone; diethyl Ether, isopropyl ether, tetrahydrofuran, dioxane, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, propylene glycol monomethyl ether, ether solvents such as anisole, phenetole; ethyl acetate, butyl acetate, ethylene glycol diacetate, etc. Ester solvents; aromatic solvents such as toluene and xylene; methyl cellosolve and ethyl celloso Cell solvents such as butyl cellosolve; alcohol solvents such as methanol, ethanol, propanol and isopropyl alcohol; ether solvents such as tetrahydrofuran and dioxane; halogen solvents such as dichloromethane and chloroform; nitriles such as acetonitrile and propionitrile Solvents: Polar solvents such as N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide and the like can be mentioned. These solvents may be used alone or in combination of two or more.
<添加剤>
感光性組成物は、上記効果を損なわない限り、必要に応じて、可塑剤、相溶化剤、重合抑制剤、界面活性剤、シランカップリング剤、消泡剤、剥離剤、安定化剤、酸化防止剤、難燃剤、光学増白剤、紫外線吸収剤等の添加剤をさらに含んでもよい。
<Additives>
The photosensitive composition may, if necessary, be a plasticizer, a compatibilizer, a polymerization inhibitor, a surfactant, a silane coupling agent, an antifoaming agent, a release agent, a stabilizer, and an oxidation as long as the above effects are not impaired. The composition may further contain additives such as inhibitors, flame retardants, optical brighteners, and ultraviolet light absorbers.
〔感光性組成物の調製方法〕
感光性組成物は、上記した各成分を一括または順次混合することにより得ることができる。混合の際用いる装置としては、例えば、マグネチックスターラー、ホモディスパー、クイックホモミキサー、プラネタリーミキサーなどの攪拌または混合装置が挙げられる。得られた感光性組成物は、必要に応じて、濾過してから用いてもよい。
[Method of preparing photosensitive composition]
The photosensitive composition can be obtained by collectively or sequentially mixing each component mentioned above. As an apparatus used at the time of mixing, stirring or mixing apparatuses, such as a magnetic stirrer, a homodisper, a quick homomixer, a planetary mixer, etc. are mentioned, for example. The obtained photosensitive composition may be used after filtration, if necessary.
[放射線硬化性接着層]
放射線硬化性接着層は、放射線硬化性接着剤を塗布した後、可視光、紫外線、電子線等の放射線で硬化させることにより得られる層、すなわち放射線硬化性接着剤の硬化物を含む層である。放射線硬化性接着剤の材料の例としては、例えば、(メタ)アクリルモノマー、光重合開始剤、光増感剤、添加剤などが挙げられる。
Radiation curable adhesive layer
The radiation-curable adhesive layer is a layer obtained by applying a radiation-curable adhesive and then curing it with radiation such as visible light, ultraviolet light, and electron beam, that is, a layer containing a cured product of the radiation-curable adhesive. . Examples of the material of the radiation curable adhesive include, for example, (meth) acrylic monomers, photopolymerization initiators, photosensitizers, additives and the like.
(メタ)アクリルモノマーとしては、例えば、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート、4−ヒドロキシシクロヘキシル(メタ)アクリレート、5−ヒドロキシシクロオクチル(メタ)アクリレート、1,3−ブタンジオール(メタ)アクリレート、1,4−ブタンジオール(メタ)アクリレート、1,6−ヘキサンジオール(メタ)アクリレート、3−メチルペンタンジオール(メタ)アクリレート、ジシクロペンテニルアクリレート、2−ヒドロキシ−3−フェノキシプロピルアクリレート、2−イソシアネートエチル(メタ)アクリレート、1,1−ビス(アクリロイルオキシメチル)エチルイソシアネート等などが挙げられる。これらは単独でも、または2種以上組み合わせても用いることができる。 As the (meth) acrylic monomer, for example, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 4-hydroxycyclohexyl (meth) acrylate, 5-hydroxycyclo Octyl (meth) acrylate, 1,3-butanediol (meth) acrylate, 1,4-butanediol (meth) acrylate, 1,6-hexanediol (meth) acrylate, 3-methylpentanediol (meth) acrylate, di Cyclopentenyl acrylate, 2-hydroxy-3-phenoxypropyl acrylate, 2-isocyanate ethyl (meth) acrylate, 1,1-bis (acryloyloxymethyl) ethyl isocyanate and the like. These may be used alone or in combination of two or more.
光重合開始剤としては、ベンゾイン化合物、アセトフェノン化合物、アシルフォスフィンオキサイド化合物、チタノセン化合物、チオキサントン化合物、オキシムエステル化合物等が挙げられ、光増感剤としてはアミン化合物やキノン化合物等が挙げられる。 Examples of the photopolymerization initiator include benzoin compounds, acetophenone compounds, acyl phosphine oxide compounds, titanocene compounds, thioxanthone compounds, and oxime ester compounds. Examples of photosensitizers include amine compounds and quinone compounds.
その他の添加剤として、γ−グリシドキシプロピルトリメトキシシラン、ビニルプロピルトリメトキシシラン、γ−メタクリロキシプロピルトリメトキシシランなどのシランカップリング剤や、イソプレン重合物の無水マレイン酸付加物と2−ヒドロキシエチルメタクリレートとのエステル化物などのオリゴマー等が挙げられる。 As other additives, silane coupling agents such as γ-glycidoxypropyltrimethoxysilane, vinylpropyltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane, and maleic anhydride adducts of isoprene polymers Examples thereof include oligomers such as esters with hydroxyethyl methacrylate.
体積ホログラム記録層が存在する領域の放射線硬化性接着層の厚さは、特に制限されないが、5〜50μmであることが好ましく、10〜40μmであることがより好ましい。 The thickness of the radiation curable adhesive layer in the region where the volume hologram recording layer is present is not particularly limited, but is preferably 5 to 50 μm, and more preferably 10 to 40 μm.
放射線硬化性接着層の形成方法としては、特に制限されず、例えば体積ホログラム記録層が設けられた曲面を有する接合面を覆うように放射線硬化性接着剤を塗布した後、放射線を照射し接着剤を硬化させる方法が挙げられる。 The method of forming the radiation curable adhesive layer is not particularly limited. For example, after a radiation curable adhesive is applied to cover the bonding surface having a curved surface on which the volume hologram recording layer is provided, the adhesive is irradiated with radiation. There is a method of curing the
放射線硬化性接着剤を塗布する方法としては、従来公知の方法を使用することができ、具体例としては、スプレー法、スピンコート法、ワイヤーバー法、ディップコート法、エアーナイフコート法、ロールコート法、ブレードコート法、ドクターロールコート法などが挙げられる。 As a method of applying a radiation curable adhesive, conventionally known methods can be used, and specific examples thereof include a spray method, a spin coating method, a wire bar method, a dip coating method, an air knife coating method, and a roll coating Methods, blade coating methods, doctor roll coating methods and the like.
放射線の照射で用いられる光源は、例えば、超高圧水銀ランプ、高圧水銀ランプ、カーボンアークランプ、キセノンアークランプ、メタルハライドランプ等の紫外線を発する光源が挙げられる。紫外線照射を行う場合の照射エネルギー量としては、100〜2000mJ/cm2が好ましい。 Examples of light sources used for radiation irradiation include light sources that emit ultraviolet light such as ultrahigh pressure mercury lamps, high pressure mercury lamps, carbon arc lamps, xenon arc lamps, and metal halide lamps. As an irradiation energy amount in the case of performing ultraviolet irradiation, 100-2000 mJ / cm < 2 > is preferable.
[光学素子の製造方法]
光学素子の製造方法は、特に制限されないが、一対の接合面のうち曲面を有する接合面の少なくとも一部の領域に体積ホログラム層を含む層を作製し、前記体積ホログラム記録層を含む層が配置された前記曲面を有する接合面全体を覆うように放射線硬化性接着剤を塗布した後、放射線を用いて前記放射線硬化性接着剤を硬化させて放射線硬化性接着層を形成することを含むことが好ましい。
[Method of Manufacturing Optical Element]
The method for producing the optical element is not particularly limited, but a layer including a volume hologram layer is produced in at least a partial region of a junction surface having a curved surface among a pair of junction surfaces, and the layer including the volume hologram recording layer is disposed. Applying a radiation curable adhesive so as to cover the entire joint surface having the curved surface, and curing the radiation curable adhesive using radiation to form a radiation curable adhesive layer preferable.
当該製造方法は、具体的には、
(1)隣接層上に感光層を形成する工程
(2)感光層と接合面が曲面を有する一の透明光学部材とを貼り合わせ、曲面を有する接合面の少なくとも一部の領域に感光層を含む層を作製する工程
(3)該感光層に対してホログラフィ露光を行い、体積ホログラム記録層を含む層を作製する工程
(4)体積ホログラム記録層が配置された曲面を有する接合面全体を覆うように放射線硬化性接着剤を塗布し、他の透明光学部材を貼り合わせる工程
(5)放射線硬化性接着剤を、放射線を用いて硬化させ、放射線硬化性接着層を形成する工程
を含む。
Specifically, the manufacturing method is
(1) A process of forming a photosensitive layer on an adjacent layer (2) A photosensitive layer and one transparent optical member whose bonding surface has a curved surface are bonded, and a photosensitive layer is formed on at least a partial region of the bonding surface having a curved surface. (3) a step of producing a layer including a volume hologram recording layer by holographically exposing the photosensitive layer (4) covering the entire bonding surface having a curved surface on which the volume hologram recording layer is disposed As described above, a step of applying a radiation curable adhesive and bonding another transparent optical member (5) curing the radiation curable adhesive using radiation to form a radiation curable adhesive layer.
以下、かような製造方法について説明する。 Hereinafter, such a manufacturing method will be described.
(1)隣接層上に感光層を形成する工程
隣接層上に感光層を形成する方法としては、特に制限されず、例えば、隣接層上に、上記で説明した感光性組成物を直接塗布し乾燥する方法が挙げられる。
(1) Step of Forming Photosensitive Layer on Adjacent Layer The method for forming the photosensitive layer on the adjacent layer is not particularly limited. For example, the photosensitive composition described above is directly coated on the adjacent layer. The method of drying is mentioned.
隣接層の材料、製造方法等は上記で説明したとおりであるため、ここでは説明を省略する。 The material of the adjacent layer, the manufacturing method, and the like are as described above, and thus the description thereof is omitted here.
隣接層上に感光性組成物を塗布する方法としては、従来公知の方法を使用することができ、具体例としては、スプレー法、スピンコート法、ワイヤーバー法、ディップコート法、エアーナイフコート法、ロールコート法、ブレードコート法、ドクターロールコート法などが挙げられる。 As a method of applying the photosensitive composition on the adjacent layer, conventionally known methods can be used, and specific examples include a spray method, a spin coat method, a wire bar method, a dip coat method, an air knife coat method , Roll coating method, blade coating method, doctor roll coating method and the like.
乾燥は、ホットプレート、オーブン、ベルト炉等を用いた従来公知の種々の方法を採用することができる。乾燥温度は前述の感光性組成物の感光性が損なわれない範囲で選択でき、例えば10〜80℃の範囲であり、また乾燥時間も特に制限されず、例えば1〜60分の範囲である。 For drying, various methods known in the art using a hot plate, an oven, a belt furnace or the like can be employed. The drying temperature can be selected in a range that does not impair the photosensitivity of the photosensitive composition described above, for example, in the range of 10 to 80 ° C., and the drying time is also not particularly limited, for example, in the range of 1 to 60 minutes.
また、感光性組成物が、ポリウレタンの前駆体であるポリイソシアネート化合物およびポリオール化合物を含む場合は、本工程においてこれら化合物の付加重合(硬化)を行う。硬化の際に用いられる触媒、硬化条件等は、上記したとおりである。 When the photosensitive composition contains a polyisocyanate compound and a polyol compound which are precursors of polyurethane, addition polymerization (curing) of these compounds is carried out in this step. The catalyst used for curing, curing conditions and the like are as described above.
感光層の厚さは、後述の体積ホログラム記録層の好ましい厚さの範囲となるよう、適宜設定すればよい。 The thickness of the photosensitive layer may be appropriately set so as to be within the preferable thickness range of the volume hologram recording layer described later.
(2)感光層と接合面が曲面を有する一の透明光学部材とを貼り合わせ、曲面を有する接合面の少なくとも一部の領域に感光層を含む層を作製する工程
本工程では、感光層と接合面が曲面を有する一の透明光学部材とを貼り合わせる。貼り合わせる方法としては、例えばラミネーターを用いる方法が挙げられる。
(2) A process of bonding a photosensitive layer and one transparent optical member having a curved bonding surface, and producing a layer including a photosensitive layer in at least a part of the bonding surface having a curved surface The bonding surface bonds together with one transparent optical member having a curved surface. As a method of bonding, for example, a method using a laminator can be mentioned.
(3)該感光層に対してホログラフィ露光を行い、体積ホログラム記録層を含む層を作製する工程
感光層に対してホログラフィ露光を行うことによって、感光層中の重合性モノマーの重合反応が進み、重合反応により生成する光硬化されたフォトポリマーの領域と他成分の領域とが、ホログラフィ露光で照射された干渉波と同一のパターンとして形成される。
(3) Step of Holographic Exposure to the Photosensitive Layer to Produce a Layer Including a Volume Hologram Recording Layer By conducting holographic exposure to the photosensitive layer, the polymerization reaction of the polymerizable monomer in the photosensitive layer proceeds. The area of the photocured photopolymer generated by the polymerization reaction and the area of the other component are formed as the same pattern as the interference wave irradiated by the holographic exposure.
〔記録方法〕
感光層にホログラフィ露光を行い、体積ホログラムを記録(書き込み)し体積ホログラム記録層とする方法、および体積ホログラムを再生(読み出し)する方法としては、特に制限されないが、例えば、下記の方法が挙げられる。
〔Recording method〕
There is no particular limitation on the method of performing holographic exposure on the photosensitive layer and recording (writing) a volume hologram as a volume hologram recording layer, and the method of reproducing (reading) a volume hologram, for example, the following method may be mentioned. .
まず、情報の記録時には、重合性モノマーの化学変化、すなわち、その重合および濃度変化を生じさせることが可能な光を、記録光(物体光とも呼ばれる)として用いる。 First, at the time of recording information, light capable of causing a chemical change of the polymerizable monomer, that is, polymerization and density change thereof is used as recording light (also called object light).
例えば、情報を体積ホログラムとして記録する場合には、物体光を参照光と共に感光層に対して照射し、感光層において物体光と参照光とを干渉させるようにする。これによってその干渉光が、感光層内の重合性モノマーの重合および濃度変化を生じさせ、その結果、干渉縞が感光層内に屈折率差を生じさせ、感光層内に記録された干渉縞により体積ホログラムとして記録され、体積ホログラム記録層となる。 For example, when information is recorded as a volume hologram, object light is irradiated to the photosensitive layer together with the reference light so that the object light and the reference light are interfered in the photosensitive layer. Thereby, the interference light causes the polymerization and concentration change of the polymerizable monomer in the photosensitive layer, and as a result, the interference fringes cause the refractive index difference in the photosensitive layer, and the interference fringes recorded in the photosensitive layer It is recorded as a volume hologram and becomes a volume hologram recording layer.
体積ホログラムの記録に用いられる記録光(カッコ内は波長を示す)としては、コヒーレンス性に優れる可視光レーザーを用いることが好ましく、例えばアルゴンイオンレーザー(458nm、488nm、514nm)、クリプトンイオンレーザー(647.1nm)、ヘリウム−ネオンレーザー(633nm)、YAGレーザー(532nm)等を使用することができる。 It is preferable to use a visible light laser having excellent coherence as the recording light (the wavelength in the parentheses is shown) used for recording the volume hologram, for example, argon ion laser (458 nm, 488 nm, 514 nm), krypton ion laser (647) Helium-neon laser (633 nm), YAG laser (532 nm), etc. can be used.
ホログラム記録時の照射エネルギー量(露光量)としては、特に制限されないが、10〜250mJ/cm2の範囲であることが好ましい。 The amount of irradiation energy (exposure amount) at the time of hologram recording is not particularly limited, but is preferably in the range of 10 to 250 mJ / cm 2 .
また、ホログラム記録方式としては、偏光コリニアホログラム記録方式、参照光入射角多重型ホログラム記録方式等があるが、いずれの記録方式でも良好な記録品質を提供することが可能である。 In addition, as a hologram recording method, there are a polarization collinear hologram recording method, a reference light incident angle multiplex type hologram recording method, and the like, and any recording method can provide good recording quality.
露光装置としては、特に制限されないが、例えば、概略構成が図1に示すようなタイプの露光装置を用いることができる。図1に示す露光装置においては、レーザー光源201から出射された光線(記録光)は、2対のミラーよりなるビームステアラー202a、202bによって露光系の適した位置に光線を誘導する。203はシャッターであり、光線(記録光)のON/OFFを制御する。204はビームエキスパンダーであり、感光層の露光面積に応じて、光束径を広げ、開口率(NA)を変化させる機能を有する。 The exposure apparatus is not particularly limited, but, for example, an exposure apparatus of a type whose schematic configuration is shown in FIG. 1 can be used. In the exposure apparatus shown in FIG. 1, the light beam (recording light) emitted from the laser light source 201 is directed to a suitable position of the exposure system by beam steerers 202a and 202b consisting of two pairs of mirrors. A shutter 203 controls ON / OFF of a light beam (recording light). A beam expander 204 has a function of expanding the light beam diameter and changing the aperture ratio (NA) according to the exposure area of the photosensitive layer.
ビームエキスパンダー204を通った光線(記録光)は、ビームスプリッター205で二光束に分けられる。分けられた光線(記録光)は、それぞれミラー206、207、およびミラー209、208によってスペイシャルフィルター211、212に誘導される。スペイシャルフィルター211、212はレンズとピンホールとから構成され、該レンズで光線(記録光)を集光し、ピンホールを介して製造光学系213に光線(記録光)を誘導する。 The light beam (recording light) having passed through the beam expander 204 is split into two light beams by a beam splitter 205. The divided light beams (recording light) are guided to spatial filters 211 and 212 by mirrors 206 and 207 and mirrors 209 and 208, respectively. The spatial filters 211 and 212 are composed of a lens and a pinhole. The lens condenses a light beam (recording light) and guides the light beam (recording light) to the manufacturing optical system 213 through the pinhole.
製造光学系213は、光学素子の光線の反射角を制御できるように、体積ホログラム記録層となる感光層を具備したガラスプリズム等のサンプルを好適な位置に設置および固定することができる。 The manufacturing optical system 213 can set and fix a sample such as a glass prism provided with a photosensitive layer to be a volume hologram recording layer at a suitable position so that the reflection angle of the light beam of the optical element can be controlled.
製造光学系213に固定されたプリズムなどに具備された感光層は、二光束に分けられ、各々スペイシャルフィルター211、213を介して誘導された光線(記録光)によってホログラフィ露光(干渉露光)される。 The photosensitive layer provided in the prism fixed to the manufacturing optical system 213 is divided into two light beams, and holographic exposure (interference exposure) is performed by light beams (recording light) guided through the spatial filters 211 and 213, respectively. Ru.
製造光学系213に固定された感光層に対するホログラフィ露光(干渉露光)の一例を図2に示す。図2に示す例では、第1の透明光学部材11と感光層(体積ホログラム記録層)12との積層体15に対して、2方向からのレーザー光照射により、感光層へのホログラフィ露光が行われる。2方向からのレーザー光のうち、一方が物体光31であり、他方が参照光32である。 An example of holographic exposure (interference exposure) on the photosensitive layer fixed to the manufacturing optical system 213 is shown in FIG. In the example shown in FIG. 2, holographic image exposure on the photosensitive layer is performed by irradiating the laminated body 15 of the first transparent optical member 11 and the photosensitive layer (volume hologram recording layer) 12 with laser light from two directions. It will be. Of the laser beams from two directions, one is the object beam 31 and the other is the reference beam 32.
なお、図1に示す光源は1つのみであるが、異なる波長を有する複数のレーザー光源を用いてホログラフィ露光する場合には、シャッター203手前の光路にグロイックミラーを挿入し、複数の光源から発せられるレーザー光線を段階的に合成させてもよい。 Note that although only one light source is shown in FIG. 1, when holographic exposure is performed using a plurality of laser light sources having different wavelengths, a glonic mirror is inserted in the light path in front of the shutter 203 and a plurality of light sources The emitted laser beams may be combined stepwise.
体積ホログラムを記録した後、屈折率変調の促進や重合反応完結(定着)のために、体積ホログラム記録層に対して、さらに紫外線による全面露光や加熱等の処理を適宜行うことができる。全面露光で用いられる光源としては、例えば、超高圧水銀ランプ、高圧水銀ランプ、カーボンアークランプ、キセノンアークランプ、メタルハライドランプ等の紫外線を発する光源を用いることができる。紫外線による全面露光を行う場合の照射エネルギー量としては、50〜200J/cm2が好ましい。また、加熱処理を行う際の温度は50〜150℃が好ましく、処理時間は30分間〜3時間が好ましい。 After recording the volume hologram, the volume hologram recording layer can be appropriately subjected to processing such as whole surface exposure with ultraviolet light and heating in order to promote refractive index modulation and complete the polymerization reaction (fixing). As a light source used in the entire surface exposure, for example, a light source emitting ultraviolet light such as an ultra-high pressure mercury lamp, a high pressure mercury lamp, a carbon arc lamp, a xenon arc lamp, and a metal halide lamp can be used. As an irradiation energy amount in the case of performing whole surface exposure by an ultraviolet-ray, 50-200 J / cm < 2 > is preferable. Moreover, as for the temperature at the time of heat-processing, 50-150 degreeC is preferable, and, as for processing time, 30 minutes-3 hours are preferable.
全面露光と加熱処理とを共に行う場合、その順序は特に制限されず、全面露光を先に行ってもよいし、加熱処理を先に行ってもよい。 When the entire surface exposure and the heat treatment are performed together, the order is not particularly limited, and the entire surface exposure may be performed first, or the heat treatment may be performed first.
本実施形態において、体積ホログラム記録層の厚さは、耐久性の観点から、5〜100μmであることが好ましく、5〜40μmであることがより好ましい。 In the present embodiment, the thickness of the volume hologram recording layer is preferably 5 to 100 μm, and more preferably 5 to 40 μm from the viewpoint of durability.
(4)体積ホログラム記録層が配置された曲面を有する接合面全体を覆うように放射線硬化性接着剤を塗布し、他の透明光学部材を貼り合わせる工程
本工程では、上記(3)で作製した体積ホログラム記録層が配置されている曲面を有する接合面全体を覆うように放射線硬化性接着剤を塗布し、他の透明光学部材を貼り合わせる。
(4) A step of applying a radiation curable adhesive so as to cover the entire bonding surface having a curved surface on which the volume hologram recording layer is disposed, and bonding other transparent optical members. In this step, it was prepared in the above (3) A radiation curable adhesive is applied to cover the entire bonding surface having a curved surface on which the volume hologram recording layer is disposed, and another transparent optical member is bonded.
隣接層を設置しない場合は、放射線硬化性接着剤を塗布する前に、隣接層を体積ホログラム記録層から剥離し、体積ホログラム記録層上に直接放射線硬化性接着剤を塗布する。隣接層を設置する場合は、隣接層上に放射線硬化性接着剤を塗布する。 When the adjacent layer is not provided, the adjacent layer is peeled off from the volume hologram recording layer before the radiation curable adhesive is applied, and the radiation curable adhesive is applied directly on the volume hologram recording layer. If an adjacent layer is to be installed, apply a radiation curable adhesive onto the adjacent layer.
放射線硬化性接着剤の塗布方法、塗布厚さ等は、上記で説明したとおりである。 The coating method, coating thickness and the like of the radiation curable adhesive are as described above.
(5)放射線硬化性接着剤を、放射線を用いて硬化させ、放射線硬化性接着層を形成する工程
本工程では、放射線を用いて放射線硬化性接着剤を硬化させ、放射線硬化性接着層を形成する。放射線照射に用いる光源、照射条件等は、上記で説明したとおりである。
(5) Step of curing a radiation curable adhesive using radiation to form a radiation curable adhesive layer In this step, the radiation curable adhesive is cured using radiation to form a radiation curable adhesive layer Do. The light source used for radiation irradiation, the irradiation conditions, and the like are as described above.
[他の層]
本実施形態の光学素子は、上記以外に、保護層、反射層、反射防止膜、紫外線吸収層等、他の層を有していてもよい。
[Other layer]
The optical element of the present embodiment may have other layers such as a protective layer, a reflective layer, an antireflective film, an ultraviolet ray absorbing layer, etc. in addition to the above.
保護層は、体積ホログラム記録層の保存安定性の劣化等の影響を防止するための層である。保護層の具体的構成に制限は無く、公知のものを任意に適用することが可能である。例えば、水溶性ポリマー、有機/無機材料等からなる層を保護層として形成することができる。保護層の形成位置は、特に制限はなく、例えば体積ホログラム記録層と放射線硬化性接着層との間、隣接層と放射線硬化性接着層との間、体積ホログラム記録層と透明光学部材との間などが挙げられる。 The protective layer is a layer for preventing the influence such as deterioration of storage stability of the volume hologram recording layer. There is no restriction | limiting in the specific structure of a protective layer, It is possible to apply a well-known thing arbitrarily. For example, a layer formed of a water-soluble polymer, an organic / inorganic material or the like can be formed as a protective layer. The formation position of the protective layer is not particularly limited. For example, between the volume hologram recording layer and the radiation curable adhesive layer, between the adjacent layer and the radiation curable adhesive layer, and between the volume hologram recording layer and the transparent optical member Etc.
反射層は、光学素子を反射型に構成する際に形成される。反射型の光学素子の場合、反射層は通常、隣接層の外側面に形成される。反射層としては、従来公知のものを適宜参照して適用することができ、例えば金属の薄膜等を用いることができる。 The reflective layer is formed when the optical element is configured to be reflective. In the case of a reflective optical element, the reflective layer is usually formed on the outer surface of the adjacent layer. The reflective layer can be applied with reference to conventionally known ones as appropriate. For example, a thin film of metal can be used.
さらに、透過型および反射型のいずれの光学素子においても、物体光および再生光が入射および/または出射する側に、反射防止膜を設けてもよい。反射防止膜は、光の利用効率を向上させ、かつゴースト像の発生を抑制する働きをする。反射防止膜の材料および形状は、従来公知のものを適宜参照して適用することができる。 Furthermore, in any of the transmissive and reflective optical elements, an antireflective film may be provided on the side where the object light and the reproduction light are incident and / or emitted. The antireflective film works to improve the light utilization efficiency and to suppress the generation of ghost images. The material and shape of the antireflective film can be applied with appropriate reference to conventionally known ones.
なお、体積ホログラム記録層に記録された体積ホログラムを再生する場合は、所定の再生光(通常は参照光)を体積ホログラム記録層に照射する。照射された再生光は前記の干渉縞に応じて回折を生じる。この回折光は、体積ホログラム記録層と同様の情報を含むものであるので、前記の回折光を適当な検出手段によって読み取ることにより、体積ホログラム記録層に記録された情報の再生を行なうことができる。なお、物体光、再生光および参照光の波長領域はそれぞれの用途に応じて任意であり、可視光領域でも紫外光領域でも構わない。 When the volume hologram recorded in the volume hologram recording layer is to be reproduced, predetermined reproduction light (usually, reference light) is irradiated to the volume hologram recording layer. The irradiated reproduction light is diffracted in response to the interference fringes. Since this diffracted light contains the same information as that of the volume hologram recording layer, the information recorded in the volume hologram recording layer can be reproduced by reading the diffracted light by an appropriate detecting means. The wavelength regions of the object light, the reproduction light and the reference light are arbitrary according to the respective applications, and may be a visible light region or an ultraviolet light region.
[映像表示装置]
本実施形態の光学素子は、ヘッドマウントディスプレイ(HMD)、ヘッドアップディスプレイ(HUD)、光学シースルーディスプレイ等の映像表示装置に好適に用いられる。以下では、光学素子を備える映像表示装置の一例について説明する
図3に、光学素子10と表示素子20とを備えた映像表示装置1の概略的な断面構造を示す。図3の光学素子10は、曲面を有する第1の透明光学部材11と、第1の透明光学部材11と対となる第2の透明光学部材13とが、体積ホログラム記録層12を挟むようにして接合された構造を有している。
[Video display device]
The optical element of this embodiment is suitably used for image display apparatuses, such as a head mounted display (HMD), a head up display (HUD), and an optical see-through display. In the following, an example of an image display apparatus including an optical element will be described. FIG. 3 shows a schematic cross-sectional structure of an image display apparatus 1 including an optical element 10 and a display element 20. In the optical element 10 of FIG. 3, the first transparent optical member 11 having a curved surface and the second transparent optical member 13 which makes a pair with the first transparent optical member 11 are joined so as to sandwich the volume hologram recording layer 12. It has the following structure.
ホログラフィ(干渉)露光により得られた体積ホログラム記録層12を2つの透明光学部材11および13の間で挟むようにして、曲面を有する第1の透明光学部材11と、第1の透明光学部材11と対となる第2の透明光学部材13とを接着剤14で接合すると、ホログラム再生可能な状態の光学デバイス10が得られる。ホログラム再生では、図3に示すように、映像光(再生照明光)41が光学素子10に入射すると、再生像光42が回折反射される。その再生像光42は、光学素子10を透過した外界像光43と共に、観察者眼EYに入射することになる。したがって、観察者は表示映像と共に外界像も観察することができる。 As the volume hologram recording layer 12 obtained by holography (interference) exposure is sandwiched between two transparent optical members 11 and 13, a first transparent optical member 11 having a curved surface and a pair with the first transparent optical member 11 By bonding the second transparent optical member 13 to the second transparent optical member 13 with the adhesive 14, the optical device 10 in a state capable of reproducing a hologram can be obtained. In the hologram reproduction, as shown in FIG. 3, when the image light (reproduction illumination light) 41 is incident on the optical element 10, the reproduction image light 42 is diffracted and reflected. The reproduced image light 42 enters the observer's eye EY together with the external image light 43 transmitted through the optical element 10. Therefore, the observer can observe the external image as well as the display image.
体積ホログラム記録層12は、曲面を有する第1の透明光学部材11に貼り付けられており、第1の透明光学部材11と対となる第2の透明光学部材13との間に設けられた放射線硬化性接着層14で、第1透明光学部材11と第2の透明光学部材13とが体積ホログラム記録層12を挟むようにして接合されている。曲面を有する第1の透明光学部材11と第2の透明光学部材13との接合面上に体積ホログラム記録層12が設けられているため、接合面を介した外界像のシースルー性が確保される。 The volume hologram recording layer 12 is attached to the first transparent optical member 11 having a curved surface, and the radiation provided between the first transparent optical member 11 and the second transparent optical member 13 as a pair. The first transparent optical member 11 and the second transparent optical member 13 are bonded together with the curable adhesive layer 14 so as to sandwich the volume hologram recording layer 12. Since the volume hologram recording layer 12 is provided on the bonding surface between the first transparent optical member 11 and the second transparent optical member 13 having a curved surface, the see-through property of the external image through the bonding surface is ensured. .
映像表示装置1は、図3に示すように、光学素子10の他に、映像を表示する表示素子20を備えている。表示素子20としては、例えば、反射型または透過型の液晶表示素子(LCD:liquid crystal display)、デジタル・マイクロミラー・デバイス(digital micromirror device)、有機EL(organic electro−luminescence)ディスプレイ等が挙げられる。さらに、表示素子20を照明するための照明装置を配置してもよい。照明装置としては、LED(light emitting diode)等の光源、集光用光学素子(レンズ、ミラー等)で構成された照明装置等を備えたものが挙げられる。 As shown in FIG. 3, the image display apparatus 1 includes, in addition to the optical element 10, a display element 20 for displaying an image. Examples of the display device 20 include a reflective or transmissive liquid crystal display (LCD), a digital micromirror device, and an organic electro-luminescence (EL) display. . Furthermore, a lighting device for lighting the display element 20 may be disposed. Examples of the illumination device include those provided with a light source such as an LED (light emitting diode), an illumination device including a condensing optical element (lens, mirror, etc.), and the like.
図3に示す映像表示装置1のさらに詳細な構成を、図4に示す。図4では、照明装置等を備えた映像表示装置1における光源21から光学瞳EPまでの光路を示している。この映像表示装置1は、照明装置の他に、偏光板24と、偏光ビームスプリッター25と、表示素子20と、接眼光学系として機能する光学素子10と、を有している。 A more detailed configuration of the video display device 1 shown in FIG. 3 is shown in FIG. FIG. 4 shows an optical path from the light source 21 to the optical pupil EP in the image display device 1 provided with the illumination device and the like. The image display apparatus 1 includes a polarizing plate 24, a polarization beam splitter 25, a display element 20, and an optical element 10 functioning as an eyepiece optical system, in addition to the illumination device.
照明装置は、表示素子20を照明するものであり、光源21と、照明ミラー22と、拡散板23と、を有している。光源21は、中心波長が例えば520nmの波長帯域の光を発するLEDで構成されている。なお、図4に示す光源21は1つのみの波長であるが、体積ホログラム記録層が異なる複数の波長を回折する場合は、異なる複数の波長帯域の光を発する一体型のLEDで構成されてもよい。照明ミラー22は、光源21から出射した光(照明光)を拡散板23に向けて反射させるとともに、光学瞳EPと光源21とが略共役となるように、照明光を曲げる光学素子(例えば、自由曲面ミラー)である。拡散板23は、光源21からの照明光を拡散させるものであり、その拡散度は方向によって異なっている(例えば、横方向にのみ拡散作用を有する一方向拡散板である)。 The illumination device illuminates the display element 20, and includes a light source 21, an illumination mirror 22, and a diffusion plate 23. The light source 21 is configured of an LED that emits light in a wavelength band of, for example, 520 nm. Although the light source 21 shown in FIG. 4 has only one wavelength, when the volume hologram recording layer diffracts a plurality of different wavelengths, it is composed of an integrated LED emitting light of a plurality of different wavelength bands. It is also good. The illumination mirror 22 reflects light (illumination light) emitted from the light source 21 toward the diffusion plate 23, and bends the illumination light such that the optical pupil EP and the light source 21 become substantially conjugate (for example, It is a free-form surface mirror). The diffusion plate 23 diffuses the illumination light from the light source 21 and the degree of diffusion differs depending on the direction (for example, it is a unidirectional diffusion plate having a diffusion action only in the lateral direction).
偏光板24は、その表面に拡散板23が貼り合わせ保持されており、拡散板23を介して入射する光のうち、所定の偏光方向の光を透過させて偏光ビームスプリッター25に導く。偏光板24を透過した偏光が偏光ビームスプリッター25で反射されるように、偏光ビームスプリッター25の方向は揃えてある。偏光ビームスプリッター25は、偏光板24を透過した光を反射型の表示素子20の方向に反射させる一方、表示素子20で反射された光のうち、画像信号オンに対応する光(偏光板24を透過した光とは偏光方向が直交する光)を透過させる平板状の偏光分離素子であり、第1の曲面を有している透明光学部材11の面11cに貼り付けられている。 A diffusion plate 23 is bonded and held on the surface of the polarizing plate 24. Among the light incident through the diffusion plate 23, light of a predetermined polarization direction is transmitted and guided to the polarization beam splitter 25. The direction of the polarizing beam splitter 25 is aligned so that the polarized light transmitted through the polarizing plate 24 is reflected by the polarizing beam splitter 25. While the polarization beam splitter 25 reflects the light transmitted through the polarizing plate 24 in the direction of the reflective display element 20, of the light reflected by the display element 20, a light corresponding to the image signal ON (a polarizing plate 24 The transmitted light is a flat plate-like polarization separation element that transmits light having orthogonal polarization directions), and is attached to the surface 11c of the transparent optical member 11 having the first curved surface.
表示素子20は、照明装置からの光(つまり、偏光ビームスプリッター25で反射された光)を変調して映像IMを表示する表示素子であり、この映像表示装置1では反射型の液晶表示素子を想定している。なお、異なる複数の波長領域を表現する場合、表示素子20はカラーフィルターを有する構成であってもよいし、異なる波長領域ごとに時分割で駆動される構成であってもよい。 The display element 20 is a display element that modulates the light from the illumination device (that is, the light reflected by the polarization beam splitter 25) to display an image IM. In this image display device 1, a reflective liquid crystal display element is used. It is assumed. In the case of expressing a plurality of different wavelength regions, the display element 20 may be configured to have a color filter, or may be configured to be driven by time division for each different wavelength region.
表示素子20は、偏光ビームスプリッター25からほぼ垂直に入射する光がほぼ垂直に反射されて、偏光ビームスプリッター25に向かうように配置されている。これにより、反射型の表示素子に対して大きな入射角で光を入射させる構成に比べて、解像度を増大させるような光学設計が容易になる。また、表示素子20は、照明ミラー22から偏光ビームスプリッター25に向かう光路に対して光源21と同じ側に配置されている。これにより、照明装置から表示素子20までの光学系全体をコンパクトに構成することができる。なお、表示素子20は、光源21と同一の基板で支持されていてもよいし、別々の基板で支持されていてもよい。 The display element 20 is disposed so that light incident substantially perpendicularly from the polarization beam splitter 25 is reflected substantially perpendicularly and directed to the polarization beam splitter 25. This facilitates optical design to increase the resolution as compared with a configuration in which light is incident on a reflective display element at a large incident angle. The display element 20 is disposed on the same side as the light source 21 with respect to the light path from the illumination mirror 22 to the polarization beam splitter 25. Thereby, the whole optical system from a lighting installation to the display element 20 can be comprised compactly. The display element 20 may be supported by the same substrate as the light source 21 or may be supported by a separate substrate.
光学素子10は、曲面を有する第1の透明光学部材11、第1の透明光学部材11と対となる第2の透明光学部材13、および体積ホログラム記録層12を有しており、透明光学部材11、13は、例えばプラスチック(より具体的には、アクリル系樹脂,ポリカーボネート,シクロオレフィン樹脂等)で構成されている。光学素子10は、非軸対称(非回転対称)な正の光学的パワーを有しており、それにより表示素子20からの映像光を光学瞳EPに導くための接眼光学系として機能する。透明光学部材11は、表示素子20から偏光ビームスプリッター25を介して入射してくる映像光を内部で導光する一方、外界像の光(外光)を透過させるものであり、平行平板の上端部を上端に向かうほど厚くし、下端部を下端に向かうほど薄くした形状で構成されている。 The optical element 10 includes a first transparent optical member 11 having a curved surface, a second transparent optical member 13 paired with the first transparent optical member 11, and a volume hologram recording layer 12, and the transparent optical member 11 and 13 are made of, for example, plastic (more specifically, acrylic resin, polycarbonate, cycloolefin resin, etc.). The optical element 10 has non-axisymmetric (non-rotationally symmetric) positive optical power, and thereby functions as an eyepiece optical system for guiding the image light from the display element 20 to the optical pupil EP. The transparent optical member 11 guides the image light incident from the display element 20 through the polarization beam splitter 25 inside, and transmits the light of the external image (external light), and the upper end of the parallel flat plate The portion is thicker toward the upper end and thinner at the lower end toward the lower end.
曲面を有する第1の透明光学部材11において、偏光ビームスプリッター25が貼り付けられている面11cは、表示素子20からの映像光が最初に入射する光学面である。また、光学瞳EPとほぼ平行に位置して互いに対向する2つの面11a、11bは、映像光を全反射によって導光する全反射面となっている。そのうち、光学瞳EP側の面11aは、体積ホログラム記録層12で回折反射される映像光の出射面を兼ねている。 In the first transparent optical member 11 having a curved surface, the surface 11 c to which the polarization beam splitter 25 is attached is an optical surface on which image light from the display element 20 first enters. Further, the two surfaces 11a and 11b positioned substantially parallel to the optical pupil EP and facing each other are total reflection surfaces that guide the image light by total reflection. Among them, the surface 11 a on the optical pupil EP side also serves as an emission surface of image light diffracted and reflected by the volume hologram recording layer 12.
曲面を有する第1の透明光学部材11は、その下端部に配置される体積ホログラム記録層12を挟むように、接着剤14で第1の透明光学部材11と対となる第2の透明光学部材13と接合されて、略平行平板を形成している。第2の透明光学部材13を第1の透明光学部材11と貼り合わせることで、外光が第1の透明光学部材11の楔状の下端部を透過するときの屈折を第2の透明光学部材13でキャンセルすることができ、観察される外界像に歪みが生じるのを防止することができる。体積ホログラム記録層12は、第1の透明光学部材11の面11dに接して設けられており、第1の透明光学部材11内部で導光された映像光を回折反射する体積位相型であり反射型である光学素子である。そして、体積ホログラム記録層12の回折波長は、映像光の波長(光源21の発光波長)とほぼ対応している。 The first transparent optical member 11 having a curved surface is a second transparent optical member that forms a pair with the first transparent optical member 11 with the adhesive 14 so as to sandwich the volume hologram recording layer 12 disposed at the lower end thereof. It is joined with 13 to form a substantially parallel plate. By bonding the second transparent optical member 13 to the first transparent optical member 11, the refraction when external light passes through the lower end of the first transparent optical member 11 is referred to as the second transparent optical member 13. It is possible to prevent the distortion of the observed external image from occurring. The volume hologram recording layer 12 is provided in contact with the surface 11 d of the first transparent optical member 11, and is a volume phase type that diffracts and reflects the image light guided inside the first transparent optical member 11 and is reflected. It is an optical element that is a mold. The diffraction wavelength of the volume hologram recording layer 12 substantially corresponds to the wavelength of the image light (the emission wavelength of the light source 21).
上記の構成において、照明装置の光源21から出射された光は、照明ミラー22で反射され、拡散板23にて一方向にのみ拡散された後、所定の偏光方向の光のみが偏光板24を透過する。そして、偏光板24を透過した光は、偏光ビームスプリッター25で反射され、表示素子20に入射する。表示素子20では、入射光が画像信号に応じて変調される。このとき、画像信号オンに対応する映像光は、表示素子20にて入射光とは偏光方向が直交する光に変換されて出射されるため、偏光ビームスプリッター25を透過して第1の透明光学部材面11cから第1の透明光学部材11の内部に入射する。一方、画像信号オフに対応する映像光は、表示素子20にて偏光方向が変換されずに出射されるため、偏光ビームスプリッター25で遮断されて、第1の透明光学部材11の内部に入射しない。 In the above configuration, light emitted from the light source 21 of the illumination device is reflected by the illumination mirror 22 and diffused only in one direction by the diffusion plate 23, and then only light of a predetermined polarization direction is To Penetrate. Then, the light transmitted through the polarizing plate 24 is reflected by the polarization beam splitter 25 and enters the display element 20. In the display element 20, the incident light is modulated according to the image signal. At this time, the image light corresponding to the image signal ON is converted by the display element 20 into light whose polarization direction is orthogonal to that of the incident light and emitted, so that it is transmitted through the polarization beam splitter 25 and the first transparent optics The light enters the inside of the first transparent optical member 11 from the member surface 11 c. On the other hand, since the image light corresponding to the image signal OFF is emitted without the polarization direction being converted by the display element 20, the image light is blocked by the polarization beam splitter 25 and does not enter into the first transparent optical member 11. .
第1の透明光学部材11では、入射した映像光が第1の透明光学部材11の対向する2つの面11a、11bでそれぞれ1回ずつ全反射された後、体積ホログラム記録層12に入射する。体積ホログラム記録層12では、特定の波長の光のみが回折反射されて面11aから出射し、光学瞳EPに達する。したがって、観察者は、光学瞳EPの位置で表示素子20に表示された映像IMを虚像として観察することができる。一方、第1の透明光学部材11、第2の透明光学部材13、および体積ホログラム記録層12は、外光をほとんど全て透過させるので、観察者は外界像をシースルーで観察することができる。したがって、表示素子20に表示された映像IMの虚像は、外界像の一部に重なって観察されることになる。 In the first transparent optical member 11, the incident image light is totally reflected once by each of the two opposing surfaces 11 a and 11 b of the first transparent optical member 11 and then enters the volume hologram recording layer 12. In the volume hologram recording layer 12, only light of a specific wavelength is diffracted and reflected, and exits from the surface 11a to reach the optical pupil EP. Therefore, the observer can observe the image IM displayed on the display element 20 at the position of the optical pupil EP as a virtual image. On the other hand, since the first transparent optical member 11, the second transparent optical member 13, and the volume hologram recording layer 12 transmit almost all the external light, the observer can observe the external image in a see-through manner. Therefore, the virtual image of the image IM displayed on the display element 20 is observed to overlap with a part of the external image.
光学素子10は、上記のように、接合された第1の透明光学部材11と第2の透明光学部材13との間の体積ホログラム記録層12を介して、表示素子20の映像が外界像に重なるように、その表示映像を虚像として観察者眼EY(図3参照)にシースルーで投影表示する接眼光学系として機能する。そのため、体積ホログラム記録層12は、体積位相型の反射型ホログラムであることが好ましい。体積位相型の反射型ホログラムは外界像の光の透過率が高いので、体積ホログラム記録層12として体積位相型の反射型ホログラムを用いれば、観察者は表示映像と共に外界像も明瞭に観察することが可能になる。 As described above, in the optical element 10, the image of the display element 20 is an external image through the volume hologram recording layer 12 between the joined first transparent optical member 11 and second transparent optical member 13. It functions as an eyepiece optical system that projects and displays the display image as a virtual image on the observer's eye EY (see FIG. 3) as a virtual image so as to overlap. Therefore, the volume hologram recording layer 12 is preferably a volume phase reflection type hologram. Since the volume phase type reflection type hologram has a high light transmittance of the external image, if the volume phase type reflection type hologram is used as the volume hologram recording layer 12, the observer should clearly observe the external image together with the display image. Becomes possible.
図3および図4に示すように、体積ホログラム記録層12は、曲面を有する第1の透明光学部材11および第2の透明光学部材13で挟持された状態で使用されるため、湿度や酸素等の外部環境の影響を受けることがほとんどない。また、透明光学部材11、13内に埋め込まれた構成により、表示素子20から提供される映像光を透明光学部材11内部で全反射させて体積ホログラム記録層12に導く接眼光学系として、光学素子10を採用することが可能になる。そして、透明光学部材11、13の形状と体積ホログラム記録層12の形状とを最適化することにより、体積ホログラム記録層12の光学性能を維持しながら外界像のシースルー性(コンバイナ機能)を確保することができる。 As shown in FIGS. 3 and 4, since the volume hologram recording layer 12 is used in a state of being held between the first transparent optical member 11 and the second transparent optical member 13 having curved surfaces, humidity, oxygen, etc. Hardly affected by the external environment of the The optical element as an eyepiece optical system which totally reflects the image light provided from the display element 20 inside the transparent optical member 11 and guides it to the volume hologram recording layer 12 by the configuration embedded in the transparent optical members 11 and 13 It becomes possible to adopt ten. And, by optimizing the shape of the transparent optical members 11 and 13 and the shape of the volume hologram recording layer 12, the see-through property (combiner function) of the external image is maintained while maintaining the optical performance of the volume hologram recording layer 12. be able to.
図3および図4に示す映像表示装置1は、前述したように、光学素子10と、映像を表示する表示素子20と、を有し、体積ホログラム記録層12が表示素子20からの映像光のうちの特定波長の光を回折させるものであることが好ましい。このような構成により、外界像に高品質の映像が重ねられたシースルー表示が可能になる。したがって、光学素子10から提供される高品質の映像を、光学素子10を介して観察することが可能になると同時に、光学素子10を介してシースルーで外界像を観察することも可能になる。 As described above, the image display apparatus 1 shown in FIGS. 3 and 4 has the optical element 10 and the display element 20 for displaying an image, and the volume hologram recording layer 12 is the image light from the display element 20. It is preferable to diffract light of a specific wavelength among them. Such a configuration enables see-through display in which a high quality image is superimposed on an external image. Therefore, it becomes possible to observe a high quality image provided from the optical element 10 through the optical element 10, and at the same time to observe an external image through the optical element 10 in a see-through manner.
光学素子10を構成する曲面を有する第1の透明光学部材11は、図3および図4に示すように、表示素子20からの映像光を内部で全反射させて体積ホログラム記録層12に導く構成を有することが好ましい。このような構成により、表示素子20から提供される映像光を無駄なく利用して、観察者に明るい映像を提供することができる。また、表示素子20を光学素子10から離れた位置に配置することも可能となり、観察者の外界に対する視野を広く確保することができる。 The first transparent optical member 11 having a curved surface that constitutes the optical element 10 is configured to totally reflect the image light from the display element 20 inside and guide it to the volume hologram recording layer 12 as shown in FIGS. 3 and 4. It is preferable to have With such a configuration, it is possible to provide an observer with a bright image by using the video light provided from the display element 20 without waste. In addition, the display element 20 can be disposed at a position distant from the optical element 10, and a wide view of the observer with respect to the external world can be secured.
以下、具体的な実施例および比較例について説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。また、下記操作において、特記しない限り、操作および物性等の測定は室温(20〜25℃)/相対湿度40〜50%RHの条件で行った。 Hereinafter, specific examples and comparative examples will be described. However, the technical scope of the present invention is not limited to the following examples. Moreover, in the following operation, unless otherwise specified, measurement of operation, physical properties, etc. was performed under the conditions of room temperature (20 to 25 ° C.) / Relative humidity 40 to 50% RH.
接合面が曲面を有する透明光学部材11−1および11−2を作製した。その形状の概略を図5に示す。図5において、(a)は透明光学部材の平面図であり、(b)および(c)は透明光学部材の側面図である。図5に示すように、透明光学部材11−1は、その曲面がシリンドリカル形状(円柱状)の凸面であり、透明光学部材11−2は、その曲面が凸レンズ状(凸状の球面)である。 Transparent optical members 11-1 and 11-2 having cemented surfaces having curved surfaces were produced. The outline of the shape is shown in FIG. In FIG. 5, (a) is a plan view of the transparent optical member, and (b) and (c) are side views of the transparent optical member. As shown in FIG. 5, the curved surface of the transparent optical member 11-1 is a convex surface of a cylindrical shape (cylindrical shape), and the curved surface of the transparent optical member 11-2 is a convex lens shape (convex spherical surface). .
また、接合面が透明光学部材11−1の接合面とは逆の曲面を有する透明光学部材13−1、および接合面が透明光学部材11−2の接合面とは逆の曲面を有する透明光学部材13−2も作製した(図6参照)。 In addition, a transparent optical member 13-1 whose bonding surface has a curved surface opposite to the bonding surface of the transparent optical member 11-1, and a transparent optical device whose bonding surface has a curved surface reverse to the bonding surface of the transparent optical member 11-2. The member 13-2 was also produced (refer FIG. 6).
透明光学部材11−1、11−2、13−1および13−2は、射出成形機を用い、220℃に加熱したポリメタクリル酸メチル樹脂のペレット(製品名;アクリペット(登録商標)VH;三菱レイヨン株式会社製)を、100℃に維持された専用金型に注入し、50tonの荷重で型締めし、次いで金型から成形品を取り出し25℃に冷却して作製した。 Transparent optical members 11-1, 11-2, 13-1 and 13-2 are pellets of polymethyl methacrylate resin heated to 220 ° C. using an injection molding machine (product name; ACRYPET (registered trademark) VH; Mitsubishi Rayon Co., Ltd.) was poured into a dedicated mold maintained at 100 ° C., clamped at a load of 50 tons, then taken out of the mold and cooled to 25 ° C. to produce a molded article.
(実施例1:光学素子1の作製)
<体積ホログラム記録層作製用感光性組成物1>
暗室下で下記成分を容器に投入し、30分間室温(25℃)で攪拌し溶液を得た。得られた溶液をメッシュで濾過し、混合物1を得た。
Example 1 Preparation of Optical Element 1
<Photosensitive composition 1 for preparation of volume hologram recording layer>
The following components were charged into a container in the dark and stirred at room temperature (25 ° C.) for 30 minutes to obtain a solution. The resulting solution was filtered through a mesh to give mixture 1.
ヘキサメチレンジイソシアネート 0.1質量部
ポリプロピレングリコール 10.0質量部
(分子量4000、ヒドロキシ価25.3mgKOH/g)
2−{{[3−(メチルスルファニル)フェニル]カルバモイル}オキシ}エチルプロパ−2−エノエート 3.0質量部
テトラブチルアンモニウムトリフェニルブチルボレート
(有機ホウ素酸塩重合開始剤、昭和電工株式会社製)
0.01質量部
サフラニンO(増感色素、東京化成工業株式会社製)
0.1質量部
N−エチル−2−ピロリドン 0.5質量部
酢酸エチル 25.0質量部
得られた混合物1に対して、ジラウリン酸ジブチルスズ 0.01質量部を添加し体積ホログラム記録層作製用感光性組成物1を得てから、その5分後に、厚さ50μmのポリエチレンテレフタレート(PET)フィルム(隣接層)の片面上に上記の体積ホログラム記録層作製用感光性組成物1を、ブレードコーターを用いて塗布した。その後、20℃、50%RHの環境下で30分間乾燥させ、さらに60℃で2時間の熱処理をおこない、厚さ25μmの感光層を得た。この感光層が塗設されたPETフィルムをカットし、感光層と透明光学部材11−1とを相対させて、図7に示すようにしてラミネート(貼着)した。
Hexamethylene diisocyanate 0.1 part by mass Polypropylene glycol 10.0 parts by mass
(Molecular weight 4000, hydroxy value 25.3 mg KOH / g)
2-{{[3- (methylsulfanyl) phenyl] carbamoyl} oxy} ethyl prop-2-enoate 3.0 parts by mass tetrabutylammonium triphenylbutyl borate
(Organic boronate polymerization initiator, manufactured by Showa Denko KK)
0.01 parts by mass Safranin O (sensitizing dye, manufactured by Tokyo Chemical Industry Co., Ltd.)
0.1 parts by mass N-ethyl-2-pyrrolidone 0.5 parts by mass Ethyl acetate 25.0 parts by mass 0.01 parts by mass of dibutyltin dilaurate is added to the obtained mixture 1 to prepare a volume hologram recording layer After obtaining the photosensitive composition 1, 5 minutes after that, the photosensitive composition 1 for producing the above volume hologram recording layer is coated on one side of a 50 μm thick polyethylene terephthalate (PET) film (adjacent layer) with a blade coater. It applied using. Thereafter, it was dried for 30 minutes in an environment of 20 ° C. and 50% RH, and further heat treatment was carried out at 60 ° C. for 2 hours to obtain a photosensitive layer 25 μm in thickness. The PET film coated with the photosensitive layer was cut, and the photosensitive layer and the transparent optical member 11-1 were made to face each other, and laminated (adhered) as shown in FIG.
感光層に対して、図1と同様の基本構造を備える露光装置(光源:アルゴンレーザー、露光波長514nm)を用いて、1m先に画角25°の虚像が出るように調整し、感光層面における照射エネルギー量が24mJ/cm2となるようにホログラフィ露光を行った。 An exposure apparatus (light source: argon laser, exposure wavelength: 514 nm) having the same basic structure as that of FIG. 1 is used to adjust the photosensitive layer so that a virtual image with a field angle of 25 ° appears 1 m ahead, on the photosensitive layer surface Holographic exposure was performed so that the amount of irradiation energy was 24 mJ / cm 2 .
ホログラフィ露光を行った後、高圧水銀ランプ(照度100W)から15cmの位置で60分間静置して紫外線による全面露光を行い、体積ホログラム記録層を得た。 After holographic exposure was performed, the whole surface was exposed to ultraviolet light by standing for 60 minutes at a position of 15 cm from a high pressure mercury lamp (illuminance 100 W) to obtain a volume hologram recording layer.
その後、体積ホログラム記録層が配置された曲面を有する接合面の全体を覆うようにジシクロペンテニルアクリレート、2−ヒドロキシ−3−フェノキシプロピルアクリレート、およびγ−グリシドキシプロピルトリメトキシシランを含むアクリレート系接着剤(放射線硬化性接着剤)を、ディスペンサーを用いて、体積ホログラム記録層がある部分は厚さ15μmで、体積ホログラムが無い部分は体積ホログラム記録層および隣接層の厚さを加えた厚さ80μmで、それぞれ塗布した。さらに、塗布した接着剤の上から第2の透明光学部材13−1を貼り合わせ、高圧水銀ランプ(照度100W/cm2)から紫外線を照射し(照射量:200mJ/cm2)、接着剤を硬化させて光学素子KO−1を得た。 Thereafter, an acrylate system containing dicyclopentenyl acrylate, 2-hydroxy-3-phenoxypropyl acrylate, and γ-glycidoxypropyltrimethoxysilane so as to cover the entire bonding surface having a curved surface on which the volume hologram recording layer is disposed. Adhesive (radiation-curable adhesive), using a dispenser, the thickness of the part with the volume hologram recording layer is 15 μm thick and the part without the volume hologram is the thickness including the thickness of the volume hologram recording layer and the adjacent layer Each was applied at 80 μm. Furthermore, the second transparent optical member 13-1 is pasted on the applied adhesive, ultraviolet rays are irradiated from a high pressure mercury lamp (illuminance 100 W / cm 2 ) (irradiation amount: 200 mJ / cm 2 ), and the adhesive is It was cured to obtain an optical element KO-1.
(実施例2)
透明光学部材11−1を図5に示すような透明光学部材11−2に、透明光学部材13−1を透明光学部材13−2に、それぞれ変更したこと以外は、実施例1と同様にして、光学素子KO−2を得た。
(Example 2)
In the same manner as in Example 1 except that the transparent optical member 11-1 is changed to the transparent optical member 11-2 as shown in FIG. 5 and the transparent optical member 13-1 is changed to the transparent optical member 13-2. , Optical element KO-2.
(比較例1)
下記の体積ホログラム記録層作製用感光性組成物2を用いて、下記のようにして感光層を作製したこと以外は、実施例1と同様にして、光学素子KO−21を得た。
(Comparative example 1)
An optical element KO-21 was obtained in the same manner as Example 1, except that the photosensitive composition was prepared as follows using the photosensitive composition 2 for producing a volume hologram recording layer described below.
<体積ホログラム記録層作製用感光性組成物2>
イソシアン酸ヘキシル 0.1質量部
ポリプロピレングリコール 10.0質量部
(分子量4000、ヒドロキシ価25.3mgKOH/g)
2−{{[3−(メチルスルファニル)フェニル]カルバモイル}オキシ}エチルプロパ−2−エノエート 3.0質量部
テトラブチルアンモニウムトリフェニルブチルボレート
(有機ホウ素酸塩重合開始剤、昭和電工株式会社製)
0.01質量部
サフラニンO(増感色素、東京化成工業株式会社製)
0.1質量部
N−エチル−2−ピロリドン 0.5質量部
酢酸エチル 25.0質量部
得られた体積ホログラム記録層作製用感光性組成物2を、厚さ50μmのポリエチレンテレフタレート(PET)フィルム上に、ブレードコーターを用いて塗布し、20℃、50%RHの環境下で30分間乾燥させ、厚さ20μmの感光層を得た。得られた感光層を、20℃、50%RHの環境下で5日間静置した。静置後、この感光層が塗設されたPETのフィルムをカットし、感光層と透明光学部材11−1とを相対させて、図7に示すようにラミネート(貼着)した。
<Photosensitive composition 2 for preparation of volume hologram recording layer>
Hexyl isocyanate 0.1 part by mass Polypropylene glycol 10.0 parts by mass (molecular weight 4000, hydroxy value 25.3 mg KOH / g)
2-{{[3- (methylsulfanyl) phenyl] carbamoyl} oxy} ethyl prop-2-enoate 3.0 parts by mass tetrabutylammonium triphenylbutyl borate
(Organic boronate polymerization initiator, manufactured by Showa Denko KK)
0.01 parts by mass Safranin O (sensitizing dye, manufactured by Tokyo Chemical Industry Co., Ltd.)
0.1 parts by mass N-ethyl-2-pyrrolidone 0.5 parts by mass Ethyl acetate 25.0 parts by mass The obtained photosensitive composition 2 for producing a volume hologram recording layer is a 50 μm thick polyethylene terephthalate (PET) film The resultant was coated using a blade coater and dried for 30 minutes in an environment of 20 ° C. and 50% RH to obtain a photosensitive layer with a thickness of 20 μm. The obtained photosensitive layer was allowed to stand for 5 days in an environment of 20 ° C. and 50% RH. After standing, the PET film coated with the photosensitive layer was cut, and the photosensitive layer and the transparent optical member 11-1 were made to face each other to be laminated (adhered) as shown in FIG.
(比較例2)
透明光学部材11−1を図5に示すような透明光学部材11−2に、透明光学部材13−1を透明光学部材13−2に、それぞれ変更したこと以外は、比較例1と同様にして、光学素子KO−22を得た。
(Comparative example 2)
In the same manner as Comparative Example 1 except that the transparent optical member 11-1 is changed to the transparent optical member 11-2 as shown in FIG. 5 and the transparent optical member 13-1 is changed to the transparent optical member 13-2. , Optical element KO-22.
(比較例3)
実施例1の体積ホログラム記録層を得た後、第2の透明光学部材13−1をラミネートしなかったこと以外は、実施例1と同様にして、光学素子KO−23を得た。
(Comparative example 3)
After obtaining the volume hologram recording layer of Example 1, an optical element KO-23 was obtained in the same manner as in Example 1 except that the second transparent optical member 13-1 was not laminated.
得られた光学素子KO−1、KO−2、KO−21〜23の初期の虚像の鮮鋭性、初期および耐湿試験後の回折効率を、以下の方法で測定した。 The sharpness of the initial virtual images of the obtained optical elements KO-1, KO-2, and KO-21, and the diffraction efficiency after the initial and moisture resistance tests were measured by the following methods.
(虚像の鮮鋭性)
図4に示すような映像表示装置に、凹状の曲面が瞳側に相対するように上記で作製した光学素子を配置し、表示素子20に表示した映像IMの虚像を観察者が観察した。具体的には、図8に示したような映像の9点の位置について観察し、以下の基準に従って10人の観察者が評点を行い、その平均値を算出した。評点の平均値を表1に示す:
5:全面に渡って、虚像が鮮明に視認できる
4:1〜2点、視認は可能だが若干、虚像の鮮明性が低下している
3:3〜5点、視認は可能だが若干、虚像の鮮明性が低下している
2:1〜2点、虚像が不鮮明で、視認できない部分がある
1:3点以上、虚像が不鮮明で視認できない部分がある。
(Sharpness of virtual image)
The optical element manufactured above was disposed on the image display apparatus as shown in FIG. 4 so that the concave curved surface faced the pupil side, and the observer observed the virtual image of the image IM displayed on the display element 20. Specifically, the positions of nine points of the image as shown in FIG. 8 were observed, and ten observers scored according to the following criteria, and calculated the average value. The average score values are shown in Table 1:
5: A virtual image can be clearly seen over the entire surface 4: 1 to 2 points, visible, but slightly reduced, the sharpness of the virtual image 3: 3 to 5 points, visible, although slightly, a virtual image The sharpness is degraded 2: 1 to 2 points, the virtual image is unclear, some parts can not be seen 1: 3 points or more, the virtual image is not clear, some parts can not be seen.
(評価)
<回折効率>
得られた光学素子について、分光光度計U−3900(株式会社日立製作所製)を用い、以下の条件で透過率を測定した。
(Evaluation)
<Diffraction efficiency>
About the obtained optical element, the transmittance | permeability was measured on condition of the following using spectrophotometer U-3900 (made by Hitachi, Ltd.).
スキャン範囲 800nm〜400nm
スキャンスピード 600nm/min
得られた透過率データの波長600nm〜460nmの透過率よりベースラインを算出し、波長521nmにおける透過率Tとベースライン透過率Bとの値から、回折効率を以下の式により算出した:
回折効率=[(B−T)/T]×100(%)。
Scan range 800 nm to 400 nm
Scanning speed 600 nm / min
A baseline was calculated from the transmittance at a wavelength of 600 nm to 460 nm of the obtained transmittance data, and the diffraction efficiency was calculated by the following equation from the values of the transmittance T at a wavelength of 521 nm and the baseline transmittance B:
Diffraction efficiency = [(B−T) / T] × 100 (%).
<耐湿試験後の回折効率の測定>
得られた光学素子を30℃、80%RH環境下で500時間暴露した後、シリカゲルが入った低湿条件下(30℃、4.7%RH)で24時間放置し、その後上記と同様にして回折効率を算出した。
<Diffraction efficiency measurement after moisture resistance test>
The obtained optical element is exposed for 500 hours under an environment of 30 ° C. and 80% RH, and left for 24 hours under a low humidity condition (30 ° C., 4.7% RH) containing silica gel, and thereafter in the same manner as described above The diffraction efficiency was calculated.
実施例1〜2および比較例1〜3の評価結果を下記表1に示す。 The evaluation results of Examples 1 to 2 and Comparative Examples 1 to 3 are shown in Table 1 below.
上記表1から明らかなように、実施例の光学素子は、虚像の鮮鋭性(画像品位)が良好であり、高湿条件下であっても高い回折効率を長期に維持できる耐久性を有することがわかった。 As is clear from Table 1 above, the optical elements of the examples have good sharpness of the virtual image (image quality) and have durability capable of maintaining high diffraction efficiency for a long time even under high humidity conditions. I understand.
1 映像表示素子、
10 光学素子、
11 第1の透明光学部材、
12 体積ホログラム記録層、
13 第2の透明光学部材、
14 放射線硬化性接着層、
15 積層体、
20 表示素子、
21 光源、
22 照明ミラー、
23 拡散板、
24 偏光板、
25 偏光ビームスプリッター、
31 物体光、
32 参照光、
41 映像光、
42 再生像光、
43 外界像光、
201 レーザー光源、
202 ビームステアラー、
203 シャッター、
204 ビームエキスパンダー、
205 ビームスプリッター、
206、207、208、209、210 ミラー、
211、212 スペイシャルフィルター、
EP 光学瞳、
EY 観察者眼、
IM 映像。
1 video display element,
10 optical elements,
11 first transparent optical member,
12 volume hologram recording layer,
13 second transparent optical member,
14 radiation curable adhesive layer,
15 stacks,
20 display elements,
21 light sources,
22 illumination mirrors,
23 diffusers,
24 polarizers,
25 polarization beam splitters,
31 object light,
32 reference lights,
41 image light,
42 reproduced image light,
43 outside image light,
201 laser light source,
202 beam steerer,
203 shutter,
204 beam expander,
205 beam splitters,
206, 207, 208, 209, 210 mirrors,
211, 212 spatial filter,
EP optical pupil,
EY observer eye,
IM picture.
Claims (2)
一対の接合面のうち曲面を有する接合面の少なくとも一部の領域に体積ホログラム層を含む層を作製し、前記体積ホログラム記録層を含む層が配置された前記曲面を有する接合面全体を覆うように放射線硬化性接着剤を塗布した後、放射線を用いて前記放射線硬化性接着剤を硬化させて放射線硬化性接着層を形成することを含む、光学素子の製造方法。 At least one of a pair of bonding surfaces of two adjacent transparent optical members has a curved surface, and the volume hologram recording layer includes a photopolymer in at least a part of the bonding surface having a curved surface among the pair of bonding surfaces. An optical element having a radiation-curable adhesive layer disposed to cover the entire bonding surface having the curved surface, wherein the volume hologram recording layer includes polyurethane.
A layer including a volume hologram layer is produced in at least a partial region of a bonding surface having a curved surface among a pair of bonding surfaces, and the entire bonding surface having the layer including the volume hologram recording layer is covered. And applying a radiation curable adhesive thereto, and curing the radiation curable adhesive using radiation to form a radiation curable adhesive layer.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016096421A JP2019124710A (en) | 2016-05-12 | 2016-05-12 | Optical element and manufacturing method thereof |
PCT/JP2017/017951 WO2017195877A1 (en) | 2016-05-12 | 2017-05-11 | Optical element and method for producing same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016096421A JP2019124710A (en) | 2016-05-12 | 2016-05-12 | Optical element and manufacturing method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2019124710A true JP2019124710A (en) | 2019-07-25 |
Family
ID=60267986
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016096421A Pending JP2019124710A (en) | 2016-05-12 | 2016-05-12 | Optical element and manufacturing method thereof |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2019124710A (en) |
WO (1) | WO2017195877A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020013120A (en) * | 2018-07-18 | 2020-01-23 | 株式会社ニコン | accessory |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20210121019A (en) * | 2019-01-31 | 2021-10-07 | 소니그룹주식회사 | A composition for recording a hologram, a hologram recording medium, a hologram optical element, and an optical device, an optical component, and a method for forming a hologram diffraction grating using the same |
WO2023189884A1 (en) * | 2022-03-29 | 2023-10-05 | 富士フイルム株式会社 | Liquid crystal diffraction element, optical element, image display unit, head-mounted display, beam steering, and sensor |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH095526A (en) * | 1995-06-14 | 1997-01-10 | Asahi Glass Co Ltd | Superimposed hologram |
JP4683597B2 (en) * | 2000-06-23 | 2011-05-18 | 大日本印刷株式会社 | Hologram transfer foil |
JP2007011319A (en) * | 2005-06-02 | 2007-01-18 | Dainippon Printing Co Ltd | Volume hologram transfer foil, and volume hologram laminate |
JP5256488B2 (en) * | 2007-03-28 | 2013-08-07 | コニカミノルタ株式会社 | Method for manufacturing bonded optical member |
JP2009151043A (en) * | 2007-12-20 | 2009-07-09 | Konica Minolta Holdings Inc | Video display apparatus and head mounted display |
IL200995A0 (en) * | 2008-10-01 | 2010-06-30 | Bayer Materialscience Ag | Polyether-based polyurethane formulations for the production of holographic media |
EP2496588B1 (en) * | 2009-11-03 | 2017-01-11 | Covestro Deutschland AG | Urethaneacrylate with high refraction index and reduced double-bond density |
JP2012173540A (en) * | 2011-02-22 | 2012-09-10 | Fuji Xerox Co Ltd | Optical recording medium, manufacturing method of optical recording medium, exposure device, and image forming apparatus |
-
2016
- 2016-05-12 JP JP2016096421A patent/JP2019124710A/en active Pending
-
2017
- 2017-05-11 WO PCT/JP2017/017951 patent/WO2017195877A1/en active Application Filing
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020013120A (en) * | 2018-07-18 | 2020-01-23 | 株式会社ニコン | accessory |
Also Published As
Publication number | Publication date |
---|---|
WO2017195877A1 (en) | 2017-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2873126B2 (en) | Photosensitive composition for volume hologram recording | |
JP2849021B2 (en) | Photosensitive composition for volume hologram recording | |
JP6652136B2 (en) | Holographic optical element and method of manufacturing the same | |
KR940007967B1 (en) | Process for making volume hologram using modulated wavelength response | |
JP4155771B2 (en) | Photosensitive composition for volume hologram recording and photosensitive medium for volume hologram recording using the same | |
EP1510862A2 (en) | Hologram recording method and hologram recording material | |
JP6610667B2 (en) | Holographic optical element and manufacturing method thereof | |
JP2017203908A (en) | Holographic optical element and method for producing the same | |
WO2017195877A1 (en) | Optical element and method for producing same | |
WO2017195541A1 (en) | Composition for forming volume hologram recording layer, and holographic optical element | |
JP4365494B2 (en) | Photosensitive composition for volume hologram recording and hologram obtained therefrom | |
JPH08101499A (en) | Photosensitive composition for volume hologram recording, recording medium using the composition and volume hologram forming method | |
JP3532675B2 (en) | Photosensitive composition for volume hologram recording, recording medium using the same, and method for forming volume hologram | |
JPH08101501A (en) | Photosensitive composition for three-dimensional hologram recording, recording medium using that and forming method of three-dimensional hologram | |
JP3532621B2 (en) | Photosensitive composition for volume hologram recording, recording medium using the same, and method for forming volume hologram | |
JPH08101502A (en) | Photosensitive composition for three-dimensional hologram recording, recording medium using that and forming method of three-dimensional hologram | |
JPH08101503A (en) | Photosensitive composition for three-dimensional hologram recording, recording medium using that and forming method of three-dimensional hologram | |
WO2017014106A1 (en) | Holographic optical element and production method therefor | |
JP4177867B2 (en) | Photosensitive composition for recording volume hologram, recording medium using the same, and method for forming volume hologram | |
WO2017104402A1 (en) | Holographic recording material, volume holographic medium, and method for producing volume holographic medium | |
WO2017110537A1 (en) | Photosensitive composition for volume hologram production, method for producing volume hologram, volume hologram and holographic optical element | |
JP2017223913A (en) | Holographic optical element | |
WO2024158026A1 (en) | Photosensitive composition for forming hologram layer | |
JP2018116209A (en) | Volume hologram laminate | |
JP7331556B2 (en) | Volume hologram, head-mounted sensor device |