JP2019124483A - Carbon concentration evaluation method - Google Patents
Carbon concentration evaluation method Download PDFInfo
- Publication number
- JP2019124483A JP2019124483A JP2018003427A JP2018003427A JP2019124483A JP 2019124483 A JP2019124483 A JP 2019124483A JP 2018003427 A JP2018003427 A JP 2018003427A JP 2018003427 A JP2018003427 A JP 2018003427A JP 2019124483 A JP2019124483 A JP 2019124483A
- Authority
- JP
- Japan
- Prior art keywords
- intensity
- line
- carbon concentration
- single crystal
- carbon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
Description
本発明は、シリコン単結晶中の炭素濃度を評価する方法に関する。 The present invention relates to a method of evaluating the carbon concentration in a silicon single crystal.
低温フォトルミネッセンス(PL)法による炭素濃度評価方法は、試料に電子線や炭素イオンまたは酸素イオンなどのイオンビームを照射して複合欠陥を生成させ、その複合欠陥に起因するルミネッセンス強度を測定し、その強度から炭素濃度を定量する方法であり(例えば、非特許文献1、特許文献1)、FT−IR法やSIMS法よりも、高感度で炭素濃度を定量できる方法である。
また、特許文献2〜4には、シリコン単結晶中の複合欠陥強度と炭素濃度の検量線を作成し、炭素濃度を定量する方法が開示されている。
The carbon concentration evaluation method by the low temperature photoluminescence (PL) method irradiates the sample with an ion beam such as an electron beam or a carbon ion or an oxygen ion to generate a composite defect, and measures the luminescence intensity caused by the composite defect; It is a method of quantifying carbon concentration from the strength (for example, nonpatent literature 1, patent documents 1), and is a method which can quantify carbon concentration with high sensitivity rather than FT-IR method and SIMS method.
Further, Patent Literatures 2 to 4 disclose methods of preparing a calibration curve of composite defect strength and carbon concentration in a silicon single crystal, and quantifying the carbon concentration.
特許文献2には、シリコン単結晶に電子線を照射することで導入される格子間シリコン(I)由来のルミネッセンススペクトル(W線)をシリコン由来の発光線(TO線)で規格化した値と、シリコン単結晶中の炭素濃度の間で検量線を作成し、ルミネッセンス法で得られたW線/TO線から、炭素濃度を定量する方法が開示されている。
特許文献3には、シリコン単結晶中に炭素及び酸素以外のイオンを注入し、これにより発生する格子間炭素またはG線(Ci−Cs)、またはC線(Ci−Oi)のルミネッセンススペクトル強度と、炭素濃度の間で検量線を作成し、炭素関連複合欠陥のスペクトル強度から、炭素濃度を定量する方法が開示されている。
特許文献4には、シリコン単結晶に電子線を照射し、生成させたG線とC線の強度比と、シリコン単結晶中の炭素濃度と酸素濃度の濃度比の間で検量線を作成し、シリコン単結晶中の酸素濃度およびG線とC線の強度比から炭素濃度を測定する方法が開示されている。
In Patent Document 2, a luminescence spectrum (W line) derived from interstitial silicon (I) introduced by irradiating a silicon single crystal with an electron beam and a value standardized by a light emission line (TO line) derived from silicon There is disclosed a method of preparing a calibration curve between carbon concentrations in a silicon single crystal and quantifying the carbon concentration from the W line / TO line obtained by the luminescence method.
Patent Document 3 discloses that interstitial carbon or G line (Ci-Cs) or C line (Ci-Oi) generated by implanting ions other than carbon and oxygen into silicon single crystal There is disclosed a method of preparing a calibration curve between carbon concentrations, and quantifying the carbon concentration from the spectral intensity of carbon-related complex defects.
In Patent Document 4, a calibration curve is created between the intensity ratio of G and C lines generated by irradiating a silicon single crystal with an electron beam and the concentration ratio of carbon and oxygen in the silicon single crystal. There is disclosed a method of measuring a carbon concentration from the oxygen concentration in a silicon single crystal and the intensity ratio of G-line and C-line.
前記したように、PL法による炭素濃度評価方法は数多く開示されている。しかし、いずれも炭素濃度が既知で、且つ炭素濃度が異なるシリコン単結晶を複数用意し、複合欠陥のルミネッセンス強度を測定し、炭素濃度との検量線を作成した後に、ようやく評価対象である測定サンプルの複合欠陥のルミネッセンス強度を測定し、これを前記検量線に当てはめることにより、シリコン単結晶中の炭素濃度を定量する方法である。
つまり、シリコン単結晶中の炭素濃度を求める場合、炭素濃度が既知のサンプルを複数用意し、これらの測定を行った後でないと炭素濃度を求める事ができないという問題がある。
As described above, many methods for evaluating carbon concentration by the PL method are disclosed. However, a plurality of silicon single crystals each having a known carbon concentration and different carbon concentrations are prepared, the luminescence intensity of the complex defect is measured, and a calibration curve with the carbon concentration is finally prepared. The concentration of carbon in the silicon single crystal is quantified by measuring the luminescence intensity of the complex defect of and applying this to the calibration curve.
That is, in the case of determining the carbon concentration in a silicon single crystal, there is a problem that carbon concentration can not be determined without preparing a plurality of samples with known carbon concentrations and performing these measurements.
本発明は、上記従来技術の問題点に鑑みてなされたものであって、シリコン単結晶中の炭素濃度を簡便に且つ高感度で評価する方法を提供することを目的とする。 The present invention has been made in view of the problems of the prior art, and it is an object of the present invention to provide a method for evaluating carbon concentration in a silicon single crystal simply and at high sensitivity.
上記目的を達成するために、本発明は、シリコン単結晶中の炭素濃度をフォトルミネッセンス法またはカソードルミネッセンス法により評価する炭素濃度評価方法であって、
前記シリコン単結晶に、1.0×1015(electrons/cm2)の照射量で電子線を照射して、前記シリコン単結晶中に生成させた、格子間炭素Ciと置換型炭素Csの複合欠陥Ci−Csに由来する発光線(G線)の強度(a.u.)と格子間炭素Ciと格子間酸素Oiの複合欠陥Ci−Oiに由来する発光線(C線)の強度(a.u.)を液体ヘリウム温度で測定し、該G線とC線との強度比(Ci−Cs強度/Ci−Oi強度)を求め、
前記炭素濃度[Cs](atoms/cm3)を、
前記強度比(Ci−Cs強度/Ci−Oi強度)と前記シリコン単結晶中の酸素濃度[Oi](ppma−JEITA)を下記式
[Cs]=(4.45×1014)・(Ci−Cs強度/Ci−Oi強度)・[Oi]
に代入して評価することを特徴とする炭素濃度評価方法を提供する。
In order to achieve the above object, the present invention is a carbon concentration evaluation method for evaluating carbon concentration in a silicon single crystal by a photoluminescence method or a cathode luminescence method,
A composite of interstitial carbon Ci and substitutional carbon Cs generated in the silicon single crystal by irradiating the silicon single crystal with an electron beam at a dose of 1.0 × 10 15 (electrons / cm 2 ) Intensity (au) of emission line (G line) derived from defect Ci-Cs and intensity (a line) derived from complex defect Ci-Oi of interstitial carbon Ci and interstitial oxygen Oi U.) Is measured at liquid helium temperature, and the intensity ratio (Ci-Cs intensity / Ci-Oi intensity) of the G line and the C line is determined.
The carbon concentration [Cs] (atoms / cm 3 ),
The strength ratio (Ci-Cs strength / Ci-Oi strength) and the oxygen concentration [Oi] (ppma-JEITA) in the silicon single crystal can be expressed by the following formula [Cs] = (4.45 × 10 14 ) · (Ci− Cs intensity / Ci-Oi intensity) [Oi]
The present invention provides a carbon concentration evaluation method characterized by substituting into.
また、本発明は、シリコン単結晶中の炭素濃度をフォトルミネッセンス法またはカソードルミネッセンス法により評価する炭素濃度評価方法であって、
前記シリコン単結晶に、1.0×1015(electrons/cm2)の照射量で電子線を照射して、前記シリコン単結晶中に生成させた、格子間炭素Ciと置換型炭素Csの複合欠陥Ci−Csに由来する発光線(G線)の強度(a.u.)と格子間炭素Ciと格子間酸素Oiの複合欠陥Ci−Oiに由来する発光線(C線)の強度(a.u.)を液体窒素温度で測定し、該G線とC線との強度比(Ci−Cs強度/Ci−Oi強度)を求め、
前記炭素濃度[Cs](atoms/cm3)を、
前記強度比(Ci−Cs強度/Ci−Oi強度)と前記シリコン単結晶中の酸素濃度[Oi](ppma−JEITA)を下記式
[Cs]=(2.82×1014)・(Ci−Cs強度/Ci−Oi強度)・[Oi]
に代入して評価することを特徴とする炭素濃度評価方法を提供する。
The present invention is also a carbon concentration evaluation method for evaluating the carbon concentration in a silicon single crystal by a photoluminescence method or a cathode luminescence method,
A composite of interstitial carbon Ci and substitutional carbon Cs generated in the silicon single crystal by irradiating the silicon single crystal with an electron beam at a dose of 1.0 × 10 15 (electrons / cm 2 ) Intensity (au) of emission line (G line) derived from defect Ci-Cs and intensity (a line) derived from complex defect Ci-Oi of interstitial carbon Ci and interstitial oxygen Oi U.) Is measured at liquid nitrogen temperature, and the intensity ratio (Ci-Cs intensity / Ci-Oi intensity) of the G line and the C line is determined.
The carbon concentration [Cs] (atoms / cm 3 ),
The strength ratio (Ci-Cs strength / Ci-Oi strength) and the oxygen concentration [Oi] (ppma-JEITA) in the silicon single crystal can be expressed by the following formula [Cs] = (2.82 × 10 14 ) · (Ci− Cs intensity / Ci-Oi intensity) [Oi]
The present invention provides a carbon concentration evaluation method characterized by substituting into.
これらのような本発明のフォトルミネッセンス法またはカソードルミネッセンス(CL)法による炭素濃度評価方法であれば、炭素濃度を求める上記式(以下、炭素濃度関係式、あるいは単に関係式ともいう)に、酸素濃度、G線とC線の強度比を代入すれば良いだけなので、シリコン単結晶中の炭素濃度を求める際に、従来のように炭素濃度が既知のシリコン単結晶をわざわざ用意して検量線を作成しなくても良く、簡便に炭素濃度を求める事ができる。しかも、FT−IR法やSIMS法よりも高感度で炭素濃度を定量することができる。 In the carbon concentration evaluation method according to the photoluminescence method or the cathode luminescence (CL) method of the present invention as described above, oxygen can be added to the above equation (hereinafter referred to as carbon concentration relationship equation or simply relationship equation) for obtaining carbon concentration. Since it is only necessary to substitute the concentration and the intensity ratio of G-line and C-line, when determining the carbon concentration in a silicon single crystal, prepare a silicon single crystal whose carbon concentration is known as in the past and prepare a calibration curve. It is not necessary to create it, and the carbon concentration can be easily obtained. Moreover, the carbon concentration can be quantified with higher sensitivity than the FT-IR method or the SIMS method.
このとき、前記シリコン単結晶中の酸素濃度を、17(ppma−JEITA)以下とすることができる。 At this time, the oxygen concentration in the silicon single crystal can be 17 (ppma-JEITA) or less.
炭素濃度を評価するにあたって、評価対象のシリコン単結晶の酸素濃度を求めて上記式に代入するが、そのシリコン単結晶の酸素濃度が17(ppma−JEITA)以下のものとすることでG線のS/N比が悪くなるのを防ぐことができる。すなわち、高酸素濃度では、C線の形成が優先されるため、G線の形成に使われるCiが少なくなりG線の強度が弱くなりやすい。しかし、上述した上限を設けることで、G線の強度が弱くなり過ぎるのを防ぎ、より正確にG線強度を求めることができる。 In evaluating the carbon concentration, the oxygen concentration of the silicon single crystal to be evaluated is obtained and substituted into the above equation, but by setting the oxygen concentration of the silicon single crystal to 17 (ppma-JEITA) or less It is possible to prevent the S / N ratio from becoming worse. That is, at high oxygen concentration, since the formation of the C line is prioritized, the amount of Ci used to form the G line is reduced, and the intensity of the G line tends to be weak. However, by setting the above-described upper limit, it is possible to prevent the intensity of the G line from becoming too weak and to more accurately obtain the G line intensity.
以上のように、本発明の炭素濃度評価方法であれば、従来法のように検量線を作成しなくても、炭素濃度を簡便かつ高感度で評価することができる。 As described above, according to the carbon concentration evaluation method of the present invention, the carbon concentration can be evaluated easily and at high sensitivity without preparing a calibration curve as in the conventional method.
以下、本発明について図面を参照して実施の形態を説明するが、本発明はこれに限定されるものではない。
まず、シリコン単結晶中の酸素濃度や、炭素関連複合欠陥であるCi−Cs(G線)とCi−Oi(C線)の強度比(Ci−Cs強度/Ci−Oi強度)から、シリコン単結晶中の炭素濃度を簡単に評価することができる式(炭素濃度関係式)を本発明者らが導出した過程を説明する。
Hereinafter, the embodiment of the present invention will be described with reference to the drawings, but the present invention is not limited to this.
First, from the oxygen concentration in silicon single crystal and the intensity ratio (Ci-Cs intensity / Ci-Oi intensity) of Ci-Cs (G line) and Ci-Oi (C line) which are carbon related complex defects, silicon single The process which the present inventors derived | led-out the formula (carbon concentration relational expression) which can evaluate carbon concentration in a crystal | crystallization simply is demonstrated.
非特許文献1によると、シリコン単結晶基板に対して高エネルギーの電子線を照射すると、格子位置のシリコン原子が弾き出されて、格子間シリコン(以下、Iと称する)とその抜け殻である空孔(以下、Vと称する)のペアが生成される。過剰に生成されたIやVは、単体では不安定なため、再結合したり(V+I→0)、I同士やV同士がクラスタリングしたり、シリコン基板中に含まれる不純物と反応して複合体を形成する。 According to Non-Patent Document 1, when a silicon single crystal substrate is irradiated with a high energy electron beam, silicon atoms at lattice positions are repelled out, and interstitial silicon (hereinafter referred to as I) and vacancies that are escaped from it. A pair (hereinafter referred to as V) is generated. Excessively generated I and V are unstable as a single substance, so they recombine (V + I → 0), I or V clusters, or react with impurities contained in the silicon substrate to form a complex. Form
シリコン基板中に置換型炭素Csが存在する場合、電子線照射で生成されたIがCsを弾き出すことにより、格子間炭素Ciが生成される。更にCiは、他のCsと反応することでCi−Cs(G線)を形成したり、シリコン基板中に含まれる他の不純物である格子間酸素Oiと反応することでCi−Oi(C線)を形成する。 When substitutional carbon Cs is present in the silicon substrate, interstitial carbon Ci is generated as I generated by electron beam irradiation repels Cs. Furthermore, Ci reacts with other Cs to form Ci-Cs (G line), or reacts with interstitial oxygen Oi, which is another impurity contained in the silicon substrate, to form Ci-Oi (C line). Form).
このG線およびC線の生成における平衡定数をK1、K2と定める(下記式(1)、(2)、非特許文献1の[4]式、[5]式)と、G線の生成およびC線の生成は競合反応の為、以下の式(3)、(4)が得られる。
なお、[Oi]は格子間酸素濃度(単に酸素濃度ともいう)、[Cs]は置換型炭素濃度(単に炭素濃度ともいう)、[Ci]は格子間炭素濃度、[CiCs]はG線強度(Ci―Cs強度)、[CiOi]はC線強度(Ci−Oi強度)を表す。
The equilibrium constants in the generation of the G and C lines are defined as K 1 and K 2 (the following formulas (1) and (2), [4] and [5] in Non-Patent Document 1), and Since the formation and the generation of C line are competitive reactions, the following formulas (3) and (4) are obtained.
[Oi] is interstitial oxygen concentration (also referred to simply as oxygen concentration), [Cs] is substitutional carbon concentration (also referred to simply as carbon concentration), [Ci] is interstitial carbon concentration, and [CiCs] is G-line intensity (Ci-Cs intensity) and [CiOi] represent C-line intensity (Ci-Oi intensity).
ここで、式(3)、(4)において同類項をまとめて[Cs]について解くと、以下の式(5)が得られる。 Here, the following equation (5) is obtained by putting together the similar terms in the equations (3) and (4) and solving for [Cs].
ここで比例定数αは、サンプル温度や電子線照射条件によって異なる定数である。理由は、サンプル温度が異なるとG線とC線の発光効率が変わり、得られるG線強度、およびC線強度が変化する為である。また、電子線照射条件が異なると、G線とC線の生成比が異なる為、比例定数αは変化する。 Here, the proportional constant α is a constant which varies depending on the sample temperature and the electron beam irradiation condition. The reason is that if the sample temperature is different, the luminous efficiencies of the G and C lines change, and the G and C line intensities obtained change. In addition, when the electron beam irradiation conditions are different, since the generation ratio of the G ray and the C ray is different, the proportional constant α changes.
次に、この式(5)の比例定数αを決定する方法を説明する。
CZ法により、炭素濃度、および酸素濃度が異なるシリコン単結晶基板(サンプル)を15水準用意した。
酸素濃度が異なるシリコン単結晶基板を用意した理由は、異なる酸素濃度でも1つの関係式から炭素濃度を定量できる事を検証する為である。なお、酸素濃度をより確実にFT−IRで検出できるようにするため、またC線の形成に使われるCiが多くなり、G線のS/N比が悪くなるのをより確実に防ぐため、シリコン単結晶基板の酸素濃度範囲は、ここでは0.2〜17(ppma−JEITA)で準備した。
Next, a method of determining the proportional constant α of the equation (5) will be described.
Fifteen levels of silicon single crystal substrates (samples) different in carbon concentration and oxygen concentration were prepared by the CZ method.
The reason for preparing silicon single crystal substrates having different oxygen concentrations is to verify that the carbon concentration can be quantified from one relational expression even with different oxygen concentrations. In addition, in order to be able to detect the oxygen concentration more reliably by FT-IR, and in order to prevent the deterioration of the S / N ratio of the G line more reliably because the Ci used for forming the C line increases. The oxygen concentration range of the silicon single crystal substrate was prepared here at 0.2 to 17 (ppma-JEITA).
また、導出される比例定数αの精度を上げる為、少なくとも5水準は欲しいところ、ここではサンプルを15水準用意した。
次に、これらのサンプルの炭素濃度、および酸素濃度をFT−IR法で測定した。
その後、電子線照射装置により各シリコン単結晶基板に2(MV)の加速電圧で1.0×1015(electrons/cm2)の電子線を照射し、シリコン単結晶基板にG線、およびC線を生成させ、それらのピーク強度をフォトルミネッセンス法で測定した。このときのサンプル温度は液体ヘリウム温度とした。
Moreover, in order to increase the accuracy of the derived proportionality constant α, at least five levels are desired. Here, 15 levels of samples are prepared.
Next, the carbon concentration and oxygen concentration of these samples were measured by the FT-IR method.
Thereafter, each silicon single crystal substrate is irradiated with an electron beam of 1.0 × 10 15 (electrons / cm 2 ) at an acceleration voltage of 2 (MV) by an electron beam irradiation apparatus, G line and C Lines were generated and their peak intensities were measured by photoluminescence. The sample temperature at this time was the liquid helium temperature.
これらシリコン単結晶基板において、得られた炭素濃度、酸素濃度、G線強度、およびC線強度を上記の式(5)に代入し、横軸を炭素濃度とし、縦軸を得られた比例定数αとしてグラフ上にプロットした。結果を図2に示す。
比例定数αはほぼ一定の値となった為、αとして上記15水準のサンプルの平均値とすることとし、4.45×1014が得られた。ここで、それぞれの単位は、炭素濃度がatoms/cm3、酸素濃度がppma−JEITA、G線強度、C線強度が相対値(a.u.)である。
以上により、下記の本発明における炭素濃度関係式(6)が求まった。
In these silicon single crystal substrates, the obtained carbon concentration, oxygen concentration, G-line intensity, and C-line intensity are substituted into the above equation (5), the horizontal axis is the carbon concentration, and the vertical axis is the proportional constant obtained It was plotted on the graph as α. The results are shown in FIG.
Since the proportional constant α became a substantially constant value, 4.45 × 10 14 was obtained as the average value of the above 15 levels of samples as α. Here, each unit has a carbon concentration of atoms / cm 3 , an oxygen concentration of ppma-JEITA, a G-line intensity, and a C-line intensity as a relative value (au).
From the above, the carbon concentration relational expression (6) in the present invention described below was obtained.
また、同様の方法でサンプル温度が液体窒素温度の場合の比例定数αを求めると、2.82×1014となった。 Further, when the proportional constant α when the sample temperature is the liquid nitrogen temperature is determined in the same manner, it is 2.82 × 10 14 .
以下、上記関係式(6)を用いた本発明の炭素濃度評価方法について説明する。図1は本発明の評価方法の工程を示したフロー図である。
まず、評価用サンプルであるシリコン単結晶基板を用意する(工程1)。このシリコン単結晶基板は特に限定されず、例えば、チョクラルスキー法(CZ法)によるものや、フローティングゾーン法(FZ法)によるものとすることができる。
なお、炭素濃度を評価するにあたって、酸素濃度は、後の工程において測定して上記のような関係式に代入するが、その測定の際にFT−IRやSIMSなどでより確実に検出して測定可能なように、例えば0.02(ppma−JEITA)以上のものが好ましい。すなわち、0.02(ppma−JEITA)以上のものとすることで、より精度高く酸素濃度を求めることができ、そのため、本発明において求められる炭素濃度の精度も上げることができる。
また、G線の強度測定にあたって、G線のS/N比が悪くならない範囲、例えば17(ppma−JEITA)以下の範囲のものが好ましい。
また炭素濃度自体は特に限定されるものではない。
Hereinafter, the carbon concentration evaluation method of this invention using the said relational expression (6) is demonstrated. FIG. 1 is a flow chart showing the steps of the evaluation method of the present invention.
First, a silicon single crystal substrate which is a sample for evaluation is prepared (step 1). The silicon single crystal substrate is not particularly limited, and may be, for example, a Czochralski method (CZ method) or a floating zone method (FZ method).
When evaluating the carbon concentration, the oxygen concentration is measured in a later step and substituted into the above relational expression, but at the time of the measurement, it is detected more reliably by FT-IR or SIMS, etc. As possible, for example, those of 0.02 (ppma-JEITA) or more are preferable. That is, by setting the concentration to 0.02 (ppma-JEITA) or more, the oxygen concentration can be determined more accurately, and therefore, the accuracy of the carbon concentration determined in the present invention can also be increased.
Moreover, in the intensity | strength measurement of G line, the thing of the range which is 17 (ppma-JEITA) or less of a range in which the S / N ratio of G line does not deteriorate, for example is preferable.
Further, the carbon concentration itself is not particularly limited.
次に評価用サンプルの酸素濃度(格子間酸素濃度)を測定する(工程2)。例えば、FT−IRやSIMSにより測定することができる。酸素濃度の測定方法は、評価用サンプル中の酸素濃度を求めることができればよく、特には限定されない。 Next, the oxygen concentration (interstitial oxygen concentration) of the sample for evaluation is measured (step 2). For example, it can measure by FT-IR or SIMS. The method of measuring the oxygen concentration is not particularly limited as long as the oxygen concentration in the sample for evaluation can be determined.
次に、PL法またはCL法により、評価用サンプルに電子線を照射して生成させた複合欠陥Ci−Csに由来する発光線(G線)の強度と、複合欠陥Ci−Oiに由来する発光線(C線)の強度を測定し、G線とC線の強度比を求める(工程3)。各々のピーク強度を測定してそれらの比を求める。
このとき、評価用サンプルの温度は液体ヘリウム温度または液体窒素温度とする。室温ではG線、およびC線のピークがブロードになり、正しい強度を定量できない為である。
また、電子線照射量は、1.0×1015(electrons/cm2)とする。この照射量とすることにより、照射量として少な過ぎてG線やC線が形成されない等の問題が生じるのを防ぐことができるし、また、多過ぎてシリコンの格子が乱れ、G線やC線のS/N比が悪くなるのを防ぐこともできる。
Next, the intensity of the emission line (G line) derived from the composite defect Ci-Cs generated by irradiating the sample for evaluation with the electron beam by the PL method or the CL method, and the emission derived from the composite defect Ci-Oi The intensity of the line (C line) is measured, and the intensity ratio of the G line and the C line is determined (step 3). The peak intensities of each are measured to determine their ratio.
At this time, the temperature of the sample for evaluation is the liquid helium temperature or the liquid nitrogen temperature. At room temperature, the peaks of G-line and C-line become broad and the correct intensity can not be quantified.
Further, the electron beam irradiation amount is 1.0 × 10 15 (electrons / cm 2 ). By using this dose, it is possible to prevent the occurrence of problems such as G-line and C-line not being formed due to too small dose, and the silicon lattice is disturbed by too much, G-line and C-line. It is also possible to prevent the S / N ratio of the line from deteriorating.
また、CL法では電子の加速電圧を変えることにより、PL法ではレーザー光の波長を変えることにより、測定深さを変えることができるため、それらの条件を調整することで試料表面から所望の深さまでを評価することができる。 In addition, since the measurement depth can be changed by changing the wavelength of the laser light in the PL method by changing the acceleration voltage of electrons in the CL method, the desired depth from the sample surface can be adjusted by adjusting these conditions. Can be evaluated.
そして、酸素濃度、G線とC線の強度比を炭素濃度関係式(6)に代入して炭素濃度を評価する(工程4)。
なお、前述したように、PL法またはCL法による測定時のサンプル温度が液体ヘリウム温度の場合は、関係式(6)のように、式(5)のαの値を4.45×1014とするが、サンプル温度が液体窒素温度の場合は、αの値を2.82×1014としたものを用いる。これは、前述したように、サンプル温度が異なる場合、得られるG線強度、およびC線強度が異なり、比例定数αが変わるためである。
Then, the carbon concentration is evaluated by substituting the oxygen concentration and the intensity ratio of the G line and the C line into the carbon concentration relational expression (6) (step 4).
As described above, when the sample temperature at the time of measurement by the PL method or the CL method is the liquid helium temperature, the value of α in the equation (5) is set to 4.45 × 10 14 as in the equation (6). However, when the sample temperature is liquid nitrogen temperature, the value of α is set to 2.82 × 10 14 . This is because, as described above, when the sample temperature is different, the obtained G-line intensity and C-line intensity are different, and the proportional constant α is changed.
このような本発明の評価方法により、炭素濃度が未知のシリコン単結晶基板において、従来のように炭素濃度と複合欠陥のルミネッセンス強度との関係の検量線を作成することもなく、酸素濃度、G線強度、およびC線強度を関係式(6)に代入するのみで、炭素濃度を定量できる。
つまり、検量線を作成する為のサンプルを準備する必要や、それらのサンプルを測定して検量線を作成する手間が不要になった為、従来よりも素早く、簡便に、且つ安価にシリコン単結晶基板中の炭素濃度を定量することが可能になった。また、FT−IR法やSIMS法よりも高感度で評価することができる。
According to such an evaluation method of the present invention, in a silicon single crystal substrate whose carbon concentration is unknown, the oxygen concentration, G, without creating a calibration curve of the relationship between carbon concentration and luminescence intensity of complex defects as in the prior art. The carbon concentration can be quantified only by substituting the line intensity and the C-line intensity into the relational expression (6).
In other words, it is not necessary to prepare samples for preparing a calibration curve, and it is not necessary to measure the samples to prepare a calibration curve, so silicon single crystal is quicker, simpler and cheaper than before. It became possible to quantify the carbon concentration in the substrate. In addition, it can be evaluated at higher sensitivity than the FT-IR method or the SIMS method.
なお、FT−IR法による炭素濃度測定はJEITAで規格化されており(JEITA EM−3503)、その検出下限は2×1015atoms/cm3であるが、本発明により、FT−IRでは検出できない低濃度の炭素濃度も定量できるようになった。 In addition, although the carbon concentration measurement by FT-IR method is standardized by JEITA (JEITA EM-3503), the detection lower limit is 2 × 10 15 atoms / cm 3 , but according to the present invention, it is detected by FT-IR It has also become possible to quantify low carbon concentrations that can not be achieved.
以下、本発明の実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例)
CZ法もしくはFZ法で引き上げた、炭素濃度、および酸素濃度の異なるシリコン単結晶インゴットからシリコン単結晶基板を切り出してサンプル(以下、炭素濃度評価用サンプルと称する)を46枚作製した。
Hereinafter, the present invention will be more specifically described with reference to examples of the present invention and comparative examples, but the present invention is not limited to these.
(Example)
A silicon single crystal substrate was cut out from a silicon single crystal ingot having different carbon concentrations and oxygen concentrations pulled up by the CZ method or FZ method, and 46 samples (hereinafter, referred to as samples for evaluating carbon concentration) were produced.
次に、FT−IR装置で炭素濃度評価用サンプルの酸素濃度を測定した。その結果、46枚のサンプルの酸素濃度は、0.26〜16.4(ppma−JEITA)の範囲内であった。 Next, the oxygen concentration of the sample for carbon concentration evaluation was measured by the FT-IR apparatus. As a result, the oxygen concentration of 46 samples was in the range of 0.26 to 16.4 (ppma-JEITA).
続いて、炭素濃度評価用サンプルに対して、電子線照射装置により電子線を照射した(加速電圧2(MV)、照射量1.0×1015(electrons/cm2))。電子線が照射された炭素濃度評価用サンプルに対し、フォトルミネッセンス測定装置を用いてサンプル温度を液体ヘリウム温度として発光スペクトルを測定し、G線強度、C線強度を得てG線とC線との強度比を求めた。これらの値を上記関係式(6)に代入し、各々の炭素濃度評価用サンプルの炭素濃度を算出した。 Subsequently, the carbon concentration evaluation sample was irradiated with an electron beam by an electron beam irradiation apparatus (acceleration voltage 2 (MV), irradiation amount 1.0 × 10 15 (electrons / cm 2 )). With respect to the sample for carbon concentration evaluation irradiated with the electron beam, the emission spectrum is measured with the sample temperature as liquid helium temperature using a photoluminescence measuring device, G-line intensity and C-line intensity are obtained, G-line and C-line The intensity ratio of These values were substituted into the said relational expression (6), and the carbon concentration of each sample for carbon concentration evaluation was computed.
なお、ここで算出した炭素濃度を、従来法で求めた値と比較して本発明の評価方法の信頼性を確認した。そのため、次に従来法による比較例について説明する。 In addition, the carbon concentration calculated here was compared with the value calculated | required by the conventional method, and the reliability of the evaluation method of this invention was confirmed. Therefore, a comparative example according to the conventional method will be described next.
(比較例)
従来の低温PL法による炭素濃度評価方法(特許文献4)で、炭素濃度評価用サンプルの炭素濃度を算出した。以下に詳細を説明する。
まず、炭素濃度、および酸素濃度の異なるシリコン単結晶基板(以下、検量線用サンプルと称する)を8サンプル用意した。その後、検量線用サンプルの炭素濃度、および酸素濃度をFT−IR法で測定し、炭素濃度と酸素濃度の比(以下、[Cs]/[Oi]とする)を算出した。FT−IRは低炭素濃度では、リファレンスの炭素濃度の影響が無視できなくなる為、炭素濃度が高濃度である1.0×1015(atoms/cm3)以上のサンプルを用意した。また、酸素濃度は3〜12(ppma−JEITA)の範囲内で用意した。
(Comparative example)
The carbon concentration of the sample for carbon concentration evaluation was calculated by the conventional carbon concentration evaluation method by low temperature PL method (patent document 4). Details will be described below.
First, eight samples of silicon single crystal substrates (hereinafter, referred to as calibration curve samples) having different carbon concentrations and oxygen concentrations were prepared. Thereafter, the carbon concentration and the oxygen concentration of the calibration curve sample were measured by the FT-IR method, and the ratio of the carbon concentration to the oxygen concentration (hereinafter referred to as [Cs] / [Oi]) was calculated. Since the influence of the carbon concentration of the reference can not be ignored at low carbon concentration in FT-IR, a sample with a carbon concentration of 1.0 × 10 15 (atoms / cm 3 ) or higher, which is a high concentration, was prepared. Moreover, the oxygen concentration prepared in the range of 3-12 (ppma-JEITA).
次に、検量線用サンプルに対して電子線照射装置で電子線を照射した(加速電圧2(MV)、照射量1.0×1015(electrons/cm2)。電子線が照射された検量線用サンプルに対し、フォトルミネッセンス測定装置を用いて発光スペクトルを測定し、G線強度、C線強度を得た。このときのサンプル温度は実施例と同様、液体ヘリウム温度とした。その後、G線強度とC線強度の比(以下、G/Cとする)を算出した。
得られた[Cs]/[Oi]、及びG/Cをサンプル毎にプロットし、[Cs]/[Oi]とG/Cの間で検量線を作成した。
Next, the sample for calibration curve was irradiated with an electron beam by an electron beam irradiation apparatus (acceleration voltage 2 (MV), irradiation dose 1.0 × 10 15 (electrons / cm 2 ). Calibration irradiated with electron beam The emission spectrum of the sample for line was measured using a photoluminescence measurement apparatus to obtain G-line intensity and C-line intensity, and the sample temperature at this time was the liquid helium temperature as in the example. The ratio of the line intensity to the C-line intensity (hereinafter referred to as G / C) was calculated.
The obtained [Cs] / [Oi] and G / C were plotted for each sample, and a calibration curve was created between [Cs] / [Oi] and G / C.
続いて、実施例で用いた炭素濃度評価用サンプルについて、同様にしてG線強度、C線強度を求め、それらの比であるG/Cを検量線に当てはめることにより、[Cs]/[Oi]を算出した。さらに、その[Cs]/[Oi]の算出値と、測定した炭素濃度評価用サンプルの酸素濃度から炭素濃度を求めた。 Subsequently, G-line intensities and C-line intensities are similarly determined for the carbon concentration evaluation samples used in the examples, and the ratio of G / C, which is the ratio between them, is applied to the calibration curve to obtain [Cs] / [Oi ] Was calculated. Furthermore, the carbon concentration was determined from the calculated value of [Cs] / [Oi] and the oxygen concentration of the measured carbon concentration evaluation sample.
炭素濃度評価用サンプルにおいて、上記の従来法で定量した炭素濃度(比較例でのCs濃度)と、本発明の方法により定量した炭素濃度(実施例でのCs濃度)の関係を図3にプロットした。
図3より、本発明の方法による炭素濃度(実施例)は、従来法による炭素濃度(比較例)と非常に良く一致したことから、本発明が有効である事が確認された。
In the carbon concentration evaluation sample, the relationship between the carbon concentration quantified by the above-mentioned conventional method (Cs concentration in the comparative example) and the carbon concentration quantified by the method of the present invention (Cs concentration in the example) is plotted in FIG. did.
From FIG. 3, it was confirmed that the present invention is effective because the carbon concentration (example) according to the method of the present invention matches very well the carbon concentration (comparative example) according to the conventional method.
従来の炭素濃度評価方法では、炭素濃度を定量したいシリコン単結晶の他に検量線用サンプルを用意し、検量線を作成しなければ炭素濃度を定量することができないが、この検量線の作成は上記のように非常に時間を要する作業である。さらに、従来の炭素濃度評価方法では、シリコン単結晶中の炭素濃度を求める度に、毎回検量線を作成しなくては、炭素濃度を定量できない。 In the conventional carbon concentration evaluation method, a sample for calibration curve is prepared in addition to the silicon single crystal for which the carbon concentration is to be quantified, and the carbon concentration can not be quantified unless the calibration curve is prepared. As described above, it is a very time consuming task. Furthermore, in the conventional carbon concentration evaluation method, the carbon concentration can not be quantified without preparing a calibration curve each time the carbon concentration in the silicon single crystal is determined.
これに対し本発明は、電子線照射条件やPL法またはCL法による測定時のサンプル温度が同じであれば、G線強度、C線強度、酸素濃度を得て炭素濃度関係式(6)に代入するだけで、炭素濃度を求める事ができる。
従って、従来の炭素濃度評価方法よりも、本手法は素早く、且つ簡便に正確な炭素濃度を定量できる。
On the other hand, according to the present invention, if the electron beam irradiation conditions and the sample temperature at the time of measurement by the PL method or the CL method are the same, G line intensity, C line intensity and oxygen concentration are obtained and The carbon concentration can be determined simply by substituting.
Therefore, the present method can quantify the carbon concentration more quickly and easily than the conventional carbon concentration evaluation method.
また、PL法による測定時のサンプル温度を液体窒素温度とし、炭素濃度を割り出す式の比例定数を2.82×1014に変更する以外は実施例と同じにして炭素濃度を求めたところ、図3と同様の結果が得られた。 Also, the carbon concentration was determined in the same manner as in the example except that the sample temperature at the time of measurement by the PL method was the liquid nitrogen temperature, and the proportional constant of the equation for determining the carbon concentration was changed to 2.82 × 10 14 . Similar results to 3 were obtained.
なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 The present invention is not limited to the above embodiment. The above embodiment is an exemplification, and it has substantially the same configuration as the technical idea described in the claims of the present invention, and any one having the same function and effect can be used. It is included in the technical scope of the invention.
Claims (3)
前記シリコン単結晶に、1.0×1015(electrons/cm2)の照射量で電子線を照射して、前記シリコン単結晶中に生成させた、格子間炭素Ciと置換型炭素Csの複合欠陥Ci−Csに由来する発光線(G線)の強度(a.u.)と格子間炭素Ciと格子間酸素Oiの複合欠陥Ci−Oiに由来する発光線(C線)の強度(a.u.)を液体ヘリウム温度で測定し、該G線とC線との強度比(Ci−Cs強度/Ci−Oi強度)を求め、
前記炭素濃度[Cs](atoms/cm3)を、
前記強度比(Ci−Cs強度/Ci−Oi強度)と前記シリコン単結晶中の酸素濃度[Oi](ppma−JEITA)を下記式
[Cs]=(4.45×1014)・(Ci−Cs強度/Ci−Oi強度)・[Oi]
に代入して評価することを特徴とする炭素濃度評価方法。 A carbon concentration evaluation method for evaluating a carbon concentration in a silicon single crystal by a photoluminescence method or a cathode luminescence method,
A composite of interstitial carbon Ci and substitutional carbon Cs generated in the silicon single crystal by irradiating the silicon single crystal with an electron beam at a dose of 1.0 × 10 15 (electrons / cm 2 ) Intensity (au) of emission line (G line) derived from defect Ci-Cs and intensity (a line) derived from complex defect Ci-Oi of interstitial carbon Ci and interstitial oxygen Oi U.) Is measured at liquid helium temperature, and the intensity ratio (Ci-Cs intensity / Ci-Oi intensity) of the G line and the C line is determined.
The carbon concentration [Cs] (atoms / cm 3 ),
The strength ratio (Ci-Cs strength / Ci-Oi strength) and the oxygen concentration [Oi] (ppma-JEITA) in the silicon single crystal can be expressed by the following formula [Cs] = (4.45 × 10 14 ) · (Ci− Cs intensity / Ci-Oi intensity) [Oi]
The carbon concentration evaluation method characterized by substituting into.
前記シリコン単結晶に、1.0×1015(electrons/cm2)の照射量で電子線を照射して、前記シリコン単結晶中に生成させた、格子間炭素Ciと置換型炭素Csの複合欠陥Ci−Csに由来する発光線(G線)の強度(a.u.)と格子間炭素Ciと格子間酸素Oiの複合欠陥Ci−Oiに由来する発光線(C線)の強度(a.u.)を液体窒素温度で測定し、該G線とC線との強度比(Ci−Cs強度/Ci−Oi強度)を求め、
前記炭素濃度[Cs](atoms/cm3)を、
前記強度比(Ci−Cs強度/Ci−Oi強度)と前記シリコン単結晶中の酸素濃度[Oi](ppma−JEITA)を下記式
[Cs]=(2.82×1014)・(Ci−Cs強度/Ci−Oi強度)・[Oi]
に代入して評価することを特徴とする炭素濃度評価方法。 A carbon concentration evaluation method for evaluating a carbon concentration in a silicon single crystal by a photoluminescence method or a cathode luminescence method,
A composite of interstitial carbon Ci and substitutional carbon Cs generated in the silicon single crystal by irradiating the silicon single crystal with an electron beam at a dose of 1.0 × 10 15 (electrons / cm 2 ) Intensity (au) of emission line (G line) derived from defect Ci-Cs and intensity (a line) derived from complex defect Ci-Oi of interstitial carbon Ci and interstitial oxygen Oi U.) Is measured at liquid nitrogen temperature, and the intensity ratio (Ci-Cs intensity / Ci-Oi intensity) of the G line and the C line is determined.
The carbon concentration [Cs] (atoms / cm 3 ),
The strength ratio (Ci-Cs strength / Ci-Oi strength) and the oxygen concentration [Oi] (ppma-JEITA) in the silicon single crystal can be expressed by the following formula [Cs] = (2.82 × 10 14 ) · (Ci− Cs intensity / Ci-Oi intensity) [Oi]
The carbon concentration evaluation method characterized by substituting into.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018003427A JP2019124483A (en) | 2018-01-12 | 2018-01-12 | Carbon concentration evaluation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018003427A JP2019124483A (en) | 2018-01-12 | 2018-01-12 | Carbon concentration evaluation method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2019124483A true JP2019124483A (en) | 2019-07-25 |
Family
ID=67398611
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018003427A Pending JP2019124483A (en) | 2018-01-12 | 2018-01-12 | Carbon concentration evaluation method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2019124483A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020088261A (en) * | 2018-11-29 | 2020-06-04 | 信越半導体株式会社 | Carbon concentration measurement method |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003075340A (en) * | 2001-09-07 | 2003-03-12 | Fujitsu Ltd | Measurement method for carbon concentration in silicon crystal, and silicon wafer |
US20050156155A1 (en) * | 2000-08-08 | 2005-07-21 | Atanackovic Petar B. | Rare earth-oxides, rare earth-nitrides, rare earth-phosphides and ternary alloys with silicon |
JP2013152977A (en) * | 2012-01-24 | 2013-08-08 | Mitsubishi Electric Corp | Impurity concentration measuring method and impurity concentration measuring device |
JP2014199253A (en) * | 2013-03-12 | 2014-10-23 | グローバルウェーハズ・ジャパン株式会社 | Saturation voltage estimation method and manufacturing method of silicon epitaxial wafer |
JP2015101529A (en) * | 2013-11-28 | 2015-06-04 | 信越半導体株式会社 | Method of measuring carbon concentration of silicon single crystal |
JP2015111615A (en) * | 2013-12-06 | 2015-06-18 | 信越半導体株式会社 | Method of evaluating carbon concentration in silicon single crystal, and method of manufacturing semiconductor device |
JP2015156420A (en) * | 2014-02-20 | 2015-08-27 | 信越半導体株式会社 | Evaluation method for carbon concentration in silicon single crystal, and method of manufacturing semiconductor device |
JP2016108160A (en) * | 2014-12-02 | 2016-06-20 | 株式会社Sumco | Growing method of silicon single crystal |
-
2018
- 2018-01-12 JP JP2018003427A patent/JP2019124483A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050156155A1 (en) * | 2000-08-08 | 2005-07-21 | Atanackovic Petar B. | Rare earth-oxides, rare earth-nitrides, rare earth-phosphides and ternary alloys with silicon |
JP2003075340A (en) * | 2001-09-07 | 2003-03-12 | Fujitsu Ltd | Measurement method for carbon concentration in silicon crystal, and silicon wafer |
JP2013152977A (en) * | 2012-01-24 | 2013-08-08 | Mitsubishi Electric Corp | Impurity concentration measuring method and impurity concentration measuring device |
JP2014199253A (en) * | 2013-03-12 | 2014-10-23 | グローバルウェーハズ・ジャパン株式会社 | Saturation voltage estimation method and manufacturing method of silicon epitaxial wafer |
JP2015101529A (en) * | 2013-11-28 | 2015-06-04 | 信越半導体株式会社 | Method of measuring carbon concentration of silicon single crystal |
JP2015111615A (en) * | 2013-12-06 | 2015-06-18 | 信越半導体株式会社 | Method of evaluating carbon concentration in silicon single crystal, and method of manufacturing semiconductor device |
JP2015156420A (en) * | 2014-02-20 | 2015-08-27 | 信越半導体株式会社 | Evaluation method for carbon concentration in silicon single crystal, and method of manufacturing semiconductor device |
JP2016108160A (en) * | 2014-12-02 | 2016-06-20 | 株式会社Sumco | Growing method of silicon single crystal |
Non-Patent Citations (4)
Title |
---|
KIUCHI, HIROTATSU, ET AL.: "Determination of low carbon concentration in Czochralski-grown Si crystals for solar cells by lumine", JAPANESE JOURNAL OF APPLIED PHYSICS, vol. 56, no. 070305, JPN6020025817, 9 June 2017 (2017-06-09), pages 1 - 070305, ISSN: 0004308160 * |
NAKAMURA, M. ET AL.: "photoluminescence Measurement of Carbon in Silicon Crystals Irradiated with High Energy Electron", J. ELECTROCHEM. SOC., vol. 141, no. 12, JPN7020002050, December 1994 (1994-12-01), pages 3576 - 3580, XP002031356, ISSN: 0004308161 * |
TAJIMA, MICHIO, ET AL.: "Quantification of C in Si by photoluminescence at liquid N temperature after electron irradiation", APPLIED PHYSICS EXPRESS, vol. 10, JPN6020025819, 21 March 2017 (2017-03-21), pages 046602 - 1, ISSN: 0004308162 * |
石川陽一郎、ほか: "電子線照射発光活性化液体窒素温度PL法によるP添加n型CZ-Si結晶の炭素定量", 第78回応用物理学会秋季学術講演会講演予稿集, JPN6020025814, 2017, pages 13 - 179, ISSN: 0004439126 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020088261A (en) * | 2018-11-29 | 2020-06-04 | 信越半導体株式会社 | Carbon concentration measurement method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6098891B2 (en) | Method for measuring carbon concentration in silicon single crystals | |
CN107615470B (en) | Method for manufacturing silicon epitaxial wafer and method for evaluating silicon epitaxial wafer | |
US8411263B2 (en) | Method of evaluating silicon wafer and method of manufacturing silicon wafer | |
KR102017957B1 (en) | Calibration curve determination method, carbon concentration measurement method, and silicon wafer-manufacturing method | |
EP2952883B1 (en) | Calibration curve formation method, impurity concentration measurement method, and semiconductor wafer manufacturing method | |
JP6048381B2 (en) | Method for evaluating carbon concentration in silicon single crystal and method for manufacturing semiconductor device | |
JP2019124483A (en) | Carbon concentration evaluation method | |
JP6617736B2 (en) | Carbon concentration measurement method | |
EP3671817B1 (en) | Carbon concentration measurement method | |
WO2019171880A1 (en) | Oxygen concentration evaluation method | |
JP6904313B2 (en) | Method for evaluating carbon concentration in silicon single crystal | |
JP6973361B2 (en) | Oxygen concentration measurement method | |
JP6933201B2 (en) | Carbon concentration measurement method | |
JP6919625B2 (en) | Impurity concentration measurement method | |
JP7218733B2 (en) | Oxygen concentration evaluation method for silicon samples | |
KR102447217B1 (en) | Method for measuring carbon concentration in single crystal silicon | |
JP2020092169A (en) | Method of evaluating nitrogen concentration in silicon single crystal substrate | |
JP2021067488A (en) | Method for measuring nitrogen concentration of silicon single crystal wafer | |
JP2005061922A (en) | Method of measuring concentrations of impurities in silicon crystal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200117 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200715 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200721 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20210209 |