JP2019110002A - リチウムイオン電池用バインダー水溶液、リチウムイオン電池用電極スラリー及びその製造方法、リチウムイオン電池用電極、並びにリチウムイオン電池 - Google Patents
リチウムイオン電池用バインダー水溶液、リチウムイオン電池用電極スラリー及びその製造方法、リチウムイオン電池用電極、並びにリチウムイオン電池 Download PDFInfo
- Publication number
- JP2019110002A JP2019110002A JP2017241496A JP2017241496A JP2019110002A JP 2019110002 A JP2019110002 A JP 2019110002A JP 2017241496 A JP2017241496 A JP 2017241496A JP 2017241496 A JP2017241496 A JP 2017241496A JP 2019110002 A JP2019110002 A JP 2019110002A
- Authority
- JP
- Japan
- Prior art keywords
- lithium ion
- polymer
- ion battery
- group
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Macromonomer-Based Addition Polymer (AREA)
- Cell Electrode Carriers And Collectors (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
(項目1)
幹ポリマー(A)を構成する構成単位中、(メタ)アクリルアミド基含有化合物(a−1)に由来する構成単位の割合が50質量%以上であり、枝ポリマー(B)を構成する構成単位中、3量体以上のポリアルキレングリコールエーテル(b−1)に由来する構成単位の割合が90質量%以上であり、幹ポリマー(A)と枝ポリマー(B)がエステル結合で結合されている水溶性グラフトポリマー(C)を含む、リチウムイオン電池用バインダー水溶液。
(項目2)
前記水溶性グラフトポリマー(C)が、前記(メタ)アクリルアミド基含有化合物(a−1)と、下記一般式(1)
(項目3)
前記水溶性グラフトポリマー(C)を乾燥し、作成したフィルムのHAZEが3%以上である、上記項目のいずれか1項に記載のリチウムイオン電池用バインダー水溶液。
(項目4)
上記項目のいずれか1項に記載のリチウムイオン電池用バインダー水溶液、及び電極活物質(D)を含む、リチウムイオン電池用電極スラリー。
(項目5)
前記電極活物質(D)100質量%に対し、前記水溶性グラフトポリマー(C)を1〜15質量%含む、上記項目のいずれか1項に記載のリチウムイオン電池用電極スラリー。
(項目6)
前記電極活物質(D)が炭素層で覆われたシリコン又はシリコンオキサイドを5質量%以上含む、上記項目のいずれか1項に記載のリチウムイオン電池用電極スラリー。
(項目7)
幹ポリマー(A)を構成する構成単位中、(メタ)アクリルアミド基含有化合物(a−1)に由来する構成単位の割合が50質量%以上であり、枝ポリマー(B)を構成する構成単位中、3量体以上のポリアルキレングリコールエーテル(b−1)に由来する構成単位の割合が90質量%以上であり、幹ポリマー(A)と枝ポリマー(B)がエステル結合で結合されている水溶性グラフトポリマー(C)、及び電極活物質(D)を混合する工程を含む、上記項目のいずれか1項に記載のリチウムイオン電池用電極スラリーの製造方法。
(項目8)
上記項目のいずれか1項に記載のリチウムイオン電池用電極スラリーを集電体に塗布し乾燥させることにより得られる、リチウムイオン電池用電極。
(項目9)
前記集電体が銅箔である、上記項目に記載のリチウムイオン電池用電極。
(項目10)
上記項目に記載のリチウムイオン電池用電極を含む、リチウムイオン電池。
本開示は、幹ポリマー(A)を構成する構成単位中、(メタ)アクリルアミド基含有化合物(a−1)に由来する構成単位の割合が50質量%以上であり、枝ポリマー(B)を構成する構成単位中、3量体以上のポリアルキレングリコールエーテル(b−1)に由来する構成単位の割合が90質量%以上であり、幹ポリマー(A)と枝ポリマー(B)がエステル結合で結合されている水溶性グラフトポリマー(C)を含む、リチウムイオン電池用バインダー水溶液を提供する。
本開示において、「水溶性」とは、25℃において、その化合物0.5gを100gの水に溶解した際に、不溶分が0.5質量%未満であることを意味する。
本開示において「(メタ)アクリルアミド基含有化合物(a−1)」とは、(メタ)アクリルアミド骨格
により表される。(メタ)アクリルアミド基含有化合物は、単独で用いてもよいし、二種以上を併用してもよい。
N−無置換(メタ)アクリルアミド骨格含有モノマーは、(メタ)アクリルアミド、マレイン酸アミド等が例示される。
N−一置換(メタ)アクリルアミド骨格含有モノマーは、N−イソプロピル(メタ)アクリルアミド、N−メチロール(メタ)アクリルアミド、ジアセトン(メタ)アクリルアミド(メタ)アクリルアミドt−ブチルスルホン酸、ヒドロキシエチル(メタ)アクリルアミド等が例示される。
N−二置換(メタ)アクリルアミド骨格含有モノマーは、N,N−ジメチル(メタ)アクリルアミド、N,N−ジエチル(メタ)アクリルアミド、N,N−ジメチルアミノプロピル(メタ)アクリルアミド、(メタ)アクリロイルモルホリン等が例示される。
幹ポリマー(A)には、(a−1)成分以外の単量体((a−2)成分)由来の構成単位を本発明の所望の効果を損ねない限り含み得る。(a−2)成分は、単独で用いてもよいし、二種以上を併用してもよい。(a−2)成分は、不飽和カルボン酸、不飽和スルホン酸、不飽和リン酸等の酸基含有単量体、不飽和カルボン酸エステル、α,β−不飽和ニトリル化合物、共役ジエン化合物、芳香族ビニル化合物等が例示される。
以下、幹ポリマー(A)の物性について記載する。なお、下記幹ポリマー(A)の物性は、幹ポリマー(A)単体(例えば、水溶性グラフトポリマー(C)を合成する際に必要な量(メタ)アクリルアミド基含有化合物(a−1)を用いて合成したポリマー等)の物性である。
1/Tg=(W1/Tg1)+(W2/Tg2)+(W3/Tg3)+・・・+(Wn/Tgn)
[式中、Tgは、求めようとしているポリマーのガラス転移温度(K)、W1〜Wnは、各単量体の質量分率、Tg1〜Tgnは、各単量体のホモポリマーのガラス転移温度(K)を示す]
本発明の水溶性グラフトポリマー(C)の枝ポリマー(B)は、結合部位を介して幹ポリマー(A)に直結しており、3量体以上のポリアルキレングリコールエーテル基を含む化合物(b−1)を構成単位中に含む。枝ポリマー(B)は、単独で用いてもよいし、二種以上を併用してもよい。このような枝ポリマー(B)には、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等が例示される。このような枝ポリマーは、一般的に使用されているものを使用することができ、特に制限されない。
−(RO)n−
(式中、Rはアルキレン基であり、nは3以上の整数である)を意味する。
で表わされる。
また、プロピレングリゴール基を有するマクロモノマーは、ポリプロピレングリコール−モノ(メタ)アクリレート、ポリエチレングリコール−プロピレングリコール−モノ(メタ)アクリレート等が例示される。
これらのマクロモノマーの中でも、ポリエチレングリコール−モノ(メタ)アクリレートがラジカル重合を容易に行うことができるため好ましい。
枝ポリマー(B)の重量平均分子量(Mw)は特に限定されないが、重量平均分子量(Mw)の上限は、200万、150万、100万、95万、90万、85万、80万、75万、70万、65万、60万、55万、50万、45万、40万、30万、10万、1万、100、500、250、150等が例示され、下限は、150万、100万、95万、90万、85万、80万、75万、70万、65万、60万、55万、50万、45万、40万、35万、30万、10万、1万、100、500、250、150、100等が例示される。上記重量平均分子量(Mw)の範囲は適宜(例えば上記上限及び下限の値から選択して)設定され得る。1つの実施形態において、リチウムイオン電池電極用スラリーの分散安定性の観点から好ましくは100〜200万、より好ましくは150〜150万である。
本発明の結合部位は、エステル基を含み、幹ポリマー(A)と枝ポリマー(B)とを共有結合によって結びつけている。当該結合部位は、エステル結合を有しておれば特に限定されず、幹ポリマー(A)と反応するためのアクリル残基、メタクリル残基、アリル残基、ビニル残基等の二重結合に由来する重合残基を有していることが好ましい。またエステル結合は、枝ポリマー(B)中に含まれるアルキレングリコールエーテル基と結合するために用いられ得る。
上記四角で囲んだ部分となる。
本発明に用いる水溶性グラフトポリマー(C)は、(1)分岐構造を形成するように共重合させる方法や、(2)得られたポリマーを変性して分岐構造を生成させる方法等により合成することができる。その中でも一つの工程で目的の構造を得ることができるので、前記(1)の方法が好ましい。
水溶性グラフトポリマー(C)の重量平均分子量(Mw)は特に限定されないが、その上限は、600万、550万、500万、450万、400万、350万、300万、250万、200万、150万、100万、95万、90万、85万、80万、75万、70万、65万、60万、55万、50万、45万、40万等が例示され、下限は、550万、500万、450万、400万、350万、300万、290万、250万、200万、150万、100万、95万、90万、85万、80万、75万、70万、65万、60万、55万、50万、45万、40万、35万、30万等が例示される。上記重量平均分子量(Mw)の範囲は適宜(例えば上記上限及び下限の値から選択して)設定され得る。1つの実施形態において、リチウムイオン電池電極用スラリーの分散安定性の観点から、水溶性グラフトポリマー(C)の重量平均分子量(Mw)は好ましくは30万〜600万、より好ましくは35万〜600万である。
本発明の水溶性グラフトポリマー(C)は、幹ポリマー(A)を連続層とし、枝ポリマー(B)をドメインとするミクロ相分離構造を有することが好ましい。この相分離構造を有していることを確かめる方法はフィルムのHAZEを測定する方法が例示される。水溶性グラフトポリマー(C)のフィルムは、(C)を含む水溶液を平坦なガラス板上に塗布し、80℃の順風乾燥機内でフィルムの厚さが100〜250μmになるように作成する方法で得ることが好ましい。ここで、作成したフィルムのHAZEは、濁度計「NDH−2000(日本電色工業株式会社製)」によって測定することができる。
ひいては得られるリチウムイオン二次電池において、低いガラス転移点を有するセグメントを有することで電極密着性が高く、また充放電サイクル中に電極内での膨らみによる内部応力を緩和でき、高いガラス転移点を有するセグメントによるサイクル特性の向上が見込める。
リチウムイオン電池用バインダー水溶液には、(C)成分、水のいずれにも該当しない剤を添加剤として含み得る。添加剤は、分散剤、レベリング剤、酸化防止剤、増粘剤、分散体(エマルジョン)、架橋剤、ヒドロキシシリル化合物等が例示される。添加剤の含有量は、(A)成分100質量%に対し、0〜5質量%、1質量%未満、0.1質量%未満、0.01質量%未満等が例示され、また水溶液100質量%に対し、0〜5質量%、1質量%未満、0.1質量%未満、0.01質量%未満、0質量%等が例示される。
RSi(OH)3
(式中、Rは置換又は無置換のアルキル基、ビニル基、又は(メタ)アクリロキシ基を表し、上記置換基は、アミノ基、メルカプト基、グリシドキシ基、(メタ)アクリロキシ基、エポキシ基等が例示される。)で表わされる化合物である。ヒドロキシシリル化合物はシランカップリング剤やテトラアルコキシシランを加水分解して調整することが好ましい。ヒドロキシシリル化合物は水溶性を失わない範囲内で、部分的に縮重合していても構わない。シランカップリング剤は、一般的に使用されているシランカップリング剤を使用することができる。シランカップリング剤は、特に制限されない。シランカップリング剤から製造されるヒドロキシシリル化合物は、単独で用いてもよいし、又は2種以上を併用してもよい。1つの実施形態において、ヒドロキシシリル化合物はトリヒドロキシシリルプロピルアミンを含む。トリアルコキシシランは、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、N−2(アミノエチル) 3− アミノプロピルトリメトキシシラン、N−2(アミノエチル)3−アミノプロピルトリエトキシシラン、3−トリエトキシシリル−N−(1,3−ジメチル−ブチリデン)プロピルアミン、N−フェニル−3−アミノプロピルトリメトキシシラン、3−メルカプトプロピルトリメトキシシラン、3− イソシアネートプロピルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、3−アクリロキシプロピルトリメトキシシラン、テトラヒドロキシシラン等が例示される。またテトラアルコキシシランは、テトラメトキシシラン、テトラメトキシシランオリゴマー、テトラエトキシシラン、テトラエトキシシランオリゴマー等が例示される。これらのうち、水溶性グラフトポリマー(C)との安定性及び耐電解液性の観点から、3−アミノプロピルトリメトキシシランを用いてヒドロキシシリル化合物を製造することが好ましい。
本開示は、上記リチウムイオン電池用バインダー水溶液、及び電極活物質(D)を含む、リチウムイオン電池電極用スラリーを提供する。
電極活物質は、リチウムを可逆的に吸蔵及び放出できるものであれば特に制限されず、目的とする蓄電デバイスの種類により適宜適当な材料を選択することができる。電極活物質は、単独で用いてもよいし、二種以上の電極活物質を併用してもよい。電極活物質は、炭素材料、並びにシリコン材料、リチウム原子を含む酸化物、鉛化合物、錫化合物、砒素化合物、アンチモン化合物、及びアルミニウム化合物等のリチウムと合金化する材料等を挙げることができる。炭素材料やリチウムと合金化する材料は、電池の充電時の体積膨張率が大きいため、本発明の効果を顕著に発揮しうる。
上記スラリーには、スラリー粘度調整溶媒が含まれ得る。スラリー粘度調整溶媒は、特に制限されることはないが、80〜350℃の標準沸点を有する非水系媒体を含めてよい。スラリー粘度調整溶媒は単独で用いてもよいし、二種以上を併用してもよい。スラリー粘度調整溶媒の例は、N−メチルピロリドン、ジメチルホルムアミド、N,N−ジメチルアセトアミド等のアミド溶媒;トルエン、キシレン、n−ドデカン、テトラリン等の炭化水素溶媒;メタノール、エタノール、2−プロパノール、イソプロピルアルコール、2−エチル−1−ヘキサノール、1−ノナノール、ラウリルアルコール等のアルコール溶媒;アセトン、メチルエチルケトン、シクロヘキサノン、ホロン、アセトフェノン、イソホロン等のケトン溶媒;ジオキサン、テトラヒドロフラン(THF)等のエーテル溶媒;酢酸ベンジル、酪酸イソペンチル、乳酸メチル、乳酸エチル、乳酸ブチル等のエステル溶媒;o−トルイジン、m−トルイジン、p−トルイジン等のアミン溶媒;γ−ブチロラクトン、δ−ブチロラクトン等のラクトン;ジメチルスルホキシド、スルホラン等のスルホキシド・スルホン溶媒;水等を挙げることができる。これらの中でも、塗布作業性の点より、N−メチルピロリドンが好ましい。上記非水系媒体の使用量は特に限定されないが、通常、本発明のスラリー100質量%に対し0〜10質量%程度である。
本開示は幹ポリマー(A)を構成する構成単位中、(メタ)アクリルアミド基含有化合物(a−1)に由来する構成単位の割合が50質量%以上であり、枝ポリマー(B)を構成する構成単位中、3量体以上のポリアルキレングリコールエーテル(b−1)に由来する構成単位の割合が90質量%以上であり、幹ポリマー(A)と枝ポリマー(B)がエステル結合で結合されている水溶性グラフトポリマー(C)、及び電極活物質(D)を混合する工程を含むリチウムイオン電池用電極スラリーの製造方法を提供する。
リチウムイオン電池用電極は、リチウムイオン電池用電極スラリーを集電体に塗布し乾燥させることにより得られる。
本開示は、上記リチウムイオン電池用電極を含む、リチウムイオン電池を提供する。上記電池には、電解質溶液、セパレータ、及び包装材料も含まれ、これらは特に限定されない。
各バインダー水溶液の粘度は、B型粘度計(東機産業株式会社製 製品名「B型粘度計モデルBM」)を用い、25℃にて、以下の条件で測定した。
粘度100,000〜20,000mPa・sの場合:No.4ローター使用、回転数6rpm、粘度20,000mPa・s未満の場合:No.3ローター使用、回転数6rpm。
重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により0.2Mリン酸緩衝液/アセトニトリル溶液(90/10、PH8.0)下で測定したポリアクリル酸換算値として求めた。GPC装置はHLC−8220(東ソー(株)製)を、カラムはSB−806M−HQ(SHODEX製)を用いた。
HAZEは、濁度計(日本電色工業株式会社製 製品名「NDH−2000」)を用い、厚み100〜250μmのフィルムをガラス板(並質ガラス、厚み2mm)上にコーティングした積層体を測定した。この積層体はガラス板上に水溶性グラフトポリマーを含む水溶液を塗工し、順風乾燥機(アドバンテック東洋株式会社製、商品名「送風定温乾燥器 DSR420DA」)にて80℃2時間乾燥させて作成した。
撹拌機、温度計、還流冷却管、窒素ガス導入管を備えた反応装置に、イオン交換水1282g、50%アクリルアミド水溶液300g(2.10mol)、80%アクリル酸水溶液21.4g(0.24mol)、ポリアルキレングリコールモノメタクリレート9.1g(0.008mol、日油製、製品名「ブレンマーPME−1000」)、メタリルスルホン酸ナトリウム0.19g(0.0012mol)を入れた。窒素ガスを通じて反応系内の酸素を除去した後、50℃まで昇温した。そこに2,2’−アゾビス−2−アミジノプロパン 二塩酸塩(日宝化学株式会社製 製品名「NC−32」)1.79g、イオン交換水30gを投入し、80℃まで昇温し3.0時間反応を行った。粘度(25℃)が7,700mPa・sの水溶性グラフトポリマーを含む水溶液を得た。
上記実施例1−1において、表1で示すように単量体組成の数値を変更した他は実施例1−1と同様にして、水溶性グラフトポリマーを含む水溶液を調製した。
・ATBS:アクリルアミドt−ブチルスルホン酸(東亞合成株式会社製 「ATBS」)
・アクリル酸(大阪有機化学工業株式会社製 「80%アクリル酸」)
・アクリロニトリル(三菱ケミカル株式会社株式会社製 「アクリロニトリル」)
・SMAS:メタリルスルホン酸ナトリウム
・PME1000:ポリアルキレングリコールモノメタクリレート(日油株式会社製「ブレンマーPME−1000」:一般式(1)におけるnが約23)
・PME4000:ポリアルキレングリコールモノメタクリレート(日油株式会社製「ブレンマーPME−4000」:一般式(1)におけるnが約90)
・PE−90:ジエチレングリコールモノメタクリレート(日油株式会社製 「ブレンマー PE−90」:一般式(1)におけるnが約2)
実施例2−1
市販の自転公転ミキサー(製品名「あわとり練太郎」、シンキー(株)製)を用い、上記ミキサー専用の容器に、実施例1−1の水溶性グラフトポリマーの水溶液を固形分換算で5部と、D50が5μmのシリコン粒子を10部と、天然黒鉛(伊藤黒鉛工業株式会社製 製品名「Z−5F」)を90部とを混合した。そこにイオン交換水を固形分濃度40%となるように加えて、当該容器を前記ミキサーにセットした。次いで、2000rpmで10分間混練後、1分間脱泡を行い、電極用スラリーを得た。
実施例2−1において、バインダー及び活物質の重量部を変更した他は同様にして、電極用スラリーを得た。
バインダーをSBR(スチレン−ブタジエン重合体)の水分散体に変更した他は、実施例2−1と同様にして電極用スラリーを得た。
バインダーを比較例1−1において得られた水溶液、及びポリエチレングリコールを質量比率(樹脂固形分)で50:50と変更した他は、実施例2−1と同様にして電極スラリーを得た。
スラリー調製直後の分散性を以下の基準で目視評価した。
◎:全体が均質なペースト状であり、液状分離がなく、かつ、凝集物も認められない。
○:全体は略均質なペースト状であり、僅かな液状分離が認められるが、凝集物は認められない。
△:容器底部に少量の凝集物と、やや多くの液状分離とが認められる。
×:容器底部に粘土状の凝集物が多数認められ、液状分離も多く認められる。
実施例及び比較例で得られた電極の表面状態を以下の基準で目視評価した。
A:全体が均質な表面状態であり、凝集物も認められない。
B:全体は略均質な表面状態であり、僅かに電極層に凹凸が認められるが、凝集物は認められない。
C:全体に多量の凝集物と、電極層に多くの凹凸が認められる。また割れや集電体と電極層との剥離などの異常が認められる。
実施例及び比較例で得られた電極から幅2cm×長さ10cmの試験片を切り出し、コーティング面を上にして固定する。次いで、該試験片の活物質層表面に、幅15mmの粘着テープ(「セロテープ(登録商標)」 ニチバン(株)製))(JIS Z1522に規定)を押圧しながら貼り付けた後、25℃条件下で引張り試験機((株)エー・アンド・デイ製「テンシロンRTM−100」)を用いて、試験片の一端から該粘着テープを30mm/分の速度で180°方向に引き剥がしたときの応力を測定した。測定は5回行い、幅15mm当たりの値に換算し、その平均値をピール強度として算出した。ピール強度が大きいほど、集電体と活物質層との密着強度あるいは活物質同士の結着性が高く、集電体から活物質層あるいは活物質同士が剥離し難いことを示す。
銅箔からなる集電体の表面に、実施例2−1で調製した電極用スラリーを、乾燥後の膜厚が25μmとなるようにドクターブレード法によって均一に塗布し、60℃で30分乾燥後、150℃/真空で120分間加熱処理して電極を得た。その後、膜(電極活物質層)の密度が1.5g/cm3になるようにロールプレス機によりプレス加工することにより、電極を得た。
(1)リチウムハーフセルの組み立て
アルゴン置換されたグローブボックス内で、上記電極を直径16mmに打ち抜き成形したものを、2極式コインセル(宝泉株式会社製、商品名「HSフラットセル」)上に載置した。次いで、直径24mmに打ち抜いたポリプロピレン製多孔膜からなるセパレータ(CS TECH CO., LTD製、商品名「Selion P2010」)を載置し、さらに、空気が入らないように電解液を500μL注入した後、市販の金属リチウム箔を16mmに打ち抜き成形したものを載置し、前記2極式コインセルの外装ボディーをネジで閉めて封止することにより、リチウムハーフセルを組み立てた。ここで使用した電解液は、エチレンカーボネート/エチルメチルカーボネート=1/1(質量比)の溶媒に、LiPF6を1モル/Lの濃度で溶解した溶液である。
上記で製造したリチウムハーフセルを25℃の恒温槽に入れ、定電流(0.1C)にて充電を開始し、電圧が0.01Vになった時点で充電完了(カットオフ)とした。次いで、定電流(0.1C)にて放電を開始し、電圧が1.0Vになった時点を放電完了(カットオフ)とする充放電を30回繰り返した。
放電容量維持率は以下の式より求めた。
放電容量維持率={(30サイクル目の放電容量)/(1サイクル目の放電容量)}×100(%)
ラミネート型リチウムイオン電池を次のようにして作製した。
(1)負極の作製
銅箔からなる集電体に実施例2−1のリチウムイオン電池電極スラリーをのせて、ドクターブレードを用いて膜状に塗布した。集電体にリチウムイオン電池電極スラリーを塗布したものを80℃で20分間乾燥して水を揮発させて除去した後、ロ−ルプレス機により、密着接合させた。この時、電極活物質層の密度は1.0g/cm2となるようにした。接合物を120℃で2時間、真空乾燥機で加熱し、所定の形状(26mm×31mmの矩形状)に切り取り、電極活物質層の厚さが15μmの負極とした。
正極活物質としてLiNi0.5Co0.2Mn0.3O2と導電助剤としてアセチレンブラックと、バインダーとしてポリフッ化ビニリデン(PVDF)とを、それぞれ88質量部、6質量部、6質量部を混合し、この混合物を適量のN−メチル−2−ピロリドン(NMP)に分散させて、リチウムイオン電池正極用スラリーを作製した。次いで、正極の集電体としてアルミニウム箔を用意し、アルミニウム箔にリチウムイオン電池正極用スラリーをのせ、ドクターブレードを用いて膜状になるように塗布した。リチウムイオン電池正極用スラリーを塗布後のアルミニウム箔を80℃で20分間乾燥してNMPを揮発させて除去した後、ロ−ルプレス機により、密着接合させた。この時、正極活物質層の密度は3.2g/cm2となるようにした。接合物を120℃で6時間、真空乾燥機で加熱し、所定の形状(25mm×30mmの矩形状)に切り取り、正極活物質層の厚さが45μm程度の正極とした。
上記の正極及び負極を用いて、ラミネート型リチウムイオン二次電池を製作した。詳しくは、正極及び負極の間に、ポリプロピレン製多孔膜からなるセパレータ(CS TECH CO.,LTD製、商品名「Selion P2010」)の矩形状シート(27×32mm、厚さ25μm)を挟装して極板群とした。この極板群を二枚一組のラミネートフィルムで覆い、三辺をシールした後、袋状となったラミネートフィルムに電解液を注入した。電解液としてエチレンカーボネート/エチルメチルカーボネート=1/1(質量比)の溶媒に、LiPF6を1モル/Lの濃度で溶解した溶液を用いた。その後、残りの一辺をシールすることで、四辺が気密にシールされ、極板群及び電解液が密閉されたラミネート型リチウムイオン二次電池を得た。なお、正極及び負極は外部と電気的に接続可能なタブを備え、このタブの一部はラミネート型リチウムイオン二次電池の外側に延出している。以上の工程で作製したラミネート型リチウムイオン電池を通電したところ、動作上の問題は生じなかった。
Claims (10)
- 幹ポリマー(A)を構成する構成単位中、(メタ)アクリルアミド基含有化合物(a−1)に由来する構成単位の割合が50質量%以上であり、枝ポリマー(B)を構成する構成単位中、3量体以上のポリアルキレングリコールエーテル(b−1)に由来する構成単位の割合が90質量%以上であり、幹ポリマー(A)と枝ポリマー(B)がエステル結合で結合されている水溶性グラフトポリマー(C)を含む、リチウムイオン電池用バインダー水溶液。
- 前記水溶性グラフトポリマー(C)が、前記(メタ)アクリルアミド基含有化合物(a−1)と、下記一般式(1)
- 前記水溶性グラフトポリマー(C)を乾燥し、作成したフィルムのHAZEが3%以上である、請求項1又は請求項2に記載のリチウムイオン電池用バインダー水溶液。
- 請求項1〜3のいずれか1項に記載のリチウムイオン電池用バインダー水溶液、及び電極活物質(D)を含む、リチウムイオン電池用電極スラリー。
- 前記電極活物質(D)100質量%に対し、前記水溶性グラフトポリマー(C)を1〜15質量%含む、請求項4に記載のリチウムイオン電池用電極スラリー。
- 前記電極活物質(D)が炭素層で覆われたシリコン又はシリコンオキサイドを5質量%以上含む、請求項4又は5に記載のリチウムイオン電池用電極スラリー。
- 幹ポリマー(A)を構成する構成単位中、(メタ)アクリルアミド基含有化合物(a−1)に由来する構成単位の割合が50質量%以上であり、枝ポリマー(B)を構成する構成単位中、3量体以上のポリアルキレングリコールエーテル(b−1)に由来する構成単位の割合が90質量%以上であり、幹ポリマー(A)と枝ポリマー(B)がエステル結合で結合されている水溶性グラフトポリマー(C)、及び電極活物質(D)を混合する工程を含む、請求項4〜6のいずれか1項に記載のリチウムイオン電池用電極スラリーの製造方法。
- 請求項4〜6のいずれか1項に記載のリチウムイオン電池用電極スラリーを集電体に塗布し乾燥させることにより得られる、リチウムイオン電池用電極。
- 前記集電体が銅箔である、請求項8に記載のリチウムイオン電池用電極。
- 請求項9に記載のリチウムイオン電池用電極を含む、リチウムイオン電池。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017241496A JP7031278B2 (ja) | 2017-12-18 | 2017-12-18 | リチウムイオン電池用バインダー水溶液、リチウムイオン電池用電極スラリー及びその製造方法、リチウムイオン電池用電極、並びにリチウムイオン電池 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017241496A JP7031278B2 (ja) | 2017-12-18 | 2017-12-18 | リチウムイオン電池用バインダー水溶液、リチウムイオン電池用電極スラリー及びその製造方法、リチウムイオン電池用電極、並びにリチウムイオン電池 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019110002A true JP2019110002A (ja) | 2019-07-04 |
JP7031278B2 JP7031278B2 (ja) | 2022-03-08 |
Family
ID=67180078
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017241496A Active JP7031278B2 (ja) | 2017-12-18 | 2017-12-18 | リチウムイオン電池用バインダー水溶液、リチウムイオン電池用電極スラリー及びその製造方法、リチウムイオン電池用電極、並びにリチウムイオン電池 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7031278B2 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20210029103A (ko) * | 2019-09-05 | 2021-03-15 | 아라까와 가가꾸 고교 가부시끼가이샤 | 리튬이온전지 전극용 바인더 수용액, 리튬이온전지 전극용 슬러리, 리튬이온전지 전극 및 리튬이온전지 |
US20210083262A1 (en) * | 2019-09-17 | 2021-03-18 | Arakawa Chemical Industries, Ltd. | Binder aqueous solution for lithium-ion battery, slurry for lithium-ion battery negative electrode, negative electrode for lithium-ion battery, and lithium-ion battery |
CN116694148A (zh) * | 2023-07-10 | 2023-09-05 | 江西昊泽光学膜科技有限公司 | 一种锂电池电极用镀铜pp膜底涂剂及预处理制备工艺 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0912652A (ja) * | 1995-06-30 | 1997-01-14 | Zenichi Ogita | 熱可逆性ハイドロゲル材料およびその製造法 |
JP2008034378A (ja) * | 2006-06-27 | 2008-02-14 | Kao Corp | リチウム電池正極用複合材料の製造方法 |
WO2011024789A1 (ja) * | 2009-08-24 | 2011-03-03 | Jsr株式会社 | 電極形成用組成物、電極形成用スラリー、電極および電気化学デバイス |
CN102249692A (zh) * | 2011-04-20 | 2011-11-23 | 中南大学 | 一种可快速干燥坯体的温度响应凝胶注模成型方法 |
JP2012151108A (ja) * | 2010-12-28 | 2012-08-09 | Mitsui Chemicals Inc | 電気化学セル用アクリル系水分散体および水性ペースト、それからなる電極・電池の製造方法 |
WO2016067632A1 (ja) * | 2014-10-31 | 2016-05-06 | 日本ゼオン株式会社 | 電気化学素子用電極の製造方法、電気化学素子用電極および電気化学素子 |
JP2017117597A (ja) * | 2015-12-22 | 2017-06-29 | 日本ゼオン株式会社 | 非水系二次電池電極用バインダー組成物の製造方法、非水系二次電池電極用スラリー組成物の製造方法、非水系二次電池用電極の製造方法、および非水系二次電池の製造方法 |
-
2017
- 2017-12-18 JP JP2017241496A patent/JP7031278B2/ja active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0912652A (ja) * | 1995-06-30 | 1997-01-14 | Zenichi Ogita | 熱可逆性ハイドロゲル材料およびその製造法 |
JP2008034378A (ja) * | 2006-06-27 | 2008-02-14 | Kao Corp | リチウム電池正極用複合材料の製造方法 |
WO2011024789A1 (ja) * | 2009-08-24 | 2011-03-03 | Jsr株式会社 | 電極形成用組成物、電極形成用スラリー、電極および電気化学デバイス |
JP2012151108A (ja) * | 2010-12-28 | 2012-08-09 | Mitsui Chemicals Inc | 電気化学セル用アクリル系水分散体および水性ペースト、それからなる電極・電池の製造方法 |
CN102249692A (zh) * | 2011-04-20 | 2011-11-23 | 中南大学 | 一种可快速干燥坯体的温度响应凝胶注模成型方法 |
WO2016067632A1 (ja) * | 2014-10-31 | 2016-05-06 | 日本ゼオン株式会社 | 電気化学素子用電極の製造方法、電気化学素子用電極および電気化学素子 |
JP2017117597A (ja) * | 2015-12-22 | 2017-06-29 | 日本ゼオン株式会社 | 非水系二次電池電極用バインダー組成物の製造方法、非水系二次電池電極用スラリー組成物の製造方法、非水系二次電池用電極の製造方法、および非水系二次電池の製造方法 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20210029103A (ko) * | 2019-09-05 | 2021-03-15 | 아라까와 가가꾸 고교 가부시끼가이샤 | 리튬이온전지 전극용 바인더 수용액, 리튬이온전지 전극용 슬러리, 리튬이온전지 전극 및 리튬이온전지 |
KR102336689B1 (ko) | 2019-09-05 | 2021-12-08 | 아라까와 가가꾸 고교 가부시끼가이샤 | 리튬이온전지 전극용 바인더 수용액, 리튬이온전지 전극용 슬러리, 리튬이온전지 전극 및 리튬이온전지 |
US11962010B2 (en) | 2019-09-05 | 2024-04-16 | Arakawa Chemical Industries, Ltd. | Binder aqueous solution for lithium-ion battery electrode, slurry for lithium-ion battery electrode, lithium-ion battery electrode, and lithium-ion battery |
US20210083262A1 (en) * | 2019-09-17 | 2021-03-18 | Arakawa Chemical Industries, Ltd. | Binder aqueous solution for lithium-ion battery, slurry for lithium-ion battery negative electrode, negative electrode for lithium-ion battery, and lithium-ion battery |
US11769866B2 (en) * | 2019-09-17 | 2023-09-26 | Arakawa Chemical Industries, Ltd. | Binder aqueous solution including copolymer of (meth)acrylamide and alkoxyalkyl (meth)acrylate, slurry including the same, negative electrode, and lithium-ion battery |
CN116694148A (zh) * | 2023-07-10 | 2023-09-05 | 江西昊泽光学膜科技有限公司 | 一种锂电池电极用镀铜pp膜底涂剂及预处理制备工艺 |
CN116694148B (zh) * | 2023-07-10 | 2023-12-19 | 江西昊泽光学膜科技有限公司 | 一种锂电池电极用镀铜pp膜底涂剂及预处理制备工艺 |
Also Published As
Publication number | Publication date |
---|---|
JP7031278B2 (ja) | 2022-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6888656B2 (ja) | リチウムイオン電池用バインダー水溶液、リチウムイオン電池電極用スラリー及びその製造方法、リチウムイオン電池電極、並びにリチウムイオン電池 | |
KR102164435B1 (ko) | 리튬이온 전지용 바인더 수용액, 리튬이온 전지용 슬러리 및 그 제조방법, 리튬이온 전지용 전극, 리튬이온 전지용 세퍼레이터, 리튬이온 전지용 세퍼레이터/전극적층체, 및 리튬이온 전지 | |
KR102117930B1 (ko) | 리튬이온 전지용 열가교성 바인더 수용액, 리튬이온 전지용 전극 슬러리 및 그 제조방법, 리튬이온 전지용 전극, 및 리튬이온 전지 | |
CN112094372B (zh) | 锂离子电池用粘合剂水溶液、负极用浆料、负极、负极用材料以及锂离子电池及其制造方法 | |
CN110783570B (zh) | 锂离子电池电极用浆料及其制造方法、锂离子电池用电极及锂离子电池 | |
KR102260940B1 (ko) | 리튬이온전지용 도전성 탄소재료 분산제, 리튬이온전지 전극용 슬러리, 리튬이온전지용 전극 및 리튬이온전지 | |
JP2019057487A (ja) | リチウムイオン電池用バインダー水溶液、リチウムイオン電池用スラリー及びその製造方法、リチウムイオン電池用電極、リチウムイオン電池用セパレータ、リチウムイオン電池用セパレータ/電極積層体、並びにリチウムイオン電池 | |
JP7577950B2 (ja) | リチウムイオン電池用バインダー水溶液、リチウムイオン電池負極用スラリー、リチウムイオン電池用負極及びリチウムイオン電池 | |
KR102336602B1 (ko) | 리튬이온전지용 열가교성 바인더 수용액, 리튬이온전지용 전극 열가교성 슬러리 및 그 제조방법, 리튬이온전지용 전극 및 리튬이온전지 | |
JP2018006333A (ja) | リチウムイオン電池正極用バインダー水溶液、リチウムイオン電池正極用粉体状バインダー、リチウムイオン電池正極用スラリー、リチウムイオン電池用正極、リチウムイオン電池 | |
JP7031278B2 (ja) | リチウムイオン電池用バインダー水溶液、リチウムイオン電池用電極スラリー及びその製造方法、リチウムイオン電池用電極、並びにリチウムイオン電池 | |
JP7215348B2 (ja) | リチウムイオン電池用熱架橋性バインダー水溶液、リチウムイオン電池用電極熱架橋性スラリー、リチウムイオン電池用電極、及びリチウムイオン電池 | |
CN113471433A (zh) | 锂离子电池用粘合剂水溶液、锂离子电池用负极浆料、锂离子电池用负极以及锂离子电池 | |
JP2021141057A (ja) | リチウムイオン電池電極用バインダー水溶液、リチウムイオン電池負極用スラリー、リチウムイオン電池用負極及びリチウムイオン電池 | |
JP7581782B2 (ja) | リチウムイオン電池用導電性炭素材料分散剤、リチウムイオン電池電極用スラリー、リチウムイオン電池用電極、及び、リチウムイオン電池 | |
CN112421034B (zh) | 锂离子电池用粘合剂水溶液、锂离子电池负极用浆料、锂离子电池用负极及锂离子电池 | |
CN112421034A (zh) | 锂离子电池用粘合剂水溶液、锂离子电池负极用浆料、锂离子电池用负极及锂离子电池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20201203 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20211112 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20211124 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220111 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220125 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220207 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7031278 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |