JP2019196440A - Coated film and aqueous composition - Google Patents
Coated film and aqueous composition Download PDFInfo
- Publication number
- JP2019196440A JP2019196440A JP2018090830A JP2018090830A JP2019196440A JP 2019196440 A JP2019196440 A JP 2019196440A JP 2018090830 A JP2018090830 A JP 2018090830A JP 2018090830 A JP2018090830 A JP 2018090830A JP 2019196440 A JP2019196440 A JP 2019196440A
- Authority
- JP
- Japan
- Prior art keywords
- coating film
- antibacterial metal
- aqueous composition
- mass
- compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 94
- 230000000844 anti-bacterial effect Effects 0.000 claims abstract description 124
- 150000001875 compounds Chemical class 0.000 claims abstract description 84
- 229910052751 metal Inorganic materials 0.000 claims abstract description 69
- 239000002184 metal Substances 0.000 claims abstract description 67
- 238000012360 testing method Methods 0.000 claims abstract description 41
- 239000011248 coating agent Substances 0.000 claims description 159
- 238000000576 coating method Methods 0.000 claims description 159
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 76
- 239000002923 metal particle Substances 0.000 claims description 72
- 239000002245 particle Substances 0.000 claims description 70
- 239000008119 colloidal silica Substances 0.000 claims description 52
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 45
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 33
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 31
- 229910052709 silver Inorganic materials 0.000 claims description 31
- 239000004332 silver Substances 0.000 claims description 31
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 31
- 125000000524 functional group Chemical group 0.000 claims description 24
- 239000007787 solid Substances 0.000 claims description 23
- 239000010949 copper Substances 0.000 claims description 13
- 230000001699 photocatalysis Effects 0.000 claims description 13
- 229910052802 copper Inorganic materials 0.000 claims description 12
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 11
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 11
- 229910052737 gold Inorganic materials 0.000 claims description 11
- 239000010931 gold Substances 0.000 claims description 11
- 125000005372 silanol group Chemical group 0.000 claims description 11
- -1 silane compound Chemical class 0.000 claims description 9
- 239000000377 silicon dioxide Substances 0.000 claims description 9
- 125000003277 amino group Chemical group 0.000 claims description 6
- 125000003396 thiol group Chemical group [H]S* 0.000 claims description 6
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 claims description 4
- 229910001930 tungsten oxide Inorganic materials 0.000 claims description 4
- 229910000077 silane Inorganic materials 0.000 claims description 3
- 230000003373 anti-fouling effect Effects 0.000 abstract description 12
- 230000000843 anti-fungal effect Effects 0.000 abstract description 9
- 230000007774 longterm Effects 0.000 abstract description 6
- 239000011148 porous material Substances 0.000 abstract 1
- 238000004519 manufacturing process Methods 0.000 description 32
- 238000000034 method Methods 0.000 description 28
- 239000000084 colloidal system Substances 0.000 description 26
- 238000011156 evaluation Methods 0.000 description 19
- 239000000463 material Substances 0.000 description 16
- 239000000126 substance Substances 0.000 description 15
- UUEWCQRISZBELL-UHFFFAOYSA-N 3-trimethoxysilylpropane-1-thiol Chemical compound CO[Si](OC)(OC)CCCS UUEWCQRISZBELL-UHFFFAOYSA-N 0.000 description 13
- 239000000243 solution Substances 0.000 description 13
- 239000011941 photocatalyst Substances 0.000 description 11
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 10
- 239000007864 aqueous solution Substances 0.000 description 9
- 239000002131 composite material Substances 0.000 description 9
- 229910021645 metal ion Inorganic materials 0.000 description 9
- 239000000758 substrate Substances 0.000 description 9
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 8
- 239000005751 Copper oxide Substances 0.000 description 8
- 229910000431 copper oxide Inorganic materials 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 241000195493 Cryptophyta Species 0.000 description 7
- 239000002585 base Substances 0.000 description 7
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 7
- TUSDEZXZIZRFGC-UHFFFAOYSA-N 1-O-galloyl-3,6-(R)-HHDP-beta-D-glucose Natural products OC1C(O2)COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC1C(O)C2OC(=O)C1=CC(O)=C(O)C(O)=C1 TUSDEZXZIZRFGC-UHFFFAOYSA-N 0.000 description 6
- 239000001263 FEMA 3042 Substances 0.000 description 6
- LRBQNJMCXXYXIU-PPKXGCFTSA-N Penta-digallate-beta-D-glucose Natural products OC1=C(O)C(O)=CC(C(=O)OC=2C(=C(O)C=C(C=2)C(=O)OC[C@@H]2[C@H]([C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)O2)OC(=O)C=2C=C(OC(=O)C=3C=C(O)C(O)=C(O)C=3)C(O)=C(O)C=2)O)=C1 LRBQNJMCXXYXIU-PPKXGCFTSA-N 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 238000001035 drying Methods 0.000 description 6
- 239000000975 dye Substances 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 239000010703 silicon Substances 0.000 description 6
- LRBQNJMCXXYXIU-NRMVVENXSA-N tannic acid Chemical compound OC1=C(O)C(O)=CC(C(=O)OC=2C(=C(O)C=C(C=2)C(=O)OC[C@@H]2[C@H]([C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)O2)OC(=O)C=2C=C(OC(=O)C=3C=C(O)C(O)=C(O)C=3)C(O)=C(O)C=2)O)=C1 LRBQNJMCXXYXIU-NRMVVENXSA-N 0.000 description 6
- 229940033123 tannic acid Drugs 0.000 description 6
- 235000015523 tannic acid Nutrition 0.000 description 6
- 229920002258 tannic acid Polymers 0.000 description 6
- 230000000007 visual effect Effects 0.000 description 6
- 239000002253 acid Substances 0.000 description 5
- 239000000919 ceramic Substances 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 5
- 239000000839 emulsion Substances 0.000 description 5
- 238000005562 fading Methods 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- CXKWCBBOMKCUKX-UHFFFAOYSA-M methylene blue Chemical compound [Cl-].C1=CC(N(C)C)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 CXKWCBBOMKCUKX-UHFFFAOYSA-M 0.000 description 5
- 229960000907 methylthioninium chloride Drugs 0.000 description 5
- 230000002829 reductive effect Effects 0.000 description 5
- 229910001961 silver nitrate Inorganic materials 0.000 description 5
- 241000894006 Bacteria Species 0.000 description 4
- 230000001098 anti-algal effect Effects 0.000 description 4
- JZCCFEFSEZPSOG-UHFFFAOYSA-L copper(II) sulfate pentahydrate Chemical compound O.O.O.O.O.[Cu+2].[O-]S([O-])(=O)=O JZCCFEFSEZPSOG-UHFFFAOYSA-L 0.000 description 4
- 210000003298 dental enamel Anatomy 0.000 description 4
- 230000002401 inhibitory effect Effects 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 229920001296 polysiloxane Polymers 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 3
- 241000588724 Escherichia coli Species 0.000 description 3
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 3
- 235000011114 ammonium hydroxide Nutrition 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000002320 enamel (paints) Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229910017604 nitric acid Inorganic materials 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 3
- 229960000999 sodium citrate dihydrate Drugs 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 239000004094 surface-active agent Substances 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- SJECZPVISLOESU-UHFFFAOYSA-N 3-trimethoxysilylpropan-1-amine Chemical compound CO[Si](OC)(OC)CCCN SJECZPVISLOESU-UHFFFAOYSA-N 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- JJLJMEJHUUYSSY-UHFFFAOYSA-L Copper hydroxide Chemical compound [OH-].[OH-].[Cu+2] JJLJMEJHUUYSSY-UHFFFAOYSA-L 0.000 description 2
- 239000005750 Copper hydroxide Substances 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000000845 anti-microbial effect Effects 0.000 description 2
- 239000002518 antifoaming agent Substances 0.000 description 2
- 239000003429 antifungal agent Substances 0.000 description 2
- 229940121375 antifungal agent Drugs 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 238000004040 coloring Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 229910001956 copper hydroxide Inorganic materials 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 239000002612 dispersion medium Substances 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 2
- 239000000417 fungicide Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910001385 heavy metal Inorganic materials 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 150000002484 inorganic compounds Chemical class 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 150000002736 metal compounds Chemical class 0.000 description 2
- 239000005416 organic matter Substances 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- NDVLTYZPCACLMA-UHFFFAOYSA-N silver oxide Chemical compound [O-2].[Ag+].[Ag+] NDVLTYZPCACLMA-UHFFFAOYSA-N 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 239000000057 synthetic resin Substances 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- 150000004685 tetrahydrates Chemical class 0.000 description 2
- ZNOCGWVLWPVKAO-UHFFFAOYSA-N trimethoxy(phenyl)silane Chemical compound CO[Si](OC)(OC)C1=CC=CC=C1 ZNOCGWVLWPVKAO-UHFFFAOYSA-N 0.000 description 2
- ONDPHDOFVYQSGI-UHFFFAOYSA-N zinc nitrate Chemical compound [Zn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ONDPHDOFVYQSGI-UHFFFAOYSA-N 0.000 description 2
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 description 1
- JKFYKCYQEWQPTM-UHFFFAOYSA-N 2-azaniumyl-2-(4-fluorophenyl)acetate Chemical compound OC(=O)C(N)C1=CC=C(F)C=C1 JKFYKCYQEWQPTM-UHFFFAOYSA-N 0.000 description 1
- ZYAASQNKCWTPKI-UHFFFAOYSA-N 3-[dimethoxy(methyl)silyl]propan-1-amine Chemical compound CO[Si](C)(OC)CCCN ZYAASQNKCWTPKI-UHFFFAOYSA-N 0.000 description 1
- IKYAJDOSWUATPI-UHFFFAOYSA-N 3-[dimethoxy(methyl)silyl]propane-1-thiol Chemical compound CO[Si](C)(OC)CCCS IKYAJDOSWUATPI-UHFFFAOYSA-N 0.000 description 1
- DCQBZYNUSLHVJC-UHFFFAOYSA-N 3-triethoxysilylpropane-1-thiol Chemical compound CCO[Si](OCC)(OCC)CCCS DCQBZYNUSLHVJC-UHFFFAOYSA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000005749 Copper compound Substances 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229910021607 Silver chloride Inorganic materials 0.000 description 1
- 229910021612 Silver iodide Inorganic materials 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 238000005411 Van der Waals force Methods 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 1
- NEIHULKJZQTQKJ-UHFFFAOYSA-N [Cu].[Ag] Chemical compound [Cu].[Ag] NEIHULKJZQTQKJ-UHFFFAOYSA-N 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 239000003619 algicide Substances 0.000 description 1
- 229910001413 alkali metal ion Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- LFYJSSARVMHQJB-QIXNEVBVSA-N bakuchiol Chemical compound CC(C)=CCC[C@@](C)(C=C)\C=C\C1=CC=C(O)C=C1 LFYJSSARVMHQJB-QIXNEVBVSA-N 0.000 description 1
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 1
- 229910002113 barium titanate Inorganic materials 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000009395 breeding Methods 0.000 description 1
- 230000001488 breeding effect Effects 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000007809 chemical reaction catalyst Substances 0.000 description 1
- DUOAQIPIYLBODN-UHFFFAOYSA-M chlorosilver copper Chemical compound Cl[Ag][Cu] DUOAQIPIYLBODN-UHFFFAOYSA-M 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 150000001880 copper compounds Chemical class 0.000 description 1
- BERDEBHAJNAUOM-UHFFFAOYSA-N copper(I) oxide Inorganic materials [Cu]O[Cu] BERDEBHAJNAUOM-UHFFFAOYSA-N 0.000 description 1
- XTVVROIMIGLXTD-UHFFFAOYSA-N copper(II) nitrate Chemical compound [Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XTVVROIMIGLXTD-UHFFFAOYSA-N 0.000 description 1
- QHNCWVQDOPICKC-UHFFFAOYSA-N copper;1-hydroxypyridine-2-thione Chemical compound [Cu].ON1C=CC=CC1=S.ON1C=CC=CC1=S QHNCWVQDOPICKC-UHFFFAOYSA-N 0.000 description 1
- GBRBMTNGQBKBQE-UHFFFAOYSA-L copper;diiodide Chemical compound I[Cu]I GBRBMTNGQBKBQE-UHFFFAOYSA-L 0.000 description 1
- XPLSDXJBKRIVFZ-UHFFFAOYSA-L copper;prop-2-enoate Chemical compound [Cu+2].[O-]C(=O)C=C.[O-]C(=O)C=C XPLSDXJBKRIVFZ-UHFFFAOYSA-L 0.000 description 1
- 238000003851 corona treatment Methods 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 150000003983 crown ethers Chemical class 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- KRFJLUBVMFXRPN-UHFFFAOYSA-N cuprous oxide Chemical compound [O-2].[Cu+].[Cu+] KRFJLUBVMFXRPN-UHFFFAOYSA-N 0.000 description 1
- 229940112669 cuprous oxide Drugs 0.000 description 1
- 150000001923 cyclic compounds Chemical class 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 239000002781 deodorant agent Substances 0.000 description 1
- 238000011033 desalting Methods 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000005002 finish coating Substances 0.000 description 1
- 239000005357 flat glass Substances 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000000855 fungicidal effect Effects 0.000 description 1
- HZXMRANICFIONG-UHFFFAOYSA-N gallium phosphide Chemical compound [Ga]#P HZXMRANICFIONG-UHFFFAOYSA-N 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 150000002344 gold compounds Chemical class 0.000 description 1
- RBTKNAXYKSUFRK-UHFFFAOYSA-N heliogen blue Chemical compound [Cu].[N-]1C2=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=NC([N-]1)=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=N2 RBTKNAXYKSUFRK-UHFFFAOYSA-N 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 229920001477 hydrophilic polymer Polymers 0.000 description 1
- 125000002883 imidazolyl group Chemical group 0.000 description 1
- 230000003100 immobilizing effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000010954 inorganic particle Substances 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 239000004611 light stabiliser Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 239000006224 matting agent Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000006263 metalation reaction Methods 0.000 description 1
- ARYZCSRUUPFYMY-UHFFFAOYSA-N methoxysilane Chemical compound CO[SiH3] ARYZCSRUUPFYMY-UHFFFAOYSA-N 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- ZKATWMILCYLAPD-UHFFFAOYSA-N niobium pentoxide Inorganic materials O=[Nb](=O)O[Nb](=O)=O ZKATWMILCYLAPD-UHFFFAOYSA-N 0.000 description 1
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- UXLJRFPFKSVRHN-UHFFFAOYSA-L oxosilicon(2+) dihydroxide Chemical compound [OH-].[Si+2]=O.[OH-] UXLJRFPFKSVRHN-UHFFFAOYSA-L 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000012462 polypropylene substrate Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 150000004032 porphyrins Chemical class 0.000 description 1
- UKDIAJWKFXFVFG-UHFFFAOYSA-N potassium;oxido(dioxo)niobium Chemical compound [K+].[O-][Nb](=O)=O UKDIAJWKFXFVFG-UHFFFAOYSA-N 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 238000000518 rheometry Methods 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- ADZWSOLPGZMUMY-UHFFFAOYSA-M silver bromide Chemical compound [Ag]Br ADZWSOLPGZMUMY-UHFFFAOYSA-M 0.000 description 1
- 229940100890 silver compound Drugs 0.000 description 1
- 150000003379 silver compounds Chemical class 0.000 description 1
- 229940045105 silver iodide Drugs 0.000 description 1
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 1
- 229910001923 silver oxide Inorganic materials 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- VEALVRVVWBQVSL-UHFFFAOYSA-N strontium titanate Chemical compound [Sr+2].[O-][Ti]([O-])=O VEALVRVVWBQVSL-UHFFFAOYSA-N 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 239000013008 thixotropic agent Substances 0.000 description 1
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 1
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 1
- 238000005292 vacuum distillation Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 238000004383 yellowing Methods 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
- 229940043810 zinc pyrithione Drugs 0.000 description 1
- PICXIOQBANWBIZ-UHFFFAOYSA-N zinc;1-oxidopyridine-2-thione Chemical compound [Zn+2].[O-]N1C=CC=CC1=S.[O-]N1C=CC=CC1=S PICXIOQBANWBIZ-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Paints Or Removers (AREA)
Abstract
Description
本発明は、塗膜及び水系組成物に関する。 The present invention relates to a coating film and an aqueous composition.
各種基材へコーティング材を用いて塗膜を形成することにより、各基材単体では発現しない物性を付与することができ、従来から、様々な高付加価値な製品として販売や開発がなされている。
特に、親水性塗膜をコーティングすることにより、防汚性、防曇性等を付与することができるため、建材や窓ガラスといった建築用途、自動車の車体やヘッドランプカバー等の自動車用途等の幅広い分野で、当該塗膜による機能の発現が期待されている。
By forming a coating film on various base materials using coating materials, it is possible to impart physical properties that do not appear on each base material alone, and it has been sold and developed as various high value-added products. .
In particular, by coating with a hydrophilic coating film, it is possible to impart antifouling properties, antifogging properties, etc., so a wide range of building applications such as building materials and window glass, automotive applications such as automobile bodies and headlamp covers, etc. In the field, expression of functions by the coating film is expected.
しかし、親水性を有する塗膜は、通常、細菌やカビ、藻などの微生物が繁殖しやすく、塗膜の外観不良や劣化を招くだけでなく、細菌等によって悪臭を生じるおそれがあり、細菌等の繁殖による汚染は解決すべき課題として注目されており、各種技術の提案がなされている。 However, the coating film having hydrophilicity usually tends to propagate microorganisms such as bacteria, molds, and algae, which not only causes poor appearance and deterioration of the coating film, but also may cause bad odor due to bacteria, etc. Contamination due to breeding has attracted attention as a problem to be solved, and various techniques have been proposed.
例えば、親水性ポリマー中に防カビ性を発揮する化合物を添加することで、防カビ性を付与した親水性塗膜が提案されている(例えば、特許文献1参照)。
また、防汚性を発揮する光触媒塗膜においても、さらに、抗菌性金属と組み合わせた光触媒を配合した塗膜が提案されている(例えば、特許文献2及び3参照)。
For example, a hydrophilic coating film imparted with an antifungal property by adding a compound exhibiting an antifungal property to the hydrophilic polymer has been proposed (for example, see Patent Document 1).
Moreover, the photocatalyst coating film which exhibits antifouling property has also been proposed in which a photocatalyst combined with an antibacterial metal is blended (see, for example, Patent Documents 2 and 3).
しかしながら、特許文献1で提案されている親水性塗膜は、当該塗膜のバインダー成分としてのポリマーが屋外環境下での紫外線によって劣化しやすいため、当該塗膜の親水性や防汚性が低下やすく、また、防カビ剤が分解や雨水により流出し、効果が長期間持続しないおそれがあるという問題点を有している。 However, in the hydrophilic coating film proposed in Patent Document 1, since the polymer as the binder component of the coating film is easily deteriorated by ultraviolet rays in the outdoor environment, the hydrophilicity and antifouling property of the coating film are reduced. In addition, there is a problem that the antifungal agent may flow out due to decomposition or rainwater, and the effect may not be maintained for a long time.
また、特許文献2や特許文献3に開示されている光触媒塗膜においては、難水溶性の抗菌性金属含有化合物を用いることにより分解や雨水による流出を抑制しているが、酸化チタンと当該抗菌性金属含有化合物との相互作用はファンデルワールス力等の微弱なものであるため、塗膜表面に露出した抗菌性金属含有化合物の脱離を長期的に抑制することは困難であり、結果として細菌等への効果が長時間持続しないおそれがあるという問題点を有している。 Moreover, in the photocatalyst coating film currently disclosed by patent document 2 and patent document 3, although the degradation and the outflow by rainwater are suppressed by using a slightly water-soluble antibacterial metal containing compound, titanium oxide and the said antibacterial As the result, it is difficult to suppress the detachment of the antibacterial metal-containing compound exposed on the coating surface for a long time because the interaction with the active metal-containing compound is weak such as van der Waals force. There is a problem that the effect on bacteria and the like may not last for a long time.
そこで本発明においては、紫外光や雨水等、屋外環境下に曝される場合おいても、長期間に亘って、防汚性、防藻性、及び防カビ性が持続する塗膜、及びこの塗膜を形成する水系組成物を提供することを目的とする。 Therefore, in the present invention, even when exposed to an outdoor environment such as ultraviolet light or rainwater, a coating film that maintains antifouling, antialgal and antifungal properties over a long period of time, and this It aims at providing the aqueous composition which forms a coating film.
本発明者らは、上記従来技術の課題を解決すべく鋭意検討した結果、抗菌性金属含有化合物が促進耐候性試験後において特定量以上残留しており、かつ塗膜中に特定範囲の比率で空隙を有する塗膜により上述した従来技術の課題の解決が図られること、及び抗菌性金属粒子とコロイダルシリカと特定の化合物を含む水系組成物により当該塗膜を提供できることを見出し、本発明を完成させるに至った。
すなわち、本発明は以下のとおりである。
As a result of intensive studies to solve the above-mentioned problems of the prior art, the present inventors have found that the antibacterial metal-containing compound remains more than a specific amount after the accelerated weathering test, and has a specific range ratio in the coating film. The present invention was completed by finding that the above-mentioned problems of the prior art can be solved by a coating film having voids, and that the coating film can be provided by an aqueous composition containing antibacterial metal particles, colloidal silica, and a specific compound. I came to let you.
That is, the present invention is as follows.
〔1〕
抗菌性金属含有化合物を含有する塗膜であって、
JIS K 5600−7−7に準拠した曝露試験で2500時間経過した後の前記塗膜中における前記抗菌性金属含有化合物の全含有質量が、
前記曝露試験前の前記塗膜中における前記抗菌性金属含有化合物の全含有質量に対して5%以上であり、
前記塗膜中に空隙が存在し、
前記塗膜の空隙率が1〜30%である、
塗膜。
〔2〕
前記〔1〕に記載された塗膜を形成する水系組成物であって、
水と、
抗菌性金属粒子Aと、
分子中に前記抗菌性金属粒子Aと相互作用する官能基B1と、シラノール基及びシロキサン結合と相互作用する官能基からなる群より選ばれる少なくともいずれかである官能基B2を含む化合物Bと、
コロイダルシリカCと、
を、含有し、
前記抗菌性金属粒子Aの質量の、前記コロイダルシリカCの質量に対する比率が0.01〜10.0%である水系組成物。
〔3〕
前記化合物Bが、
分子末端の官能基B1として、チオール基又はアミノ基を含むシラン化合物である、前記〔2〕に記載の水系組成物。
〔4〕
前記化合物Bの質量の、前記抗菌性金属粒子Aの質量に対する比率が1〜300%である、前記〔2〕又は〔3〕に記載の水系組成物。
〔5〕
前記抗菌性金属粒子Aの平均粒子径と、前記コロイダルシリカCの平均粒子径の比、(抗菌性金属粒子Aの平均粒子径)/(コロイダルシリカCの平均粒子径)が、0.01〜10である、前記〔2〕乃至〔4〕のいずれか一に記載の水系組成物。
〔6〕
前記コロイダルシリカCの含有量が、水系組成物に含まれる全固形分に対して50〜99%である、前記〔2〕乃至〔5〕のいずれか一に記載の水系組成物。
〔7〕
前記抗菌性金属粒子Aが、金、銀、及び銅、並びにこれらの化合物からなる群から選択される少なくとも1種である、前記〔2〕乃至〔6〕のいずれか一に記載の水系組成物。
〔8〕
光触媒活性を有する粒子Dを、さらに含む、前記〔2〕乃至〔7〕のいずれか一に記載の水系組成物。
〔9〕
前記光触媒活性を有する粒子Dが、酸化チタン、酸化タングステン、及びシリカ被覆酸化チタンからなる群より選択される少なくとも1種である、前記〔8〕に記載の水系組成物。
[1]
A coating film containing an antibacterial metal-containing compound,
The total content mass of the antibacterial metal-containing compound in the coating film after 2500 hours has elapsed in an exposure test according to JIS K 5600-7-7,
5% or more based on the total content of the antibacterial metal-containing compound in the coating film before the exposure test,
There are voids in the coating film,
The porosity of the coating film is 1 to 30%.
Coating film.
[2]
An aqueous composition for forming the coating film described in [1] above,
water and,
Antibacterial metal particles A;
A compound B containing in the molecule a functional group B1 that interacts with the antibacterial metal particle A and a functional group B2 that is at least one selected from the group consisting of a silanol group and a functional group that interacts with a siloxane bond;
Colloidal silica C,
Containing,
The aqueous composition whose ratio with respect to the mass of the said colloidal silica C of the mass of the said antibacterial metal particle A is 0.01 to 10.0%.
[3]
Compound B is
The aqueous composition according to [2] above, which is a silane compound containing a thiol group or an amino group as the functional group B1 at the molecular end.
[4]
The aqueous composition according to [2] or [3], wherein the ratio of the mass of the compound B to the mass of the antibacterial metal particles A is 1 to 300%.
[5]
The ratio of the average particle diameter of the antibacterial metal particles A to the average particle diameter of the colloidal silica C, (average particle diameter of the antibacterial metal particles A) / (average particle diameter of the colloidal silica C) is 0.01 to 10. The aqueous composition according to any one of [2] to [4], which is 10.
[6]
The aqueous composition according to any one of [2] to [5], wherein the content of the colloidal silica C is 50 to 99% with respect to the total solid content contained in the aqueous composition.
[7]
The aqueous composition according to any one of [2] to [6], wherein the antibacterial metal particle A is at least one selected from the group consisting of gold, silver, copper, and a compound thereof. .
[8]
The aqueous composition according to any one of [2] to [7], further including particles D having photocatalytic activity.
[9]
The aqueous composition according to [8], wherein the particles D having photocatalytic activity are at least one selected from the group consisting of titanium oxide, tungsten oxide, and silica-coated titanium oxide.
本発明によれば、紫外光や雨水等、屋外環境下に曝される場合おいても、長期間に亘って、防汚性、防藻性、及び防カビ性が持続する塗膜、及びこの塗膜を形成する水系組成物を提供することができる。 According to the present invention, even when exposed to an outdoor environment such as ultraviolet light or rainwater, a coating film that maintains antifouling, algal and antifungal properties over a long period of time, and this An aqueous composition for forming a coating film can be provided.
以下、本発明を実施するための形態(以下、単に「本実施形態」という。)について詳細に説明する。以下の本実施形態は、本発明を説明するための例示であり、本発明を以下の内容に限定する趣旨ではない。本発明は、その要旨の範囲内で適宜に変形して実施できる。 Hereinafter, a mode for carrying out the present invention (hereinafter simply referred to as “the present embodiment”) will be described in detail. The following embodiments are examples for explaining the present invention, and are not intended to limit the present invention to the following contents. The present invention can be implemented with appropriate modifications within the scope of the gist.
〔塗膜〕
本実施形態の塗膜は、抗菌性金属含有化合物を含有する塗膜であって、JIS K 5600−7−7に準拠した曝露試験で2500時間経過した後の前記塗膜中における前記抗菌性金属含有化合物の全含有質量が、前記曝露試験前の前記塗膜中における前記抗菌性金属含有化合物の全含有質量に対して5%以上であり、前記塗膜中に空隙が存在し、前記塗膜の空隙率が1〜30%である。
[Coating]
The coating film of this embodiment is a coating film containing an antibacterial metal-containing compound, and the antibacterial metal in the coating film after 2500 hours has passed in an exposure test in accordance with JIS K 5600-7-7. The total content mass of the containing compound is 5% or more with respect to the total content mass of the antibacterial metal-containing compound in the coating film before the exposure test, and there are voids in the coating film, The porosity is 1-30%.
(抗菌性金属含有化合物)
本実施形態の塗膜は、抗菌性金属含有化合物を含有する。
抗菌性金属含有化合物とは、大腸菌細胞に対して発育阻止機能を有する金属を含有する化合物をいい、当該抗菌性金属含有化合物としては、公知の金属単体、その塩、その酸化物、及びその窒化物等の抗菌性金属含有化合物、並びに金属錯体等が挙げられる。
抗菌性金属含有化合物に用いられる元素としては、大腸菌細胞に対する金属イオンの最小発育阻止濃度(MIC)が20mM以下の金属元素が挙げられ、具体的には、金、銀、銅、亜鉛等の元素が挙げられる。
これらの金属元素を用いた化合物としては、例えば、塩化金酸、硝酸銀、塩化銀、臭化銀、ヨウ化銀、硫酸銅五水和物、硝酸銅、窒化銅、ヨウ化銅、水酸化銅、酸化銅、亜酸化銅、アクリル酸銅、硝酸亜鉛等の塩や、銅ピリチオン、銅フタロシアニン、ジンクピリチオン等の錯体、さらにはポルフィリンやクラウンエーテル等の環状化合物と金属イオンの組み合わせ等が挙げられる。
これらの抗菌性金属含有化合物の中でも、後述する抗菌性金属粒子Aが含まれることにより、抗菌性金属含有化合物自身の劣化や雨水等による流出が少ないため好ましい。
(Antimicrobial metal-containing compounds)
The coating film of this embodiment contains an antibacterial metal-containing compound.
The antibacterial metal-containing compound refers to a compound containing a metal having a growth inhibitory function against E. coli cells, and the antibacterial metal-containing compound includes a known simple metal, its salt, its oxide, and its nitridation. Antibacterial metal-containing compounds such as products, metal complexes and the like.
Examples of the elements used in the antibacterial metal-containing compound include metal elements having a minimum inhibitory concentration (MIC) of metal ions for E. coli cells of 20 mM or less, and specifically, elements such as gold, silver, copper, and zinc. Is mentioned.
Examples of the compound using these metal elements include chloroauric acid, silver nitrate, silver chloride, silver bromide, silver iodide, copper sulfate pentahydrate, copper nitrate, copper nitride, copper iodide, copper hydroxide. And salts such as copper oxide, cuprous oxide, copper acrylate and zinc nitrate, complexes such as copper pyrithione, copper phthalocyanine and zinc pyrithione, and combinations of cyclic compounds such as porphyrin and crown ether with metal ions.
Among these antibacterial metal-containing compounds, the inclusion of antibacterial metal particles A, which will be described later, is preferable because deterioration of the antibacterial metal-containing compound itself and outflow due to rainwater and the like are small.
本実施形態の塗膜においては、前記抗菌性金属含有化合物が、所定の曝露試験後において、特定の残存率を示すことを特徴としている。
すなわち、本実施形態の塗膜は、JIS K 5600−7−7に準拠した曝露試験で2500時間の試験を行い、試験後の塗膜中の抗菌性金属含有化合物の含有量が、試験前の抗菌性金属含有化合物に対する比率として、5%以上である。
JIS K 5600−7−7に準拠した曝露試験は、塗膜の長期耐久性試験に用いられる規格であるため、当該試験は、より塗膜の防藻性、防カビ性が長期間持続するか検証するための促進試験として好ましい。また、2500時間の曝露時間は、JIS A 6909で定められている建築仕上げ塗材用の規格において耐候性を評価する判断時間であり、塗膜の耐久性を判断する時間として好ましい。
The coating film of this embodiment is characterized in that the antibacterial metal-containing compound exhibits a specific residual rate after a predetermined exposure test.
That is, the coating film of this embodiment is subjected to a 2500 hour test in an exposure test based on JIS K 5600-7-7, and the content of the antibacterial metal-containing compound in the coating film after the test is The ratio to the antibacterial metal-containing compound is 5% or more.
Since the exposure test in accordance with JIS K 5600-7-7 is a standard used for the long-term durability test of the coating film, is the test more effective for long-term anti-algal and anti-mold properties of the coating film? This is preferable as an accelerated test for verification. The exposure time of 2500 hours is a judgment time for evaluating the weather resistance in the standard for architectural finish coating materials defined in JIS A 6909, and is preferable as a time for judging the durability of the coating film.
前記抗菌性金属含有化合物は、塗膜樹脂の劣化や、溶解性の高い金属塩等が雨水等により抽出され、長期間経過することで塗膜中の含有量が容易に低下してしまうという問題を有している。
そのため、本実施形態においては、上記曝露試験後の抗菌性金属含有化合物の残存率を5%以上に特定した。
かかる抗菌性金属含有化合物の残存量を調整する方法、具体的に塗膜中の残存量を増加させる方法としては、例えば、予めアクリル樹脂等の有機樹脂中に抗菌性金属含有化合物を含ませたり、高分子の側鎖の官能基と抗菌性金属含有化合物を反応させた状態で、塗膜を形成するための水系組成物中に配合させる方法、ゼオライトやメソポーラスシリカ等の無機粒子中に金属イオン等を含ませる方法、後述する抗菌性金属粒子Aと化合物BとコロイダルシリカCを用いて水系組成物を調製する方法が有効である。
The antibacterial metal-containing compound is a problem that the coating resin is deteriorated or a highly soluble metal salt or the like is extracted by rain water or the like, and the content in the coating film is easily lowered after a long period of time. have.
Therefore, in this embodiment, the residual rate of the antibacterial metal-containing compound after the exposure test is specified as 5% or more.
As a method for adjusting the residual amount of the antibacterial metal-containing compound, specifically, for increasing the residual amount in the coating film, for example, an antibacterial metal-containing compound is previously contained in an organic resin such as an acrylic resin. , A method in which a functional group of a side chain of a polymer is reacted with an antibacterial metal-containing compound in a water-based composition for forming a coating film, metal ions in inorganic particles such as zeolite and mesoporous silica And a method of preparing an aqueous composition using antibacterial metal particles A, compound B and colloidal silica C, which will be described later, are effective.
本実施形態の塗膜は、前記曝露試験後における塗膜中の抗菌性金属含有化合物の全含有質量を、曝露試験前の塗膜中における抗菌性金属含有化合物の全含有質量で除算し、%表示で表したもの、〔(曝露試験後の抗菌性金属含有化合物の全含有質量)/(曝露試験前の抗菌性金属含有化合物の全含有質量)〕×100、すなわち曝露試験後の残存率が5%以上である。
全含有質量とは、複数種の抗菌性金属含有化合物が含まれる場合、その合計量であることを意味する。
抗菌性金属含有化合物の残存率が5%以上であることにより、防藻性、防カビ性が持続される。好ましくは10%以上、より好ましくは20%以上である。上限は特に限定は無いが、好ましくは100%である。
The coating film of this embodiment divides the total content mass of the antibacterial metal-containing compound in the coating film after the exposure test by the total content mass of the antibacterial metal-containing compound in the coating film before the exposure test. What is represented by the indication, [(total content of antibacterial metal-containing compound after exposure test) / (total content of antibacterial metal-containing compound before exposure test)] × 100, that is, the residual rate after the exposure test 5% or more.
The total content mass means the total amount when a plurality of types of antibacterial metal-containing compounds are included.
When the residual ratio of the antibacterial metal-containing compound is 5% or more, the antialgae and antifungal properties are maintained. Preferably it is 10% or more, more preferably 20% or more. The upper limit is not particularly limited, but is preferably 100%.
(空隙)
本実施形態の塗膜は、塗膜中に空隙を有する。
本実施形態の塗膜は、空隙率が1〜30%である。
空隙率とは塗膜中に含まれる空気の占める体積分率であり、後述する実施例に記載する方法により測定することができる。
当該空隙は塗膜が形成された直後から存在することが好ましく、上述したJIS K 5600−7−7に準拠した曝露試験後においても空隙を有することが好ましい。
(Void)
The coating film of this embodiment has voids in the coating film.
The coating film of this embodiment has a porosity of 1 to 30%.
The porosity is a volume fraction occupied by air contained in the coating film, and can be measured by a method described in Examples described later.
It is preferable that the said space | gap exists immediately after a coating film is formed, and it is preferable to have a space | gap even after the exposure test based on JISK5600-7-7 mentioned above.
塗膜中に1%以上の空隙が存在することにより、塗膜中に占める空隙の比表面積が十分に確保され、これにより、抗菌性金属含有化合物から放出される金属イオンや、複層塗膜の場合には本実施形態の塗膜下層からの薬剤等が空隙中を拡散して塗膜表面に抽出されやすく、より防藻性、防カビ性が向上するため好ましい。
また、1%以上の空隙が存在することにより、塗膜の熱や水分の膨張収縮による歪みが吸収されクラックが軽減されるため好ましい。
空隙率が30%以下であることにより、塗膜中に占める空隙の比表面積が適切に抑制され、これにより、塗膜中の構成成分同士が接触しない空間の割合が抑えられ、塗膜に含有される各固形物同士、あるいは下層の基材や塗膜と本実施形態の塗膜構成成分との結合や相互作用が十分に発揮でき、塗膜の密着性が向上するため好ましい。
The presence of 1% or more voids in the coating film ensures a sufficient specific surface area of the voids in the coating film, which allows metal ions released from antibacterial metal-containing compounds and multilayer coating films. In this case, the agent from the lower layer of the coating film of this embodiment is preferable because it diffuses in the voids and is easily extracted on the surface of the coating film, and the anti-algae and antifungal properties are further improved.
In addition, the presence of 1% or more voids is preferable because distortion due to heat and moisture expansion and contraction of the coating film is absorbed and cracks are reduced.
When the porosity is 30% or less, the specific surface area of the voids in the coating film is appropriately suppressed, and thereby the proportion of the space where the constituent components in the coating film do not contact each other is suppressed and contained in the coating film It is preferable because the solids can be sufficiently bonded and interacted with each other, or the lower layer substrate or coating film and the coating film constituents of this embodiment, and the adhesion of the coating film is improved.
塗膜中の空隙率は、塗膜中に複数含まれる粒子の形状を選択したり、粒子径比率やその混合比を調整したり、成膜条件を調整したりすることにより制御することができる。
具体的には、パール状や直鎖状等の球形以外のモルフォロジーを有する粒子を配合すること、配合する有機樹脂のガラス転移温度や最低成膜温度及び樹脂の配合比率を調整すること、さらには水系組成物を乾燥して得られる塗膜を焼結して有機物を意図的に分解する操作等により所定の数値範囲に制御することができる。
The porosity in the coating film can be controlled by selecting the shape of a plurality of particles contained in the coating film, adjusting the particle diameter ratio or mixing ratio thereof, or adjusting the film forming conditions. .
Specifically, blending particles having a morphology other than spherical, such as pearl or linear, adjusting the glass transition temperature and minimum film formation temperature of the organic resin to be blended, and the blending ratio of the resin, The coating film obtained by drying the aqueous composition can be controlled within a predetermined numerical range by an operation of intentionally decomposing the organic matter by sintering.
本実施形態の塗膜は、空隙率が1〜30%であり、好ましくは5〜28%、さらに好ましくは10〜25%である。 The coating film of this embodiment has a porosity of 1 to 30%, preferably 5 to 28%, and more preferably 10 to 25%.
〔水系組成物〕
本実施形態の水系組成物は、上述した本実施形態の塗膜を形成する水系組成物であり、
水と、
抗菌性金属粒子Aと、
分子中に前記抗菌性金属粒子Aと相互作用する官能基B1と、シラノール基及びシロキサン結合と相互作用する官能基からなる群より選ばれる少なくともいずれかである官能基B2を含む化合物Bと、
コロイダルシリカCと、
を、含有し、
前記抗菌性金属粒子Aの質量の、前記コロイダルシリカCの質量に対する比率が0.01〜10.0%である。
[Aqueous composition]
The aqueous composition of the present embodiment is an aqueous composition that forms the coating film of the present embodiment described above,
water and,
Antibacterial metal particles A;
A compound B containing in the molecule a functional group B1 that interacts with the antibacterial metal particle A and a functional group B2 that is at least one selected from the group consisting of a silanol group and a functional group that interacts with a siloxane bond;
Colloidal silica C,
Containing,
The ratio of the mass of the antibacterial metal particles A to the mass of the colloidal silica C is 0.01 to 10.0%.
本実施形態における塗膜は、本実施形態の水系組成物を用い、公知の塗装塗布方法によって得ることができる。
また、基材や当該塗膜の下層における塗膜の種類等により、加熱やコロナ処理等の前処理を実施してもよい。さらには、本実施形態の水系組成物を複数回塗布して塗膜を複層塗膜としてもよく、塗膜表面へ、他の組成物からなる塗膜を形成してもよい。
The coating film in this embodiment can be obtained by a known coating application method using the aqueous composition of this embodiment.
Moreover, you may implement pre-processing, such as a heating and a corona treatment, by the kind of coating film in the base material or the lower layer of the said coating film. Furthermore, the aqueous composition of this embodiment may be applied a plurality of times to form a multilayer coating film, or a coating film made of another composition may be formed on the coating film surface.
(抗菌性金属粒子A)
抗菌性金属粒子Aは、例えば、大腸菌細胞に対する金属イオンの最小発育阻止濃度(MIC)が20mM以下の金属の粒子を指す。
最小発育阻止濃度(MIC)とは、菌の増殖を阻止するために必要な薬剤(ここでは金属イオンを指す)の最小濃度のことである。
(Antimicrobial metal particles A)
The antibacterial metal particle A refers to, for example, a metal particle having a minimum inhibitory concentration (MIC) of metal ion for E. coli cells of 20 mM or less.
The minimum inhibitory concentration (MIC) is the minimum concentration of a drug (referred to here as a metal ion) necessary to inhibit the growth of bacteria.
本実施形態の水系組成物において、抗菌性金属粒子Aの質量の、コロイダルシリカCの質量に対する比率、〔(抗菌性金属粒子Aの質量)/(コロイダルシリカCの質量)〕×100(%)、すなわち抗菌性金属粒子Aの質量をコロイダルシリカCの質量で除算し、%表示とした値は、0.01〜10.0%であることが好ましい。
抗菌性金属粒子Aの質量割合が0.01%以上であると、防藻性、防カビ性を発揮することができ、10%以下であると、抗菌性金属含有化合物由来の塗膜の着色が軽減されるため好ましい。
In the aqueous composition of the present embodiment, the ratio of the mass of the antibacterial metal particles A to the mass of the colloidal silica C, [(mass of the antibacterial metal particles A) / (mass of the colloidal silica C)] × 100 (%) That is, the value expressed as% by dividing the mass of the antibacterial metal particles A by the mass of the colloidal silica C is preferably 0.01 to 10.0%.
When the mass proportion of the antibacterial metal particles A is 0.01% or more, the antialgae and fungicide properties can be exhibited, and when it is 10% or less, the coating film derived from the antibacterial metal-containing compound is colored. Is preferable.
本実施形態の水系組成物における、抗菌性金属粒子Aの質量の、コロイダルシリカCの質量に対する比率は、より好ましくは、0.01%以上、0.05%以上、0.1%以上、0.5%以上、1.0%以上、1.5%以上、2.0%以上、2.5%以上、3.0%以上、3.5%以上であり、10.0%以下、9.5%以下、9.0%以下、8.5%以下、8.0%以下、7.5%以下、7.0%以下、6.5%以下、6.0%以下、5.5%以下、5.0%以下である。
具体的な数値範囲としては、防藻性、防カビ性、及び塗膜の着色性のバランスの観点から、0.01〜10.0%であることが好ましく、より好ましくは0.05%〜8.0%、さらに好ましくは0.1〜5.0%の範囲である。
In the aqueous composition of the present embodiment, the ratio of the mass of the antibacterial metal particles A to the mass of the colloidal silica C is more preferably 0.01% or more, 0.05% or more, 0.1% or more, 0 0.5% or more, 1.0% or more, 1.5% or more, 2.0% or more, 2.5% or more, 3.0% or more, 3.5% or more, 10.0% or less, 9 0.5% or less, 9.0% or less, 8.5% or less, 8.0% or less, 7.5% or less, 7.0% or less, 6.5% or less, 6.0% or less, 5.5 % Or less and 5.0% or less.
The specific numerical range is preferably 0.01 to 10.0%, more preferably 0.05% to 0.05% from the viewpoint of the balance between the algaeproofing, antifungal properties, and the colorability of the coating film. The range is 8.0%, more preferably 0.1 to 5.0%.
本実施形態の水系組成物において、抗菌性金属粒子Aの平均粒子径は、コロイダルシリカCの平均粒子径との比、(抗菌性金属粒子Aの平均粒子径)/(コロイダルシリカCの平均粒子径)において、0.01〜10.0であることが好ましい。
この平均粒子径の比が0.01以上であること、例えば抗菌性金属粒子Aの平均粒子径が一定でコロイダルシリカCの平均粒子径を小さく抑えて0.01以上とすることで塗膜中のコロイダルシリカCの比表面積が確保されるため、塗膜の親水性、すなわち防汚性が良好となり好ましい。
また、平均粒子径比が、10.0以下であること、例えばコロイダルシリカCの粒子径が一定であり抗菌性金属粒子Aの粒子径を抑え10.0以下とすることで塗膜の透明性や、金属由来の着色性が抑えられるため好ましい。
In the aqueous composition of the present embodiment, the average particle diameter of the antibacterial metal particles A is the ratio of the average particle diameter of the colloidal silica C, (average particle diameter of the antibacterial metal particles A) / (average particle of the colloidal silica C). (Diameter) is preferably 0.01 to 10.0.
In the coating film, the ratio of the average particle diameter is 0.01 or more, for example, the average particle diameter of the antibacterial metal particles A is constant and the average particle diameter of the colloidal silica C is suppressed to 0.01 or more. Since the specific surface area of the colloidal silica C is secured, the hydrophilicity of the coating film, that is, the antifouling property is improved, which is preferable.
The average particle size ratio is 10.0 or less, for example, the particle size of colloidal silica C is constant, and the particle size of the antibacterial metal particles A is suppressed to 10.0 or less so that the transparency of the coating film is achieved. Moreover, since the colorability derived from a metal is suppressed, it is preferable.
この平均粒子径の比(抗菌性金属粒子Aの平均粒子径)/(コロイダルシリカCの平均粒子径)は、0.01以上、0.02以上、0.03以上、0.04以上、0.05以上、1.0以上、2.0以上が好ましく、10.0以下、9.0以下、8.0以下、7.0以下、6.0以下、5.0以下、4.0以下、3.0以下が好ましい。
この比(抗菌性金属粒子Aの平均粒子径)/(コロイダルシリカCの平均粒子径)の具体的数値範囲は、塗膜の透明性や着色性、親水性のバランスの観点から、0.01〜10.0であることが好ましく、より好ましくは0.01〜5.0、さらに好ましくは0.02〜3.0である。
This ratio of average particle diameter (average particle diameter of antibacterial metal particles A) / (average particle diameter of colloidal silica C) is 0.01 or more, 0.02 or more, 0.03 or more, 0.04 or more, 0 0.05 or more, 1.0 or more, and 2.0 or more are preferable, 10.0 or less, 9.0 or less, 8.0 or less, 7.0 or less, 6.0 or less, 5.0 or less, 4.0 or less 3.0 or less is preferable.
The specific numerical range of this ratio (average particle diameter of antibacterial metal particles A) / (average particle diameter of colloidal silica C) is 0.01 from the viewpoint of the balance of transparency, colorability and hydrophilicity of the coating film. It is preferable that it is-10.0, More preferably, it is 0.01-5.0, More preferably, it is 0.02-3.0.
抗菌性金属粒子Aとしては、例えば、銀、金、パラジウム、白金、コバルト、ニッケル、銅、亜鉛、鉛、及びマンガン等の重金属が挙げられる。
抗菌性金属粒子Aとしては、これらの中でも、安全性及び実用性の観点から、好ましくは、金、銀、銅、白金、及び亜鉛を挙げることができ、より好ましくは、金、銀、及び銅を挙げることができる。これらの重金属は、1種であってもよく、2種以上を組み合わせてもよい。
Examples of the antibacterial metal particles A include heavy metals such as silver, gold, palladium, platinum, cobalt, nickel, copper, zinc, lead, and manganese.
Among these, as antibacterial metal particles A, gold, silver, copper, platinum, and zinc can be preferably used from the viewpoint of safety and practicality, and gold, silver, and copper are more preferable. Can be mentioned. These heavy metals may be used alone or in combination of two or more.
抗菌性金属粒子Aの存在形態としては、前記金属単体の形態、金属化合物の形態、イオン状態の形態、又は他の化合物と錯体化している状態の形態等が挙げられるが、これらの中でも金属単体の形態、特に水に難溶性の金属単体又は金属化合物の形態が好ましい。
これは、金属単体又は抗菌性金属含有化合物が水に難溶性であることにより、金属の溶解により生じた金属イオン自身が光を吸収することで還元され、結果として、塗膜の色が経時で変化する可能性を低減できるからである。また、金属単体又は抗菌性金属含有化合物が水に難溶性である場合には、屋外環境下において、これらが雨等の水分で流出することを抑制し、これによって、本願発明の効果を持続させることができる。
Examples of the existence form of the antibacterial metal particles A include the form of the metal simple substance, the form of the metal compound, the form of the ionic state, the form of a state complexed with other compounds, and the like. In particular, a form of a simple metal or a metal compound which is hardly soluble in water is preferable.
This is because the metal simple substance or the antibacterial metal-containing compound is hardly soluble in water, so that the metal ions themselves generated by the dissolution of the metal are reduced by absorbing light, and as a result, the color of the coating film changes with time. This is because the possibility of changing can be reduced. In addition, when the metal simple substance or the antibacterial metal-containing compound is hardly soluble in water, it is prevented from flowing out with moisture such as rain in the outdoor environment, thereby maintaining the effect of the present invention. be able to.
抗菌性金属粒子Aの成分は、金、銀、銅、金化合物、銀化合物及び銅化合物からなる群より選択される1種以上であることが好ましい。
抗菌性金属粒子Aの成分の例としては、金の場合には、例えば、金単体等、銀の場合には、銀単体及びその化合物、例えば、酸化銀及び塩化銀等、銅の場合には、銅単体及びその化合物、例えば、酸化銅及び水酸化銅等が挙げられる。
The component of the antibacterial metal particle A is preferably at least one selected from the group consisting of gold, silver, copper, a gold compound, a silver compound, and a copper compound.
As an example of the component of the antibacterial metal particle A, in the case of gold, for example, simple substance of gold, in the case of silver, simple substance of silver and its compound, for example, in the case of copper, such as silver oxide and silver chloride Copper simple substance and its compound, for example, copper oxide, copper hydroxide, etc. are mentioned.
抗菌性金属粒子Aの生成方法としては、種々の化学反応を用いることができるが、中でも前駆体として金属イオンを含む水溶性の抗菌性金属含有化合物を水に溶解させて金属イオンが存在する条件下で、水溶性還元剤を添加して還元反応によって抗菌性金属粒子Aを生成させる方法は、高収率を達成可能であり、かつ反応時間を短くすることができるため好ましい。 As a method for producing the antibacterial metal particles A, various chemical reactions can be used. Among them, a water-soluble antibacterial metal-containing compound containing a metal ion as a precursor is dissolved in water and metal ions are present. Below, the method of adding the water-soluble reducing agent and generating the antibacterial metal particles A by the reduction reaction is preferable because a high yield can be achieved and the reaction time can be shortened.
(化合物B)
本実施形態の水系組成物は、分子内に前記抗菌性金属粒子Aと相互作用する官能基B1と、シラノール基及びシロキサン結合と相互作用する官能基からなる群より選ばれる少なくともいずれかである官能基B2を含む化合物Bを含有する。
(Compound B)
The aqueous composition of the present embodiment has at least one functional group selected from the group consisting of a functional group B1 that interacts with the antibacterial metal particle A, a functional group that interacts with a silanol group and a siloxane bond in the molecule. Contains the compound B containing the group B2.
化合物Bを含むことにより、塗膜が形成された際に、抗菌性金属粒子Aと官能基B1が相互作用し、かつ官能基B2が後述するコロイダルシリカC等と相互作用し、抗菌性金属粒子Aを塗膜中に固定化する作用が向上する。したがって、雨水や塗膜の膨張収縮等の外的要因によって塗膜表面やクラック断面等から抗菌性金属粒子Aが脱落することが抑制され、結果として防藻性、防カビ性が長期間持続する。
また、無機化合物で形成される塗膜に関して、この化合物Bを含有することにより、無機化合物と抗菌性金属粒子Aとの間の相互作用が向上し、塗膜の靭性が向上する効果もあり、塗膜の耐クラック性が良好となる。
By containing the compound B, when the coating film is formed, the antibacterial metal particle A and the functional group B1 interact, and the functional group B2 interacts with colloidal silica C and the like, which will be described later. The effect of immobilizing A in the coating film is improved. Accordingly, the antibacterial metal particles A are prevented from dropping off from the coating film surface or crack cross-section due to external factors such as rainwater or the expansion and contraction of the coating film, and as a result, the anti-algal and anti-mold properties are maintained for a long time. .
Moreover, regarding the coating film formed with an inorganic compound, by containing this compound B, the interaction between the inorganic compound and the antibacterial metal particles A is improved, and the toughness of the coating film is also improved. The crack resistance of the coating film becomes good.
化合物Bにおいて、抗菌性金属粒子Aと相互作用する官能基B1としては、例えば、芳香族基や極性基が挙げられ、芳香族基としては、例えば、フェニル基、ナフチル基、イミダゾール基等が挙げられる。極性基としては、例えば、エポキシ基、チオール基、及びアミノ基等が挙げられる。
特に、金属との相互作用が強いチオール基、もしくはアミノ基を用いることで、抗菌性金属粒子Aを塗膜へ固定化させる効果が高まるため好ましい。
In the compound B, examples of the functional group B1 that interacts with the antibacterial metal particle A include an aromatic group and a polar group, and examples of the aromatic group include a phenyl group, a naphthyl group, and an imidazole group. It is done. Examples of the polar group include an epoxy group, a thiol group, and an amino group.
In particular, the use of a thiol group or amino group that has a strong interaction with a metal is preferable because the effect of fixing the antibacterial metal particles A to the coating film is enhanced.
また、化合物Bは、その分子中に、シラノール基及びシロキサン結合と相互作用する官能基からなる群より選ばれる少なくともいずれかである官能基B2を含む。
官能基B2としては、例えば、シラノール基、アミド基等が挙げられる。特に、コロイダルシリカのシラノール基との水素結合が強く、水との相性も良く溶解性や分散性の観点から、シラノール基が好ましい。
なお、シラノール基は加水分解前のアルコキシシラン基、あるいは縮合してシロキサン結合であってもよい。特に、抗菌性金属粒子AとコロイダルシリカCと双方に相互作用することで上述の固定化効果をより高める観点から、化合物Bは官能基B1としてチオール基、又はアミノ基を含み、官能基B2としてシラノール基及びシロキサン結合と相互作用する官能基からなる群より選ばれる少なくともいずれかを含むシラン化合物であることが好ましい。
Further, the compound B contains in its molecule a functional group B2 which is at least one selected from the group consisting of a silanol group and a functional group that interacts with a siloxane bond.
Examples of the functional group B2 include a silanol group and an amide group. In particular, a silanol group is preferable from the viewpoint of strong hydrogen bonding with a silanol group of colloidal silica, good compatibility with water, and solubility and dispersibility.
The silanol group may be an alkoxysilane group before hydrolysis or a siloxane bond by condensation. In particular, from the viewpoint of further enhancing the above-described immobilization effect by interacting with both the antibacterial metal particles A and the colloidal silica C, the compound B contains a thiol group or an amino group as the functional group B1, and as the functional group B2. It is preferably a silane compound containing at least one selected from the group consisting of a silanol group and a functional group that interacts with a siloxane bond.
チオール基、又はアミノ基を有し、かつシラノール基を有する化合物Bとしては、例えば3−メルカプトプロピルトリメトキシシラン、3−メルカプトプロピルメチルジメトキシシラン、3−メルカプトプロピルトリエトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルメチルジメトキシシラン、3−アミノプロピルトリエトキシシラン等の加水分解物、又はそれらが一部縮合した化合物が挙げられる。 Examples of the compound B having a thiol group or an amino group and having a silanol group include 3-mercaptopropyltrimethoxysilane, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-aminopropyltri Examples thereof include hydrolysates such as methoxysilane, 3-aminopropylmethyldimethoxysilane, and 3-aminopropyltriethoxysilane, or compounds in which they are partially condensed.
本実施形態の水系組成物における、化合物Bの質量の、抗菌性金属粒子Aの質量に対する比率〔(化合物Bの質量)/(抗菌性金属粒子Aの質量)〕×100(%)、すなわち、化合物Bの質量を抗菌性金属粒子Aの質量で除算し、%表示とした値は、1〜300%の範囲であることが好ましい。
1%以上であることにより、抗菌性金属粒子Aの塗膜への固定化効果や耐クラック性が発現するため好ましく、300%以下であることにより、抗菌性金属粒子Aと相互作用しない余剰分の化合物Bが低減され、水系組成物の貯蔵安定性の向上や塗膜の空隙率低下を防ぐため好ましい。
In the aqueous composition of the present embodiment, the ratio of the mass of the compound B to the mass of the antibacterial metal particles A [(mass of the compound B) / (mass of the antibacterial metal particles A)] × 100 (%), that is, The value expressed as% by dividing the mass of the compound B by the mass of the antibacterial metal particles A is preferably in the range of 1 to 300%.
When it is 1% or more, the antibacterial metal particles A are preferably immobilized on the coating film and crack resistance is exhibited, and when it is 300% or less, an excess that does not interact with the antibacterial metal particles A is preferable. Is preferable because the compound B is reduced and the storage stability of the aqueous composition is improved and the porosity of the coating film is prevented from being lowered.
前記化合物Bの質量の、抗菌性金属粒子Aの質量に対する比率は、1%以上、2%以上、3%以上、4%以上、5%以上が好ましく、300%以下、290%以下、280%以下、270%以下、260%以下、250%以下、230%以下、210%以下、200%以下が好ましい。
具体的な数値範囲としては、塗膜中への抗菌性金属粒子Aの固定化効果や、水系組成物の貯蔵安定性などのバランスの観点から、1〜300%の範囲であることが好ましく、より好ましくは2〜280%、さらに好ましくは4〜250%である。
The ratio of the mass of the compound B to the mass of the antibacterial metal particles A is preferably 1% or more, 2% or more, 3% or more, 4% or more, 5% or more, 300% or less, 290% or less, 280%. Below, 270% or less, 260% or less, 250% or less, 230% or less, 210% or less, or 200% or less is preferable.
As a specific numerical range, from the viewpoint of the immobilization effect of the antibacterial metal particles A in the coating film and the balance such as the storage stability of the aqueous composition, it is preferably in the range of 1 to 300%. More preferably, it is 2-280%, More preferably, it is 4-250%.
(コロイダルシリカC)
コロイダルシリカCとしては、例えば、水を分散媒体とする、酸性のコロイダルシリカ、及び塩基性のコロイダルシリカ等が挙げられる。
(Colloidal silica C)
Examples of the colloidal silica C include acidic colloidal silica and basic colloidal silica using water as a dispersion medium.
酸性のコロイダルシリカとしては、例えば、市販品として日産化学工業社製スノーテックス(登録商標)−O、スノーテックス−OS、旭電化工業社製アデライト(登録商標)AT−20Q、クラリアントジャパン社製クレボゾール(登録商標)20H12、クレボゾール30CAL25等を挙げることができる。 Examples of the acidic colloidal silica include commercially available products such as Snowtex (registered trademark) -O, Snowtex-OS manufactured by Nissan Chemical Industries, Adelite (registered trademark) AT-20Q manufactured by Asahi Denka Kogyo Co., Ltd., and clebosol manufactured by Clariant Japan. (Registered trademark) 20H12, clebosol 30CAL25, etc. can be mentioned.
塩基性のコロイダルシリカとしては、例えば、アルカリ金属イオン、アンモニウムイオン、アミン等の添加により安定化したシリカ等が挙げられ、具体的には、日産化学工業社製スノーテックス−NS、スノーテックス−20、スノーテックス−30、スノーテックス−C、スノーテックス−C30、スノーテックス−CM40、スノーテックス−N、スノーテックス−N30、スノーテックス−K、スノーテックス−XL、スノーテックス−YL、;旭電化工業社製アデライトAT−20、アデライトAT−30、アデライトAT−20N、アデライトAT−30N、アデライトAT−20A、アデライトAT−30A、アデライトAT−40等を挙げることができる。 Examples of basic colloidal silica include silica stabilized by the addition of alkali metal ions, ammonium ions, amines, and the like. Specifically, SNOWTEX-NS, SNOWTEX-20 manufactured by Nissan Chemical Industries, Ltd. , SNOWTEX-30, SNOWTEX-C, SNOWTEX-C30, SNOWTEX-CM40, SNOWTEX-N, SNOWTEX-N30, SNOWTEX-K, SNOWTEX-XL, SNOWTEX-YL; Examples include Adelite AT-20, Adelite AT-30, Adelite AT-20N, Adelite AT-30N, Adelite AT-20A, Adelite AT-30A, and Adelite AT-40.
コロイダルシリカとしては、これらの中の1種、又は2種類以上を組み合わせたものを用いてもよい。 As the colloidal silica, one of these or a combination of two or more may be used.
水系組成物における、コロイダルシリカCの含有量は、水系組成物中に含まれる全固形分の質量に対して、50〜99%であることが好ましい。
50%以上であることにより、親水性を発揮し防汚性が良好となるだけでなく、前述の化合物Bとの相互作用が向上して抗菌性金属粒子Aが塗膜中に固定化されやすくなるため、長期の防藻性、防カビ性が向上する。
また、99%以下であることにより、抗菌性金属粒子Aやその他合成樹脂や界面活性剤などの成分の含有量が相対的に増加し、長期防藻性や防カビ性が発揮されるだけでなく、塗膜を形成する上で有利なため好ましい。
The content of colloidal silica C in the aqueous composition is preferably 50 to 99% with respect to the mass of the total solid content contained in the aqueous composition.
When it is 50% or more, not only the hydrophilic property is exhibited and the antifouling property is improved, but also the interaction with the above-mentioned compound B is improved and the antibacterial metal particles A are easily fixed in the coating film. Therefore, long-term algae and fungicides are improved.
Moreover, by being 99% or less, the content of antibacterial metal particles A and other components such as synthetic resins and surfactants is relatively increased, and long-term anti-algal and anti-fungal properties are exhibited. It is preferable because it is advantageous in forming a coating film.
水系組成物中のコロイダルシリカCの質量の水系組成物中に含まれる全固形分の質量に対する割合は、50%以上、55%以上、60%以上、65%以上、70%以上が好ましく、99%以下、95%以下、90%以下、85%以下、80%以下が好ましい。
具体的な数値範囲としては、親水性や防藻性、防カビ性、成膜性のバランスの観点から、50〜99%であることが好ましく、より好ましくは55〜98%、さらに好ましくは60〜95%である。
The ratio of the mass of colloidal silica C in the aqueous composition to the total solid content in the aqueous composition is preferably 50% or more, 55% or more, 60% or more, 65% or more, 70% or more, and 99 % Or less, 95% or less, 90% or less, 85% or less, or 80% or less is preferable.
The specific numerical range is preferably 50 to 99%, more preferably 55 to 98%, and still more preferably 60 from the viewpoint of the balance of hydrophilicity, algae resistance, mold resistance, and film formability. ~ 95%.
なお、本願明細書において「全固形分量」とは水系組成物中に含まれる不揮発分の合計質量を意味している。また、不揮発分の測定はJIS K 5601−1−2に準拠した方法を用いる。 In the present specification, “total solid content” means the total mass of non-volatile components contained in the aqueous composition. Moreover, the method based on JISK5601-1-2 is used for the measurement of a non volatile matter.
(光触媒活性を有する粒子D)
本実施形態における水系組成物は、光触媒活性を有する光触媒粒子Dを、さらに含有してもよい。
光触媒粒子Dを含むことで光触媒作用として知られる有機物分解や超親水性を利用し、防汚性をさらに向上させることができる。
(Particle D having photocatalytic activity)
The aqueous composition in the present embodiment may further contain photocatalyst particles D having photocatalytic activity.
By including the photocatalyst particles D, it is possible to further improve the antifouling property by utilizing organic matter decomposition and super hydrophilicity known as photocatalytic action.
光触媒活性を有する粒子Dとしては、例えば、酸化チタン(TiO2)、酸化亜鉛(ZnO)、チタン酸ストロンチウム(SrTiO3)、リン化ガリウム(GaP)、チタン酸バリウム(例えば、BaTiO3、BaTiO4、又はBaTi4O9等)、ニオブ酸カリウム(K2NbO3)、五酸化ニオブ(Nb2O5)、酸化鉄(例えば、Fe2O3)、酸化タングステン(例えば、WO3)、酸化スズ(例えば、SnO2)、酸化銅(例えば、Cu2O)等が挙げられる。
また、分散媒中の分散安定性を向上させる目的で、上記の粒子を二酸化ケイ素(シリカ)や、酸化アルミニウム(アルミナ)等で表面を修飾、被覆して用いることもできる。
Examples of the particles D having photocatalytic activity include titanium oxide (TiO 2 ), zinc oxide (ZnO), strontium titanate (SrTiO 3 ), gallium phosphide (GaP), and barium titanate (for example, BaTiO 3 , BaTiO 4). Or BaTi 4 O 9 ), potassium niobate (K 2 NbO 3 ), niobium pentoxide (Nb 2 O 5 ), iron oxide (eg Fe 2 O 3 ), tungsten oxide (eg WO 3 ), oxidation Examples include tin (for example, SnO 2 ), copper oxide (for example, Cu 2 O), and the like.
In addition, for the purpose of improving the dispersion stability in the dispersion medium, the above particles can be used with the surface modified and coated with silicon dioxide (silica), aluminum oxide (alumina) or the like.
これら中でも、光触媒活性を有する光触媒粒子Dとしては、安全性及びコストの観点から、酸化チタン、酸化タングステン、シリカ被覆酸化チタンのいずれから少なくとも1種以上用いることが好ましい。酸化チタンの結晶構造には、例えば、アナターゼ型、ルチル型、又はブルッカイト型等の結晶構造のものがあるが、いずれを使用してもよい。 Among these, as the photocatalyst particles D having photocatalytic activity, it is preferable to use at least one or more of titanium oxide, tungsten oxide, and silica-coated titanium oxide from the viewpoint of safety and cost. Examples of the crystal structure of titanium oxide include an anatase type, a rutile type, and a brookite type, and any of them may be used.
光触媒活性を有する粒子Dの表面には、抗菌性金属粒子Aを担持させてもよい。
抗菌性金属粒子Aの中には光触媒化合物と相互作用して可視光応答性などの物性を示すことが知られており、紫外光の少ない屋内環境等でも抗菌性等の効果を発揮する。
Antibacterial metal particles A may be supported on the surface of the particles D having photocatalytic activity.
It is known that antibacterial metal particles A interact with a photocatalytic compound and exhibit physical properties such as visible light responsiveness, and exhibit antibacterial effects and the like even in an indoor environment with little ultraviolet light.
(その他の成分)
本実施形態の水系組成物には、その効果を逸しない範囲で合成樹脂、エマルジョン粒子、消泡剤、着色剤、カップリング剤、増粘剤、チクソ化剤、凍結安定剤、艶消し剤、架橋反応触媒、顔料、硬化触媒、架橋剤、充填剤、皮張り防止剤、分散剤、湿潤剤、光安定剤、酸化防止剤、紫外線吸収剤、レオロジーコントロール剤、消泡剤、成膜助剤、防錆剤、染料、可塑剤、潤滑剤、還元剤、防腐剤、防黴剤、消臭剤、黄変防止剤、静電防止剤又は帯電調製剤等のその他の成分が含まれていてもよい。
(Other ingredients)
In the aqueous composition of the present embodiment, synthetic resin, emulsion particles, antifoaming agent, coloring agent, coupling agent, thickener, thixotropic agent, freezing stabilizer, matting agent, as long as the effect is not lost. Cross-linking reaction catalyst, pigment, curing catalyst, cross-linking agent, filler, anti-skinning agent, dispersant, wetting agent, light stabilizer, antioxidant, ultraviolet absorber, rheology control agent, antifoaming agent, film-forming aid Contains other components such as rust preventive, dye, plasticizer, lubricant, reducing agent, preservative, antifungal agent, deodorant, anti-yellowing agent, antistatic agent or charge preparation agent Also good.
本実施形態の塗膜及び水系組成物は基材上、もしくは塗膜上へ形成させることができ、その基材や塗膜は種々の素材に適用できる。 The coating film and aqueous composition of this embodiment can be formed on a substrate or a coating film, and the substrate and coating film can be applied to various materials.
以下の、製造例、実施例、及び比較例により本発明を具体的に説明するが、これらは本発明の範囲を限定するものではない。
各種の物性は以下に示す方法で測定した。
The present invention will be specifically described by the following production examples, examples and comparative examples, but these do not limit the scope of the present invention.
Various physical properties were measured by the following methods.
1.JIS K 5600−7−7試験後における塗膜中の抗菌性金属含有化合物における、抗菌性金属の定量と抗菌性金属の残存率の算出
JIS K 5600−7−7試験後における、各実施例中の塗膜中の、抗菌性金属含有化合物の、抗菌性金属の定量は、以下のようにして行った。なお、各実施例で分析した金属元素は各塗膜中に含有される抗菌性金属粒子Aの元素、すなわち金、銀の銅のいずれかの元素を分析対象とした。
ポリプロピレン板(タキロン社製 P310A、2×70×150ミリ)基体上に、市販の白色エナメル塗料(エスケー化研社製 水性セラミシリコン)をスプレーを用いて塗布し、常温で2日間乾燥させて0.15gの塗膜を形成した。
その後、各水系組成物を、スプレーを用いて前記白色エナメル塗膜上へ塗布し、常温で7日間乾燥及び養生を行い、5mgの塗膜を形成し、試験体を2枚作製した。
そのうち1枚の試験体について、ポリプロピレン基体上から白色エナメル塗膜及び各水系組成物を含む塗膜を剥がしてその質量を秤量し、酸及び超音波を用いて溶解処理を行ったのち、誘導結合プラズマ質量分析計(島津製作所社製 ICPMS−2030)を用いて当該塗膜中に含有されている金属量を分析することにより、抗菌性金属含有化合物量を定量し、得られた値(μg/g)を試験前の抗菌性金属含有化合物量M0とした。
また、上記分析を行わなかった他の1枚試験体について、JIS K 5600−7−7に準拠し、2500時間曝露試験を行った。その後、前述した測定方法、機器を用いて、抗菌性金属含有化合物量を定量し、得られた値(μg/g)を、試験後の抗菌性金属含有化合物量M1とし、以下の数式(1)を用いて、塗膜中の抗菌性金属含有化合物の残存率(%)を算出した。
1. Quantitative determination of antibacterial metal and calculation of residual ratio of antibacterial metal in antibacterial metal-containing compound in coating film after JIS K 5600-7-7 test In each example after JIS K 5600-7-7 test The antibacterial metal in the coating film was quantified as follows. In addition, the metal element analyzed in each Example made the analysis object the element of the antibacterial metal particle A contained in each coating film, ie, any element of gold | metal | money and silver copper.
On a polypropylene plate (Takiron P310A, 2 × 70 × 150 mm) substrate, a commercially available white enamel paint (aqueous ceramic silicon manufactured by SK Kaken Co., Ltd.) was applied using a spray and dried at room temperature for 2 days to 0 A 15 g coating was formed.
Thereafter, each aqueous composition was applied onto the white enamel coating film using a spray, dried and cured at room temperature for 7 days to form a 5 mg coating film, and two test specimens were produced.
For one of the specimens, the white enamel coating and the coating containing each aqueous composition were peeled off from the polypropylene substrate, the mass was weighed, and the dissolution treatment was performed using acid and ultrasonic waves. By analyzing the amount of metal contained in the coating film using a plasma mass spectrometer (ICPMS-2030, manufactured by Shimadzu Corporation), the amount of the antibacterial metal-containing compound was quantified, and the obtained value (μg / g) was defined as the amount M0 of the antibacterial metal-containing compound before the test.
Further, another one-piece specimen that was not subjected to the above analysis was subjected to an exposure test for 2500 hours in accordance with JIS K 5600-7-7. Thereafter, the amount of the antibacterial metal-containing compound was quantified using the measurement method and apparatus described above, and the obtained value (μg / g) was defined as the amount M1 of the antibacterial metal-containing compound after the test. ) Was used to calculate the residual ratio (%) of the antibacterial metal-containing compound in the coating film.
2.塗膜中の空隙率の測定
塗膜中の空隙率(空気の占める体積分率)は、以下のようにして求めた。
ガラス基板(5×5cm)上へ、各水系組成物をスピンコートし、常温で乾燥することで塗膜を形成した。
その後、反射分光膜厚計(大塚電子製 FE−3000)を用い、230〜800nmの波長ごとの反射率を測定し、ガラス基材の裏側に対して、前記反射分光膜厚計を用いてガラス基材の屈折率を測定した。
次に、塗膜側の230〜800nm間を2nm間隔でのガラス基材と塗膜とで干渉している反射した光の強度を測定し、測定した波長ごとのガラス基材の屈折率及び干渉している反射した光の強度を用い、塗膜の屈折率及び膜厚を計算上サーチすることで最小二乗法により測定値のフィッティングを行い、塗膜の屈折率α1(nm)を求めた。
さらに、以下の式(2)を用いて、塗膜中に空隙が存在しないと想定した屈折率α2を求めた。
なお、各実施例中で用いた各化合物の理論屈折率は以下の値を求めた。
粒子A:金=0.34、銀=0.12、酸化銅=2.71
化合物B:3−メルカプトプロピルトリメトキシシラン=1.44、3−アミノプロピルトリメトキシシラン=1.42、フェニルトリメトキシシラン=1.46
シリカC:コロイダルシリカ=1.45
粒子D:酸化チタン=2.25
2. Measurement of porosity in coating film The porosity (volume fraction occupied by air) in the coating film was determined as follows.
Each aqueous composition was spin-coated on a glass substrate (5 × 5 cm) and dried at room temperature to form a coating film.
Then, using a reflective spectral film thickness meter (FE-3000 manufactured by Otsuka Electronics Co., Ltd.), the reflectance for each wavelength of 230 to 800 nm was measured, and the glass was measured using the reflective spectral film thickness meter on the back side of the glass substrate. The refractive index of the substrate was measured.
Next, between 230 and 800 nm on the coating film side, the intensity of the reflected light that interferes with the glass substrate and the coating film at intervals of 2 nm is measured, and the refractive index and interference of the glass substrate for each measured wavelength. Using the intensity of the reflected light, the measured values were fitted by the least square method by calculating the refractive index and film thickness of the coating film, and the refractive index α1 (nm) of the coating film was obtained.
Furthermore, the refractive index α2 was calculated using the following formula (2), assuming that no voids exist in the coating film.
In addition, the theoretical refractive index of each compound used in each Example calculated | required the following values.
Particle A: Gold = 0.34, Silver = 0.12, Copper oxide = 2.71
Compound B: 3-mercaptopropyltrimethoxysilane = 1.44, 3-aminopropyltrimethoxysilane = 1.42, phenyltrimethoxysilane = 1.46
Silica C: Colloidal silica = 1.45
Particle D: Titanium oxide = 2.25
上記で求められたα1、及びα2を以下の数式(3)を用いて、塗膜中の空隙率α3を求めた。 Using the following formula (3), α1 and α2 determined above were used to determine the porosity α3 in the coating film.
3.平均粒子径の測定
(抗菌性金属粒子Aの平均粒子径)
抗菌性金属粒子Aの平均粒子径は、以下の方法で求めた。抗菌性金属粒子Aを含む各水系組成物をコロジオン膜上へ滴下した。
その後、真空条件下で1時間乾燥させた後、走査透過電子顕微鏡により表面を観察し、観察された任意の抗菌性金属粒子Aを50個選択し、それらの数平均粒子径を算出した。
(コロイダルシリカCの平均粒子径)
コロイダルシリカCの平均粒子径は、試料中の固形分含有量が0.1〜20質量%となるよう水を加えて希釈し、湿式粒度分析計(マイクロトラック・ベル社製 NanotracWave−EX150)を用いて測定し、体積分布で表示した場合の累積50%径を平均粒子径とした。
3. Measurement of average particle size (average particle size of antibacterial metal particles A)
The average particle diameter of the antibacterial metal particles A was determined by the following method. Each aqueous composition containing the antibacterial metal particles A was dropped onto the collodion film.
Then, after drying for 1 hour under vacuum conditions, the surface was observed with a scanning transmission electron microscope, 50 arbitrary antibacterial metal particles A observed were selected, and the number average particle diameter was calculated.
(Average particle diameter of colloidal silica C)
The average particle size of colloidal silica C is diluted by adding water so that the solid content in the sample is 0.1 to 20% by mass, and a wet particle size analyzer (NanotracWave-EX150 manufactured by Microtrac Bell Co., Ltd.) is used. The 50% cumulative diameter when measured by using a volume distribution was defined as the average particle diameter.
4.防汚性
塗膜の防汚性は以下のようにして評価した。
硫酸アルマイト基材(テストピース社製 JIS H 4000(A1100P) 1×70×150mm)上に、外壁用白色エナメル仕上げ材(エスケー化研社製 水性セラミシリコン)を乾燥後膜厚100μmとなるよう塗布し、2日間室温で養生させた。その塗膜上へ各実施例の組成物をスプレーで塗装し、7日間室温で乾燥及び養生させ約5mgの塗膜を得て、試験体を作製した。
得られた試験体の塗装前後での色差を測定し、塗装前の色差を標準としてΔEとして評価した。
色差ΔEが低いほど、外観変化が少ない、すなわち耐候性に優れることを意味する。なお、色差は、カラーガイド(BYK Gardner社製)を用いて標準板からの色差を求めた。
[評価基準]
○ :色差ΔEが1.6未満であった。
△ :色差ΔEが1.6〜3.0未満であった。
× :色差ΔEが3.0以上であった。
4). Antifouling property The antifouling property of the coating film was evaluated as follows.
A white enamel finishing material for outer walls (aqueous ceramic silicon manufactured by SK Kaken Co., Ltd.) is applied onto a sulfated alumite base material (JIS H 4000 (A1100P) 1 × 70 × 150 mm, manufactured by Test Piece) to a film thickness of 100 μm after drying. And cured at room temperature for 2 days. The composition of each example was applied onto the coating film by spraying, dried and cured at room temperature for 7 days to obtain about 5 mg of a coating film, and a test specimen was prepared.
The color difference before and after coating of the obtained specimen was measured, and the color difference before coating was evaluated as ΔE as a standard.
The lower the color difference ΔE, the smaller the change in appearance, that is, the better the weather resistance. The color difference was obtained from a standard plate using a color guide (BYK Gardner).
[Evaluation criteria]
○: Color difference ΔE was less than 1.6.
Δ: Color difference ΔE was 1.6 to less than 3.0.
X: Color difference ΔE was 3.0 or more.
5. 低着色性
塗膜の低着色性は以下のようにして評価した。
硫酸アルマイト基材(テストピース社製 JIS H 4000(A1100P) 1×70×150mm)上に、外壁用白色エナメル仕上げ材(エスケー化研社製 水性セラミシリコン)を乾燥後膜厚100μmとなるよう塗布し、2日間室温で養生させた。養生後、塗装前の色差を測定し、その塗膜上へ各実施例の組成物をスプレーで塗装し、7日間室温で乾燥及び養生させ約5mgの塗膜を得て、試験体を作製した。
得られた試験体の色差を測定し、塗装前の色差を標準とし、塗装前後の状態変化をΔEとして評価した。
色差ΔEが低いほど、外観変化が少ない、すなわち耐候性に優れることを意味する。なお、色差は、カラーガイド(BYK Gardner社製)を用いて標準板からの色差を求めた。
[評価基準]
○ :色差ΔEが1.6未満であった。
△ :色差ΔEが1.6〜3.0未満であった。
× :色差ΔEが3.0以上であった。
5. Low coloring property The low coloring property of the coating film was evaluated as follows.
A white enamel finishing material for outer walls (aqueous ceramic silicon manufactured by SK Kaken Co., Ltd.) is applied onto a sulfated alumite base material (JIS H 4000 (A1100P) 1 × 70 × 150 mm, manufactured by Test Piece) to a film thickness of 100 μm after drying. And cured at room temperature for 2 days. After curing, the color difference before coating was measured, the composition of each example was sprayed onto the coating film, dried and cured at room temperature for 7 days to obtain about 5 mg coating film, and a test specimen was prepared. .
The color difference of the obtained specimen was measured, the color difference before coating was used as a standard, and the change in state before and after coating was evaluated as ΔE.
The lower the color difference ΔE, the smaller the change in appearance, that is, the better the weather resistance. The color difference was obtained from a standard plate using a color guide (BYK Gardner).
[Evaluation criteria]
○: Color difference ΔE was less than 1.6.
Δ: Color difference ΔE was 1.6 to less than 3.0.
X: Color difference ΔE was 3.0 or more.
6.防藻性・防カビ性(長期)
硫酸アルマイト基材(テストピース社製 JIS H 4000(A1100P) 1×70×150mm)上に、外壁用白色エナメル仕上げ材(エスケー化研社製 水性セラミシリコン)を乾燥後膜厚100μmとなるよう塗布し、2日間室温で養生させた。
その塗膜上へ各実施例の水系組成物をスプレーで塗装し、7日間室温で乾燥及び養生させ約5mgの塗膜を得て、試験体を作製した。
その後、JIS K 5600−7−7に準拠し、2500時間曝露試験を行った後、千葉県銚子市の近隣に森林があり、芝生の生えている土地に試験体を北面90°にて屋外曝露試験を実施した。
判定は曝露後1年で判定した。
[評価基準]
○ :目視観察で藻、カビの生育は見られなかった。
△ :目視観察で藻、カビの生育はみられないが、拡大倍率7倍のルーペ観察では生育が見られた。
× :目視観察で藻、カビの生育が見られた。
6). Algae / mold resistance (long term)
A white enamel finishing material for outer walls (aqueous ceramic silicon manufactured by SK Kaken Co., Ltd.) is applied onto a sulfated alumite base material (JIS H 4000 (A1100P) 1 × 70 × 150 mm, manufactured by Test Piece) to a film thickness of 100 μm after drying. And cured at room temperature for 2 days.
The aqueous composition of each example was applied onto the coating film by spraying, dried and cured at room temperature for 7 days to obtain about 5 mg of a coating film, and a test specimen was prepared.
Then, after conducting a 2500 hour exposure test in accordance with JIS K 5600-7-7, there is a forest in the vicinity of Choshi City, Chiba Prefecture, and the test specimen is exposed outdoors at 90 ° north on the land where lawn grows. The test was conducted.
Judgment was made one year after exposure.
[Evaluation criteria]
○: Growth of algae and mold was not observed by visual observation.
Δ: Growth of algae and mold was not observed by visual observation, but growth was observed by loupe observation at a magnification of 7 times.
X: Growth of algae and mold was observed by visual observation.
7.塗膜の耐クラック性
塗膜の防汚性は以下のようにして評価した。硫酸アルマイト基材(テストピース社製 JIS H 4000(A1100P) 1×70×150mm)上に、外壁用白色エナメル仕上げ材(エスケー化研社製 水性セラミシリコン)を乾燥後膜厚100μmとなるよう塗布し、2日間室温で養生させた。
その塗膜上へ各実施例の水系組成物をスプレーで塗装し、7日間室温で乾燥及び養生させ約5mgの塗膜を得て、試験体を作製した。
得られた試験体を川崎市川崎区の屋外にて、塗膜が南面に、かつ地面に対して垂直になるよう設置し、1年間曝露した。
1年後、マイクロスコープ(キーエンス社製 VHX−5000)にて100倍拡大観察を実施し、以下の判定基準で評価した。
[評価基準]
○ :視野中に見られるクラックの最大幅が1.5μm未満であった。
△ :視野中に見られるクラックの最大幅が1.5〜3.0μm未満の範囲であった。
× :視野中に見られるクラックの最大幅が3.0μm以上であった。
7. Crack resistance of the coating film The antifouling property of the coating film was evaluated as follows. A white enamel finishing material for outer walls (aqueous ceramic silicon manufactured by SK Kaken Co., Ltd.) is applied onto a sulfated alumite base material (JIS H 4000 (A1100P) 1 × 70 × 150 mm, manufactured by Test Piece) to a film thickness of 100 μm after drying. And cured at room temperature for 2 days.
The aqueous composition of each example was applied onto the coating film by spraying, dried and cured at room temperature for 7 days to obtain about 5 mg of a coating film, and a test specimen was prepared.
The obtained specimen was placed outdoors in Kawasaki-ku, Kawasaki City so that the coating film was on the south surface and perpendicular to the ground, and was exposed for one year.
One year later, 100-fold magnification observation was performed with a microscope (VHX-5000, manufactured by Keyence Corporation), and evaluation was performed according to the following criteria.
[Evaluation criteria]
○: The maximum width of the cracks seen in the visual field was less than 1.5 μm.
(Triangle | delta): The maximum width of the crack seen in a visual field was the range of less than 1.5-3.0 micrometers.
X: The maximum width of the crack seen in the visual field was 3.0 μm or more.
8.光触媒活性を有する粒子Dの合成(シリカ修飾ルチル型二酸化チタン)
後述する製造例で使用する光触媒活性を有する粒子D(光触媒粒子D)は、以下のようにして合成した。
TiO2として200g/Lの濃度の四塩化チタン水溶液700mLと、Na2Oとして100g/Lの濃度の水酸化ナトリウム水溶液を、系のpHを5〜9に維持するように水中に並行添加した。
その後、系のpHを7に調整した後、濾過し、濾液の導電率が100μS/cmとなるまで洗浄し、固形分濃度28.3質量%の酸化チタン湿ケーキ1を得た。
この酸化チタン湿ケーキ1は、ルチル型構造を有し、その平均粒径は8nmであった。
得られたルチル型酸化チタン湿ケーキ1を純水で希釈して、1モル/Lのスラリーを調製した。このスラリー1Lを3Lのフラスコに仕込み、さらに、酸化チタンと硝酸とのモル比(酸化チタン/硝酸)が1となるよう、1規定の硝酸を1L添加し、95℃の温度に加熱し、この温度で2時間保持して、酸加熱処理を行った。
次いで、酸加熱処理後のスラリーを室温まで冷却し、28%アンモニア水を用いて中和(pH=6.7)して、濾過した後、濾液の導電率が100μS/cmとなるまで洗浄し、固形分濃度25質量%の酸化チタン湿ケーキ2を得た。
得られた酸化チタン湿ケーキ2に、10質量%の水酸化ナトリウム水溶液を添加し、リパルプし、その後、超音波洗浄機で3時間分散させ、pH=10.5、固形分濃度10質量%のアルカリ性酸化チタンゾルを得た。
このアルカリ性酸化チタンゾル2Lを3Lのフラスコに仕込み、70℃の温度に昇温し、SiO2として432g/Lの濃度のケイ酸ナトリウム水溶液69.4mLを添加し、その後90℃に昇温して、1時間熟成した後、10%の硫酸を添加してpHを6に調整して、酸化チタンの表面をケイ素の含水酸化物で表面処理した。
得られた酸化チタンゾルを室温まで冷却し、5.4Lの純水を添加し、脱塩濃縮装置を用いて、不純物の除去、及び濃縮を行い、pH=7.3、固形分濃度29質量%の中性ルチル型酸化チタンゾルを得た。
TiO2に対してSiO2基準で15質量%のケイ素の含水酸化物を含有していた。
このゾル中の酸化チタンの平均粒子径は50nmであった。
8). Synthesis of particles D with photocatalytic activity (silica modified rutile titanium dioxide)
Particles D (photocatalyst particles D) having photocatalytic activity used in the production examples described later were synthesized as follows.
700 mL of a titanium tetrachloride aqueous solution having a concentration of 200 g / L as TiO 2 and an aqueous sodium hydroxide solution having a concentration of 100 g / L as Na 2 O were added in parallel so as to maintain the pH of the system at 5 to 9.
Thereafter, the pH of the system was adjusted to 7, then filtered, and washed until the filtrate had a conductivity of 100 μS / cm, to obtain a titanium oxide wet cake 1 having a solid content concentration of 28.3 mass%.
This titanium oxide wet cake 1 had a rutile structure, and its average particle size was 8 nm.
The obtained rutile-type titanium oxide wet cake 1 was diluted with pure water to prepare a 1 mol / L slurry. 1 L of this slurry was charged into a 3 L flask, 1 L of 1N nitric acid was added so that the molar ratio of titanium oxide and nitric acid (titanium oxide / nitric acid) was 1, and the mixture was heated to a temperature of 95 ° C. The acid heat treatment was performed by maintaining the temperature for 2 hours.
Next, the acid-heated slurry is cooled to room temperature, neutralized with 28% aqueous ammonia (pH = 6.7), filtered, and washed until the filtrate has a conductivity of 100 μS / cm. A titanium oxide wet cake 2 having a solid content of 25% by mass was obtained.
To the obtained titanium oxide wet cake 2, a 10% by mass sodium hydroxide aqueous solution was added, repulped, and then dispersed for 3 hours with an ultrasonic washer, pH = 10.5, solid content concentration 10% by mass. An alkaline titanium oxide sol was obtained.
This alkaline titanium oxide sol 2L was charged into a 3 L flask, heated to a temperature of 70 ° C., 69.4 mL of a sodium silicate aqueous solution having a concentration of 432 g / L as SiO 2 was added, and then heated to 90 ° C. After aging for 1 hour, 10% sulfuric acid was added to adjust the pH to 6, and the surface of titanium oxide was surface treated with a hydrous oxide of silicon.
The obtained titanium oxide sol was cooled to room temperature, 5.4 L of pure water was added, impurities were removed and concentrated using a desalting and concentrating device, pH = 7.3, solid content concentration 29% by mass A neutral rutile-type titanium oxide sol was obtained.
It contained 15 wt% of silicon oxide hydroxide with SiO 2 basis relative to TiO 2.
The average particle diameter of titanium oxide in this sol was 50 nm.
〔製造例1〕金担持酸化チタン(A−1)
上記8に記載した方法で合成した光触媒粒子Dの水分散体(固形分:2質量%)400gを、500mLフラスコに仕込み、65℃に加温した。
65℃に達したとき、四塩化金酸四水和物水溶液(濃度:1質量%)を、3.83g添加し、10分間撹拌した。その後、タンニン酸水溶液(濃度:1質量%)を0.79g添加した。添加後65℃で維持したまま1時間撹拌した後80℃まで昇温し、80℃に到達後に3−メルカプトプロピルトリメトキシシラン(信越化学製 KBM−803)を0.12g添加し、6時間撹拌した。
6時間後、室温まで冷却して金担持酸化チタン(A−1)を得た。
得られた合成物中の抗菌性金属粒子の平均粒子径は8nmであった。
[Production Example 1] Gold-supported titanium oxide (A-1)
400 g of an aqueous dispersion (solid content: 2% by mass) of photocatalyst particles D synthesized by the method described in 8 above was charged into a 500 mL flask and heated to 65 ° C.
When the temperature reached 65 ° C., 3.83 g of tetrachloroauric acid tetrahydrate aqueous solution (concentration: 1% by mass) was added and stirred for 10 minutes. Thereafter, 0.79 g of an aqueous tannic acid solution (concentration: 1% by mass) was added. After the addition, the mixture was stirred for 1 hour while maintaining at 65 ° C., then the temperature was raised to 80 ° C., and after reaching 80 ° C., 0.12 g of 3-mercaptopropyltrimethoxysilane (KBM-803 manufactured by Shin-Etsu Chemical) was added and stirred for 6 hours. did.
After 6 hours, the mixture was cooled to room temperature to obtain gold-supported titanium oxide (A-1).
The average particle diameter of the antibacterial metal particles in the obtained composite was 8 nm.
〔製造例2〕銀担持酸化チタン(A−2)
前記〔製造例1〕で用いた四塩化金酸四水和物水溶液(濃度:1質量%)を硝酸銀水溶液(濃度:5質量%)3.78gとし、タンニン酸水溶液(濃度:1質量%)の添加量を10.5gとし、3−メルカプトプロピルトリメトキシシランを0.24gとした以外は、〔製造例1〕と同じ方法にて合成し、銀担持酸化チタン(A−2)を得た。得られた合成物中の抗菌性金属担粒子の平均粒子径は4nmであった。
[Production Example 2] Silver-supported titanium oxide (A-2)
The aqueous solution of tetrachloroauric acid tetrahydrate (concentration: 1% by mass) used in [Production Example 1] was 3.78 g of an aqueous silver nitrate solution (concentration: 5% by mass), and the aqueous tannic acid solution (concentration: 1% by mass). Was added in an amount of 10.5 g and 3-mercaptopropyltrimethoxysilane was 0.24 g, and synthesized in the same manner as in [Production Example 1] to obtain silver-supported titanium oxide (A-2). . The average particle diameter of the antibacterial metal-carrying particles in the obtained composite was 4 nm.
〔製造例3〕酸化銅担持酸化チタン(A−3)
前記〔製造例2〕で用いた硝酸銀水溶液(濃度:5質量%)を硫酸銅五水和物(濃度:5質量%)6.24gとし、タンニン酸水溶液(濃度:1質量%)の添加量を10.60gとし、3−メルカプトプロピルトリメトキシシランを0.16gとした以外は、〔製造例2〕と同じ方法にて合成し、酸化銅担持酸化チタン(A−3)を得た。得られた合成物中の抗菌性金属粒子の平均粒子径は5nmであった。
[Production Example 3] Copper oxide-supported titanium oxide (A-3)
The silver nitrate aqueous solution (concentration: 5% by mass) used in [Production Example 2] was 6.24 g of copper sulfate pentahydrate (concentration: 5% by mass), and the addition amount of the tannic acid aqueous solution (concentration: 1% by mass) Was synthesized in the same manner as in [Production Example 2] except that 0.16 g of 3-mercaptopropyltrimethoxysilane was used and copper oxide-supported titanium oxide (A-3) was obtained. The average particle diameter of the antibacterial metal particles in the obtained composite was 5 nm.
〔製造例4〕銀コロイド(A−4)
イオン交換水400gを、500mLフラスコに仕込み、80℃に加温した。80℃に達したとき、硝酸銀水溶液(濃度:5質量%)を、1.25g添加し、5分間撹拌した。その後、タンニン酸水溶液(濃度:1質量%)1.04g、及びクエン酸ナトリウム二水和物水溶液(濃度:10質量%)1.75gを同時に添加した。
添加後80℃で維持したまま1時間撹拌した後25℃まで冷却し、25℃に到達後にアンモニア水溶液(濃度:1質量%)を1.02g添加し、5分間撹拌した。
その後、3−メルカプトプロピルトリメトキシシラン(信越化学製 KBM−803)を4.0mg添加し、6時間撹拌して銀コロイド(A−4)を得た。
得られた合成物中の抗菌性金属粒子の平均粒子径は8nmであった。
[Production Example 4] Silver colloid (A-4)
400 g of ion-exchanged water was charged into a 500 mL flask and heated to 80 ° C. When the temperature reached 80 ° C., 1.25 g of an aqueous silver nitrate solution (concentration: 5% by mass) was added and stirred for 5 minutes. Thereafter, 1.04 g of an aqueous tannic acid solution (concentration: 1% by mass) and 1.75 g of an aqueous sodium citrate dihydrate solution (concentration: 10% by mass) were added simultaneously.
After the addition, the mixture was stirred for 1 hour while maintaining at 80 ° C. and then cooled to 25 ° C. After reaching 25 ° C., 1.02 g of an aqueous ammonia solution (concentration: 1% by mass) was added and stirred for 5 minutes.
Thereafter, 4.0 mg of 3-mercaptopropyltrimethoxysilane (KBM-803 manufactured by Shin-Etsu Chemical Co., Ltd.) was added and stirred for 6 hours to obtain a silver colloid (A-4).
The average particle diameter of the antibacterial metal particles in the obtained composite was 8 nm.
〔製造例5〕酸化銅コロイド(A−5)
イオン交換水400g、及びクエン酸ナトリウム二水和物水溶液(濃度:10質量%)2.96gを500mLフラスコに仕込み、80℃に加温した。
80℃に達したとき、アンモニア水溶液(濃度:5質量%)を23.20g添加し、5分間撹拌した。その後、硫酸銅五水和物水溶液(濃度:5質量%)を3.20g添加し5分間撹拌後、タンニン酸水溶液(濃度:1質量%)16.37g添加した。
添加後80℃で維持したまま1時間撹拌した後25℃まで冷却し、25℃に到達後に5分間撹拌した。その後、3−メルカプトプロピルトリメトキシシラン(信越化学製 KBM−803)を2.0mg添加し、6時間撹拌して酸化銅コロイド(A−5)を得た。
得られた合成物中の抗菌性金属粒子の平均粒子径は11nmであった。
[Production Example 5] Copper oxide colloid (A-5)
Ion-exchanged water 400 g and sodium citrate dihydrate aqueous solution (concentration: 10% by mass) 2.96 g were charged into a 500 mL flask and heated to 80 ° C.
When the temperature reached 80 ° C., 23.20 g of an aqueous ammonia solution (concentration: 5% by mass) was added and stirred for 5 minutes. Thereafter, 3.20 g of an aqueous copper sulfate pentahydrate solution (concentration: 5% by mass) was added and stirred for 5 minutes, and then 16.37 g of an aqueous tannic acid solution (concentration: 1% by mass) was added.
After the addition, the mixture was stirred for 1 hour while maintaining at 80 ° C., cooled to 25 ° C., and stirred for 5 minutes after reaching 25 ° C. Thereafter, 2.0 mg of 3-mercaptopropyltrimethoxysilane (KBM-803 manufactured by Shin-Etsu Chemical Co., Ltd.) was added and stirred for 6 hours to obtain a copper oxide colloid (A-5).
The average particle diameter of the antibacterial metal particles in the obtained composite was 11 nm.
〔製造例6〕銀コロイド(A−6)
前記〔製造例4〕の3−メルカプトプロピルトリメトキシシランを3−アミノプロピルトリメトキシシラン(信越化学製 KBM−903)とした以外は、前記〔製造例4〕と同じ方法にて合成し、銀コロイド(A−6)を得た。
得られた合成物中の抗菌性金属粒子の平均粒子径は8nmであった。
[Production Example 6] Silver colloid (A-6)
Synthesized by the same method as in [Production Example 4] except that 3-mercaptopropyltrimethoxysilane in [Production Example 4] was changed to 3-aminopropyltrimethoxysilane (KBM-903, manufactured by Shin-Etsu Chemical Co., Ltd.) Colloid (A-6) was obtained.
The average particle diameter of the antibacterial metal particles in the obtained composite was 8 nm.
〔製造例7〕銀コロイド(A−7)
イオン交換水400gを、500mLフラスコに仕込み、80℃に加温した。
80℃に達したとき、硝酸銀水溶液(濃度:5質量%)を、1.25g添加し、5分間撹拌した。
その後、タンニン酸水溶液(濃度:1質量%)1.04g、及びクエン酸ナトリウム二水和物水溶液(濃度:10質量%)1.75gを同時に添加した。
添加後80℃で維持したまま1時間撹拌した後、室温まで冷却して銀コロイド(A−7)を得た。
得られた合成物中の抗菌性金属粒子の平均粒子径は4nmであった。
[Production Example 7] Silver colloid (A-7)
400 g of ion-exchanged water was charged into a 500 mL flask and heated to 80 ° C.
When the temperature reached 80 ° C., 1.25 g of an aqueous silver nitrate solution (concentration: 5% by mass) was added and stirred for 5 minutes.
Thereafter, 1.04 g of an aqueous tannic acid solution (concentration: 1% by mass) and 1.75 g of an aqueous sodium citrate dihydrate solution (concentration: 10% by mass) were added simultaneously.
After the addition, the mixture was stirred for 1 hour while maintaining at 80 ° C., and then cooled to room temperature to obtain a silver colloid (A-7).
The average particle diameter of the antibacterial metal particles in the obtained composite was 4 nm.
〔製造例8〕銀コロイド(A−8)
前記〔製造例4〕の3−メルカプトプロピルトリメトキシシランをフェニルトリメトキシシラン(信越化学製 KBM−103)とした以外は、前記〔製造例4〕と同じ方法にて合成し、銀コロイド(A−8)を得た。
得られた合成物中の抗菌性金属粒子の平均粒子径は8nmであった。
[Production Example 8] Silver colloid (A-8)
Synthesized by the same method as in [Production Example 4] except that 3-mercaptopropyltrimethoxysilane in [Production Example 4] was changed to phenyltrimethoxysilane (KBM-103 manufactured by Shin-Etsu Chemical Co., Ltd.). -8) was obtained.
The average particle diameter of the antibacterial metal particles in the obtained composite was 8 nm.
〔製造例9〕銀コロイド(A−9)
前記〔製造例4〕の3−メルカプトプロピルトリメトキシシランの添加量を0.32mgとした以外は、前記〔製造例4〕と同じ方法にて合成し、銀コロイド(A−9)を得た。
得られた合成物中の抗菌性金属粒子の平均粒子径は4nmであった。
[Production Example 9] Silver colloid (A-9)
A silver colloid (A-9) was obtained by synthesis in the same manner as in [Preparation Example 4] except that the amount of 3-mercaptopropyltrimethoxysilane added in [Preparation Example 4] was 0.32 mg. .
The average particle diameter of the antibacterial metal particles in the obtained composite was 4 nm.
〔実施例1〕
製造例1で作製した金担持酸化チタン(A−1)137.1gと、塩基性のコロイダルシリカである、平均粒子径10nmの水分散コロイダルシリカ(日産化学工業社製 スノーテックスNS、固形分20質量%)123.4gと、パーフルオロアルキルエチレンオキシド付加物である、フルオロカーボン界面活性剤(DIC社製、メガファックF−444)1.5gと、イオン交換水により固形分量を0.1質量%に調整した退色性色素(キシダ化学社製 メチレンブルー)140gとを配合し、全量が1000gとなるようイオン交換水と加えて撹拌することにより、水系組成物を作製した。
この水系組成物を上記の各方法に従って光触媒塗膜を作製し、各種評価結果を表3に示す。
[Example 1]
137.1 g of gold-supported titanium oxide (A-1) produced in Production Example 1 and basic colloidal silica, water-dispersed colloidal silica with an average particle size of 10 nm (Snowtex NS, manufactured by Nissan Chemical Industries, solid content 20) (Mass%) 123.4 g, 1.5 g of a fluorocarbon surfactant (manufactured by DIC, MegaFuck F-444) which is a perfluoroalkylethylene oxide adduct and a solid content of 0.1 mass% with ion-exchanged water. An aqueous composition was prepared by blending 140 g of an adjusted fading dye (methylene blue, manufactured by Kishida Chemical Co., Ltd.), adding ion-exchanged water so that the total amount becomes 1000 g, and stirring.
A photocatalyst coating film was produced from this aqueous composition according to each of the above methods, and various evaluation results are shown in Table 3.
〔実施例2〕
前記〔実施例1〕において金担持酸化チタン(A−1)を、製造例2で作製した銀担持酸化チタン(A−2)とした以外は、前記〔実施例1〕と同様にして水系組成物を作製した。
この水系組成物を上記の各方法に従って光触媒塗膜を作製し、各種評価結果を表3に示す。
[Example 2]
Aqueous composition in the same manner as in [Example 1] except that the gold-supported titanium oxide (A-1) in [Example 1] was changed to the silver-supported titanium oxide (A-2) prepared in Production Example 2. A product was made.
A photocatalyst coating film was produced from this aqueous composition according to each of the above methods, and various evaluation results are shown in Table 3.
〔実施例3〕
前記〔実施例1〕において金担持酸化チタン(A−1)を、製造例3で作製した酸化銅担持酸化チタン(A−3)とした以外は、前記〔実施例1〕と同様にして水系組成物を作製した。
この水系組成物を上記の各方法に従って光触媒塗膜を作製し、各種評価結果を表3に示す。
Example 3
In the same manner as in [Example 1] except that the gold-supported titanium oxide (A-1) in [Example 1] was changed to the copper oxide-supported titanium oxide (A-3) prepared in Production Example 3, A composition was prepared.
A photocatalyst coating film was produced from this aqueous composition according to each of the above methods, and various evaluation results are shown in Table 3.
〔実施例4〕
製造例4で作製した銀コロイド(A−4)550gと、塩基性のコロイダルシリカである、平均粒子径10nmの水分散コロイダルシリカ(日産化学工業社製 スノーテックスNS、固形分20質量%)123.53gと、イオン交換水で濃度を30質量%へ希釈したアクリル−シリコーンエマルジョン(旭化成社製 G639S)8.97gと、パーフルオロアルキルエチレンオキシド付加物である、(AGCセイミケミカル社製 サーフロンS−232)10.33gと、イオン交換水により固形分量を0.1質量%に調整した退色性色素(キシダ化学社製 メチレンブルー)140gとを配合し、全量が1000gとなるようイオン交換水と加えて撹拌することにより、水系組成物を作製した。
この水系組成物を上記の各方法に従って塗膜を作成し、各種評価結果を表3に示す。
Example 4
550 g of silver colloid (A-4) prepared in Production Example 4 and basic colloidal silica, water-dispersed colloidal silica with an average particle size of 10 nm (Snowtex NS, solid content 20 mass%, manufactured by Nissan Chemical Industries, Ltd.) 123 .53 g, 8.97 g of an acrylic-silicone emulsion (G639S manufactured by Asahi Kasei Co., Ltd.) diluted with ion-exchanged water to 30% by mass, and a perfluoroalkylethylene oxide adduct (Surflon S-232 manufactured by AGC Seimi Chemical Co., Ltd.) ) 10.33 g and 140 g of a fading dye (methylene blue manufactured by Kishida Chemical Co., Ltd.) whose solid content was adjusted to 0.1% by mass with ion-exchanged water were added and stirred with ion-exchanged water so that the total amount became 1000 g. By doing this, an aqueous composition was prepared.
A coating film was prepared from the aqueous composition according to each of the above methods, and various evaluation results are shown in Table 3.
〔実施例5〕
前記〔実施例4〕において銀コロイド(A−4)を、製造例5で作製した銀コロイド(A−5)とした以外は、前記〔実施例4〕と同様にして水系組成物を作製した。
この水系組成物を上記の各方法に従って塗膜を作製し、各種評価結果を表3に示す。
Example 5
An aqueous composition was prepared in the same manner as in [Example 4] except that the silver colloid (A-4) in [Example 4] was changed to the silver colloid (A-5) prepared in Production Example 5. .
A coating film was prepared from the aqueous composition according to each of the above methods, and various evaluation results are shown in Table 3.
〔実施例6〕
前記〔実施例4〕において銀コロイド(A−4)を、製造例6で作製した銀コロイド(A−6)とした以外は、前記〔実施例4〕と同様にして水系組成物を作製した。
この水系組成物を上記の各方法に従って塗膜を作製し、各種評価結果を表3に示す。
Example 6
An aqueous composition was prepared in the same manner as in [Example 4] except that the silver colloid (A-4) in [Example 4] was changed to the silver colloid (A-6) prepared in Production Example 6. .
A coating film was prepared from the aqueous composition according to each of the above methods, and various evaluation results are shown in Table 3.
〔実施例7〕
製造例5で作製した酸化銅コロイド(A−5)550gと、塩基性のコロイダルシリカである、平均粒子径10nmの水分散コロイダルシリカ(日産化学工業社製 スノーテックスNS、固形分20質量%)96.08gと、イオン交換水で濃度を30質量%へ希釈したアクリル−シリコーンエマルジョン(旭化成社製 G612)27.27gと、パーフルオロアルキルエチレンオキシド付加物である、(AGCセイミケミカル社製 サーフロンS−232)10.33gと、イオン交換水により固形分量を0.1質量%に調整した退色性色素(キシダ化学社製 メチレンブルー)140gとを配合し、全量が1000gとなるようイオン交換水と加えて撹拌することにより、水系組成物を作製した。
この水系組成物を上記の各方法に従って塗膜を作製し、各種評価結果を表3に示す。
Example 7
550 g of the copper oxide colloid (A-5) prepared in Production Example 5 and basic colloidal silica, water-dispersed colloidal silica having an average particle diameter of 10 nm (Snowtex NS, manufactured by Nissan Chemical Industries, Ltd., solid content 20% by mass) 96.08 g, 27.27 g of an acrylic-silicone emulsion (G612 manufactured by Asahi Kasei Co., Ltd.) diluted to 30% by mass with ion-exchanged water, and a perfluoroalkylethylene oxide adduct (Surflon S- manufactured by AGC Seimi Chemical Co., Ltd.) 232) 10.33 g and 140 g of a fading dye (methylene blue, manufactured by Kishida Chemical Co., Ltd.) whose solid content is adjusted to 0.1% by mass with ion-exchanged water are added and added with ion-exchanged water so that the total amount becomes 1000 g. An aqueous composition was prepared by stirring.
A coating film was prepared from the aqueous composition according to each of the above methods, and various evaluation results are shown in Table 3.
〔実施例8〕
前記〔実施例7〕においてコロイダルシリカを109.80g、アクリル−シリコーンエマルジョンを18.12gとした以外は、前記〔実施例7〕と同様にして水系組成物を作製した。
この水系組成物を上記の各方法に従って塗膜を作製し、各種評価結果を表3に示す。
Example 8
An aqueous composition was prepared in the same manner as in [Example 7] except that in [Example 7], colloidal silica was changed to 109.80 g and acryl-silicone emulsion was changed to 18.12 g.
A coating film was prepared from the aqueous composition according to each of the above methods, and various evaluation results are shown in Table 3.
〔実施例9〕
製造例5で作製した酸化銅コロイド(A−5)550gと、塩基性のコロイダルシリカである、平均粒子径5nmの水分散コロイダルシリカ(日産化学工業社製 スノーテックスNXS、固形分15質量%)36.60gと、塩基性のコロイダルシリカである、平均粒子径22nmの水分散コロイダルシリカ(日産化学工業社製 スノーテックスN40、固形分40質量%)48.04gと、イオン交換水で濃度を30質量%へ希釈したアクリル−シリコーンエマルジョン(旭化成社製 G639S)8.97gと、パーフルオロアルキルエチレンオキシド付加物である、(AGCセイミケミカル社製 サーフロンS−232)10.33gと、イオン交換水により固形分量を0.1質量%に調整した退色性色素(キシダ化学社製 メチレンブルー)140gとを配合し、全量が1000gとなるようイオン交換水と加えて撹拌することにより、水系組成物を作製した。
この水系組成物を上記の各方法に従って塗膜を作製し、各種評価結果を表3に示す。
Example 9
550 g of the copper oxide colloid (A-5) prepared in Production Example 5 and basic colloidal silica, water-dispersed colloidal silica having an average particle diameter of 5 nm (Snowtex NXS, Nissan Chemical Industries, Ltd., solid content: 15% by mass) 36.60 g, basic colloidal silica, water-dispersed colloidal silica having an average particle size of 22 nm (Snowtex N40 manufactured by Nissan Chemical Industries, Ltd., solid content 40% by mass) 48.04 g, and a concentration of 30 with ion-exchanged water 8.97 g of acrylic-silicone emulsion (G639S manufactured by Asahi Kasei Co., Ltd.) diluted to mass%, 10.33 g (Surflon S-232 manufactured by AGC Seimi Chemical Co.) which is a perfluoroalkylethylene oxide adduct, and solid with ion-exchanged water Fading dye (Methylene blue manufactured by Kishida Chemical Co., Ltd.) whose amount was adjusted to 0.1% by mass Blended with 140 g, by the total amount is stirred with the ion-exchanged water so as to be 1000 g, to prepare an aqueous composition.
A coating film was prepared from the aqueous composition according to each of the above methods, and various evaluation results are shown in Table 3.
〔実施例10〕
前記〔実施例4〕において銀コロイド(A−4)を、製造例7で作製した銀コロイド(A−7)とした以外は、前記〔実施例4〕と同様にして水系組成物を作製した。
この水系組成物を上記の各方法に従って塗膜を作製し、各種評価結果を表3に示す。
Example 10
An aqueous composition was prepared in the same manner as in [Example 4] except that the silver colloid (A-4) in [Example 4] was changed to the silver colloid (A-7) prepared in Production Example 7. .
A coating film was prepared from the aqueous composition according to each of the above methods, and various evaluation results are shown in Table 3.
〔実施例11〕
前記〔実施例4〕において銀コロイド(A−4)を、製造例7で作製した銀コロイド(A−8)とした以外は、前記〔実施例4〕と同様にして水系組成物を作製した。
この水系組成物を上記の各方法に従って塗膜を作成し、各種評価結果を表3に示す。
Example 11
An aqueous composition was prepared in the same manner as in [Example 4] except that the silver colloid (A-4) in [Example 4] was changed to the silver colloid (A-8) prepared in Production Example 7. .
A coating film was prepared from the aqueous composition according to each of the above methods, and various evaluation results are shown in Table 3.
〔実施例12〕
前記〔実施例4〕において銀コロイド(A−4)を、製造例7で作製した銀コロイド(A−9)とした以外は、前記〔実施例4〕と同様にして水系組成物を作製した。
この水系組成物を上記の各方法に従って塗膜を作製し、各種評価結果を表3に示す。
Example 12
An aqueous composition was prepared in the same manner as in [Example 4] except that the silver colloid (A-4) in [Example 4] was changed to the silver colloid (A-9) prepared in Production Example 7. .
A coating film was prepared from the aqueous composition according to each of the above methods, and various evaluation results are shown in Table 3.
〔比較例1〕
製造例4で作製した銀コロイド(A−4)を減圧蒸留により10倍に濃縮した。
この10倍に濃縮したコロイド溶液549gへポリビニルアルコール粉末(クラレ社製 PVA217)を撹拌しながらゆっくり添加した。
添加後、平均粒子径12nmの水分散コロイダルシリカ(日産化学工業社製 スノーテックスNS、固形分:20質量%)13.73gと、フルオロカーボン界面活性剤(AGCセイミケミカル社製 サーフロンS−232)10.33gと、イオン交換水により固形分量を1.0質量%に調整した退色性色素(キシダ化学社製、「メチレンブルー」)140gを混合し、全量が1000gとなるようイオン交換水と加えて撹拌することにより、水系組成物を作製した。
この水系組成物を上記の各方法に従って塗膜を作製し、各種評価結果を表3に示す。
[Comparative Example 1]
The silver colloid (A-4) produced in Production Example 4 was concentrated 10 times by vacuum distillation.
Polyvinyl alcohol powder (PVA217 manufactured by Kuraray Co., Ltd.) was slowly added to 549 g of the colloidal solution concentrated 10 times while stirring.
After the addition, 13.73 g of water-dispersed colloidal silica having an average particle diameter of 12 nm (Snowtex NS, solid content: 20% by mass) manufactured by Nissan Chemical Industries, Ltd. and a fluorocarbon surfactant (Surflon S-232 manufactured by AGC Seimi Chemical Co., Ltd.) 10 .33 g and 140 g of a fading dye (manufactured by Kishida Chemical Co., “methylene blue”) whose solid content was adjusted to 1.0 mass% with ion-exchanged water were mixed, and the mixture was stirred with ion-exchanged water so that the total amount became 1000 g. By doing this, an aqueous composition was prepared.
A coating film was prepared from the aqueous composition according to each of the above methods, and various evaluation results are shown in Table 3.
〔比較例2〕
前記〔実施例4〕において、銀コロイド(A−4)を硫酸銅五水和物水溶液(濃度:100ppm)とした以外は、前記〔実施例4〕と同様にして水系組成物を作製した。
この水系組成物を上記の各方法に従って塗膜を作製し、各種評価結果を表3に示す。
[Comparative Example 2]
An aqueous composition was prepared in the same manner as in [Example 4] except that, in [Example 4], the silver colloid (A-4) was changed to a copper sulfate pentahydrate aqueous solution (concentration: 100 ppm).
A coating film was prepared from the aqueous composition according to each of the above methods, and various evaluation results are shown in Table 3.
本発明の塗膜、及び水系組成物は、建築外装、内装材、外装表示用途、自動車、ディスプレイ等への塗装の材料として、産業上の利用可能性を有する。 The coating film and aqueous composition of the present invention have industrial applicability as materials for coating on architectural exteriors, interior materials, exterior display applications, automobiles, displays, and the like.
Claims (9)
JIS K 5600−7−7に準拠した曝露試験で2500時間経過した後の前記塗膜中における前記抗菌性金属含有化合物の全含有質量が、
前記曝露試験前の前記塗膜中における前記抗菌性金属含有化合物の全含有質量に対して5%以上であり、
前記塗膜中に空隙が存在し、
前記塗膜の空隙率が1〜30%である、
塗膜。 A coating film containing an antibacterial metal-containing compound,
The total content mass of the antibacterial metal-containing compound in the coating film after 2500 hours has elapsed in an exposure test according to JIS K 5600-7-7,
5% or more based on the total content of the antibacterial metal-containing compound in the coating film before the exposure test,
There are voids in the coating film,
The porosity of the coating film is 1 to 30%.
Coating film.
水と、
抗菌性金属粒子Aと、
分子中に前記抗菌性金属粒子Aと相互作用する官能基B1と、シラノール基及びシロキサン結合と相互作用する官能基からなる群より選ばれる少なくともいずれかである官能基B2を含む化合物Bと、
コロイダルシリカCと、
を、含有し、
前記抗菌性金属粒子Aの質量の、前記コロイダルシリカCの質量に対する比率が0.01〜10.0%である水系組成物。 An aqueous composition for forming the coating film according to claim 1,
water and,
Antibacterial metal particles A;
A compound B containing in the molecule a functional group B1 that interacts with the antibacterial metal particle A and a functional group B2 that is at least one selected from the group consisting of a silanol group and a functional group that interacts with a siloxane bond;
Colloidal silica C,
Containing,
The aqueous composition whose ratio with respect to the mass of the said colloidal silica C of the mass of the said antibacterial metal particle A is 0.01 to 10.0%.
分子末端の官能基B1として、チオール基又はアミノ基を含むシラン化合物である、請求項2に記載の水系組成物。 Compound B is
The aqueous composition according to claim 2, which is a silane compound containing a thiol group or an amino group as the functional group B1 at the molecular end.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018090830A JP7074556B2 (en) | 2018-05-09 | 2018-05-09 | Coating film and water-based composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018090830A JP7074556B2 (en) | 2018-05-09 | 2018-05-09 | Coating film and water-based composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019196440A true JP2019196440A (en) | 2019-11-14 |
JP7074556B2 JP7074556B2 (en) | 2022-05-24 |
Family
ID=68538266
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018090830A Active JP7074556B2 (en) | 2018-05-09 | 2018-05-09 | Coating film and water-based composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7074556B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022104606A (en) * | 2020-12-28 | 2022-07-08 | 株式会社キャスティングイン | Antibacterial coating agent |
JP2023538264A (en) * | 2020-08-07 | 2023-09-07 | イリノイ トゥール ワークス インコーポレイティド | Vehicle ceramic surface treatment composition and method of using the same |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0867835A (en) * | 1994-08-31 | 1996-03-12 | Matsushita Electric Works Ltd | Antimicrobial inorganic coating |
JPH09137085A (en) * | 1995-11-10 | 1997-05-27 | Katsushi Kobayashi | Antimicrobial coating compound composition |
US6170564B1 (en) * | 1998-12-30 | 2001-01-09 | Unted Technologies Corporation | Room temperature cure antimicrobial coating that demonstrates a balance of properties includes low dissolution and good cohesion and adhesion |
JP2004346201A (en) * | 2003-05-22 | 2004-12-09 | Toto Ltd | Aqueous coating composition, antibacterial member and method for forming coating film |
JP2004346202A (en) * | 2003-05-22 | 2004-12-09 | Toto Ltd | Aqueous coating composition, antibacterial member and method for forming coating film |
JP2009285534A (en) * | 2008-05-27 | 2009-12-10 | Toto Ltd | Photocatalyst-coated body and photocatalytic coating liquid therefor |
JP2010005613A (en) * | 2008-05-26 | 2010-01-14 | Asahi Kasei Chemicals Corp | Complex, functional structure and coating agent |
JP2011080272A (en) * | 2009-10-07 | 2011-04-21 | Toto Ltd | Building external facing material and coating liquid for building external facing, for use in the same |
JP2011527954A (en) * | 2008-07-17 | 2011-11-10 | ダブリュ エル ゴア アンド アソシエイツ ゲーエムベーハー | Antibacterial coating containing complex of ionic fluoropolymer and antibacterial counterion |
-
2018
- 2018-05-09 JP JP2018090830A patent/JP7074556B2/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0867835A (en) * | 1994-08-31 | 1996-03-12 | Matsushita Electric Works Ltd | Antimicrobial inorganic coating |
JPH09137085A (en) * | 1995-11-10 | 1997-05-27 | Katsushi Kobayashi | Antimicrobial coating compound composition |
US6170564B1 (en) * | 1998-12-30 | 2001-01-09 | Unted Technologies Corporation | Room temperature cure antimicrobial coating that demonstrates a balance of properties includes low dissolution and good cohesion and adhesion |
JP2002534553A (en) * | 1998-12-30 | 2002-10-15 | ユナイテッド・テクノロジーズ・コーポレイション | Room temperature curing type antibacterial coating |
JP2004346201A (en) * | 2003-05-22 | 2004-12-09 | Toto Ltd | Aqueous coating composition, antibacterial member and method for forming coating film |
JP2004346202A (en) * | 2003-05-22 | 2004-12-09 | Toto Ltd | Aqueous coating composition, antibacterial member and method for forming coating film |
JP2010005613A (en) * | 2008-05-26 | 2010-01-14 | Asahi Kasei Chemicals Corp | Complex, functional structure and coating agent |
JP2009285534A (en) * | 2008-05-27 | 2009-12-10 | Toto Ltd | Photocatalyst-coated body and photocatalytic coating liquid therefor |
JP2011527954A (en) * | 2008-07-17 | 2011-11-10 | ダブリュ エル ゴア アンド アソシエイツ ゲーエムベーハー | Antibacterial coating containing complex of ionic fluoropolymer and antibacterial counterion |
KR101310692B1 (en) * | 2008-07-17 | 2013-09-25 | 더블유.엘.고어 앤드 어소시에이츠 게엠베하 | Antimicrobial Coatings Comprising a Complex of an Ionic Fluoropolymer and an Antimicrobial Counter-Ion |
JP2011080272A (en) * | 2009-10-07 | 2011-04-21 | Toto Ltd | Building external facing material and coating liquid for building external facing, for use in the same |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2023538264A (en) * | 2020-08-07 | 2023-09-07 | イリノイ トゥール ワークス インコーポレイティド | Vehicle ceramic surface treatment composition and method of using the same |
JP2022104606A (en) * | 2020-12-28 | 2022-07-08 | 株式会社キャスティングイン | Antibacterial coating agent |
JP7098123B1 (en) | 2020-12-28 | 2022-07-11 | 株式会社キャスティングイン | Antibacterial coating agent |
Also Published As
Publication number | Publication date |
---|---|
JP7074556B2 (en) | 2022-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI440505B (en) | Photocatalyst coating | |
JP4092434B1 (en) | Photocatalyst-coated body and photocatalyst coating liquid therefor | |
JP6663375B2 (en) | Inorganic compounds for photocatalysts, photocatalyst compositions, photocatalyst coatings and photocatalyst coating products | |
JP2019098297A (en) | Antibacterial metal carrying photocatalyst, photocatalyst composition, photocatalyst coated film, and photocatalyst coating product | |
WO2011040405A1 (en) | Photocatalyst-coated object and photocatalyst coating liquid therefor | |
JP2017064707A (en) | Photocatalyst coated body | |
CN102574119A (en) | Photocatalyst-coated object and photocatalyst coating liquid therefor | |
JP6283922B1 (en) | Photocatalyst material and photocatalyst coating composition | |
JP3598274B2 (en) | Coating solution for photocatalytic film containing organic dye | |
JP7074556B2 (en) | Coating film and water-based composition | |
US9023146B2 (en) | Oxidizing agents on pigments | |
JP2010042414A (en) | Photocatalyst-coated body and photocatalyst coating liquid therefor | |
JP7126706B2 (en) | Anti-algae long-lasting antifouling agent composition | |
JP2008307526A (en) | Photocatalytic coated body and photocatalytic coating liquid for the same | |
JP2003080078A (en) | Photoactive compounds and uses thereof | |
JP7023689B2 (en) | Photocatalyst coating body and photocatalyst coating composition | |
US20200070124A1 (en) | Photocatalytic coating, process for producing photocatalytic coating, and process for producing photocatalytic body | |
JP2012233051A (en) | Coating composition | |
WO2009123135A1 (en) | Photocatalyst coating composition | |
Shilova et al. | Sol-gel derived TiO2 and epoxy-titanate protective coatings: structure, property, fungicidal activity and biomineralization effects | |
JP6714530B2 (en) | Photocatalyst composition, photocatalyst coating film and photocatalyst coating product | |
CN103313793B (en) | Photocatalyst-coated object and photocatalyst coating liquid for same | |
JP6646603B2 (en) | Multilayer coating, coating agent set, and painted body | |
JP7151509B2 (en) | Photocatalyst coated body | |
JP2002079109A (en) | Optical semiconductor metal-organic substance mixed body, composition containing optical semiconductor metal, method for producing photocatalytic film and photocatalytic member |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210209 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20211018 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20211116 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220111 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220419 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220512 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7074556 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |