[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2019184748A - Optical system and image capturing device - Google Patents

Optical system and image capturing device Download PDF

Info

Publication number
JP2019184748A
JP2019184748A JP2018073492A JP2018073492A JP2019184748A JP 2019184748 A JP2019184748 A JP 2019184748A JP 2018073492 A JP2018073492 A JP 2018073492A JP 2018073492 A JP2018073492 A JP 2018073492A JP 2019184748 A JP2019184748 A JP 2019184748A
Authority
JP
Japan
Prior art keywords
lens
optical system
focal length
conditional expression
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018073492A
Other languages
Japanese (ja)
Other versions
JP7179477B2 (en
Inventor
泰明 萩原
Yasuaki Hagiwara
泰明 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2018073492A priority Critical patent/JP7179477B2/en
Publication of JP2019184748A publication Critical patent/JP2019184748A/en
Application granted granted Critical
Publication of JP7179477B2 publication Critical patent/JP7179477B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lenses (AREA)

Abstract

To provide a compact optical system that offers high performance, and to provide an image capturing device.SOLUTION: An optical system comprises a plurality of lens groups and an aperture stop, where the plurality of lens groups consists of a first lens group B1 with positive refractive power disposed on the object side of the aperture stop SP and a second lens group B2 with positive refractive power disposed on the image side of the aperture stop SP, the first lens group B1 consisting of a first positive lens Lp1, a second positive lens Lp2, and a first negative lens Ln1 arranged in order from the object side to the image side, and the second lens group B2 consisting of at least one lens, a second negative lens Ln2, and a third positive lens Lp3 arranged in order from the object side to the image side. A focal length f1 of the first lens group B1 and a focal length f2 of the second lens group B2 are each set appropriately.SELECTED DRAWING: Figure 1

Description

本発明は、光学系及び撮像装置に関する。   The present invention relates to an optical system and an imaging apparatus.

標準画角の撮影光学系として、開口絞り物体側および像側のそれぞれに3枚のレンズを配置した所謂ガウスタイプの光学系が知られている。   As a photographing optical system having a standard angle of view, a so-called Gauss type optical system is known in which three lenses are arranged on each of the aperture stop object side and the image side.

特許文献1に記載の光学系は、当該ガウスタイプの光学系に対し、最も像面側から2番目に負レンズを追加した構成を有する。   The optical system described in Patent Document 1 has a configuration in which a negative lens is added second from the image plane side to the Gauss type optical system.

特開2011−24610号公報JP 2011-24610 A

特許文献1に記載の光学系をさらに小型化しつつ、諸収差を良好に補正するためには、開口絞りの物体側と像側のレンズの構成を適切にする必要がある。   In order to satisfactorily correct various aberrations while further downsizing the optical system described in Patent Document 1, it is necessary to appropriately configure the object side and image side lenses of the aperture stop.

本発明は上記課題に鑑みてなされたものであり、小型で高い光学性能を有する光学系及び撮像装置を提供することを目的とする。   The present invention has been made in view of the above problems, and an object thereof is to provide an optical system and an imaging apparatus that are small and have high optical performance.

複数のレンズ群と開口絞りを有する光学系であって、前記複数のレンズ群は、前記開口絞りの物体側に配置された正の屈折力の第1レンズ群と、前記開口絞りの像側に配置された正の屈折力の第2レンズ群からなり、前記第1レンズ群は、物体側から像側へ順に配置された、第1正レンズ、第2正レンズ、第1負レンズからなり、前記第2レンズ群は、物体側から像側へ順に配置された、少なくとも1枚のレンズ、第2負レンズ、第3正レンズからなり、前記第1レンズ群の焦点距離をf1、前記第2レンズ群の焦点距離をf2、とするとき、
0.50<f1/f2<1.65
なる条件式を満たすことを特徴とする。
An optical system having a plurality of lens groups and an aperture stop, wherein the plurality of lens groups are arranged on the object side of the aperture stop, the first lens group having a positive refractive power, and the image side of the aperture stop. The first lens group includes a first positive lens, a second positive lens, and a first negative lens, which are disposed in order from the object side to the image side. The second lens group includes at least one lens, a second negative lens, and a third positive lens arranged in order from the object side to the image side, and the focal length of the first lens group is f1, the second lens group, and the second lens group. When the focal length of the lens group is f2,
0.50 <f1 / f2 <1.65
The following conditional expression is satisfied.

本発明によれば、小型で高い光学性能を有する光学系及び撮像装置を提供することを目的とする。   An object of the present invention is to provide an optical system and an imaging apparatus that are small and have high optical performance.

実施例1の光学系の断面図である。2 is a cross-sectional view of the optical system of Example 1. FIG. 実施例1の光学系の収差図である。FIG. 4 is an aberration diagram of the optical system according to Example 1. 実施例2の光学系の断面図である。6 is a cross-sectional view of an optical system according to Example 2. FIG. 実施例2の光学系の収差図である。6 is an aberration diagram of the optical system according to Example 2. FIG. 実施例3の光学系の断面図である。6 is a sectional view of an optical system according to Example 3. FIG. 実施例3の光学系の収差図である。FIG. 6 is an aberration diagram for the optical system according to Example 3. 実施例4の光学系の断面図である。6 is a sectional view of an optical system according to Example 4. FIG. 実施例4の光学系の収差図である。FIG. 6 is an aberration diagram for the optical system according to Example 4. 実施例5の光学系の断面図である。10 is a cross-sectional view of an optical system according to Example 5. FIG. 実施例5の光学系の収差図である。FIG. 10 is an aberration diagram for the optical system according to Example 5. 実施例6の光学系の断面図である。10 is a cross-sectional view of an optical system according to Example 6. FIG. 実施例6の光学系の収差図である。10 is an aberration diagram of the optical system according to Example 6. FIG. 撮像装置の構成を示す図である。It is a figure which shows the structure of an imaging device.

以下、本発明の実施例に係る光学系及び撮像装置について、添付の図面に基づいて詳細に説明する。   Hereinafter, an optical system and an imaging apparatus according to embodiments of the present invention will be described in detail with reference to the accompanying drawings.

[光学系の実施例]
各実施例の光学系は、デジタルビデオカメラ、デジタルカメラ、銀塩フィルムカメラ、テレビカメラ等の撮像装置に用いられる撮影光学系である。図1、3、5、7、9、11に示す光学系の断面図において、左方が物体側(前方)であり、右方が像側(後方)である。また各断面図において、iを物体側から像側へのレンズ群の順番とすると、Biは第iレンズ群を示す。また、開口絞りSPは、開放Fナンバー(Fno)の光束を決定(制限)する。GBは光学フィルター、フェースプレート、ローパスフィルター、赤外カットフィルターなどに相当する光学ブロックである。
[Example of optical system]
The optical system of each embodiment is a photographing optical system used for an imaging apparatus such as a digital video camera, a digital camera, a silver salt film camera, and a television camera. In the cross-sectional views of the optical system shown in FIGS. 1, 3, 5, 7, 9, and 11, the left side is the object side (front), and the right side is the image side (rear). In each cross-sectional view, Bi represents the i-th lens group, where i is the order of the lens group from the object side to the image side. Further, the aperture stop SP determines (limits) the light flux of the open F number (Fno). GB is an optical block corresponding to an optical filter, a face plate, a low-pass filter, an infrared cut filter, or the like.

デジタルビデオカメラやデジタルカメラなどに各実施例の光学系を使用する場合は、像面IPは、CCDセンサまたはCMOSセンサ等の撮像素子(光電変換素子)に相当する。銀塩フィルムカメラに各実施例の光学系を使用する場合は、像面IPはフィルム面に相当する。   When the optical system of each embodiment is used in a digital video camera, a digital camera, or the like, the image plane IP corresponds to an image sensor (photoelectric conversion element) such as a CCD sensor or a CMOS sensor. When the optical system of each embodiment is used for a silver salt film camera, the image plane IP corresponds to a film plane.

図2、4、6、8、10、12は、各実施例の光学系の収差図である。球面収差図において実線はd線(波長587.6nm)、二点鎖線はg線(波長435.8nm)である。非点収差図において破線ΔMはメリディオナル像面、実線ΔSはサジタル像面である。歪曲収差はd線について示している。倍率色収差はg線について示している。ωは半画角(度)、FnoはFナンバーである。   2, 4, 6, 8, 10, and 12 are aberration diagrams of the optical system of each example. In the spherical aberration diagram, the solid line is the d-line (wavelength 587.6 nm), and the two-dot chain line is the g-line (wavelength 435.8 nm). In the astigmatism diagram, a broken line ΔM is a meridional image plane, and a solid line ΔS is a sagittal image plane. Distortion is shown for the d-line. The lateral chromatic aberration is shown for the g-line. ω is a half angle of view (degree), and Fno is an F number.

本明細書において、「バックフォーカス」は、レンズ最終面から近軸像面までの距離を空気換算長により表記したものとする。「レンズ全長」は、光学系の最前面から最終面までの光軸上の距離にバックフォーカスを加えた長さである。   In this specification, “back focus” represents the distance from the lens final surface to the paraxial image surface by an air-converted length. The “lens total length” is a length obtained by adding a back focus to a distance on the optical axis from the forefront surface to the final surface of the optical system.

各実施例の光学系は、複数のレンズ群と開口絞りを有し、当該複数のレンズ群は、開口絞りの物体側に配置された正の屈折力の第1レンズ群と、開口絞りの像側に配置された正の屈折力の第2レンズ群からなる。そして、第1レンズ群は、物体側から像側へ順に配置された、第1正レンズ、第2正レンズ、第1負レンズからなり、第2レンズ群は、物体側から像側へ順に配置された、少なくとも1枚のレンズ、第2負レンズ、第3正レンズからなる。さらに、第1レンズ群の焦点距離をf1、第2レンズ群の焦点距離をf2とするとき、以下の条件式(1)を満たす。
0.50<f1/f2<1.65 ・・・・(1)
The optical system of each embodiment includes a plurality of lens groups and an aperture stop. The plurality of lens groups includes a first lens group having a positive refractive power disposed on the object side of the aperture stop, and an image of the aperture stop. And a second lens unit having a positive refractive power disposed on the side. The first lens group includes a first positive lens, a second positive lens, and a first negative lens arranged in order from the object side to the image side, and the second lens group is arranged in order from the object side to the image side. And at least one lens, a second negative lens, and a third positive lens. Further, when the focal length of the first lens group is f1 and the focal length of the second lens group is f2, the following conditional expression (1) is satisfied.
0.50 <f1 / f2 <1.65 (1)

条件式(1)を満たすように第2レンズ群の焦点距離に対する第1レンズ群の焦点距離を短くし、第1レンズ群の屈折力を比較的強くすることによって、バックフォーカスを短くして、光学系の全長の短縮を図っている。   The back focus is shortened by shortening the focal length of the first lens group relative to the focal length of the second lens group so as to satisfy the conditional expression (1), and by relatively increasing the refractive power of the first lens group. The total length of the optical system is shortened.

一方、第1レンズ群の屈折力を強くすることによってバックフォーカスが短くなると、像面に対する光線の最大入射角が大きくなり、周辺光量が低下する。また、像面湾曲も生じやすくなる。これらに鑑み、第2レンズ群の像面側に、第2負レンズと第3正レンズを配置している。   On the other hand, when the back focus is shortened by increasing the refractive power of the first lens group, the maximum incident angle of the light beam with respect to the image plane is increased, and the peripheral light amount is decreased. Also, field curvature is likely to occur. In view of these, the second negative lens and the third positive lens are arranged on the image plane side of the second lens group.

像面に対して最大入射角で入射する光線は、軸外光束を構成する光線である。第2負レンズによって軸外光束と軸上光束を光軸に直交する方向(以下、径方向という)に分離させ、第3正レンズを通過する軸外光束の主光線の高さを適度に高くしている。第3正レンズで軸上光束に比べて軸外光束を強く屈折させることによって、軸外光束の入射角を小さくすることができる。また、像面湾曲も補正することができる。   The light beam incident on the image plane at the maximum incident angle is a light beam constituting an off-axis light beam. The off-axis light beam and the on-axis light beam are separated in a direction orthogonal to the optical axis (hereinafter referred to as the radial direction) by the second negative lens, and the height of the principal ray of the off-axis light beam passing through the third positive lens is appropriately increased. is doing. By making the third positive lens refract the off-axis light beam stronger than the on-axis light beam, the incident angle of the off-axis light beam can be reduced. In addition, field curvature can also be corrected.

条件式(1)の下限値を下回って、第1レンズ群の焦点距離が短くなり、第1レンズ群の屈折力が強くなると、球面収差や像面湾曲の補正が困難となるため好ましくない。条件式(1)の上限値を上回って、第1レンズ群の焦点距離が長くなり、屈折力が弱くなると、光学系の全長が長くなるため好ましくない。   If the focal length of the first lens group becomes shorter and the refractive power of the first lens group becomes stronger than the lower limit value of conditional expression (1), it will be difficult to correct spherical aberration and curvature of field, which is not preferable. If the upper limit of conditional expression (1) is exceeded and the focal length of the first lens unit becomes longer and the refractive power becomes weaker, the total length of the optical system becomes longer, which is not preferable.

以上のレンズ構成及び条件式を満たすことにより、小型で高い光学性能を有する光学系を得ることができる。   By satisfying the above lens configuration and conditional expressions, it is possible to obtain a small optical system having high optical performance.

なお、好ましくは条件式(1)の数値範囲を次のように設定するとよい。
0.75<f1/f2<1.60 ・・・(1a)
Preferably, the numerical range of conditional expression (1) is set as follows.
0.75 <f1 / f2 <1.60 (1a)

さらに好ましくは、条件式(1)の数値範囲を次のように設定するとよい。
0.90<f1/f2<1.50 ・・・(1b)
More preferably, the numerical range of conditional expression (1) may be set as follows.
0.90 <f1 / f2 <1.50 (1b)

さらに、本発明の実施例に係る光学系は、条件式(2)〜(10)のうち1つ以上を満たすことが好ましい。
1.50<|fn2|/sk<10.00 ・・・(2)
0.70<|fn2|/f<3.30 ・・・(3)
0.75<Ls/f<0.95 ・・・(4)
0.70<Td/f<1.00 ・・・(5)
0.70<|fn2|/fp3<4.00 ・・・(6)
0.80<f1/f<1.70 ・・・(7)
0.75<fp1/f<1.20 ・・・(8)
0.25<|fn1|/f<0.6 ・・・(9)
0.50<fp1/fp3<1.25 ・・・(10)
Furthermore, the optical system according to the example of the present invention preferably satisfies one or more of conditional expressions (2) to (10).
1.50 <| fn2 | / sk <10.00 (2)
0.70 <| fn2 | / f <3.30 (3)
0.75 <Ls / f <0.95 (4)
0.70 <Td / f <1.00 (5)
0.70 <| fn2 | / fp3 <4.00 (6)
0.80 <f1 / f <1.70 (7)
0.75 <fp1 / f <1.20 (8)
0.25 <| fn1 | / f <0.6 (9)
0.50 <fp1 / fp3 <1.25 (10)

第1負レンズの焦点距離をfn1、第2負レンズの焦点距離をfn2とする。第1正レンズの焦点距離をfp1、第3正レンズの焦点距離をfp3とする。光学系の焦点距離をfとする。   The focal length of the first negative lens is fn1, and the focal length of the second negative lens is fn2. The focal length of the first positive lens is fp1, and the focal length of the third positive lens is fp3. Let f be the focal length of the optical system.

無限遠合焦時における光学系のバックフォーカスをskとする。無限遠合焦時における、開口絞りから像面までの光軸上の距離をLsとする。なお、開口絞りから像面までの光軸上の距離Lsは、開口絞りから第3正レンズの像側のレンズ面までの光軸上の距離(図1等においてSdで表している)にバックフォーカスを加えた距離である。無限遠合焦時における第1正レンズの物体側のレンズ面から第3正レンズの像側のレンズ面までの光軸上の距離をTdとする。   Let sk be the back focus of the optical system when focusing on infinity. Let Ls be the distance on the optical axis from the aperture stop to the image plane when focusing on infinity. The distance Ls on the optical axis from the aperture stop to the image plane is back to the distance on the optical axis from the aperture stop to the lens surface on the image side of the third positive lens (represented by Sd in FIG. 1 and the like). This is the distance with focus. Let Td be the distance on the optical axis from the object-side lens surface of the first positive lens to the image-side lens surface of the third positive lens when focusing on infinity.

条件式(2)の下限値を下回って、バックフォーカスに対して第2負レンズの焦点距離の絶対値が小さくなると、第2負レンズの強い負の屈折力により軸外光束と軸上光束が径方向に大きく分離される。第3正レンズを通過する軸外光束の主光線の高さが高くなり、軸外光束に対する屈折作用が強くなりすぎて、像面湾曲の補正が過剰になってしまうため好ましくない。また、像面に対する光線の最大入射角が小さくなりすぎて、光学系の全長が長くなるため好ましくない。条件式(2)の上限値を上回って、第2負レンズの焦点距離の絶対値が大きくなると、第2負レンズによる軸外光束と軸上光束を分離する力が弱くなる。これにより、第3正レンズを通過する軸外光束の高さが低くなり、軸外光束に対する屈折作用が弱くなり、像面に対する光線の最大入射角が大きくなって、周辺光量の低下を低減することが困難となるため好ましくない。   When the absolute value of the focal length of the second negative lens with respect to the back focus becomes smaller than the lower limit value of the conditional expression (2), the off-axis light beam and the on-axis light beam are caused by the strong negative refractive power of the second negative lens. Largely separated in the radial direction. The height of the principal ray of the off-axis light beam passing through the third positive lens becomes high, the refraction effect on the off-axis light beam becomes too strong, and the correction of field curvature becomes excessive, which is not preferable. Further, the maximum incident angle of the light beam with respect to the image plane becomes too small, and the total length of the optical system becomes long. If the absolute value of the focal length of the second negative lens increases beyond the upper limit value of conditional expression (2), the force separating the off-axis light beam and the on-axis light beam by the second negative lens becomes weak. As a result, the height of the off-axis light beam passing through the third positive lens is lowered, the refraction effect on the off-axis light beam is weakened, the maximum incident angle of the light beam with respect to the image plane is increased, and the decrease in the peripheral light amount is reduced. This is not preferable because it becomes difficult.

条件式(3)の下限値を下回って、光学系の焦点距離に対して第2レンズ群の焦点距離の絶対値が小さくなり、負の屈折力が強くなると、像面湾曲の補正が困難になるため好ましくない。条件式(3)の上限値を上回って、第2レンズ群の焦点距離の絶対値が大きくなり、負の屈折力が弱くなると、第3正レンズよりも物体側において軸外光束と軸上光束を分離する力が弱くなる。これにより、第3正レンズを通過する軸外光束の高さが低くなり、軸外光束に対する屈折作用が弱くなり、像面に対する光線の最大入射角が大きくなって、周辺光量の低下を低減することが困難となるため好ましくない。   If the absolute value of the focal length of the second lens unit becomes smaller than the lower limit value of the conditional expression (3) and the negative refractive power becomes strong with respect to the focal length of the optical system, it becomes difficult to correct field curvature. Therefore, it is not preferable. When the absolute value of the focal length of the second lens unit becomes larger and the negative refractive power becomes weaker than the upper limit of conditional expression (3), the off-axis light beam and the on-axis light beam are closer to the object side than the third positive lens. The power to separate is weakened. As a result, the height of the off-axis light beam passing through the third positive lens is lowered, the refraction effect on the off-axis light beam is weakened, the maximum incident angle of the light beam with respect to the image plane is increased, and the decrease in the peripheral light amount is reduced. This is not preferable because it becomes difficult.

条件式(4)の下限値を下回って、開口絞りから像面までの距離が短くなると、像面に対する光線の最大入射角が大きくなって、周辺光量の低下を低減することが困難となるため好ましくない。条件式(4)の上限値を上回って、開口絞りから像面までの距離が長くなると、光学系の全長が長くなるため好ましくない。   If the distance from the aperture stop to the image plane becomes shorter than the lower limit value of conditional expression (4), the maximum incident angle of the light beam with respect to the image plane increases, making it difficult to reduce the decrease in the amount of peripheral light. It is not preferable. If the distance from the aperture stop to the image plane becomes longer than the upper limit value of conditional expression (4), the total length of the optical system becomes longer, which is not preferable.

条件式(5)の下限値を下回って、第1正レンズの物体側のレンズ面から第3正レンズの像側のレンズ面までの距離が短くなると、光学系を構成する各レンズの屈折力が強くなり、球面収差や軸上色収差が大きくなるので好ましくない。条件式(5)の上限値を上回って、第1正レンズの物体側のレンズ面から第3正レンズの像側のレンズ面までの距離が長くなると、光学系の全長が長くなり径も大きくなって、光学系が大型化するため好ましくない。   When the distance from the object-side lens surface of the first positive lens to the image-side lens surface of the third positive lens becomes shorter than the lower limit value of conditional expression (5), the refractive power of each lens constituting the optical system Is increased, and spherical aberration and axial chromatic aberration are increased. If the distance from the object-side lens surface of the first positive lens to the image-side lens surface of the third positive lens becomes longer than the upper limit of conditional expression (5), the total length of the optical system becomes longer and the diameter increases. This is not preferable because the optical system becomes large.

条件式(6)の下限値を下回って、第2負レンズの焦点距離の絶対値が小さくなり、第2負レンズの屈折力が強くなると、軸外光束と軸上光束を分離する力が強くなる。第3正レンズによって軸上光束に比べて軸外光束を大きく屈折させる作用が強くなり、像面湾曲の補正が過剰になってしまうため好ましくない。逆に、第3正レンズの焦点距離が長くなって、第3正レンズの屈折力が弱くなると、像面に対する光線の最大入射角が大きくなって、周辺光量の低下を低減することや、像面湾曲の補正が困難となるので好ましくない。   When the absolute value of the focal length of the second negative lens becomes smaller than the lower limit value of the conditional expression (6) and the refractive power of the second negative lens becomes stronger, the force for separating the off-axis light beam and the on-axis light beam becomes stronger. Become. The third positive lens is not preferable because the action of refracting the off-axis light beam larger than the on-axis light beam becomes strong, and the correction of the field curvature becomes excessive. Conversely, when the focal length of the third positive lens is increased and the refractive power of the third positive lens is decreased, the maximum incident angle of the light beam with respect to the image surface is increased, thereby reducing the decrease in the peripheral light amount, This is not preferable because it is difficult to correct the surface curvature.

条件式(6)の上限値を上回って、第2負レンズの焦点距離の絶対値が大きくなり、第2負レンズの屈折力が弱くなると、軸外光束と軸上光束を分離する力が弱くなる。これにより、第3正レンズを通過する軸外光束の高さが低くなり、軸外光束に対する屈折作用が弱くなり、像面に対する光線の最大入射角が大きくなって、周辺光量の低下を低減することが困難となるため好ましくない。逆に、第3正レンズの焦点距離が短くなって、第3正レンズの屈折力が強くなると、像面湾曲の補正が過剰になってしまうため好ましくない。   If the absolute value of the focal length of the second negative lens becomes larger than the upper limit value of conditional expression (6) and the refractive power of the second negative lens becomes weak, the force for separating the off-axis light beam and the on-axis light beam becomes weak. Become. As a result, the height of the off-axis light beam passing through the third positive lens is lowered, the refraction effect on the off-axis light beam is weakened, the maximum incident angle of the light beam with respect to the image plane is increased, and the decrease in the peripheral light amount is reduced. This is not preferable because it becomes difficult. On the other hand, if the focal length of the third positive lens is shortened and the refractive power of the third positive lens is increased, field curvature correction becomes excessive, which is not preferable.

条件式(7)の下限値を下回って、第1レンズ群の焦点距離が短くなり、第1レンズ群の屈折力が強くなると、球面収差や軸上色収差の補正が困難になるため好ましくない。条件式(7)の上限値を上回って、第1レンズ群の焦点距離が長くなり、第1レンズ群の屈折力が弱くなると、光学系の全長が長くなるので好ましくない。   If the focal length of the first lens group becomes shorter and the refractive power of the first lens group becomes stronger than the lower limit value of the conditional expression (7), it is not preferable because correction of spherical aberration and axial chromatic aberration becomes difficult. If the upper limit of conditional expression (7) is exceeded and the focal length of the first lens group becomes longer and the refractive power of the first lens group becomes weaker, the total length of the optical system becomes longer, which is not preferable.

条件式(8)の下限値を下回って、第1正レンズの焦点距離が短くなり、第1正レンズの屈折力が強くなると、球面収差や軸上色収差の補正が困難になるため好ましくない。条件式(8)の上限値を上回って、第1正レンズの焦点距離が長くなり、第1正レンズの屈折力が弱くなると、光学系の全長が長くなるので好ましくない。   If the focal length of the first positive lens becomes shorter and the refractive power of the first positive lens becomes stronger than the lower limit value of the conditional expression (8), it is not preferable because correction of spherical aberration and axial chromatic aberration becomes difficult. If the upper limit of conditional expression (8) is exceeded and the focal length of the first positive lens becomes longer and the refractive power of the first positive lens becomes weaker, the total length of the optical system becomes longer, which is not preferable.

条件式(9)の下限値を下回って、第1負レンズの焦点距離の絶対値が小さくなり、第1負レンズの屈折力が強くなると、球面収差の補正が困難になるため好ましくない。条件式(9)の上限値を上回って、第1負レンズの焦点距離の絶対値が大きくなり、第1負レンズの屈折力が弱いと、軸上色収差の補正が困難になるため好ましくない。   If the absolute value of the focal length of the first negative lens becomes smaller than the lower limit value of conditional expression (9) and the refractive power of the first negative lens becomes stronger, it will be difficult to correct spherical aberration, which is not preferable. If the absolute value of the focal length of the first negative lens is larger than the upper limit value of conditional expression (9) and the refractive power of the first negative lens is weak, it is not preferable because it is difficult to correct axial chromatic aberration.

条件式(10)の下限値を下回って、第1正レンズの焦点距離が短くなり、第1正レンズの屈折力が強くなると、像面湾曲の補正が過剰になるため好ましくない。条件式(10)の上限値を上回って、第1正レンズの焦点距離が長くなり、第1正レンズの屈折力が弱くなると、光球面収差の補正が困難になるため好ましくない。   If the focal length of the first positive lens becomes shorter than the lower limit value of conditional expression (10) and the refractive power of the first positive lens becomes stronger, the correction of field curvature becomes excessive, which is not preferable. If the upper limit of conditional expression (10) is exceeded and the focal length of the first positive lens becomes longer and the refractive power of the first positive lens becomes weaker, correction of photospherical aberration becomes difficult, which is not preferable.

なお、好ましくは条件式(2)〜(10)の数値範囲を次のように設定するとよい。
1.80<|fn2|/sk<9.00 ・・・(2a)
0.75<|fn2|/f<3.20 ・・・(3a)
0.80<Ls/f<0.93 ・・・(4a)
0.73<Td/f<0.90 ・・・(5a)
0.75<|fn2|/fp3<3.70 ・・・(6a)
1.00<f1/f<1.60 ・・・(7a)
0.80<fp1/f<1.10 ・・・(8a)
0.30<|fn1|/f<0.55 ・・・(9a)
0.60<fp1/fp3<1.20 ・・・(10a)
Preferably, the numerical ranges of conditional expressions (2) to (10) are set as follows.
1.80 <| fn2 | / sk <9.00 (2a)
0.75 <| fn2 | / f <3.20 (3a)
0.80 <Ls / f <0.93 (4a)
0.73 <Td / f <0.90 (5a)
0.75 <| fn2 | / fp3 <3.70 (6a)
1.00 <f1 / f <1.60 (7a)
0.80 <fp1 / f <1.10 (8a)
0.30 <| fn1 | / f <0.55 (9a)
0.60 <fp1 / fp3 <1.20 (10a)

さらに好ましくは、条件式(2)〜(10)の数値範囲を次のように設定するとよい。
2.00<|fn2|/sk<8.00 ・・・(2b)
0.80<|fn2|/f<3.10 ・・・(3b)
0.83<Ls/f<0.90 ・・・(4b)
0.76<Td/f<0.88 ・・・(5b)
0.83<|fn2|/fp3<3.50 ・・・(6b)
1.20<f1/f<1.50 ・・・(7b)
0.83<fp1/f<1.05 ・・・(8b)
0.33<|fn1|/f<0.50 ・・・(9b)
0.73<fp1/fp3<1.18 ・・・(10b)
More preferably, the numerical ranges of the conditional expressions (2) to (10) may be set as follows.
2.00 <| fn2 | / sk <8.00 (2b)
0.80 <| fn2 | / f <3.10 (3b)
0.83 <Ls / f <0.90 (4b)
0.76 <Td / f <0.88 (5b)
0.83 <| fn2 | / fp3 <3.50 (6b)
1.20 <f1 / f <1.50 (7b)
0.83 <fp1 / f <1.05 (8b)
0.33 <| fn1 | / f <0.50 (9b)
0.73 <fp1 / fp3 <1.18 (10b)

さらに、実施例に係る光学系は、第1負レンズの像側のレンズ面が凹面であり、開口絞りの像側に隣接して配置されたレンズの物体側のレンズ面が凹面であることが好ましい。開口絞りの両側のレンズ面を対称的な凹面とすることにより、球面収差と像面湾曲を良好に補正できる。   Further, in the optical system according to the example, the lens surface on the image side of the first negative lens is a concave surface, and the lens surface on the object side of the lens disposed adjacent to the image side of the aperture stop is a concave surface. preferable. By making the lens surfaces on both sides of the aperture stop symmetrically concave, spherical aberration and curvature of field can be corrected well.

第2レンズ群は、物体側から像側に順に配置された、2枚のレンズと、第2負レンズ、第3正レンズからなることが好ましい。特に2枚のレンズのうちの少なくとも1枚を負レンズとして、第2レンズ群に2枚以上の負レンズを配置することが好ましい。これによって、第2レンズ群内の負レンズが第2負レンズの1枚のみである場合に比べて、第1レンズ群で生じる球面収差及び軸上色収差を補正しやすくなる。また、開口絞りの物体側に隣接して配置されるレンズが負レンズであることが好ましい。開口絞りに対して第1負レンズと対称的に配置されることで、球面収差及び軸上色収差を補正しやすくなる。   The second lens group is preferably composed of two lenses, a second negative lens, and a third positive lens arranged in order from the object side to the image side. In particular, it is preferable that at least one of the two lenses is a negative lens, and two or more negative lenses are arranged in the second lens group. This makes it easier to correct spherical aberration and axial chromatic aberration that occur in the first lens group than in the case where there is only one negative lens in the second lens group. Further, it is preferable that the lens disposed adjacent to the object side of the aperture stop is a negative lens. Arranging symmetrically with the first negative lens with respect to the aperture stop makes it easier to correct spherical aberration and axial chromatic aberration.

さらに、実施例に係る光学系を構成する全てのレンズは、両面が球面形状であることが好ましい。非球面レンズを用いないことで、安価な光学系を得ることができる。   Furthermore, it is preferable that all the lenses constituting the optical system according to the example have a spherical shape on both sides. By using no aspheric lens, an inexpensive optical system can be obtained.

次に実施例1〜6の光学系について説明する。図1は実施例1の光学系OPの、無限遠に合焦時の断面図であり、図2は無限遠に合焦時の光学系OPの収差図である。図3は実施例2の光学系OPの、無限遠に合焦時の断面図であり、図4は無限遠に合焦時の光学系OPの収差図である。図5は実施例3の光学系OPの、無限遠に合焦時の断面図であり、図6は無限遠に合焦時の光学系OPの収差図である。図7は実施例4の光学系OPの、無限遠に合焦時の断面図であり、図8は無限遠に合焦時の光学系OPの収差図である。図9は実施例5の光学系OPの、無限遠に合焦時の断面図であり、図10は無限遠に合焦時の光学系OPの収差図である。図11は実施例6の光学系OPの、無限遠に合焦時の断面図であり、図12は無限遠に合焦時の光学系OPの収差図である。   Next, optical systems of Examples 1 to 6 will be described. FIG. 1 is a cross-sectional view of the optical system OP of Example 1 when focused on infinity, and FIG. 2 is an aberration diagram of the optical system OP when focused on infinity. FIG. 3 is a cross-sectional view of the optical system OP of Example 2 when focused on infinity, and FIG. 4 is an aberration diagram of the optical system OP when focused on infinity. FIG. 5 is a cross-sectional view of the optical system OP of Example 3 when focused on infinity, and FIG. 6 is an aberration diagram of the optical system OP when focused on infinity. FIG. 7 is a cross-sectional view of the optical system OP of Example 4 when focused on infinity, and FIG. 8 is an aberration diagram of the optical system OP when focused on infinity. FIG. 9 is a cross-sectional view of the optical system OP of Example 5 when focused on infinity, and FIG. 10 is an aberration diagram of the optical system OP when focused on infinity. FIG. 11 is a cross-sectional view of the optical system OP of Example 6 when focusing on infinity, and FIG. 12 is an aberration diagram of the optical system OP when focusing on infinity.

実施例1〜6の光学系OPは、Fナンバーが1.85、半画角が約24度、焦点距離が約48.7の単焦点レンズ(焦点距離が一定のレンズ)である。実施例1〜5の光学系OPは、物体側から像側へ順に配置された、第1レンズ群B1、開口絞りSP、第2レンズ群B2を有する。第1レンズ群B1は、物体側から像側へ順に配置された、第1正レンズLp1、第2正レンズLp2、第1負レンズLn1からなる。第2レンズ群B2は、物体側から像側へ順に配置された、レンズL4、レンズL5、第2負レンズLn2、第3正レンズLp3からなる。実施例1、3〜5において、レンズL4は負レンズであり、レンズL5は正レンズである。実施例2において、レンズL4は正レンズであり、レンズL5は負レンズである。実施例1〜5の光学系OPのそれぞれで、各レンズの材料、レンズ同士の間隔、および光学系OPのバックフォーカス等が異なる。   The optical systems OP of Examples 1 to 6 are single focus lenses (lenses with a constant focal length) having an F number of 1.85, a half angle of view of about 24 degrees, and a focal length of about 48.7. The optical systems OP of Examples 1 to 5 include a first lens group B1, an aperture stop SP, and a second lens group B2, which are arranged in order from the object side to the image side. The first lens unit B1 includes a first positive lens Lp1, a second positive lens Lp2, and a first negative lens Ln1, which are arranged in order from the object side to the image side. The second lens group B2 includes a lens L4, a lens L5, a second negative lens Ln2, and a third positive lens Lp3, which are arranged in order from the object side to the image side. In Examples 1 and 3 to 5, the lens L4 is a negative lens, and the lens L5 is a positive lens. In Example 2, the lens L4 is a positive lens, and the lens L5 is a negative lens. In each of the optical systems OP of Examples 1 to 5, the material of each lens, the distance between the lenses, the back focus of the optical system OP, and the like are different.

また、実施例6の光学系OPは、物体側から像側へ順に配置された、第1レンズ群B1、開口絞りSP、第2レンズ群B2を有する。第1レンズ群B1は、物体側から像側へ順に配置された、第1正レンズLp1、第2正レンズLp2、第1負レンズLn1からなる。第2レンズ群B2は、物体側から像側へ順に配置された、レンズL4、第2負レンズLn2、第3正レンズLp3からなる。レンズL4は正レンズである。   In addition, the optical system OP of Example 6 includes a first lens group B1, an aperture stop SP, and a second lens group B2, which are arranged in order from the object side to the image side. The first lens unit B1 includes a first positive lens Lp1, a second positive lens Lp2, and a first negative lens Ln1, which are arranged in order from the object side to the image side. The second lens unit B2 includes a lens L4, a second negative lens Ln2, and a third positive lens Lp3, which are arranged in order from the object side to the image side. The lens L4 is a positive lens.

実施例1〜6の光学系OPにおいて、第1負レンズLn1の像側のレンズ面は凹面であり、レンズL4の物体側のレンズ面は凹面である。実施例1〜6の光学系OPは、無限遠から最至近距離物体への合焦に際して、光学系OP全体が物体側に移動する。   In the optical systems OP of Examples 1 to 6, the image-side lens surface of the first negative lens Ln1 is a concave surface, and the object-side lens surface of the lens L4 is a concave surface. In the optical systems OP of Examples 1 to 6, the entire optical system OP moves to the object side when focusing from infinity to the closest object.

各実施例に係る光学系OPが前述の各条件式を満たすことにより、小型で高い光学性能を有する光学系を得ることができる。   When the optical system OP according to each embodiment satisfies the above-described conditional expressions, it is possible to obtain a small and high-performance optical system.

[数値実施例]
以下に、実施例1〜6のそれぞれに対応する数値実施例1〜6を示す。また、数値実施例1〜6において、面番号は、物体側からの光学面の順序を示す。rは光学面の曲率半径(mm)、dは隣り合う光学面の間隔(mm)、ndはd線における光学部材の材料の屈折率、νdは光学部材の材料のアッベ数を示す。フラウンホーファー線のg線(波長435.8nm)、F線(486.1nm)、d線(587.6nm)、C線(656.3nm)に対する材料の屈折率をそれぞれNg、NF、Nd、NCとするとき、アッベ数νdを、
νd=(Nd−1)/(NF−NC)
として表す。BFはバックフォーカスを示す。
[Numerical example]
The numerical examples 1 to 6 corresponding to the respective examples 1 to 6 are shown below. In Numerical Examples 1 to 6, the surface number indicates the order of the optical surfaces from the object side. r is the radius of curvature (mm) of the optical surface, d is the distance between adjacent optical surfaces (mm), nd is the refractive index of the material of the optical member at d-line, and νd is the Abbe number of the material of the optical member. The refractive index of the material for the g-line (wavelength 435.8 nm), F-line (486.1 nm), d-line (587.6 nm), and C-line (656.3 nm) of the Fraunhofer line is Ng, NF, Nd, NC, respectively. If the Abbe number νd is
νd = (Nd−1) / (NF−NC)
Represent as BF indicates back focus.

数値実施例1〜6のそれぞれにおける、条件式(1)〜(10)で用いられるパラメータの値を[表1]に示す。また、条件式(1)〜(10)に対応する値を[表2]に示す。   The values of parameters used in the conditional expressions (1) to (10) in each of the numerical examples 1 to 6 are shown in [Table 1]. In addition, Table 2 shows values corresponding to the conditional expressions (1) to (10).

[数値実施例1]
単位 mm
面データ
面番号 r d nd vd
1 27.297 4.89 1.89190 37.1
2 75.013 0.20
3 16.729 5.94 1.71999 50.2
4 57.052 1.20 1.85478 24.8
5 11.628 5.54
6(絞り) ∞ 3.22
7 -40.625 1.00 1.72047 34.7
8 32.477 3.83 1.85150 40.8
9 -27.798 0.81
10 -19.520 1.23 1.48749 70.2
11 -107.611 7.33
12 99.876 6.74 1.69680 55.5
13 -44.707 15.14
14 ∞ 1.40 1.55900 60.0
15 ∞ 0.60
像面 ∞

焦点距離 48.70
Fナンバー 1.85
半画角(度) 23.95
像高 21.64
レンズ全長 58.55
BF 16.63
[Numerical Example 1]
Unit mm
Surface data surface number rd nd vd
1 27.297 4.89 1.89190 37.1
2 75.013 0.20
3 16.729 5.94 1.71999 50.2
4 57.052 1.20 1.85478 24.8
5 11.628 5.54
6 (Aperture) ∞ 3.22
7 -40.625 1.00 1.72047 34.7
8 32.477 3.83 1.85 150 40.8
9 -27.798 0.81
10 -19.520 1.23 1.48749 70.2
11 -107.611 7.33
12 99.876 6.74 1.69680 55.5
13 -44.707 15.14
14 ∞ 1.40 1.55900 60.0
15 ∞ 0.60
Image plane ∞

Focal length 48.70
F number 1.85
Half angle of view (degrees) 23.95
Statue height 21.64
Total lens length 58.55
BF 16.63

[数値実施例2]
単位 mm
面データ
面番号 r d nd vd
1 27.493 4.38 1.95375 32.3
2 75.195 0.20
3 16.091 5.99 1.65160 58.5
4 60.195 1.00 1.80518 25.4
5 11.199 4.97
6(絞り) ∞ 1.77
7 -54.721 1.99 1.88300 40.8
8 -24.700 1.00 1.89286 20.4
9 -40.223 2.62
10 -21.337 3.50 1.48749 70.2
11 -65.931 4.65
12 205.798 5.55 1.85060 41.6
13 -38.304 19.45
14 ∞ 1.40 1.55900 60.0
15 ∞ 0.59
像面 ∞

焦点距離 48.70
Fナンバー 1.85
半画角(度) 23.95
像高 21.64
レンズ全長 58.55
BF 20.94
[Numerical Example 2]
Unit mm
Surface data surface number rd nd vd
1 27.493 4.38 1.95375 32.3
2 75.195 0.20
3 16.091 5.99 1.65 160 58.5
4 60.195 1.00 1.80518 25.4
5 11.199 4.97
6 (Aperture) ∞ 1.77
7 -54.721 1.99 1.88300 40.8
8 -24.700 1.00 1.89286 20.4
9 -40.223 2.62
10 -21.337 3.50 1.48749 70.2
11 -65.931 4.65
12 205.798 5.55 1.85060 41.6
13 -38.304 19.45
14 ∞ 1.40 1.55900 60.0
15 ∞ 0.59
Image plane ∞

Focal length 48.70
F number 1.85
Half angle of view (degrees) 23.95
Statue height 21.64
Total lens length 58.55
BF 20.94

[数値実施例3]
単位 mm
面データ
面番号 r d nd vd
1 26.309 4.39 1.89190 37.1
2 82.686 0.20
3 18.140 5.17 1.63854 55.4
4 65.265 1.00 1.85478 24.8
5 14.120 5.21
6(絞り) ∞ 5.14
7 -17.080 1.00 1.67270 32.1
8 60.676 4.66 1.89190 37.1
9 -21.096 6.43
10 -14.841 1.20 1.51823 58.9
11 -28.232 0.15
12 109.535 6.28 1.63854 55.4
13 -43.748 16.25
14 ∞ 1.40 1.55900 60.0
15 ∞ 0.59
像面 ∞

焦点距離 48.74
Fナンバー 1.85
半画角(度) 23.94
像高 21.64
レンズ全長 58.55
BF 17.74
[Numerical Example 3]
Unit mm
Surface data surface number rd nd vd
1 26.309 4.39 1.89190 37.1
2 82.686 0.20
3 18.140 5.17 1.63854 55.4
4 65.265 1.00 1.85478 24.8
5 14.120 5.21
6 (Aperture) ∞ 5.14
7 -17.080 1.00 1.67270 32.1
8 60.676 4.66 1.89190 37.1
9 -21.096 6.43
10 -14.841 1.20 1.51823 58.9
11 -28.232 0.15
12 109.535 6.28 1.63854 55.4
13 -43.748 16.25
14 ∞ 1.40 1.55900 60.0
15 ∞ 0.59
Image plane ∞

Focal length 48.74
F number 1.85
Half angle of view (degrees) 23.94
Statue height 21.64
Total lens length 58.55
BF 17.74

[数値実施例4]
単位 mm
面データ
面番号 r d nd vd
1 27.227 4.95 1.89190 37.1
2 77.440 0.20
3 16.602 5.81 1.71999 50.2
4 61.835 1.20 1.85478 24.8
5 11.628 5.54
6(絞り) ∞ 7.25
7 -16.179 1.00 1.72047 34.7
8 -34.425 2.89 1.85150 40.8
9 -18.805 1.00
10 -17.488 1.23 1.48749 70.2
11 -23.537 0.98
12 101.584 6.35 1.69680 55.5
13 -42.236 18.65
14 ∞ 1.40 1.55900 60.0
15 ∞ 0.60
像面 ∞

焦点距離 48.70
Fナンバー 1.85
画角 23.95
像高 21.64
レンズ全長 58.55
BF 20.15
[Numerical Example 4]
Unit mm
Surface data surface number rd nd vd
1 27.227 4.95 1.89190 37.1
2 77.440 0.20
3 16.602 5.81 1.71999 50.2
4 61.835 1.20 1.85478 24.8
5 11.628 5.54
6 (Aperture) ∞ 7.25
7 -16.179 1.00 1.72047 34.7
8 -34.425 2.89 1.85 150 40.8
9 -18.805 1.00
10 -17.488 1.23 1.48749 70.2
11 -23.537 0.98
12 101.584 6.35 1.69680 55.5
13 -42.236 18.65
14 ∞ 1.40 1.55900 60.0
15 ∞ 0.60
Image plane ∞

Focal length 48.70
F number 1.85
Angle of view 23.95
Statue height 21.64
Total lens length 58.55
BF 20.15

[数値実施例5]
単位 mm
面データ
面番号 r d nd vd
1 25.922 5.25 1.71300 53.9
2 100.067 0.20
3 16.060 4.22 1.80610 40.9
4 27.655 0.44
5 31.067 1.20 1.85478 24.8
6 11.906 5.84
7(絞り) ∞ 4.45
8 -20.163 1.00 1.59270 35.3
9 58.203 4.31 1.83400 37.2
10 -21.052 2.05
11 -17.022 1.23 1.69895 30.1
12 -28.469 6.95
13 158.522 4.93 1.71999 50.2
14 -58.485 15.00
15 ∞ 1.40 1.55900 60.0
16 ∞ 0.59
像面 ∞

焦点距離 48.70
Fナンバー 1.85
半画角(度) 23.95
像高 21.64
レンズ全長 58.55
BF 16.48
[Numerical Example 5]
Unit mm
Surface data surface number rd nd vd
1 25.922 5.25 1.71300 53.9
2 100.067 0.20
3 16.060 4.22 1.80610 40.9
4 27.655 0.44
5 31.067 1.20 1.85478 24.8
6 11.906 5.84
7 (Aperture) ∞ 4.45
8 -20.163 1.00 1.59270 35.3
9 58.203 4.31 1.83400 37.2
10 -21.052 2.05
11 -17.022 1.23 1.69895 30.1
12 -28.469 6.95
13 158.522 4.93 1.71999 50.2
14 -58.485 15.00
15 ∞ 1.40 1.55900 60.0
16 ∞ 0.59
Image plane ∞

Focal length 48.70
F number 1.85
Half angle of view (degrees) 23.95
Statue height 21.64
Total lens length 58.55
BF 16.48

[数値実施例6]
単位 mm
面データ
面番号 r d nd vd
1 25.396 5.80 1.65160 58.5
2 108.471 0.20
3 16.442 4.40 1.90043 37.4
4 31.474 0.38
5 34.907 1.20 1.85478 24.8
6 11.628 5.78
7(絞り) ∞ 6.01
8 -16.511 2.72 1.95375 32.3
9 -13.235 0.43
10 -12.498 1.23 1.74077 27.6
11 -22.656 5.00
12 98.455 6.02 1.73350 51.8
13 -48.653 17.89
14 ∞ 1.40 1.55900 60.0
15 ∞ 0.60
像面 ∞

焦点距離 48.70
Fナンバー 1.85
半画角(度) 23.95
像高 21.64
レンズ全長 58.55
BF 19.38
[Numerical Example 6]
Unit mm
Surface data surface number rd nd vd
1 25.396 5.80 1.65160 58.5
2 108.471 0.20
3 16.442 4.40 1.90043 37.4
4 31.474 0.38
5 34.907 1.20 1.85478 24.8
6 11.628 5.78
7 (Aperture) ∞ 6.01
8 -16.511 2.72 1.95375 32.3
9 -13.235 0.43
10 -12.498 1.23 1.74077 27.6
11 -22.656 5.00
12 98.455 6.02 1.73350 51.8
13 -48.653 17.89
14 ∞ 1.40 1.55900 60.0
15 ∞ 0.60
Image plane ∞

Focal length 48.70
F number 1.85
Half angle of view (degrees) 23.95
Statue height 21.64
Total lens length 58.55
BF 19.38

Figure 2019184748
Figure 2019184748

Figure 2019184748
Figure 2019184748

[撮像装置の実施例]
次に、本発明の光学系を撮影光学系として用いた撮像装置の実施例について図13を用いて説明する。撮像装置10は、例えば、デジタルスチルカメラ、デジタルビデオカメラ、監視カメラ、放送用カメラ等の撮像素子を用いた撮像装置、または銀塩写真フィルムを用いたカメラ等の撮像装置である。
[Example of imaging apparatus]
Next, an embodiment of an imaging apparatus using the optical system of the present invention as a photographing optical system will be described with reference to FIG. The imaging device 10 is, for example, an imaging device using an imaging device such as a digital still camera, a digital video camera, a surveillance camera, or a broadcast camera, or an imaging device such as a camera using a silver halide photographic film.

図13において、撮像装置10は、実施例1〜6で説明した光学系のいずれかである撮影光学系11と、撮像装置10に内蔵され且つ撮影光学系11によって形成された被写体像を受光する撮像素子(光電変換素子)12とを有する。撮像素子12は、例えばCCDセンサやCMOSセンサ等である。   In FIG. 13, the imaging apparatus 10 receives a photographing optical system 11 that is one of the optical systems described in Embodiments 1 to 6 and a subject image that is built in the imaging apparatus 10 and formed by the photographing optical system 11. An imaging device (photoelectric conversion device) 12. The image sensor 12 is, for example, a CCD sensor or a CMOS sensor.

このように本発明の光学系を各種撮像装置の撮影光学系として適用することができる。これにより、小型で高い光学性能を有する撮像装置を得ることができる。   Thus, the optical system of the present invention can be applied as a photographing optical system for various imaging apparatuses. Thereby, an image pickup apparatus having a small size and high optical performance can be obtained.

以上、本発明の好ましい実施例について説明したが、本発明の光学系及び撮像装置はこれらの実施例に限定されず、その要旨の範囲内で種々の変形及び変更が可能である。例えば、光学系の一部のレンズを光軸に対して垂直方向の成分を含む方向に移動させることによって、像ぶれ補正を行ってもよい。   The preferred embodiments of the present invention have been described above. However, the optical system and the imaging apparatus of the present invention are not limited to these embodiments, and various modifications and changes can be made within the scope of the gist. For example, image blur correction may be performed by moving some lenses of the optical system in a direction including a component in a direction perpendicular to the optical axis.

B1 第1レンズ群
B2 第2レンズ群
Lp1 第1正レンズ
Lp2 第2正レンズ
Lp3 第3正レンズ
Ln1 第1負レンズ
Ln2 第2負レンズ
OP 光学系
B1 1st lens group B2 2nd lens group Lp1 1st positive lens Lp2 2nd positive lens Lp3 3rd positive lens Ln1 1st negative lens Ln2 2nd negative lens OP Optical system

Claims (14)

複数のレンズ群と開口絞りを有する光学系であって、
前記複数のレンズ群は、前記開口絞りの物体側に配置された正の屈折力の第1レンズ群と、前記開口絞りの像側に配置された正の屈折力の第2レンズ群からなり、
前記第1レンズ群は、物体側から像側へ順に配置された、第1正レンズ、第2正レンズ、第1負レンズからなり、
前記第2レンズ群は、物体側から像側へ順に配置された、少なくとも1枚のレンズ、第2負レンズ、第3正レンズからなり、
前記第1レンズ群の焦点距離をf1、前記第2レンズ群の焦点距離をf2、とするとき、
0.50<f1/f2<1.65
なる条件式を満たすことを特徴とする光学系。
An optical system having a plurality of lens groups and an aperture stop,
The plurality of lens groups includes a first lens unit having a positive refractive power disposed on the object side of the aperture stop and a second lens group having a positive refractive power disposed on the image side of the aperture stop,
The first lens group includes a first positive lens, a second positive lens, and a first negative lens arranged in order from the object side to the image side,
The second lens group includes at least one lens, a second negative lens, and a third positive lens arranged in order from the object side to the image side,
When the focal length of the first lens group is f1, and the focal length of the second lens group is f2,
0.50 <f1 / f2 <1.65
An optical system characterized by satisfying the following conditional expression:
前記第2負レンズの焦点距離をfn2、前記光学系のバックフォーカスをskとするとき、
1.50<|fn2|/sk<10.00
なる条件式を満たすことを特徴とする請求項1に記載の光学系。
When the focal length of the second negative lens is fn2 and the back focus of the optical system is sk,
1.50 <| fn2 | / sk <10.00
The optical system according to claim 1, wherein the following conditional expression is satisfied.
前記第2負レンズの焦点距離をfn2、前記光学系の焦点距離をfとするとき、
0.70<|fn2|/f<3.30
なる条件式を満たすことを特徴とする請求項1又は2に記載の光学系。
When the focal length of the second negative lens is fn2 and the focal length of the optical system is f,
0.70 <| fn2 | / f <3.30
The optical system according to claim 1, wherein the following conditional expression is satisfied.
無限遠合焦時における、前記開口絞りから像面までの光軸上の距離をLs、前記光学系の焦点距離をf、とするとき、
0.75<Ls/f<0.95
なる条件式を満たすことを特徴とする請求項1乃至3のいずれか1項に記載の光学系。
When the distance on the optical axis from the aperture stop to the image plane at the time of focusing on infinity is Ls, and the focal length of the optical system is f,
0.75 <Ls / f <0.95
The optical system according to claim 1, wherein the following conditional expression is satisfied.
無限遠合焦時における、前記第1正レンズの物体側のレンズ面から前記第3正レンズの像側のレンズ面までの光軸上の距離をTd、前記光学系の焦点距離をfとするとき、
0.70<Td/f<1.00
なる条件式を満たすことを特徴とする請求項1乃至4のいずれか1項に記載の光学系。
The distance on the optical axis from the object-side lens surface of the first positive lens to the image-side lens surface of the third positive lens during infinite focus is Td, and the focal length of the optical system is f. When
0.70 <Td / f <1.00
The optical system according to claim 1, wherein the following conditional expression is satisfied.
前記第2負レンズの焦点距離をfn2、前記第3正レンズの焦点距離をfp3とするとき、
0.70<|fn2|/fp3<4.00
なる条件式を満たすことを特徴とする請求項1乃至5のいずれか1項に記載の光学系。
When the focal length of the second negative lens is fn2, and the focal length of the third positive lens is fp3,
0.70 <| fn2 | / fp3 <4.00
The optical system according to claim 1, wherein the following conditional expression is satisfied.
前記光学系の焦点距離をfとするとき、
0.80<f1/f<1.70
なる条件式を満たすことを特徴とする請求項1乃至6のいずれか1項に記載の光学系。
When the focal length of the optical system is f,
0.80 <f1 / f <1.70
The optical system according to claim 1, wherein the following conditional expression is satisfied.
前記第1正レンズの焦点距離をfp1、前記光学系の焦点距離をfとするとき、
0.75<fp1/f<1.20
なる条件式を満たすことを特徴とする請求項1乃至7のいずれか1項に記載の光学系。
When the focal length of the first positive lens is fp1, and the focal length of the optical system is f,
0.75 <fp1 / f <1.20
The optical system according to claim 1, wherein the following conditional expression is satisfied.
前記第1負レンズの焦点距離をfn1、前記光学系の焦点距離をfとするとき、
0.25<|fn1|/f<0.6
なる条件式を満たすことを特徴とする請求項1乃至8のいずれか1項に記載の光学系。
When the focal length of the first negative lens is fn1, and the focal length of the optical system is f,
0.25 <| fn1 | / f <0.6
The optical system according to claim 1, wherein the following conditional expression is satisfied.
前記第1正レンズの焦点距離をfp1、前記第3正レンズの焦点距離をfp3とするとき、
0.50<fp1/fp3<1.25
なる条件式を満たすことを特徴とする請求項1乃至9のいずれか1項に記載の光学系。
When the focal length of the first positive lens is fp1, and the focal length of the third positive lens is fp3,
0.50 <fp1 / fp3 <1.25
The optical system according to claim 1, wherein the following conditional expression is satisfied.
前記第1負レンズの像側のレンズ面は凹面であり、前記開口絞りの像側に隣接して配置されたレンズの物体側のレンズ面は凹面であることを特徴とする請求項1乃至10のいずれか1項に記載の光学系。   The lens surface on the image side of the first negative lens is a concave surface, and the lens surface on the object side of the lens disposed adjacent to the image side of the aperture stop is a concave surface. The optical system according to any one of the above. 前記少なくとも1枚のレンズは、負レンズを含むことを特徴とする請求項1乃至11のいずれか1項に記載の光学系。   The optical system according to claim 1, wherein the at least one lens includes a negative lens. 無限遠から最至近距離物体への合焦に際して、前記光学系が物体側に移動することを特徴とする請求項1乃至12のいずれか1項に記載の光学系。   The optical system according to any one of claims 1 to 12, wherein the optical system moves toward the object side when focusing from infinity to the closest object. 請求項1乃至13のいずれか1項に記載の光学系と、該光学系により形成された像を受光する撮像素子を有することを特徴とする撮像装置。   An imaging apparatus comprising: the optical system according to claim 1; and an imaging element that receives an image formed by the optical system.
JP2018073492A 2018-04-05 2018-04-05 Optical system and imaging device Active JP7179477B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018073492A JP7179477B2 (en) 2018-04-05 2018-04-05 Optical system and imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018073492A JP7179477B2 (en) 2018-04-05 2018-04-05 Optical system and imaging device

Publications (2)

Publication Number Publication Date
JP2019184748A true JP2019184748A (en) 2019-10-24
JP7179477B2 JP7179477B2 (en) 2022-11-29

Family

ID=68340923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018073492A Active JP7179477B2 (en) 2018-04-05 2018-04-05 Optical system and imaging device

Country Status (1)

Country Link
JP (1) JP7179477B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112269246A (en) * 2020-12-14 2021-01-26 宁波永新光学股份有限公司 Ultra-high-definition imaging optical system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56114918A (en) * 1980-02-15 1981-09-09 Canon Inc Large-diameter lens with easy focusing
JPH02130513A (en) * 1988-11-10 1990-05-18 Minolta Camera Co Ltd Lens system for microfilm photography
JPH10333029A (en) * 1997-05-29 1998-12-18 Ricoh Co Ltd Lens for reading image
JP2000089108A (en) * 1998-07-16 2000-03-31 Nikon Corp Lens for reading
JP2000338396A (en) * 1999-05-25 2000-12-08 Asahi Optical Co Ltd Rear focus type middle-range telephoto lens
US20040264008A1 (en) * 2003-06-24 2004-12-30 Kiichiro Nishina Document reading lens, document reading lens unit, document reader, and image forming apparatus
JP2012181508A (en) * 2011-02-10 2012-09-20 Sigma Corp Imaging optics
JP2014145954A (en) * 2013-01-30 2014-08-14 Sigma Corp Imaging optical system
JP2018156011A (en) * 2017-03-21 2018-10-04 株式会社リコー Imaging lens, imaging apparatus and inspection apparatus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56114918A (en) * 1980-02-15 1981-09-09 Canon Inc Large-diameter lens with easy focusing
JPH02130513A (en) * 1988-11-10 1990-05-18 Minolta Camera Co Ltd Lens system for microfilm photography
JPH10333029A (en) * 1997-05-29 1998-12-18 Ricoh Co Ltd Lens for reading image
JP2000089108A (en) * 1998-07-16 2000-03-31 Nikon Corp Lens for reading
JP2000338396A (en) * 1999-05-25 2000-12-08 Asahi Optical Co Ltd Rear focus type middle-range telephoto lens
US20040264008A1 (en) * 2003-06-24 2004-12-30 Kiichiro Nishina Document reading lens, document reading lens unit, document reader, and image forming apparatus
JP2012181508A (en) * 2011-02-10 2012-09-20 Sigma Corp Imaging optics
JP2014145954A (en) * 2013-01-30 2014-08-14 Sigma Corp Imaging optical system
JP2018156011A (en) * 2017-03-21 2018-10-04 株式会社リコー Imaging lens, imaging apparatus and inspection apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112269246A (en) * 2020-12-14 2021-01-26 宁波永新光学股份有限公司 Ultra-high-definition imaging optical system
CN112269246B (en) * 2020-12-14 2021-04-16 宁波永新光学股份有限公司 Ultra-high-definition imaging optical system

Also Published As

Publication number Publication date
JP7179477B2 (en) 2022-11-29

Similar Documents

Publication Publication Date Title
US9952446B2 (en) Zoom lens and image pickup apparatus including the same
US11966099B2 (en) Converter lens, interchangeable lens, and image pickup apparatus
CN106597646B (en) Optical system and imaging apparatus including the same
JP7098564B2 (en) Imaging lens and imaging device
JP6401420B2 (en) Zoom lens and imaging device
JP2016173481A (en) Zoom lens and imaging apparatus
JP6689768B2 (en) Imaging lens and imaging device
JP2019158960A (en) Zoom lens and image capturing device
JP6401421B2 (en) Zoom lens and imaging device
JP2020034671A (en) Image capturing lens and image capturing device
JP2018146607A (en) Imaging lens and imaging device
JP2019152690A (en) Image capturing lens and image capturing device
JP7086709B2 (en) Optical system and an image pickup device having it
JP2016012119A (en) Zoom lens and image capturing device
JP6284893B2 (en) Zoom lens and imaging device
JP2016161879A (en) Zoom lens and imaging apparatus
US11372206B2 (en) Optical system with two lens groups of +− refractive powers having five lens subgroups of +−+−− refractive powers, and image pickup apparatus including the same
JP5344589B2 (en) Zoom lens and imaging apparatus having the same
CN110208959B (en) Imaging lens and imaging device
JP6422836B2 (en) Zoom lens and imaging device
US11150466B2 (en) Optical system and imaging apparatus including the same
JP7179477B2 (en) Optical system and imaging device
JP6404199B2 (en) Zoom lens and imaging device
CN105892010B (en) Optical system and image pickup apparatus
JP6320904B2 (en) Imaging lens and imaging apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221116

R151 Written notification of patent or utility model registration

Ref document number: 7179477

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151