[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2019183815A - Control device of internal combustion engine - Google Patents

Control device of internal combustion engine Download PDF

Info

Publication number
JP2019183815A
JP2019183815A JP2018079278A JP2018079278A JP2019183815A JP 2019183815 A JP2019183815 A JP 2019183815A JP 2018079278 A JP2018079278 A JP 2018079278A JP 2018079278 A JP2018079278 A JP 2018079278A JP 2019183815 A JP2019183815 A JP 2019183815A
Authority
JP
Japan
Prior art keywords
fuel
sub
main
combustion chamber
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018079278A
Other languages
Japanese (ja)
Inventor
力 土舘
Tsutomu Tsuchidate
力 土舘
啓 野村
Hiroshi Nomura
啓 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2018079278A priority Critical patent/JP2019183815A/en
Publication of JP2019183815A publication Critical patent/JP2019183815A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

To suppress the discharge of microparticulate matters.SOLUTION: On a top surface of a main combustion chamber (2), a sub chamber (51) communicating with the inside of the main combustion chamber (2) through a communication hole (52) is formed. Fuel is injected from a main fuel injection valve (3) into the main combustion chamber (2), and fuel is injected from a sub fuel injection valve (53) into the sub chamber (51). From the communication hole (52), a jet flame is ejected. When the temperature representing the temperature on a wall surface in an engine combustion chamber is lower than a set temperature, main injection amount injected from the main fuel injection valve (3) into the main combustion chamber (2) is reduced, and a sub injection amount injected in an intake stroke from the sub fuel injection valve (53) into the sub chamber (51) is increased.SELECTED DRAWING: Figure 7

Description

本発明は内燃機関の制御装置に関する。   The present invention relates to a control device for an internal combustion engine.

主燃料を噴射するための主燃料噴射弁が吸気ポート内に配置されており、主燃焼室の頂面に、連通孔を介して主燃焼室内に連通しかつ点火栓および副燃料噴射弁を有する副室が形成されており、副燃料噴射弁から副室内に副燃料が噴射され、この副燃料を燃焼させることにより連通孔からジェット火炎が噴出せしめられ、このジェット火炎によって主燃焼室内の混合気が燃焼せしめられる内燃機関が公知である(例えば特許文献1を参照)。   A main fuel injection valve for injecting main fuel is disposed in the intake port, and has a spark plug and a sub fuel injection valve on the top surface of the main combustion chamber, communicating with the main combustion chamber through a communication hole. A sub chamber is formed.Sub fuel is injected from the sub fuel injection valve into the sub chamber, and by burning this sub fuel, a jet flame is ejected from the communication hole, and this jet flame causes the air-fuel mixture in the main combustion chamber. An internal combustion engine in which is combusted is known (see, for example, Patent Document 1).

特開平6−33768号公報JP-A-6-33768

ところで、このような内燃機関において、主燃料噴射弁を主燃焼室内に配置して主燃料噴射弁から主燃焼室内に燃料を噴射すると、冷間時のように主燃焼室の壁面温度が低いときには、主燃焼室内に噴射された燃料が十分に蒸発できないために、主燃焼室の内壁面上に付着する。このように燃料が主燃焼室内の内壁面上に付着すると、付着燃料は酸素不足の状態で加熱されて炭化し、その結果、多量の微粒子状物質(PM)が生成されるという問題を生ずる。しかしながら、上述の特許文献1では、主燃焼室の内壁面上への燃料の付着について何ら考慮が払われていない。   By the way, in such an internal combustion engine, when the main fuel injection valve is arranged in the main combustion chamber and fuel is injected from the main fuel injection valve into the main combustion chamber, when the wall surface temperature of the main combustion chamber is low as in the cold state, Since the fuel injected into the main combustion chamber cannot evaporate sufficiently, it adheres to the inner wall surface of the main combustion chamber. When the fuel adheres on the inner wall surface in the main combustion chamber in this way, the adhered fuel is heated and carbonized in a state of insufficient oxygen, resulting in a problem that a large amount of particulate matter (PM) is generated. However, in the above-mentioned Patent Document 1, no consideration is given to the adhesion of fuel on the inner wall surface of the main combustion chamber.

上記問題を解決するために、本発明によれば、主燃焼室内に燃料を噴射するための主燃料噴射弁を具備しており、主燃焼室の頂面に、連通孔を介して主燃焼室内に連通しかつ点火栓および副燃料噴射弁を有する副室が形成されており、副燃料噴射弁から副室内に副燃料が噴射され、この副燃料を燃焼させることにより連通孔からジェット火炎が噴出せしめられ、このジェット火炎によって主燃焼室内の混合気が燃焼せしめられる内燃機関の制御装置において、機関燃焼室内壁面の温度を代表する温度が設定温度よりも低いときには、主燃料噴射弁から主燃焼室内に噴射される主噴射量を減量すると共に、副燃料噴射弁から副室内に吸気行程時に噴射される副噴射量を増量する内燃機関の制御装置が提供される。   In order to solve the above problems, according to the present invention, a main fuel injection valve for injecting fuel into the main combustion chamber is provided, and the top surface of the main combustion chamber is connected to the main combustion chamber via a communication hole. And a sub-chamber having a spark plug and a sub fuel injection valve is formed. Sub fuel is injected from the sub fuel injection valve into the sub chamber, and jet fuel is ejected from the communication hole by burning the sub fuel. In the control device for an internal combustion engine in which the air-fuel mixture in the main combustion chamber is combusted by the jet flame, when the temperature representative of the temperature of the wall surface of the engine combustion chamber is lower than the set temperature, the main fuel injection valve to the main combustion chamber A control device for an internal combustion engine is provided that reduces the main injection amount injected into the sub-chamber and increases the sub-injection amount injected from the sub fuel injection valve into the sub chamber during the intake stroke.

副室は、副室内における副燃料の燃焼熱と、主燃焼室内における主燃料の燃焼熱との双方の燃焼熱を受けるために、温度が極めて高くなる。従って、吸気行程時に副燃料噴射弁から副室内に噴射される副噴射量を増量すると、副室内で十分に蒸発した燃料が連通孔を介して吸気行程時に主燃焼室内に噴出される。また、このとき燃料が連通孔内を高速で流れるので、このときにも燃料の蒸発作用が促進される。従って、副噴射量の増量分だけ、主燃焼室内の内壁面上への燃料の付着が抑制され、それにより微粒子状物質(PM)が排出されるのを抑制することができる。   Since the sub chamber receives both the combustion heat of the sub fuel in the sub chamber and the combustion heat of the main fuel in the main combustion chamber, the temperature becomes extremely high. Therefore, when the amount of sub-injection injected from the sub fuel injection valve into the sub chamber during the intake stroke is increased, the fuel that has sufficiently evaporated in the sub chamber is injected into the main combustion chamber during the intake stroke through the communication hole. Further, at this time, the fuel flows at high speed in the communication hole, so that the evaporation of the fuel is also promoted at this time. Therefore, the fuel adhesion on the inner wall surface in the main combustion chamber is suppressed by an amount corresponding to the increase in the sub-injection amount, thereby preventing the particulate matter (PM) from being discharged.

図1は内燃機関の全体図である。FIG. 1 is an overall view of an internal combustion engine. 図2はシリンダヘッドを下方から見たときの図である。FIG. 2 is a view of the cylinder head as viewed from below. 図3は、図2のA−A断面に沿ってみた内燃機関の側面断面図である。FIG. 3 is a side cross-sectional view of the internal combustion engine taken along the line AA of FIG. 図4は副室周りの拡大側面断面図である。FIG. 4 is an enlarged side sectional view around the sub chamber. 図5は図4のB−B断面に沿ってみた副室ケーシングの断面図である。FIG. 5 is a cross-sectional view of the sub chamber casing taken along the line BB of FIG. 図6は、副室からの噴出ジェット火炎を示す図である。FIG. 6 is a view showing an jet jet flame from the sub chamber. 図7Aおよび図7Bは、副噴射量と主噴射量とを示す図である。7A and 7B are diagrams showing the sub injection amount and the main injection amount. 図8Aおよび図8Bは、副噴射量と機関冷却水温との関係を示す図である。8A and 8B are diagrams showing the relationship between the sub-injection amount and the engine coolant temperature. 図9は、副噴射量と主噴射量とを示す図である。FIG. 9 is a diagram illustrating the sub injection amount and the main injection amount. 図10は、副噴射量と主噴射量とを示す図である。FIG. 10 is a diagram illustrating the sub injection amount and the main injection amount. 図11は、副噴射量と主噴射量とを示す図である。FIG. 11 is a diagram illustrating the sub injection amount and the main injection amount. 図12は、噴射制御を行うためのフローチャートである。FIG. 12 is a flowchart for performing the injection control.

図1にガソリンを燃料とする内燃機関の全体図を示す。図1を参照すると、1は機関本体、2は各気筒の主燃焼室、3は各主燃焼室2に夫々燃料を噴射するための主燃料噴射弁、4はサージタンク、5は吸気枝管、6は排気マニホルドを夫々示す。サージタンク4は吸気ダクト7を介して排気ターボチャージャ8のコンプレッサ8aの出口に連結され、コンプレッサ8aの入口は吸入空気量検出器9を介してエアクリーナ10に連結される。吸気ダクト7内にはアクチュエータにより駆動されるスロットル弁11が配置され、吸気ダクト7周りには吸気ダクト7内を流れる吸入空気を冷却するためのインタクーラ12が配置される。   FIG. 1 shows an overall view of an internal combustion engine using gasoline as fuel. Referring to FIG. 1, 1 is an engine body, 2 is a main combustion chamber of each cylinder, 3 is a main fuel injection valve for injecting fuel into each main combustion chamber 2, 4 is a surge tank, 5 is an intake branch pipe , 6 indicate exhaust manifolds, respectively. The surge tank 4 is connected to the outlet of the compressor 8 a of the exhaust turbocharger 8 via the intake duct 7, and the inlet of the compressor 8 a is connected to the air cleaner 10 via the intake air amount detector 9. A throttle valve 11 driven by an actuator is disposed in the intake duct 7, and an intercooler 12 for cooling intake air flowing through the intake duct 7 is disposed around the intake duct 7.

一方、排気マニホルド6は排気ターボチャージャ8の排気タービン8bの入口に連結され、排気タービン8bの出口は排気管13を介して排気浄化用触媒コンバータ14に連結される。排気マニホルド5とサージタンク4とは排気ガス再循環(以下、EGRと称す)通路15を介して互いに連結され、EGR通路15内にはEGR制御弁16が配置される。各主燃料噴射弁3は燃料分配管17に連結され、この燃料分配管17は燃料ポンプ18を介して燃料タンク19に連結される。   On the other hand, the exhaust manifold 6 is connected to the inlet of the exhaust turbine 8 b of the exhaust turbocharger 8, and the outlet of the exhaust turbine 8 b is connected to the exhaust purification catalytic converter 14 via the exhaust pipe 13. The exhaust manifold 5 and the surge tank 4 are connected to each other via an exhaust gas recirculation (hereinafter referred to as EGR) passage 15, and an EGR control valve 16 is disposed in the EGR passage 15. Each main fuel injection valve 3 is connected to a fuel distribution pipe 17, and this fuel distribution pipe 17 is connected to a fuel tank 19 via a fuel pump 18.

電子制御ユニット20はデジタルコンピュータからなり、双方向性バス21によって互いに接続されたROM(リードオンリメモリ)22、RAM(ランダムアクセスメモリ)23、CPU(マイクロプロセッサ)24、入力ポート25および出力ポート26を具備する。機関本体1には、機関冷却水温を検出するための水温センサ33が取り付けられており、この水温センサ33の出力信号および吸入空気量検出器9の出力信号は、夫々対応するAD変換器27を介して入力ポート25に入力される。また、アクセルペダル30にはアクセルペダル30の踏込み量に比例した出力電圧を発生する負荷センサ31が接続され、負荷センサ31の出力電圧は対応するAD変換器27を介して入力ポート25に入力される。更に入力ポート25にはクランクシャフトが例えば30°回転する毎に出力パルスを発生するクランク角センサ32が接続される。一方、出力ポート26は対応する駆動回路28を介して主燃料噴射弁3、スロットル弁11の駆動用アクチュエータ、EGR制御弁16、および燃料ポンプ18に接続される。   The electronic control unit 20 comprises a digital computer and is connected to each other by a bidirectional bus 21. A ROM (read only memory) 22, a RAM (random access memory) 23, a CPU (microprocessor) 24, an input port 25 and an output port 26 are connected. It comprises. The engine body 1 is provided with a water temperature sensor 33 for detecting the engine cooling water temperature. The output signal of the water temperature sensor 33 and the output signal of the intake air amount detector 9 are respectively sent to the corresponding AD converters 27. To the input port 25. A load sensor 31 that generates an output voltage proportional to the amount of depression of the accelerator pedal 30 is connected to the accelerator pedal 30, and the output voltage of the load sensor 31 is input to the input port 25 via the corresponding AD converter 27. The Further, a crank angle sensor 32 that generates an output pulse every time the crankshaft rotates, for example, 30 ° is connected to the input port 25. On the other hand, the output port 26 is connected to the main fuel injection valve 3, the actuator for driving the throttle valve 11, the EGR control valve 16, and the fuel pump 18 through corresponding drive circuits 28.

図2は図1に示される燃焼室2の頂面の底面図を示しており、図3は図2のA−A線に沿ってみた機関本体1の側面断面図を示している。なお、図2および図3において、41はシリンダブロック、42はシリンダブロック41上に取り付けされたシリンダヘッド、43はシリンダブロック41内で往復動するピストン、44は一対の吸気弁、45は吸気ポート、46は一対の排気弁、47は排気ポートを夫々示す。図2から図5に示されるように、主燃焼室2の頂面中央部には、副室ケーシング50が取付けられている。図2から図5に示す例では、この副室ケーシング50は、両端が閉鎖された薄肉の中空円筒状をなしており、副室ケーシング50の中心軸線がシリンダの中心軸線方向に延びるように主燃焼室2の頂面に取付けられている。また、図2から図5に示す例では、副室ケーシング50の上方部はシリンダヘッド42内に位置しており、副室ケーシング50の下方部のみが主燃焼室2内に露呈している。この副室ケーシング50内には副室51が形成されており、副室ケーシング50には、副室51の主燃焼室2側の端部周辺部から主燃焼室2の周辺部に向けて放射状に延びる複数の連通孔52が形成されている。   2 shows a bottom view of the top surface of the combustion chamber 2 shown in FIG. 1, and FIG. 3 shows a side sectional view of the engine body 1 taken along the line AA in FIG. 2 and 3, 41 is a cylinder block, 42 is a cylinder head mounted on the cylinder block 41, 43 is a piston that reciprocates within the cylinder block 41, 44 is a pair of intake valves, and 45 is an intake port. , 46 are a pair of exhaust valves, and 47 is an exhaust port. As shown in FIGS. 2 to 5, a sub chamber casing 50 is attached to the center of the top surface of the main combustion chamber 2. In the example shown in FIGS. 2 to 5, the sub chamber casing 50 has a thin hollow cylindrical shape whose both ends are closed, and the main axis of the sub chamber casing 50 extends mainly in the direction of the center axis of the cylinder. It is attached to the top surface of the combustion chamber 2. In the example shown in FIGS. 2 to 5, the upper portion of the sub chamber casing 50 is located in the cylinder head 42, and only the lower portion of the sub chamber casing 50 is exposed in the main combustion chamber 2. A sub chamber 51 is formed in the sub chamber casing 50, and the sub chamber casing 50 has a radial shape from the periphery of the end of the sub chamber 51 on the main combustion chamber 2 side toward the periphery of the main combustion chamber 2. A plurality of communication holes 52 extending in the direction are formed.

この場合、本発明の実施例では、図5に示されるように、各連通孔52は、副室ケーシング50の中心軸線に関し、等角度間隔で、副室ケーシング50の中心軸線から放射状に延びるように形成されている。また、本発明の実施例では、副室51の頂面中央部に、副燃料噴射弁53が配置されており、更に副室51の頂面周辺部には点火栓54が配置されている。各気筒の副燃料噴射弁53は、図1に示されるように、燃料分配管55に連結され、この燃料分配管55は燃料ポンプ56を介して燃料タンク19に連結される。また、各気筒の副燃料噴射弁53および点火栓54は、対応する駆動回路28を介して出力ポート26に連結される。   In this case, in the embodiment of the present invention, as shown in FIG. 5, each communication hole 52 extends radially from the central axis of the sub chamber casing 50 at equal angular intervals with respect to the central axis of the sub chamber casing 50. Is formed. Further, in the embodiment of the present invention, a sub fuel injection valve 53 is arranged at the center of the top surface of the sub chamber 51, and a spark plug 54 is arranged around the top surface of the sub chamber 51. As shown in FIG. 1, the auxiliary fuel injection valve 53 of each cylinder is connected to a fuel distribution pipe 55, and this fuel distribution pipe 55 is connected to the fuel tank 19 via a fuel pump 56. Further, the auxiliary fuel injection valve 53 and the spark plug 54 of each cylinder are connected to the output port 26 via the corresponding drive circuit 28.

次に、図7Aを参照しつつ、主燃料噴射弁3および副燃料噴射弁53からの噴射制御について説明する。なお、図7Aは、通常運転時において、主燃料噴射弁3から主燃焼室2に噴射される燃料量、即ち、主噴射量と、副燃料噴射弁53から副室51内に噴射される燃料量、即ち、副噴射量とを示している。図7Aに示されるように、通常運転時には、吸気行程時に、主燃料噴射弁3から主燃焼室2内に燃料QMが噴射され、それによって主燃焼室2内に混合気が形成される。次いで圧縮行程末期になると、副燃料噴射弁53から副室51内に燃料QIが噴射される。次いで、副室51内の燃料が点火栓54による着火され、燃焼せしめられる。副室51内の燃料が燃焼せしめられると、図6に示されるようなジェット火炎Jが各連通孔52から主燃焼室2に噴出し、主燃焼室2内の混合気は、これらのジェット火炎Jにより燃焼せしめられる。   Next, the injection control from the main fuel injection valve 3 and the auxiliary fuel injection valve 53 will be described with reference to FIG. 7A. 7A shows the amount of fuel injected from the main fuel injection valve 3 into the main combustion chamber 2, that is, the main injection amount and the fuel injected from the sub fuel injection valve 53 into the sub chamber 51 during normal operation. The amount, that is, the sub injection amount is shown. As shown in FIG. 7A, during normal operation, fuel QM is injected from the main fuel injection valve 3 into the main combustion chamber 2 during the intake stroke, whereby an air-fuel mixture is formed in the main combustion chamber 2. Next, at the end of the compression stroke, the fuel QI is injected from the auxiliary fuel injection valve 53 into the auxiliary chamber 51. Next, the fuel in the sub chamber 51 is ignited by the spark plug 54 and combusted. When the fuel in the sub chamber 51 is combusted, a jet flame J as shown in FIG. 6 is ejected from each communication hole 52 to the main combustion chamber 2, and the air-fuel mixture in the main combustion chamber 2 becomes the jet flame. Burned by J.

ところで、例えば、機関冷間始動時のように機関温度が低いときには、機関が始動されても主燃焼室2の壁面温度や、ピストン43の頂面温度はなかなか上昇しない。従って、このときに、主燃料噴射弁3から主燃焼室2に直接燃料を噴射すると、主燃焼室内2に噴射された燃料が十分に蒸発できず、その結果、噴射燃料の一部が主燃焼室2の内壁面上に付着する。このように噴射燃料が主燃焼室2内の内壁面上に付着すると、付着燃料は酸素不足の状態で加熱されて炭化し、その結果、多量の微粒子状物質(PM)が生成されるという問題を生ずる。   By the way, for example, when the engine temperature is low, such as when the engine is cold-started, the wall surface temperature of the main combustion chamber 2 and the top surface temperature of the piston 43 do not increase easily even when the engine is started. Accordingly, if fuel is directly injected from the main fuel injection valve 3 into the main combustion chamber 2 at this time, the fuel injected into the main combustion chamber 2 cannot be sufficiently evaporated, and as a result, a part of the injected fuel is burned into the main combustion chamber. It adheres on the inner wall surface of the chamber 2. When the injected fuel adheres to the inner wall surface in the main combustion chamber 2 in this way, the attached fuel is heated and carbonized in a state of lack of oxygen, and as a result, a large amount of particulate matter (PM) is generated. Is produced.

一方、副室51は、副室51内における副燃料の燃焼熱と、主燃焼室2内における主燃料の燃焼熱との双方の燃焼熱を受けるために、温度が極めて高くなる。また、副室51は副室ケーシング50内に形成されており、この副室ケーシング50の熱容量は、シリンダブロック41やピストン43の熱容量に比べてはるかに小さい。従って、機関冷間始動時のように機関温度が低いときであっても、副室51の温度は極めて高くなる。そこで本発明による実施例では、このように機関温度が低いときであっても副室51の温度が極めて高くなることを利用して、主燃料噴射弁3からの噴射燃料が主燃焼室2内の内壁面上に付着するのを抑制するようにしている。   On the other hand, since the sub chamber 51 receives both the combustion heat of the sub fuel in the sub chamber 51 and the combustion heat of the main fuel in the main combustion chamber 2, the temperature becomes extremely high. The sub chamber 51 is formed in the sub chamber casing 50, and the heat capacity of the sub chamber casing 50 is much smaller than the heat capacities of the cylinder block 41 and the piston 43. Therefore, even when the engine temperature is low, such as when the engine is cold started, the temperature of the sub chamber 51 becomes extremely high. Therefore, in the embodiment according to the present invention, the fuel injected from the main fuel injection valve 3 is injected into the main combustion chamber 2 by utilizing the fact that the temperature of the sub chamber 51 becomes extremely high even when the engine temperature is low. It is made to suppress adhering on the inner wall surface of the.

即ち、本発明による実施例では、機関冷間始動時のように機関温度が低いときには、図7BにおいてQAで示されるように、主燃料噴射弁3から噴射すべき一部(ハッチング部分)の燃料を、吸気行程時に副燃料噴射弁53から副室51内に噴射するようにしている。このように副燃料噴射弁53から副室51内に燃料QAを噴射すると、副室51の温度が極めて高いために、この燃料QAは、副室51内で十分に蒸発した後、連通孔52を介して吸気行程中に主燃焼室2内に噴出される。また、このとき燃料QAは連通孔52内を高速で流れるので、このときにも燃料QAの蒸発作用が促進される。従って、燃料QA分だけ、主燃焼室2内の内壁面上への燃料の付着が抑制され、それにより微粒子状物質(PM)が排出されるのを抑制することができることになる。   That is, in the embodiment according to the present invention, when the engine temperature is low as in the cold start of the engine, as shown by QA in FIG. 7B, a part of fuel to be injected from the main fuel injection valve 3 (hatched portion) Are injected from the auxiliary fuel injection valve 53 into the auxiliary chamber 51 during the intake stroke. When the fuel QA is injected into the sub chamber 51 from the sub fuel injection valve 53 in this way, the temperature of the sub chamber 51 is extremely high. Therefore, after the fuel QA has sufficiently evaporated in the sub chamber 51, the communication hole 52 Is injected into the main combustion chamber 2 during the intake stroke. Further, at this time, the fuel QA flows through the communication hole 52 at a high speed, so that the evaporation of the fuel QA is also promoted at this time. Therefore, the fuel QA is prevented from adhering to the inner wall surface of the main combustion chamber 2 and the particulate matter (PM) can be prevented from being discharged.

従って、本発明による実施例では、主燃焼室2内に燃料を噴射するための主燃料噴射弁3を具備しており、主燃焼室2の頂面に、連通孔52を介して主燃焼室2内に連通しかつ点火栓54および副燃料噴射弁53を有する副室51が形成されており、副燃料噴射弁54から副室51内に副燃料が噴射され、この副燃料を燃焼させることにより連通孔52からジェット火炎が噴出せしめられ、このジェット火炎によって主燃焼室2内の混合気が燃焼せしめられる内燃機関の制御装置において、機関燃焼室2の内壁面の温度を代表する温度が設定温度よりも低いとき、例えば、機関冷却水の温度が設定温度よりも低いときには、主燃料噴射弁3から主燃焼室2内に噴射される主噴射量を減量すると共に、副燃料噴射弁54から副室51内に吸気行程時に噴射される副噴射量を増量するようにしている。   Therefore, in the embodiment according to the present invention, the main fuel injection valve 3 for injecting fuel into the main combustion chamber 2 is provided, and the main combustion chamber 2 is connected to the top surface of the main combustion chamber 2 through the communication hole 52. 2 is formed, and a sub chamber 51 having a spark plug 54 and a sub fuel injection valve 53 is formed. Sub fuel is injected from the sub fuel injection valve 54 into the sub chamber 51, and the sub fuel is burned. In the control device for an internal combustion engine in which the jet flame is ejected from the communication hole 52 and the air-fuel mixture in the main combustion chamber 2 is combusted by the jet flame, a temperature representative of the temperature of the inner wall surface of the engine combustion chamber 2 is set. When the temperature is lower than the temperature, for example, when the temperature of the engine coolant is lower than the set temperature, the main injection amount injected from the main fuel injection valve 3 into the main combustion chamber 2 is reduced, and the sub fuel injection valve 54 Intake air into sub chamber 51 So that increasing the amount of auxiliary injection quantity during injection.

図8Aおよび図8Bは、副燃料噴射弁54から吸気行程時に噴射される副燃料量QAと機関冷却水温との関係を示している。図8Aに示される例では、機関冷却水温が設定温度TMよりも低いときには、機関冷却水温度が低くなるほど、副燃料量QAが増大される。一方、図8Bに示される例では、機関冷却水温が設定温度TMよりも低いときには、機関冷却水温が設定温度TMよりも高いときに比べて、副燃料量QAが増量される。なお、図8Bに示される例において、機関冷却水温が設定温度TMよりも高いときには、副燃料量QAを零とすることができる。   8A and 8B show the relationship between the auxiliary fuel amount QA injected from the auxiliary fuel injection valve 54 during the intake stroke and the engine coolant temperature. In the example shown in FIG. 8A, when the engine coolant temperature is lower than the set temperature TM, the sub fuel amount QA is increased as the engine coolant temperature is lowered. On the other hand, in the example shown in FIG. 8B, when the engine coolant temperature is lower than the set temperature TM, the auxiliary fuel amount QA is increased compared to when the engine coolant temperature is higher than the set temperature TM. In the example shown in FIG. 8B, when the engine coolant temperature is higher than the set temperature TM, the auxiliary fuel amount QA can be made zero.

図9は、機関冷間始動時のように機関温度が低いときの主噴射量と副噴射量についての更に実施例を示している。ところで、連通孔52から主燃焼室2内への副燃料QAの噴出速度は、吸気行程時に最も高くなり、従って、副燃料噴射弁53からの燃料噴射は、圧縮下死点前に終了することが好ましい。しかしながら、図9に示されるように、副燃料噴射弁53から副燃料QAを、吸気行程中から圧縮行程の初めまで噴射させ続けることもできる。但し、この場合、圧縮行程時には、連通孔52から主燃焼室2内への副燃料QAの噴出速度は小さくなるので、その分だけ、燃料の蒸発促進が期待できない。   FIG. 9 shows a further embodiment of the main injection amount and the sub injection amount when the engine temperature is low as in the cold engine start. By the way, the injection speed of the auxiliary fuel QA from the communication hole 52 into the main combustion chamber 2 becomes the highest during the intake stroke, and therefore, the fuel injection from the auxiliary fuel injection valve 53 ends before the compression bottom dead center. Is preferred. However, as shown in FIG. 9, the auxiliary fuel QA can be continuously injected from the auxiliary fuel injection valve 53 from the intake stroke to the beginning of the compression stroke. However, in this case, during the compression stroke, the injection speed of the auxiliary fuel QA from the communication hole 52 into the main combustion chamber 2 becomes small, so that it is not possible to expect the fuel evaporation to be accelerated accordingly.

図10は、機関冷間始動時のように機関温度が低いときの主噴射量と副噴射量についての更に別の実施例を示している。この実施例では、図10に示されるように、吸気行程時における副燃料噴射弁53からの燃料噴射が、複数回に分割して行われている。なお、この場合も、一部の副燃料QAを、圧縮行程初期に噴射させることもできる。   FIG. 10 shows still another embodiment regarding the main injection amount and the sub-injection amount when the engine temperature is low, such as at the time of engine cold start. In this embodiment, as shown in FIG. 10, the fuel injection from the auxiliary fuel injection valve 53 during the intake stroke is performed in a plurality of times. In this case also, a part of the auxiliary fuel QA can be injected at the beginning of the compression stroke.

図11は、機関冷間始動時のように機関温度が低いときの主噴射量と副噴射量についての更に別の実施例を示している。この実施例では、吸気上死点の少し手前から副燃料噴射弁53からの燃料噴射QAが開始される。この実施例では、これまで説明してきた実施例のうちで、副室51内の温度が最も高くなるので、副燃料Qの蒸発が最も促進される。しかしながら、この実施例では、排気弁46の閉弁時期によっては、副室51から未燃燃料が排出される可能性がある。   FIG. 11 shows still another embodiment regarding the main injection amount and the sub-injection amount when the engine temperature is low as in the cold engine start. In this embodiment, the fuel injection QA from the auxiliary fuel injection valve 53 is started slightly before the intake top dead center. In this embodiment, since the temperature in the sub chamber 51 is the highest among the embodiments described so far, evaporation of the sub fuel Q is most promoted. However, in this embodiment, unburned fuel may be discharged from the sub chamber 51 depending on the closing timing of the exhaust valve 46.

図12は、燃料の噴射制御を実行するためのルーチンを示しており、このルーチンは一定時間毎の割込みによって実行される。図12を参照すると、まず初めにステップ60において、機関の要求トルクに基づいて、要求噴射量Qtが算出される。次いで、ステップ61では、圧縮行程末期に副燃料噴射弁53から噴射される副燃料量QIが算出される。次いで、ステップ62では、副燃料噴射弁53からの副燃料量QAが算出される。次いで、ステップ63では、要求噴射量Qtから、副燃料量QIおよび副燃料量QAを減算することによって、主燃料噴射弁3からの主噴射量QMが算出される。次いで、ステップ64では、燃料噴射処理が行われる。   FIG. 12 shows a routine for executing the fuel injection control, and this routine is executed by interruption every predetermined time. Referring to FIG. 12, first, at step 60, the required injection amount Qt is calculated based on the required torque of the engine. Next, at step 61, an auxiliary fuel amount QI injected from the auxiliary fuel injection valve 53 at the end of the compression stroke is calculated. Next, at step 62, the auxiliary fuel amount QA from the auxiliary fuel injection valve 53 is calculated. Next, at step 63, the main injection amount QM from the main fuel injection valve 3 is calculated by subtracting the sub fuel amount QI and the sub fuel amount QA from the required injection amount Qt. Next, at step 64, a fuel injection process is performed.

2 主燃焼室
3 主燃料噴射弁
44 吸気弁
46 排気弁
51 副室
52 連通孔
53 副燃料噴射弁
54 点火栓
2 Main combustion chamber 3 Main fuel injection valve 44 Intake valve 46 Exhaust valve 51 Sub chamber 52 Communication hole 53 Sub fuel injection valve 54 Spark plug

Claims (1)

主燃焼室内に燃料を噴射するための主燃料噴射弁を具備しており、主燃焼室の頂面に、連通孔を介して主燃焼室内に連通しかつ点火栓および副燃料噴射弁を有する副室が形成されており、副燃料噴射弁から副室内に副燃料が噴射され、この副燃料を燃焼させることにより連通孔からジェット火炎が噴出せしめられ、このジェット火炎によって主燃焼室内の混合気が燃焼せしめられる内燃機関の制御装置において、機関燃焼室内壁面の温度を代表する温度が設定温度よりも低いときには、主燃料噴射弁から主燃焼室内に噴射される主噴射量を減量すると共に、副燃料噴射弁から副室内に吸気行程時に噴射される副噴射量を増量する内燃機関の制御装置。   A main fuel injection valve for injecting fuel into the main combustion chamber is provided, and a sub-portion communicating with the main combustion chamber through a communication hole on the top surface of the main combustion chamber and having a spark plug and a sub fuel injection valve. A chamber is formed, and the auxiliary fuel is injected from the auxiliary fuel injection valve into the auxiliary chamber. By burning the auxiliary fuel, a jet flame is ejected from the communication hole, and the jet flame causes the air-fuel mixture in the main combustion chamber to In a control device for an internal combustion engine to be combusted, when the temperature representative of the temperature of the wall surface of the engine combustion chamber is lower than the set temperature, the main injection amount injected from the main fuel injection valve into the main combustion chamber is reduced and the auxiliary fuel is reduced. A control apparatus for an internal combustion engine that increases a sub-injection amount that is injected from an injection valve into a sub-chamber during an intake stroke.
JP2018079278A 2018-04-17 2018-04-17 Control device of internal combustion engine Pending JP2019183815A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018079278A JP2019183815A (en) 2018-04-17 2018-04-17 Control device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018079278A JP2019183815A (en) 2018-04-17 2018-04-17 Control device of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2019183815A true JP2019183815A (en) 2019-10-24

Family

ID=68339476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018079278A Pending JP2019183815A (en) 2018-04-17 2018-04-17 Control device of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2019183815A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020255647A1 (en) * 2019-06-19 2020-12-24 Hitachi Automotive Systems, Ltd. Device and method for controlling a temperature of a prechamber included in an ignition device of an internal combustion engine
JP2021143657A (en) * 2020-03-13 2021-09-24 株式会社Subaru Internal combustion engine
WO2021205723A1 (en) * 2020-04-10 2021-10-14 日立Astemo株式会社 Internal combustion engine control device
WO2022109633A1 (en) * 2020-11-30 2022-06-02 Innio Jenbacher Gmbh & Co Og Internal combustion engine and a method for operating such an internal combustion engine

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020255647A1 (en) * 2019-06-19 2020-12-24 Hitachi Automotive Systems, Ltd. Device and method for controlling a temperature of a prechamber included in an ignition device of an internal combustion engine
JP2021143657A (en) * 2020-03-13 2021-09-24 株式会社Subaru Internal combustion engine
JP7441082B2 (en) 2020-03-13 2024-02-29 株式会社Subaru internal combustion engine
WO2021205723A1 (en) * 2020-04-10 2021-10-14 日立Astemo株式会社 Internal combustion engine control device
JP2021167583A (en) * 2020-04-10 2021-10-21 日立Astemo株式会社 Internal combustion engine control device
JP7337019B2 (en) 2020-04-10 2023-09-01 日立Astemo株式会社 internal combustion engine controller
WO2022109633A1 (en) * 2020-11-30 2022-06-02 Innio Jenbacher Gmbh & Co Og Internal combustion engine and a method for operating such an internal combustion engine
EP4325030A3 (en) * 2020-11-30 2024-05-01 Innio Jenbacher GmbH & Co OG Internal combustion engine and a method for operating such an internal combustion engine
US12085030B2 (en) 2020-11-30 2024-09-10 Innio Jenbacher Gmbh & Co Og Internal combustion engine and a method for operating such an internal combustion

Similar Documents

Publication Publication Date Title
US20120000197A1 (en) Automobile-mount diesel engine with turbocharger and method of controlling the diesel engine
JP2019183815A (en) Control device of internal combustion engine
US10767549B2 (en) Internal combustion engine
EP3015685B1 (en) Engine control device
US20110192380A1 (en) Control device of internal combustion engine
JP3680259B2 (en) Fuel injection device for diesel engine
JP2009185741A (en) Fuel injection control device of internal combustion engine
JP2016217286A (en) Control device of engine system
JP2005194965A (en) Fuel injection controller of engine
JP2015117661A (en) Engine fuel injection control device
JP2010168924A (en) Control device of internal combustion engine
JP4720875B2 (en) Control device for internal combustion engine
JP5206274B2 (en) Design method of spark ignition internal combustion engine
JP2019183791A (en) Control device for internal combustion engine
JP4529835B2 (en) Control device for internal combustion engine
JP2006336620A (en) Fuel injection control device for internal combustion engine
JP3684968B2 (en) Fuel injection device for internal combustion engine
KR101226058B1 (en) Valve Operation Control Method for Preventing the Carbon Deposition of Spark Plug in a Direct Injection Gasoline Engine
JP2007327422A (en) Fuel injection control device of internal combustion engine
EP3015686B1 (en) Engine control device
JP4811139B2 (en) Intake and exhaust valve control device for internal combustion engine
JP2014015913A (en) Gas temperature estimation device for internal combustion engine
JP2020133464A (en) Controller of internal combustion engine with auxiliary chamber
JP2020133463A (en) Controller of internal combustion engine with auxiliary chamber
JP4325517B2 (en) Fuel injection control method for internal combustion engine